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a b s t r a c t

We introduce distributed event-triggered networked control of parabolic systems governed by semilinear
diffusion PDEs. Sampled in time spatially distributed (either point or averaged) measurements are
transmitted through a communication network to the controller only if a triggering condition is violated.
We take into account quantization of the transmittedmeasurements and network-induced delays that are
allowed to be larger than sampling intervals.We show that decentralized event-triggeringmechanismcan
significantly reduce amount of transmitted measurements while preserving the system performance.
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1. Introduction

Networked control systems, that are comprised of sensors, ac-
tuators, and controllers connected through a network, is a very hot
topic due to great advantages they bring, such as long distance con-
trol, low cost, ease of reconfiguration, etc. (Antsaklis & Baillieul,
2004; Hespanha, Naghshtabrizi, & Xu, 2007). One of the challenges
in such systems is that only sampled in time measurements can
be transmitted through a communication network. The discrete-
time approach to sampled-data control has been developed in
Logemann (2013), Tan, Trélat, Chitour, and Nešić (2009), model
decomposition techniques have been extensively used for sampled-
data control in, e.g., Ghantasala and El-Farra (2012), Yao and El-
Farra (2014a,b), for parabolic systems mobile collocated sensors
and actuators were considered in Demetriou (2010). The above
methods are not applicable to the performance (exponential decay
rate) analysis of the closed-loop infinite-dimensional systems.

A given decay rate of convergence has been guaranteed in
Fridman and Blighovsky (2012), where sampled-data stabilization
under the point measurements has been studied, and in Bar Am
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and Fridman (2014), Fridman and Bar Am (2013), where network-
based H∞ control and filtering under the averaged measurements
have been considered. Conditions derived in the latter works can
lead to small sampling time intervals, resulting in a high workload
of the communication network.

To reduce the network workload an event-triggering mecha-
nism (ETM) can be used. While there exists an extensive litera-
ture on event-triggered networked control of finite dimensional
systems (see Dimarogonas, Frazzoli & Johansson, 2012, Garcia &
Antsaklis, 2013, Hu & Yue, 2012, Mazo & Tabuada, 2011, Peng &
Yang, 2013, Tabuada, 2007, Wang & Lemmon, 2011 and Yue, Tian,
& Han, 2013), there are few works on event-triggered control of
diffusion PDEs, which are potentially of great interest in a long dis-
tance control of chemical reactors (Smagina & Sheintuch, 2006)
or air polluted areas (Court, Demetriou, & Gatsonis, 2012; Koda &
Seinfeld, 1978). Event-triggered control of distributed parameter
systems was started in Yao and El-Farra (2013) via model reduc-
tion approach leading to local results concerning practical stabil-
ity where no decay rate can be guaranteed for the initial system.
Moreover, this approach seems to be inapplicable to the systems
with spatially-dependent diffusion coefficients.

In the present work we introduce distributed event-triggered
control of diffusion semilinear PDEs under thepointmeasurements
(where several sensors measure the output in certain spatial
points) and under the averaged measurements (where sensors
measure the average output on different space regions). In terms
of LMIs we give global exponential stability conditions and show
that the network workload can be significantly reduced by means
of decentralized ETM both for point and averaged measurements
while a decay rate of convergence is preserved. This allows
to save communication and energy resources. In our setup in
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Fig. 1. System representation.

each sensor node it is locally decided whether to send newly
sampledmeasurement or not using local event-triggering rule.We
take into account quantization of the transmitted measurements
and network-induced delays that are allowed to be larger than
sampling intervals. Note that there are two main approaches
to control of PDEs. The first approach treats control problems
in abstract (Banach/Hilbert) spaces with some conclusions for
the specific systems (Curtain & Zwart, 1995; Demetriou, 2010;
Logemann, 2013). The second approach, which we develop in the
present paper, deals with specific PDEs. Some preliminary results
were presented in Selivanov and Fridman (2015).

Notations. P > 0 denotes that P is a symmetric positive-definite
matrix, symbol ∗ stands for the symmetric terms, Z denotes the
integer numbers, N0—nonnegative integers, C1 is a set of smooth
functions, H1(0, l) is Sobolev space of absolutely continuous
functions z: [0, l] → Rn with the square integrable zx, 1n is n × n
matrix that consists of ones, ⊗ denotes the Kronecker product.

2. Problem statement and the closed-loop model

We consider the system schematically presented in Fig. 1.
Below we describe each block.

2.1. Plant: diffusion PDE

We consider semilinear diffusion PDE

zt(x, t) = ∆Dz(x, t)− βzx(x, t)+ Az(x, t)

+φ(z(x, t), x, t)+ B
N
j=1

bj(x)uj(t), (1)

with x ∈ [0, l], t ≥ 0, z(x, t) = [z1(x, t), . . . , zn(x, t)]T ∈ Rn,
uj(t) ∈ Rr , constant matrices A ∈ Rn×n, B ∈ Rn×r , and a matrix of
convection coefficients β ∈ Rn×n. The diffusion term is given by

∆Dz(x, t) =


∂

∂x
(d1(x)z1x (x, t)), . . . ,

∂

∂x
(dn(x)znx (x, t))

T
with di(x) ∈ C1 such that 0 < d0i ≤ di(x) for x ∈ [0, l], i =

1, . . . , n. Following Bar Am and Fridman (2014) we assume that
for some positive definite Q ∈ Rn×n the function φ ∈ C1 for
∀z ∈ Rn, x ∈ [0, l], t ≥ 0 satisfies

φT (z, x, t)φ(z, x, t) ≤ zTQz. (2)

Let the points 0 = x0 < x1 < · · · < xN = l divide [0, l] into N
subdomains (subintervals)

Ωj = [xj−1, xj), xj − xj−1 = ∆j ≤ ∆.
As in Fridman and Bar Am (2013), Fridman and Blighovsky (2012)
the control inputs uj(t) enter (1) through the shape functions

bj(x) =


1, x ∈ Ωj,
0, otherwise, j = 1, . . . ,N.

Such control appears, e.g., in the problem of compressor rotating
stall with air injection actuator (Hagen & Mezic, 2003), where
z(x, t) denotes the axial flow through the compressor.

We consider (1) under the Dirichlet

z(0, t) = z(l, t) = 0, (3)

Neumann

zx(0, t) = zx(l, t) = 0, (4)

or mixed boundary conditions

zx(0, t) = Γ z(0, t), z(l, t) = 0 (5)

with Γ = diag {γ1, . . . , γn} ≥ 0.
The open-loop system (1) (with uj(t) ≡ 0) under the above

boundary conditions may become unstable if ∥Q∥ in (2) is big
enough (see Curtain & Zwart, 1995 for φ(z, x, t) = φMz).

2.2. Sampled in time measurements with ETM

Assume that in each subdomain Ωj sensors provide discrete-
timepoint or averagedmeasurements of the output Cz(x, t), where
C ∈ Rm×n. In Section 3 we consider synchronized variable
sampling instants

0 = s0 < s1 < · · · , lim
k→∞

sk = ∞,

where 0 < hmin ≤ sk+1 − sk ≤ h, with point measurements

yj,k = Cz(x̄j, sk), x̄j =
xj−1 + xj

2
. (6)

The assumption of the positive lower bound hmin on the sampling
time intervals eliminates the possibility of the Zeno behavior
(Ames, Tabuada, & Sastry, 2006).

In Section 4 we consider the asynchronous (jth dependent)
variable sampling instants

0 = sj,0 < sj,1 < · · · , lim
k→∞

sj,k = ∞, j = 1, . . . ,N,

where 0 < hmin ≤ sj,k+1 − sj,k ≤ h, with spatially averaged
measurements

yj,k =
1
∆j

 xj

xj−1

Cz(x, sj,k) dx. (7)

Let ŷj,k be the last sent measurement from the domain Ωj at time
instant sj,k. Similarly to Tabuada (2007), Yue et al. (2013) the newly
sampled measurement yj,k is not transmitted if
ŷj,k−1 − yj,k

T
Ω

ŷj,k−1 − yj,k


< ε yTj,kΩyj,k, (8)

where ε > 0,Ω ∈ Rm×m,Ω ≥ 0. Therefore,

ŷj,k =


ŷj,k−1, if (8) is valid,
yj,k, if (8) is not valid, (9)

where j = 1, . . . ,N, k ∈ N0, ŷj,−1 = 0.

2.3. Networked controller and the closed-loop system

Following Garcia and Antsaklis (2013) we assume that quan-
tized values of the transmitted measurements ŷj,k are available on



346 A. Selivanov, E. Fridman / Automatica 68 (2016) 344–351
Fig. 2. Logarithmic quantizer.

the controller side.We consider a logarithmic quantizer (Elia &Mit-
ter, 2001): choosing some ρ ∈ (0, 1) and u0 > 0, define v0 =

(1+ρ)u0/(2ρ), δq = (1−ρ)/(1+ρ). Then a logarithmic quantizer
with a density ρ is a mapping q:R → U = {±ρ iu0 | i ∈ Z} ∪ {0}
defined by

q(y) =

ρ
iu0, ρ i+1v0 < y ≤ ρ iv0,

0, y = 0,
−q(−y), y < 0.

For a vector y = (y1, . . . , ym)T ∈ Rm we define q(y) =

(q1(y1), . . . , qm(ym))T , where qi are scalar logarithmic quantizers
with densities ρi.

The logarithmic quantizer implements a simple idea: to
stabilize the system one should reduce quantization error near the
origin by increasing the density of the quantization levels, while
far from the origin quantization levels can be sparse (see Fig. 2).
The value of δq corresponds to the maximum relative quantization
error.

If (8) is not valid, the quantized measurement q(yj,k) = q(ŷj,k)
from the jth subdomain is transmitted through the network to the
controller, and the resulting static output feedback uj = −Kq(ŷj,k)
with some constant gain K ∈ Rr×m is further transmitted to the
zero-order hold (ZOH).

Denote by ηj,k the overall time-varying network-induced delay
from the sensors to ZOH and define tj,k = sj,k + ηj,k. We assume
that ηj,k ≤ MAD (Maximum Allowable Delay) and allow it to be
larger than the sampling intervals sj,k+1 − sj,k provided tj,k ≤ tj,k+1.
Thus, if the measurement has been sent at sampling time instant
sj,k, then tj,k is the updating time of the ZOH. The resulting control
law is given by

uj(t) = −Kq(ŷj,k), t ∈ [tj,k, tj,k+1), (10)

where K ∈ Rr×m, k ∈ N0, j = 1, . . . ,N .
Applying the time-delay approach (Fridman, Seuret, & Richard,

2004; Gao, Chen, & Lam, 2008) denote

τj(t) = t − sj,k, tj,k ≤ t ≤ tj,k+1.

Then τj(t) ≤ h + MAD , τM . For j = 1, . . . ,N , k ∈ N0 define the
following quantities

ej,k = ŷj,k − yj,k, vj,k = q(ŷj,k)− ŷj,k, (11)

that can be interpreted as errors due to triggering andquantization,
respectively. The value ej,k is defined following Liu, Fridman, and
Hetel (2012). Note that ej,k = 0 if yj,k has been sent. We rewrite
the quantized measurements as

q(ŷj,k) = yj,k + vj,k + ej,k. (12)
Setting uj(t) ≡ 0 for t < tj,0, the closed-loop system (1), (10) can
be rewritten as:
zt(x, t) = ∆Dz(x, t)− βzx(x, t)+ φ(z(x, t), x, t)

+ Az(x, t), t ∈ [0, tj,0),
zt(x, t) = ∆Dz(x, t)− βzx(x, t)+ φ(z(x, t), x, t)

+ Az(x, t)− BK [yj,k + vj,k + ej,k], t ∈ [tj,k, tj,k+1), (13)

where x ∈ [xj−1, xj), k ∈ N0, j = 1, . . . ,N .
The existence of a continuable for t ≥ 0 strong solution (as

defined in Tucsnak & Weiss, 2009) to the system (13) under the
boundary conditions (3), (4), or (5) can be proved by arguments of
Fridman and Bar Am (2013) for any z(·, 0) ∈ H1(0, l) satisfying
the corresponding boundary conditions.

3. Event-triggered control: point measurements

In this section we consider synchronized distributed sensors,
i.e. sj,k = sk, ηj,k = ηk, tj,k = tk, τj(t) = τ(t) for j = 1, . . . ,N .
The case of asynchronous sampling is discussed in Remark 1. For
j = 1, . . . ,N , k ∈ N0 define

σk(x) = z(x̄j, sk)− z(x, sk), x ∈ [xj−1, xj). (14)

Then the closed-loop system (13) for x ∈ [xj−1, xj), t ∈ [tk, tk+1)
can be rewritten in the following form:

zt(x, t) = ∆Dz(x, t)− βzx(x, t)+ φ(z(x, t), x, t)+ Az(x, t)

− BKCz(x, t − τ(t))− BK

vj,k + ej,k + Cσk(x)


. (15)

To study the stability of (15) we suggest the following Lya-
punov–Krasovskii functional (that extends Lyapunov construc-
tions of Bar Am& Fridman, 2014 and Fridman & Blighovsky, 2012):

V (t) = V1(t)+ V2(t)+ VS(t)+ VR(t)+ VB(t), (16)

where

V1(t) =

 l

0
zT (x, t)P1z(x, t) dx,

V2(t) =

n
i=1

 l

0
pi3di(x)(z

i
x(x, t))

2 dx,

VS(t) =

 l

0

 t

t−τM
eδ(s−t)zT (x, s)Sz(x, s) ds dx,

VR(t) = τM

 l

0

 0

−τM

 t

t+θ
eδ(s−t)zTs (x, s)Rzs(x, s)dsdθdx,

VB(t) = b
n

i=1

pi3di(0)γi(z
i(0, t))2

with P1 > 0, pi3 > 0, S > 0, R > 0, b = 0 for (3), (4) and b = 1 for
(5). Similar to Liu and Fridman (2014) we set z(x, t) ≡ z(x, 0) for
t < 0: this does not change the solution but allows to considerV (t)
for t ∈ [t0, τM). In order to ‘‘compensate’’ in V̇ the cross termswith
vj,k and ej,k we apply S-procedure (Yakubovic, 1977). Namely, each
component of vj,k = (v1j,k, . . . , v

m
j,k)

T satisfies the sector inequality
(see Fig. 2 and, e.g., Fu & Xie, 2005 and Zhou, Duan, & Lam, 2010)

0 ≤ λiq

δiqŷ

i
j,k − vij,k

 
vij,k + δiqŷ

i
j,k


, (17)

with λiq ≥ 0, δiq = (1 − ρi)/(1 + ρi). Furthermore, triggering
condition (8), (9) implies

0 ≤ ε[z(x, t − τ(t))+ σk(x)]TCTΩC

× [z(x, t − τ(t))+ σk(x)] − eTj,k(t)Ωej,k(t). (18)

By adding to V̇ the inequalities (17) and (18) with −λiq(v
i
j,k)

2
≤ 0

and −eTj,kΩej,k ≤ 0 we will compensate the cross terms with
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vj,k and ej,k. Following Fridman and Blighovsky (2012), to
‘‘compensate’’ the term σk(x) in the stability analysis we will use
Halanay’s inequality:

Lemma 1 (Halanay, 1966). If 0 < δ1 < δ and V̇ (t) ≤ −δV (t) +

δ1 sup−τM≤ θ≤ 0 V (t + θ) for t ≥ t0 then

V (t) ≤ e−α(t−t0) sup
−τM≤ θ≤ 0

V (t0 + θ), t ≥ t0,

where α > 0 is a unique positive solution of

α = δ − δ1eατM . (19)

Theorem 1. (i) Given positive constants 0 < δ1 < δ, τM , and
ρ1, . . . , ρm, let there exist positive definite n × n matrices P1, P3 =

diag

p13, . . . , p

n
3


, R, S, m × m nonnegative matrices Ω , Λq =

diag

λ1q, . . . , λ

m
q


, n × n matrices P2 = diag


p12, . . . , p

n
2


, G, and

a scalar λφ ≥ 0 that satisfy the following linear matrix inequalities:

Ξ ≤ 0,

R G
GT R


≥ 0, (20)

whereΞ = {Ξij} is a symmetric matrix composed of the matrices

Ξ11 = S − e−δτMR + P2A + ATP2 + λφQ + δP1,

Ξ12 = P1 − P2 + ATP3, Ξ13 = 0, Ξ14 = e−δτMGT ,

Ξ15 = e−δτM (R − GT )− P2BKC, Ξ16 = P2,
Ξ17 = −P2BKC, Ξ18 = Ξ19 = −P2BK ,
Ξ22 = τ 2MR − 2P3,
Ξ23 = −P3β, Ξ25 = Ξ27 = −P3BKC,
Ξ26 = P3, Ξ28 = Ξ29 = −P3BK ,
Ξ33 = D0(δP3 − 2P2), Ξ44 = −e−δτM (S + R),
Ξ45 = e−δτM (R − G), Ξ57 = CTΛq∆

2
qC + εCTΩC,

Ξ55 = −2e−δτMR + e−δτM [G + GT
] + CTΛq∆

2
qC + εCTΩC − δ1P1,

Ξ59 = Ξ79 = CTΛq∆
2
q, Ξ66 = −λφ In,

Ξ77 = Ξ57 − δ1P3D0π
2∆−2, Ξ88 = −Λq,

Ξ99 = Λq∆
2
q −Ω,

other blocks are zero matrices, D0 = diag

d01, . . . , d

0
n


, ∆q =

diag

δ1q , . . . , δ

m
q


, δiq = (1 − ρi)/(1 + ρi). Then a unique strong

solution to the Dirichlet boundary value problem (3), (6), (8), (9), (13),
initialized with z(·, 0) ∈ H1(0, l) satisfying (3), for t ≥ t0 satisfies
the inequality l

0
zT (x, t)P1z(x, t) dx +

n
i=1

 l

0
pi3di(x)(z

i
x(x, t))

2 dx

≤ e−α(t−t0)

 l

0
zT (x, t0)[P1 + τMS]z(x, t0) dx

+

n
i=1

 l

0
pi3di(x)(z

i
x(x, t0))

2dx

+ b
n

i=1

pi3di(0)γi(z
i(0, t0))2


(21)

with b = 0, where α is a unique positive solution of (19).
(ii) If conditions of (i) are satisfied with Ξ13 = −P2β then

a unique strong solution to the Neumann boundary value prob-
lem (4), (6), (8), (9), (13), initialized with z(·, 0) ∈ H1(0, l) satis-
fying (4), for t ≥ t0 satisfies (21) with b = 0, where α is a unique
positive solution of (19).
(iii) If, in addition to the conditions of (i),

2(δP3 − 2P2)D0Γ + P2β + βTP2 ≤ 0,

then a unique strong solution to the mixed boundary value prob-
lem (5), (6), (8), (9), (13), initialized with z(·, 0) ∈ H1(0, l) satis-
fying (5), for t ≥ t0 satisfies (21) with b = 1, where α is a unique
positive solution of (19).

Proof. See Appendix A.

Remark 1. In the case of asynchronous sampling one could
define different measurement delays τj(t) for each spatial interval
[xj−1, xj). Then to use Halanay’s lemma and obtain an estimate
similar to (A.10) instead of −δ1 supθ∈[−τM ,0] V (t + θ) one could
consider

−Nδ1 sup
θ∈[−τM ,0]

V (t + θ) ≤ −δ1

N
j=1

V (t − τj(t))

≤ −δ1

N
j=1

 xj

xj−1

zT (x, t − τj(t))P1z(x, t − τj(t)) dx

− δ1

N
j=1

 xj

xj−1

n
i=1

pi3d
0
i [z

i
x(x, t − τj(t))]2 dx.

This approach seems to be quite restrictive since the terms

−

 xl

xl−1

zT (x, t − τj(t))P1z(x, t − τj(t))

−

 xl

xl−1

n
i=1

pi3d
0
i [z

i
x(x, t − τj(t))]2 dx ≤ 0

with l ≠ j are ignored.

Remark 2. Instead of the decentralized triggering rule (8) one can
think of a centralized ETM of the form

N
j=1


ŷj,k−1 − yj,k

T
Ω

ŷj,k−1 − yj,k


≤ ε

N
j=1

yTj,kΩyj,k, (22)

where all themeasurements yj,k are transmitted to ETM and if (22)
is violated all the measurements are quantized and transmitted to
the controllers. In the case of uniform space samplings ∆j = ∆

relation (22) implies (A.8) and, therefore, the results of Theorem 1
hold. However, as one will see in the example, decentralized ETM
(8) (that is more realistic if the sensors are not close to each other)
is more effective.

4. Event-triggered control: averaged measurements

In this section we consider the decentralized control under
averaged measurements (7), where Halanay’s inequality is not
used in the proof of stability. This allows to consider asynchronous
measurements. For j = 1, . . . ,N , k ∈ N0 consider the quantities

ϑj(t) =
1
∆j

 xj

xj−1


z(x, sj,k)− z(x, t)


dx, t ∈ [tj,k, tj,k+1),

κ(x, t) =
1
∆j

 xj

xj−1

[z(ζ , t)− z(x, t)] dζ ,

x ∈ [xj−1, xj), t ∈ [tj,k, tj,k+1).

These quantities can be interpreted as errors due to time-delay and
averaged measurements, respectively. We rewrite the quantized
measurements for x ∈ [xj−1, xj), t ∈ [tj,k, tj,k+1) as

q(ŷj,k) = vj,k + ej,k + Cϑj(t)+ Cκ(x, t)+ Cz(x, t). (23)
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Then the closed-loop system (13) for x ∈ [xj−1, xj), t ∈ [tj,k, tj,k+1)
can be rewritten in the following form

zt(x, t) = ∆Dz(x, t)− βzx(x, t)+ Az(x, t)
+φ(z(x, t), x, t)− BKCz(x, t)

− BK

vj,k + Cej,k + Cϑj(t)+ Cκ(x, t)


. (24)

To derive the stability conditions we use Lyapunov–Krasovskii
functional (16). We will compensate the terms vj,k, ej,k in V̇ similar
to Section 3. To compensate ϑj(t) = (ϑ1

j (t), . . . , ϑ
n
j (t))

T and
κ(x, t) = (κ1(x, t), . . . , κn(x, t))T we will use the idea from Bar
Am and Fridman (2014). Namely, Jensen’s inequality implies xj

xj−1


z i(x, sj,k)− z i(x, t)

2
dx

≥
1
∆j

 xj

xj−1


z i(x, sj,k)− z i(x, t)


dx

2

= ∆j(ϑ
i
j (t))

2,

therefore, for anyΛϑ = diag

λ1ϑ , . . . , λ

n
ϑ


≥ 0

0 ≤

N
j=1

 xj

xj−1


[z(x, t − τj(t))− z(x, t)]TΛϑ

× [z(x, t − τj(t))− z(x, t)] − ϑj(t)TΛϑϑj(t)


dx. (25)

Since
 xj
xj−1

κi(x, t) dx = 0, from Poincare’s inequality (Payne &
Weinberger, 1960) we obtain xj

xj−1

κ2
i (x, t) dx ≤

∆2
j

π2

 xj

xj−1

(z ix(x, t))
2 dx.

Therefore, for anyΛκ = diag

λ1κ , . . . , λ

n
κ


≥ 0

0 ≤

N
j=1

 xj

xj−1


∆2

π2
zx(x, t)TΛκzx(x, t)

− κ(x, t)TΛκκ(x, t)


dx, (26)

where ∆ = maxj∆j. Nonnegative quadratic forms (25) and (26)
contain the terms −ϑj(t)TΛϑϑj(t) ≤ 0 and −κ(x, t)TΛκκ(x, t) ≤

0 that will compensate the cross terms with ϑj(t) and κ(x, t).

Theorem 2. (i) Given positive constants α > 0, τM > 0, and
ρ1, . . . , ρm, let there exist positive definite n × n matrices P1,
P3 = diag


p13, . . . , p

n
3


, R, S, m × m nonnegative matrices Ω ,

Λq = diag

λ1q, . . . , λ

m
q


, n × n nonnegative matrices Λϑ =

diag

λ1ϑ , . . . , λ

n
ϑ


, Λκ = diag


λ1κ , . . . , λ

n
κ


, n × n matrices P2 =

diag

p12, . . . , p

n
2


, G, and a scalar λφ ≥ 0 that satisfy the following

linear matrix inequalities:

Ψ ≤ 0,

R G
GT R


≥ 0, (27)

where Ψ = {Ψij} is a symmetric matrix composed of the matrices

Ψ11 = S − e−ατMR + P2A + ATP2 − P2BKC + αP1
− (P2BKC)T + λφQ +Λϑ + CTΛq∆

2
qC + εCTΩC,

Ψ12 = P1 − P2 + ATP3 − (P3BKC)T , Ψ13 = 0,
Ψ14 = e−ατMGT , Ψ15 = e−ατM (R − GT )−Λϑ ,

Ψ16 = P2, Ψ19 = −P2BK , Ψ1,10 = −P2BK + CTΛq∆
2
q,

Ψ17 = Ψ18 = −P2BKC + CTΛq∆
2
qC + εCTΩC,
Ψ29 = Ψ2,10 = −P3BK , Ψ27 = Ψ28 = −P3BKC,

Ψ22 = τ 2MR − 2P3, Ψ23 = −P3β, Ψ26 = P3,

Ψ33 = D0(αP3 − 2P2)+∆2π−2Λκ , Ψ10,10 = Λq∆
2
q −Ω,

Ψ44 = −e−ατM (S + R), Ψ45 = e−ατM (R − G),
Ψ55 = −2e−ατMR + e−ατM [G + GT

] +Λϑ ,

Ψ66 = −λφ In, Ψ77 = −Λϑ + CTΛq∆
2
qC + εCTΩC,

Ψ78 = CTΛq∆
2
qC + εCTΩC, Ψ7,10 = Ψ8,10 = CTΛq∆

2
q,

Ψ88 = −Λκ + CTΛq∆
2
qC + εCTΩC, Ψ99 = −Λq,

other blocks are zero matrices, D0 = diag

d01, . . . , d

0
n


, ∆q =

diag

δ1q , . . . , δ

m
q


, δiq = (1 − ρi)/(1 + ρi). Then a unique strong

solution to the Dirichlet boundary value problem (3), (7), (8), (9), (13),
initialized with z(·, 0) ∈ H1(0, l) satisfying (3), for t ≥ maxj tj,0 =

t0 satisfies the inequality (21) with b = 0.
(ii) If conditions of (i) are satisfied with Ψ13 = −P2β then

a unique strong solution to the Neumann boundary value prob-
lem (4), (7), (8), (9), (13), initialized with z(·, 0) ∈ H1(0, l) satis-
fying (4), for t ≥ t0 satisfies the inequality (21) with b = 0.
(iii) If in addition to the conditions of (i),

2(αP3 − 2P2)D0Γ + P2β + βTP2 ≤ 0,

then a unique strong solution to the mixed boundary value prob-
lem (5), (7), (8), (9), (13), initialized with z(·, 0) ∈ H1(0, l) satis-
fying (5), for t ≥ t0 satisfies (21) with b = 1.

Proof. See Appendix B.

5. Example: chemical reactor

Consider the chemical reactor model from Bar Am and Fridman
(2014), Smagina and Sheintuch (2006) governed by (1) under the
mixed boundary conditions (5) with n = 2, r = m = 1, l = 10,
D0 = diag {0.01, 0.005}, β = diag {0.011, 1.1}, K = 1, Γ =

diag {6, 111}, φ = (φ1(z1), 0)T , Q = diag

10−4, 0


, u0 = 1,

ρi = ρ = 0.9,

A =


0 0.01

−0.45 −0.2


, B =


1
1


, C =


1 0


.

This model accounts for an activator temperature z1 that
undergoes reaction, advection, and diffusion, and for a fast
inhibitor concentration z2, which may be advected by the flow.

To compare point and averaged measurements we set ε = 0,
α = 0.1968, N = 20. Then Theorem 1 gives an upper bound
τM = 0.009, while Theorem 2 gives significantly larger τM =

0.347. Hence, the averaged measurements allow larger delays,
but at the cost of a bigger number of sensors that provide these
measurements.

Now we consider event-triggering under the point measure-
ments and uniform sampling sk = kh, k ∈ N0. Choose N = 25,
δ = 2 and δ1 = 0.9 δ. For ε = 0 Theorem 1 gives τM = τ 0M =

0.0199 (α ≈ 0.1931). In this case each sensor transmits ⌊T/h⌋+1
measurements on the time interval [0, T ], where ⌊·⌋ is the largest
integer not greater than the given number. For ε = 0.09 we find
τM = τ εM = 0.0028 (α ≈ 0.1990). In this case the average amount
of sent measurements is obtained by numerical simulations with
z(x, 0) = (sin2(πx/10), 3 sin2(πx/10))T . For ηk ≡ 0 in Table 1
one can see the average amount of sent measurements by each
sensor in case of the systemwithout ETM, with ETM (22), and with
decentralized ETM (8). Though τ εM < τ 0M , the amount of sent mea-
surements is reduced by more than 90%. Note that the decentral-
ized ETM (8) has a slight advantage over the centralized one (22).
Now we set MAD = 0.002, h = 8 × 10−4. As one can see from
Table 2 ETM allows to decrease the workload of the network by
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Table 1
Sent measurements within [0, T ] withMAD = 0.

Point meas. (6)\ T 1 2 3 4 5

No event-triggering 51 101 151 202 252
Centralized (22) 5 9 13 17 21
Decentralized (8) 4.6 8.2 12 15.5 20

Table 2
Sent measurements within [0, T ] withMAD = 0.002.

Point meas. (6)\ T 1 2 3 4 5

No event-triggering 60 119 178 237 296
Decentralized (8) 5.6 9.2 12.9 15.6 21.4

Table 3
Average amount of sent measurements within [0, T ].

Aver. meas. (7)\ T 10 20 30 40 50

No event-triggering 16 31 46 61 77
Decentralized (8) 5.8 11 18.2 21.8 25.9

more than 90%. That is, ETM allows to reduce significantly the work-
load of a networked control system while decay rate of convergence is
preserved.

To study the effect of event-triggering with averaged measure-
ments we choose N = 40 and α = 0.3. Theorem 2 gives ε = 0,
τM = τ 0M = 0.6568 and ε = 0.57, τM = τ εM = 0.2859. In Table 3
one can see the average amount of sentmeasurements by each sen-
sor within the time interval [0, T ] for the systemwithout ETM and
with ETM (8), where ηk ≡ 0. The same improvement was obtained
for a non-zero ηk. Therefore, ETMallows to reduce the amount of sent
measurements by more than 60% while decay rate of convergence is
preserved.

6. Conclusion

In this paper we have introduced distributed event triggered
control of parabolic systems under point or spatially averaged dis-
crete time measurements. Quantization of transmitted measure-
ments, as well as network-induced delays have been taken into
account. The example of chemical reactor illustrates the efficiency
of the method: decentralized ETM significantly reduces amount of
transmittedmeasurements while preserving the performance (ex-
ponential decay rate).

Appendix A. Proof of Theorem 1

Consider Lyapunov–Krasovskii functional (16). For t ≥ t0 we
have

V̇1 = 2
 l

0
zT (x, t)P1zt(x, t) dx,

V̇2 = 2
n

i=1

 l

0
pi3di(x)z

i
x(x, t)z

i
xt(x, t) dx,

V̇S = −δVS +

 l

0
zT (x, t)Sz(x, t) dx

− e−δτM

 l

0
zT (x, t − τM)Sz(x, t − τM) dx,

V̇R = −δVR + τ 2M

 l

0
zTt (x, t)Rzt(x, t) dx

− τM

 l

0

 t

t−τM
eδ(s−t)zTs (x, s)Rzs(x, s) ds dx,

V̇B = 2b
n

i=1

pi3di(0)γiz
i(0, t)z it(0, t).
The fact that zxt in V̇2 is well-defined has been proved in
Fridman and Bar Am (2013, Remark A.1). Jensen’s inequality (Gu,
Kharitonov, & Chen, 2003) yields

− τM

 l

0

 t

t−τM
eδ(s−t)zTs (x, s)Rzs(x, s) ds dx

≤ −τMe−δτM

 l

0

 t−τ(t)

t−τM
zTs (x, s)Rzs(x, s) ds

+

 t

t−τ(t)
zTs (x, s)Rzs(x, s) ds


dx

≤ −e−δτM

 l

0


τM

τM − τ(t)

 t−τ(t)

t−τM
zTs (x, s)ds R

×

 t−τ(t)

t−τM
zs(x, s)ds +

τM

τ(t)

 t

t−τ(t)
zTs (x, s) ds R

×

 t

t−τ(t)
zs(x, s) ds


dx

≤ −e−δτM

 l

0

 t−τ(t)

t−τM
zTs (x, s) dsR

 t−τ(t)

t−τM
zs(x, s) ds

+

 t

t−τ(t)
zTs (x, s) dsR

 t

t−τ(t)
zs(x, s) ds

+ 2
 t−τ(t)

t−τM
zTs (x, s) ds G

 t

t−τ(t)
zs(x, s) ds


dx. (A.1)

The last inequality in (A.1) is obtained by applying Theorem 1 from
Park, Ko, and Jeong (2011) with

f1 =

 t−τ(t)

t−τM
zTs (x, s) ds R

 t−τ(t)

t−τM
zs(x, s) ds,

f2 =

 t

t−τ(t)
zTs (x, s) ds R

 t

t−τ(t)
zs(x, s) ds,

g1,2 =

 t−τ(t)

t−τM
zTs (x, s) ds G

 t

t−τ(t)
zs(x, s) ds,

α1 =
τM − τ(t)

τM
, α2 =

τ(t)
τM

,

where the relation


R G
GT R


≥ 0 from (20) implies (3) from Park

et al. (2011).
Following Fridman (2001) to the right-hand side of V̇ we add

0 = 2
 l

0


zT (x, t)P2 + zTt (x, t)P3


−zt(x, t)

+∆Dz(x, t)− βzx(x, t)+ Az(x, t)+ φ(z(x, t), x, t)

dx

+ 2
 l

0


zT (x, t)P2 + zTt (x, t)P3


B

N
j=1

bj(x)uj(t) dx. (A.2)

Integration by parts yields

2
 l

0
zT (x, t)P2∆Dz(x, t)dx = −2b

n
i=1

pi2di(0)γi(z
i(0, t))2

− 2
n

i=1

 l

0
pi2di(x)(z

i
x(x, t))

2dx, (A.3)

2
 l

0
zTt (x, t)P3∆Dz(x, t) dx = −V̇B(t)− V̇2(t), (A.4)

−

 l

0
zT (x, t)P2βzx(x, t) dx = −zT (x, t)P2βz(x, t)

l
0

+

 l

0
zTx (x, t)P2βz(x, t) dx.
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Therefore, for (3), (5) we will use the relation

− 2
 l

0
zT (x, t)P2βzx(x, t) dx = zT (0, t)P2βz(0, t). (A.5)

The control inputs in (A.2) for t ∈ [tk, tk+1) can be presented in the
form

uj(t) = −K

vj,k + ej,k + Cσk(x)+ Cz(x, t − τ(t))


. (A.6)

From (17) we have

0 ≤

m
i=1

λiq

(δiqŷ

i
j,k)

2
− (vij,k)

2
=


ŷj,k
vj,k

T 
Λq∆

2
q 0

0 −Λq

 
ŷj,k
vj,k


.

Substituting

ŷj,k = ej,k + Cσk(x)+ Cz(x, t − τ(t)),

for x ∈ [xj−1, xj), t ∈ [tk, tk+1)we obtain

0 ≤ ν(x, t)T

Φ 0
0 −Λq


ν(x, t)

withΦ = 13 ⊗Λq∆
2
q and

ν(x, t) = col

Cz(x, t − τ(t)), Cσk(x), ej,k, vj,k


.

The latter implies

0 ≤

N
j=1

 xj

xj−1

νT (x, t)

Φ 0
0 −Λq


ν(x, t) dx. (A.7)

Relation (18) implies

0 ≤

N
j=1

 xj

xj−1


ε[z(x, t − τ(t))+ σk(x)]TCTΩC

× [z(x, t − τ(t))+ σk(x)] − eTj,k(t)Ωej,k(t)

dx. (A.8)

From (2) we have

0 ≤ λφ

N
j=1

 xj

xj−1


zT (x, t)Qz(x, t)− φT (z, x, t)φ(z, x, t)


dx. (A.9)

Denote σk(x) = (σ 1
k (x), . . . , σ

n
k )

T . Then from Wirtinger’s inequal-
ity (Hardy, Littlewood, & Pólya, 1952) we have

−
π2

∆2

 xj

xj−1

(σ i
k(x))

2 dx = −
π2

∆2

 x̄j

xj−1


z i(x̄j, t − τ(t))

− z i(x, t − τ(t))
2

dx −
π2

∆2

 xj

x̄j


z i(x̄j, t − τ(t))

− z i(x, t − τ(t))
2

dx ≥ −

 xj

xj−1


z ix(x, t − τ(t))

2
dx.

Therefore,

− δ1 sup
θ∈[−τM ,0]

V (t + θ) ≤ −δ1V (t − τ(t))

≤ −δ1

N
j=1

 xj

xj−1

zT (x, t − τ(t))P1z(x, t − τ(t)) dx

− δ1

N
j=1

 xj

xj−1

n
i=1

pi3d
0
i [z

i
x(x, t − τ(t))]2 dx

≤ −δ1

N
j=1

 xj

xj−1

zT (x, t − τ(t))P1z(x, t − τ(t)) dx

− δ1

N
j=1

 xj

xj−1

n
i=1

d0i p
i
3π

2

∆2
(σ i

k(x))
2 dx. (A.10)
Condition Ξ ≤ 0 implies that Ξ33 ≤ 0, therefore, δP3 − 2P2 ≤ 0
and

n
i=1

 l

0


(δpi3 − 2pi2)di(x)(z

i
x(x, t))

2 dx

≤

 l

0
zTx (x, t)D0(δP3 − 2P2)zx(x, t) dx. (A.11)

Finally, by adding the right-hand sides of (A.2), (A.7), (A.8), (A.9) to
V̇ in view of (A.1), (A.3), (A.4), (A.6), (A.10), (A.11) and using (A.5)
for the boundary conditions (3), (5) we obtain

V̇ + δV − δ1 sup
θ∈[−τM ,0]

V (t + θ)

≤

N
j=1

 xj

xj−1

ξ Tj (x, t)Ξξj(x, t) dx + WB,

where

WB = bzT (0, t) [(δP3 − 2P2)D0Γ + P2β]z(0, t), (A.12)
ξj(x, t) = col{z(x, t), zt(x, t), zx(x, t), z(x, t − τM),

z(x, t − τ(t)), φ(z(x, t), x, t), σk(x), vj,k, ej,k}.

Note that for (3) and (5) relation (A.5) allows to obtainΞ13 = 0. For
(4) relation (A.5) is not used, therefore, Ξ13 = −P2β . Theorem’s
conditions imply V̇ ≤ −δV + δ1 supθ∈[−τM ,0] V (t + θ). Assertion of
Theorem follows from Lemma 1.

Appendix B. Proof of Theorem 2

Consider Lyapunov–Krasovskii functional (16), where δ = α.
Derivatives V̇1, V̇2, V̇S ,VR, and V̇B are given in the proof of Theorem1.
Since for x ∈ [xj−1, xj), t ∈ [tj,k, tj,k+1)

ŷj,k = ej,k + Cϑj(t)+ Cκ(x, t)+ Cz(x, t),

relation (17) implies

0 ≤

N
j=1

 xj

xj−1

νT (x, t)

Φ 0
0 −Λq


ν(x, t) dx, (B.1)

whereΦ = 14 ⊗Λq∆
2
q and for x ∈ [xj−1, xj), t ∈ [tj,k, tj,k+1)

ν(x, t) = col

Cz(x, t), ej,k, Cϑj(t), Cκ(x, t), vj,k


.

Triggering condition (8) together with (9) imply

0 ≤

N
j=1

 xj

xj−1


ε[z(x, t)+ ϑj(t)+ κ(x, t)]TCTΩC

× [z(x, t)+ ϑj(t)+ κ(x, t)] − eTj,k(t)Ωej,k(t)

dx. (B.2)

Therefore, by adding the right-hand sides of (A.2), (A.9), (25), (26),
(B.1), (B.2) to V̇ in view of (A.3), (A.4), (A.11), using (A.5) for the
boundary conditions (3), (5), and using (A.1) with 0, l, τ(t) replaced
by xj−1, xj, τj(t), respectively, we obtain

V̇ + αV ≤

N
j=1

 xj

xj−1

ψT
j (x, t)Ψψj(x, t) dx + WB,

where WB is given in (A.12),

ψj(x, t) = col{z(x, t), zt(x, t), zx(x, t), z(x, t − τM),

z(x, t − τj(t)), φ(z(x, t), x, t), ϑj(t), κ(x, t), vj(t), ej(t)}. (B.3)

Theorem’s conditions imply V̇ ≤ −αV . Assertion of Theorem
follows from the comparison principal (Khalil, 2002).
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