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Abstract

A small delay in the feedback loop of a singularly perturbed system may destabilize it; however, without the delay, it is stable for
all small enough values of a singular perturbation parameter �. Su3cient and necessary conditions for preserving stability, for all small
enough values of delay and �, are obtained in two cases: in the case of delay proportional to � and in the case of independent delay and �.
In the second case, the su3cient conditions are given in terms of an LMI. A delay-dependent LMI criterion for the stability of singularly
perturbed di erential–di erence systems is derived. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that if an ordinary di erential system
of equations is asymptotically stable, then this property
is robust with respect to small delays (see e.g. El’sgol’ts
& Norkin, 1973; Hale & Lunel, 1993). Examples of the
systems, where small delays change the stability of the
system, are given in Hale and Lunel (1999) (see also refer-
ences therein). All these examples are in=nite-dimensional
systems, e.g. di erence systems, neutral-type systems with
unstable di erence operator or systems of partial di erential
equations. Another example of a system, sensitive to small
delays, is a descriptor system (Logemann, 1998). Small de-
lays in the descriptor system may lead to a system with ad-
vanced argument, whose solution is not de=ned for t → ∞.
Necessary and su3cient conditions for robust stability with
respect to small delays are given in Logemann (1998) in
terms of the spectral radius of a certain transfer matrix.
In the present note we give a new example of a

=nite-dimensional system that may be destabilized by the
introduction of a small delay in the loop. This is a singularly
perturbed system. Consider the following simple example:

�ẋ(t) = u(t); u(t) =−x(t − h); (1)
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where x(t)∈R and �¿ 0 is a small parameter. Eq. (1) is
stable for h = 0; however, for small delays h = �g with
g¿
=2 this system becomes unstable (see e.g. El’sgol’ts &
Norkin, 1973).
Two main approaches have been developed for the treat-

ment of the e ects of small delays: frequency domain tech-
niques and direct analysis of characteristic equation. We
suggest here a new approach of the second Lyapunov
method, that leads to e ective su3cient conditions for
stability via LMIs. Note that the stability of singularly per-
turbed systems with delays in the frequency domain has
been studied by Luse (1987), Pan, Hsiao, and Teng (1996)
(see also references therein). However, the method of
LMIs is more suitable for robust stability of systems with
uncertainties and for other control problems (see e.g.
Li & de Souza, 1997; de Souza & Li, 1999). Moreover, LMI
conditions may be easily veri=ed by using LMI toolbox of
Matlab.

2. Problem formulation

Let Rm be an Euclidean space and Cm[a; b] be the space
of continuous functions � : [a; b] → Rm with the supremum
norm | · |. Denote xt(�) = x(t + �) (�∈ [− h; 0]).
Consider the following singularly perturbed system:

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t);

�ẋ2(t) = A21x1(t) + A22x2(t) + B2u(t);
(2)
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where x1(t)∈Rn1 ; x2(t)∈Rn2 are the state vectors, u(t)∈Rq

is the control input, Aij; Bi (i= 1; 2; j= 1; 2) are the matri-
ces of the appropriate dimensions, and � is a small positive
parameter. An �-independent state-feedback

u(t) = K1x1(t) + K2x2(t); (3)

robustly stabilizes (2) for all small enough �, i.e. for the
closed-loop system (2) and (3)

E�ẋ(t) = (A+ H)x(t); (4)

where

x =
[
x1
x2

]
; E� =

[
In1 0

0 �In2

]
; A=

[
A11 A12

A21 A22

]
;

H =

[
H11 H12

H21 H22

]
; Hij = BiKj; i = 1; 2; j = 1; 2; : : :

is robustly asymptotically stable under the following as-
sumptions (see e.g. Kokotovic, Khalil, & O’Reilly, 1986):

(A1) The “fast” matrix A22 + H22 is Hurwitz.
(A2) The “slow” matrix

A0 = A11 + H11 − (A12 + H12)(A22 + H22)−1(A21 + H21)

is Hurwitz.

Consider now the controller

u(t) = K1x1(t − h) + K2x2(t − h) (5)

with a small delay h. The closed-loop system (2), (5)
may become unstable for some �. Thus in example (1)
the closed-loop system becomes unstable for all h and e.g.
for �¡ 2h=
. In the present note we obtain su3cient and
necessary conditions for the stability of (2) for all small
enough � and h. We consider two di erent cases: (1) h is
proportional to � and (2) � and h are independent. The =rst
case, being less general than the second one, is encountered
in many publications (see e.g. Glizer & Fridman, 2000 and
references therein). In practical systems (see e.g. a model
of a two-core nuclear reactor in Reddy and Sannuti, 1975),
the fast states usually appear with a delay proportional to
�, since otherwise (as follows from Corollary 1 below) the
fast system should be delay-independently stable. The latter
is too restrictive for real systems.

3. The case of delay proportional to ”: invariant
manifolds approach

We start with the case of h= �g; g∈ (0; g0], i.e.

u(t) = K1x1(t − �g) + K2x2(t − �g): (6)

Consider the closed-loop system (2), (6):

E�ẋ(t) = Ax(t) + Hx(t − �g): (7)

Consider also the fast system

ẋ2(t) = A22x2(t) + H22x2(t − g): (8)

To ensure the stability of (7) for all g∈ (0; g0] and all small
enough � we assume additionally
(A3) There exist K ¿ 0 and �¿ 0 such that for all

g∈ [0; g0] and for all x20 ∈Cn2 [− h; 0]

|x2(t)|6Ke−�t |x20|; (9)

where x2(t) is a solution of (8).

Su3cient conditions for (9) can be found e.g. in
Niculescu, de Souza, Dugard, and Dion (1998), Fridman
and Shaked (1998). We obtain the following lemma

Lemma 1. Under A1–A3 there exists �0 such that for all
�∈ (0; �0] the state-feedback (6) exponentially stabilizes
(2) for all g∈ (0; g0].

Proof. For each h∈ (0; �g0] the result follows from Fridman
(1996);Glizer and Fridman (2000). Proof of the result for all
g∈ (0; g0] follows by the same invariant manifold argument
since (9) holds uniformly in g∈ [0; g0].

We obtain now a simple necessary condition for the sta-
bility of (2), (6) under A1 and A2. Note that this condition
is weaker than A3.

Lemma 2. Let there exist g1¿ 0 such that the fast char-
acteristic equation

�( ), det( I − A22 − H22e− g1 ) = 0; (10)

that corresponds to the fast system (8) has at least one
root with positive real part. Then; for all small enough �
and g= g1; the closed-loop system (2); (6) is unstable.

Proof. Consider g= g1. Writing (7) in the fast time != t=�
and denoting v(!) = x1(�!); w(!) = x2(�!) we obtain
v̇(!) = �[F1v! + F2w!];

ẇ(!) = F3v! + A22w(!) + H22w(!− g1);
(11)

where Fi: Cni [ − h; 0] → Rn1 ; i = 1; 2; F3 :Cn1 [ − h; 0] →
Rn2 are given by

F1v! , A11v(!) + H11v(!− g1);

F2w! , A12w(!) + H12w(!− g1);

F3v! , A21v(!) + H21v(!− g1):

Let T (t) :Cn2 [− g1; 0] → Cn2 [− g1; 0]; t¿ 0 be the semi-
group of operators that corresponds to the fast system (8)
(see e.g. Hale; 1971; p. 61). Denote

&0 = { ∈C: �( ) = 0 and Re  = 0};
&+ = { ∈C: �( ) = 0 and Re  ¿ 0}:
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All the other roots of (10) have negative real parts. It is
well known (see e.g. Hale; 1971; p. 62; Hale & Lunel; 1993;
p. 200) that according to this splitting we have the following
decomposition of Cn2 [− g1; 0]:

Cn2 [− g1; 0] = P1 ⊕ P2 ⊕ Q;

where P1; P2 and Q are invariant spaces for solutions of (8)
in the sense that for all initial conditions from Pi (Q) solu-
tions to (8) satisfy x2t ∈Pi; i = 1; 2 (x2t ∈Q) for all t¿ 0.
Moreover; P1 (P2) is =nite-dimensional and corresponds to
solutions of (8) of the form p(t)e t ; where p(t) is a poly-
nomial in t and  ∈&0 ( ∈&+). Denote by *1; *2 the
matrices; the columns of which are basis vectors for P1 and
P2. Let +1 (+2) be the matrices; the rows of which are
basis for the initial values of those solutions to the transpose
of (8)

Ȯx2(s) =− Ox2(s)A22 − Ox2(s+ g)H22; Ox′2(s)∈Rn2 ; s6 0;

which have the form ofp(s)e− s;wherep(s) is a polynomial
in s and  ∈&0 ( ∈&+) (see Hale; 1971; p. 63).
Denote by Yi; i = 1; 2 such matrices that T (t)*i =

*i exp(Yit). The spectrum of Y1 (Y2) is &0 (&+). Let
X (t) be the fundamental matrix of (8) and thus X0(s) = 0;
s∈ [ − g1; 0); X0(0) = I . Following Hale (1971, pp. 62–
64), we denote

XQ
0 = X0 − *1+1(0)− *2+2(0);

T (t)XQ
0 = Xt − T (t)*1+1(0)− T (t)*2+2(0):

It is shown in Hale (1971, p. 64) that T (t)z0 for z0 ∈Q and
T (t)XQ

0 are exponentially decaying. Moreover, the solution
of (11) v(!); w! =*1y1(!) +*2y2(!) + z!; z! ∈Q; with the
initial conditions v(0); w0 is a solution of the system

v̇(!) = �[F1v! + F2(*1y1(!) + *2y2(!) + z!)];

ẏ 1(!) = Y1y1 ++1(0)F3v!;

ẏ 2(!) = Y2y2 ++2(0)F3v!;

z! = T (!)z0 +
∫ !

0
T (!− s)XQ

0 F3vs ds
(12)

and vice versa (Hale, 1971, p. 66).
Note that the spectrum of the “main linear parts” of (12)

is decomposed as follows: in the equations with respect to
v̇; ẏ 1 and z! it is on the imaginary axis and in the left-hand
side of the plane, while in the equation with respect to y2 it
is on the right-hand side of the plane. By standard arguments
(see e.g. Kelley, 1967, Theorem 1; Hale, 1971, Theorem
3:1), this system for all small enough �¿ 0 has an unstable
manifold

v! = �L1(�; �)y2(!); y1 = L2(�)y2(!);

z! = L3(�; �)y2(!); �∈ [− g1; 0];

where Li; i= 1; 2; 3 are continuous and uniformly bounded
functions. The Qow on this manifold is governed by the

equation

ẏ 2(!) = Y2y2(!) + �+2(0)F3L1y2(!): (13)

The solutions on the unstable manifold are unbounded so-
lutions of (11). Therefore, (7) has unbounded solutions and
thus (7) is unstable for small enough �¿ 0 and g= g1.

4. The case of independent h and ”: an LMI approach

4.1. On robustness of regular time-delay system with
respect to small delay

The closed-loop system (2), (5) has the form

E�ẋ(t) = Ax(t) + Hx(t − h): (14)

For � = 1 (14) is a regular system. It is well known that
if A + H is Hurwitz, then (14) with � = 1 is asymptoti-
cally stable for all small enough h. The proof of this fact
is usually based on Rousche’s theorem (see e.g. El’sgol’ts
& Norkin, 1973; Hale & Lunel, 1993). We mention here
that this fact immediately follows from a delay-dependent
LMI stability criterion (see e.g. Li & de Souza, 1997;
Kolmanovskii, Niculescu, & Richard, 1999). Namely, (14)
is stable if there exist symmetric positive-de=nite matrices
P, R1 and R2 satisfying the following LMIs:

*(h) hPH hPH
hH ′P −hR1 0
hH ′P 0 −hR2


¡ 0; (15)

where *(h)=(A+H)′P+P(A+H)+h(A′R1A+H ′R2H):
The fact that A+H is Hurwitz implies the existence of P¿ 0
such that *(0)¡ 0 and thus (15) holds e.g. for R1 =R2 = I
and for all small enough h. We develop an LMI approach
to (14) for small � and h. Note that in the case of h= �g one
can apply (15) with A= E−1

� A; H = E−1
� H .

4.2. Stability conditions for singularly perturbed system
with delay

From Lemma 2 we obtain the following necessary con-
dition:

Corollary 1. Let (14) be stable for all small enough � and
h. Then; for all g1¿ 0; the characteristic equation (10) has
no roots with positive real parts.

According to this corollary we derive a criterion for
asymptotic stability which is delay-independent in the fast
variables and delay-dependent in the slow ones by consid-
ering the following Lyapunov–Krasovskii functional:

V (xt) = x′(t)E�P�x(t) +
∫ t

t−h
x′2(�)Qx2(�) d�+W (xt);

(16)
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where

P� =

[
P1 �P′

2

P2 P3

]
; P1 = P′

1¿ 0; P3 = P′
3¿ 0; (17)

and

W (xt) =
∫ 0

−h

∫ t

t+�
x′(s)[A11 A12]′R1[A11 A12]x(s) ds d�

+
∫ 0

−h

∫ t

t+�−h
x′(s)[H11 H12]′

×R2[H11 H12]x(s) ds d�:

Note that we choose P� in the form of (17) similar to Xu
and Mizukami (1997), such that for �= 0 the functional V ,
with E�=E0 and P�=P0, corresponds to the descriptor case
(i.e. �= 0 in (14)).
To guarantee that nondelay system (14), where h= 0, is

asymptotically stable for all small enough � we assume:
(A4) There exists P0 of (17) such that P′

0(A + H)+
(A′ + H ′)P0¡ 0.
A4 implies the robust asymptotic stability of (14) with

h= 0 since, choosing V0(x) = x′P�x, we have, for all small
enough � and x(t) satisfying (14) with h= 0, that

d
dt
V0(x(t)) = x′(t)[P′

�(A+ H)(A′ + H ′)P�]x(t)

= x′(t)[P′
0(A+ H) + (A′ + H ′)P0

+O(�)]x(t)¡ 0:

Denote

+(�; h)

=

[
A′ +

(
H ′
11 H ′

21

0 0

)]
P� + P′

�

[
A+

(
H11 0

H21 0

)]

+

[
0 0

0 Q

]
+ h

[
A′
11

A′
12

]
R1[A11 A12] + h

[
H ′
11

H ′
12

]

×R2[H11 H12]: (18)

We obtain the following su7cient conditions.

Theorem 1. Under A4 the following holds:
(i) Given �¿ 0; h¿ 0 (14) is asymptotically stable if

there exist P� of (17) such that E�P� ¿ 0 and n2×n2-matrix
Q and n1× n1-matrices R1¿ 0 and R2¿ 0 that satisfy the
“full-order” LMI


+(�; h) P′
�

(
H12

H22

)
hP′

�

(
H11

H21

)
hP′

�

(
H11

H21

)

(H ′
12 H ′

22)P� −Q 0 0

h(H ′
11 H ′

21)P� 0 −hR1 0

h(H ′
11 H ′

21)P� 0 0 −hR2




¡ 0:

(19)

(ii) If there exist P0 of (17) and n2 × n2-matrix Q such
that the LMI

5 =


 +(0; 0) P′

0

(
H12

H22

)

(H ′
12 H ′

22)P0 −Q


¡ 0 (20)

holds, then (14) is asymptotically stable for all small
enough �¿ 0 and h¿ 0.

Proof. (i) Di erentiating (16) with respect to t we obtain

dV (xt)
dt

= 2x′P′
�[Ax(t) + Hx(t − h)] + x′2(t)Qx2(t)

− x′2(t − h)Qx2(t − h) +
dW
dt

: (21)

Considering the system of (14) we =nd that for t¿ 0

x1(t − h) = x1(t)− [A11 A12]
∫ t

t−h
x(!) d!

− [H11 H12]
∫ t

t−h
x(!− h) d!: (22)

Then;

dV (xt)
dt

= 2x′(t)P′
�

[
A+

(
H11 0
H21 0

)]
x(t)

+2x′(t)P′
�

[
H12

H22

]
x2(t − h)

+ x′2(t)Qx2(t)− x′2(t − h)Qx2(t − h)

+
dW
dt

+ 61(t) + 62(t); (23)

where

61(t), −2
∫ t

t−h
x′(t)P′

�

[
H11

H21

]
[A11 A12]x(!) d!;

62(t), −2
∫ t

t−h
x′(t)P′

�

[
H11

H21

]
[H11 H12]x(!− h) d!:

Since for any z; y∈Rn and for any symmetric positive-
de=nite n× n-matrix X ;

−2z′y6 z′X−1z + y′Xy;

we =nd that for any n1 × n1-matrices R1¿ 0 and R2¿ 0;

616 hx′(t)P′
�

[
H11

H21

]
R−1
1 [H ′

11 H ′
21]P�x(t)

+
∫ t

t−h
x′(!)

[
A′
11

A′
12

]
R1[A11 A12]x(!) d!;
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626 hx′(t)P′
�

[
H11

H21

]
R−1
2 [H ′

11 H ′
21]P�x(t)

+
∫ t

t−h
x′(!− h)

[
H ′
11

H ′
12

]
R2[H11 H12]x(!− h) d!:

(24)

Then;

dV (xt)
dt

= x′(t)+(�; h)x(t) + 2x′(t)P′
�

[
H12

H22

]
x2(t − h)

− x′2(t − h)Qx2(t − h) + hx′(t)P′
�

[
H11

H21

]

×[R−1
1 + R−1

2 ][H ′
11 H ′

21]P�x(t): (25)

Eq. (25) and LMI (19) yield (by Schur complements) that
dV=dt ¡ 0 and therefore (14) is asymptotically stable.
(ii) If the “reduced-order” LMI (20) holds for some P0

and Q, then e.g. for R1 = R2 = I and for small enough �
and h the full-order LMI (19) holds for the same P1; P2; P3

and Q and thus, due to (i) of Theorem 1, (14) is robustly
asymptotically stable.

Remark 1. LMI (20) implies A4; since from (20) it follows
that for all x = col{x1; x2}∈Rn

[x′ x′2]5col{x x2}= x′[P′
0(A+ H) + (A′ + H ′)P0]x¡ 0:

Remark 2. Item (ii) of Theorem 1 gives su3cient condi-
tions for the robust stability of (14) with respect to small �
and h. Note that (20) yields the inequality[
A′
22P3 + P3A22 + Q P3H22

H ′
22P3 −Q

]
¡ 0

that guarantees the stability of the fast system (8) for all
delays g¿ 0.

Remark 3. Given h¿ 0; consider the descriptor system
(14) with � = 0. If (19) holds for � = 0 (and thus (20)
is feasible); then the Lyapunov–Krasovskii functional of
(16) with � = 0 is nonnegative and has a negative-de=nite
derivative. It has been shown recently (Fridman; 2001) that
the latter guarantees the asymptotic stability of the descrip-
tor system provided that all the eigenvalues of A−1

22 H22 are
inside a unit circle. Moreover; (19) for �=0 or (20) implies
that the spectrum of A−1

22 H22 is inside a unit circle. Thus;
Theorem 1 holds in fact for �¿ 0 (and not only for �¿ 0
as it is stated).
LMI (20) guarantees for all h¿ 0 the asymptotic stability

of the following slow (descriptor) system (Fridman, 2001):

E0ẋ(t) =
[
A+

(
H11 0
H21 0

)]
x(t) +

[
H12

H22

]
x2(t − h):

Table 1

� 0.1 0.2 0.3 0.4

h0 0.142 0.131 0.006 0.001

4.3. Example

Consider (14) of the form

ẋ1 = x2(t) + x1(t − h);

�ẋ2 =−x2(t) + 0:5x2(t − h)− 2x1(t):
(26)

For h = 0 this system is asymptotically stable for all small
enough � since A1 and A2 hold. It is well known (see e.g.
Hale & Lunel, 1993) that the fast system ẋ2(t) =−x2(t) +
0:5x2(t − g) is asymptotically stable for all g. Thus, the
necessary condition for robust stability with respect to small
� and h is satis=ed. LMI (20) for this system has a solution.
Hence, the system is robustly asymptotically stable with
respect to small � and h. Applying LMI (20) we =nd that
(26) is asymptotically stable e.g. for the values of � and
h6 h0, where � and h0 are given in Table 1. For �=0:5 and
h=0 the system is not stable and LMI (20) has no solution.
The condition of (19) is conservative. Thus for �=0 (26)

is delay-independently stable (see Fridman, 2001), while
(19) for � = 0 is feasible only for h6 0:144. The conser-
vatism of (19), as well as in the regular case (see e.g. de
Souza & Li, 1999; Kolmanovskii et al., 1999), is twofold:
the transformed equation (22) is not equivalent to the corre-
sponding di erential equation of (14) and the bounds (24)
placed upon 61 and 62 are wasteful.

5. Conclusions

A new example of a system which can be destabilized by
a small delay is given. This system is a singularly perturbed
one. An LMI approach has been introduced for singularly
perturbed systems and a new delay-dependent stability cri-
terion has been derived for such systems with delay. The re-
sults can be easily generalized to the case of multiple delays.
Since the LMI conditions are a3ne in the system matrices,
the LMI approach also allows solutions for the uncertain
case where the system parameters lie within an uncertainty
polytope. The convexity of the LMI with respect to the de-
lays implies that a solution, if it exists, will hold for all de-
lays less than or equal to the one solved for. The method is
most suitable for robust stabilization and for other control
applications.
The LMI approach of this paper may provide a new im-

pact to stability, stabilization and H∞ control of time-delay
systems, as well as singularly perturbed and descriptor sys-
tems with delay. As in the case of regular systems, the LMI
stability criterion of this note is conservative. A work is cur-
rently being carried out to obtain conditions that are less
conservative.
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