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This article considers the development of constructive sliding-mode control strategies based on measured output
information only for linear, time-delay systems with bounded disturbances that are not necessarily matched.
The novel feature of the method is that linear matrix inequalities are derived to compute solutions to both the
existence problem and the finite time reachability problem that minimise the ultimate bound of the reduced-order
sliding-mode dynamics in the presence of state time-varying delay and unmatched disturbances. The
methodology provides guarantees on the level of closed-loop performance that will be achieved by uncertain
systems which experience delay. The methodology is also shown to facilitate sliding-mode controller design for
systems with polytopic uncertainties, where the uncertainty may appear in all blocks of the system matrices.
A time-delay model with polytopic uncertainties from the literature provides a tutorial example of the proposed
method. A case study involving the practical application of the design methodology in the area of autonomous
vehicle control is also presented.

Keywords: sliding-mode control; output feedback; state delay; LMIs

1. Introduction

The control of time-delay systems is known to be of
practical significance. Problems largely fall into two
categories. The first category arises because of the need
to model systems more accurately given increasing
performance expectations. Many processes, such as
manufacturing processes, include such after effect
phenomena in their dynamics and time delay is also
produced via the actuators, sensors and networks
involved in the practical implementation of feedback
control strategies. The second class of problems arises
when time delays are used as a modelling tool to
simplify some infinite-dimensional systems. This
approach is used for constructing models of distributed
systems modelled by partial differential equations
where a set of finite-dimensional state variables with
appropriate time-delay characteristics can be used to
represent heat exchange processes, for example.

The application of sliding-mode control (SMC) to
the problem of systems with time delay is a far from
trivial problem generically, involving the combination
of delay phenomenon with relay actuators which has
the potential to induce oscillations around the sliding
surface during the sliding-mode. There are a number
of papers which have considered the problem.

The development of sliding-mode controllers for

operation in the presence of single or multiple,

constant or time-varying state delays was solved by

Gouaisbaut, Dambrine, and Richard (2002). This uses

the equivalent control method where the exact knowl-

edge of block matrices must be known and the full-

state measurable. The work was further extended to

include polytopic uncertainties (Gouaisbaut, Blanco,

and Richard 2004), however full-state feedback was

required to yield finite reachability design and the

upper bound on the states spanning the input space is

assumed to be known for solution of the reachability

problem. The problem was also considered by Li and

DeCarlo (2003) where a class of uncertain time-delay

systems with multiple fixed delays in the system states

is considered. The method of equivalent control is used

and measurement of the state at the current time is

assumed. It is also assumed that the delayed state is

bounded with a bound dependent on the current state

which is restrictive. Even though an adaptive law was

used to estimate the bound of the uncertainty in the

reaching phase, a switching gain which is again

assumed to be large enough rather than calculated

explicitly is thought to guarantee the reachability

design. The work in Jafarov (2005) considers
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sliding-mode control of an uncertain system in the
presence of fixed state delay, but again full-state
feedback is assumed.

The assumption of full-state feedback is a limiting
one in practice as it may be prohibitively expensive, and
indeed, sometimes impossible, to measure all the state
variables. One approach to solve this problem is to
implement the controller with an observer, where
the observer provides state estimates for use by
the controller. However, the implementation of the
controller–observer is more involved and the theoretical
frameworks to ensure stability across the range of
practical operation of the plant may be challenging.
A more straightforward approach is to use only the
subset of state information that is available, i.e. the
measured output, within the control design paradigm.

There are typically two facets to the design of a
static output feedback sliding-mode control. One is the
existence problem, i.e. the design of a switching surface
in the output vector space which is usually of lower
order than the state vector space. Consider first the
switching surface design problem for uncertain sys-
tems, where time-delay effects are not involved. Two
different methods of designing sliding surfaces using
eigenvalue assignment and eigenvector techniques were
proposed in Zak and Hui (1993) and El-Khazali and
Decarlo (1995). A canonical form via which the static
output feedback sliding-mode control design problem
is converted to a static output feedback stabilisation
problem for a particular subsystem triple was provided
in Edwards and Spurgeon (1995). However, the solu-
tion to the general static output feedback problem,
even for linear time-invariant systems, is still open.
Iterative linear matrix inequality (LMI) approaches
have been exploited to solve the static output feedback
problem using a bilinear matrix inequality formula-
tion, see Cao, Lam, and Sun (1998), Choi (2002) and
Huang and Nguang (2006). In Edwards (2004), where
the regular form was not used for synthesis of the
control law, LMIs were derived for switching function
design whilst minimising the cost function associated
with the control. Sufficient conditions for static output
feedback controller design using LMIs have also been
sought. Although only sufficient, the solutions have
the advantage of being linear and, hence, easily
tractable using standard optimisation techniques, see
Crusius and Trofino (1999) and Shaked (2003). The
second facet in the design of a sliding-mode output
feedback controller is the control, or reachability,
synthesis problem whereby a control is determined to
ensure the sliding surface is attractive. It is non-trivial
to synthesise a control law only using the output
vector, even for the situation where time-delay effects
are not considered, since the derivative of the sliding
surface is always related to the unmeasured states and

this derivative appears in the reachability condition. As
well as within the existence problem, LMI methods
have also been considered within the context of
developing a sliding-mode control strategy which
solves the reachability problem for a given sliding
surface. For example, LMI methods which yield
reachability conditions for designing static sliding-
mode output feedback controllers are presented in
Edwards, Akoachere, and Spurgeon (2001).

In the context of output feedback sliding-mode
control for time-delay systems, the existence and
reachability problems for systems in the presence of
matched uncertainty are considered in Han, Fridman,
Spurgeon, and Edwards (2009). The delay is assumed
to be time-varying and bounded where the upper
bound is known. In line with the development of
output feedback controllers in the non-delayed case,
LMIs are used to select all the parameters of the
closed-loop sliding-mode controller. However, no
explicit calculation of the switching gain in the
nonlinear part of the control was given, it was only
assumed to be large enough to induce the sliding mode.
While asymptotic stability in the presence of matched
disturbances can be achieved by sliding-mode control,
unmatched disturbances usually lead to only bounded
stability. For example, in Fernando and Fridman
(2006) robustness properties of integral sliding-mode
controllers are studied where the Euclidean norm of
the unmatched perturbation is minimised by selecting a
projection matrix.

The contribution of the proposed work is that all
the design parameters, including the switching gain, are
derived from LMIs in spite of the presence of state
delay and unmatched disturbances. The method is able
to deal with polytopic type uncertainties in all blocks
of the system matrices. No additional assumption is
made on the bound of the uncertain states in the
reachability design, as required by other work. Some
preliminary results of this article are presented in Han
et al. (2009). Central to the work presented is the
descriptor approach (Fridman 2001), which is applied
to derive LMIs for the solution of the sliding-mode
output feedback control problem in the presence of
both matched and unmatched bounded disturbances
and time-varying state delays. It is demonstrated that
the state trajectories of the system converge towards a
ball with a prespecified exponential convergence rate.
In Section 2, the problem formulation is described and
an appropriate general framework to accomplish the
output feedback sliding-mode control design is formu-
lated in Section 3. A constructive solution to the
existence problem is presented in Section 4 and Section
5 shows the formulation of the reachability problem
which will ensure that the sliding-mode is reached. A
problem from the literature is used to provide a
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tutorial example of how the paradigm can be used to
solve both the existence and reachability problems for
practical design. A case study relating to the control of
an autonomous vehicle is used to further illustrate the
design process in Section 6.

Notation: Rn denotes the n-dimensional Euclidean
space with vector norm k � k or the induced matrix
norm, Rn�m is the set of all n�m real matrices. P4 0,
for P2Rn�n, denotes that P is symmetric and positive
definite whereas * means the symmetric entries of
an LMI.

2. Problem formulation

Consider an uncertain dynamical system of the form

_xðtÞ ¼ AxðtÞ þ Adxðt� �ðtÞÞ þ BuðtÞ þ B1wðtÞ,

yðtÞ ¼ CxðtÞ,

xðt0 � �ðtÞÞ ¼ �ð�ðtÞÞ for �ðtÞ 2 ½0, h�,

ð1Þ

where x2Rn, u2Rm, w2Rk and y2Rp with
m5 p5 n, � is absolutely continuous with square
integrable _�, h is an upper bound on the time-delay
function (0� �(t)� h 8t� 0). The time-varying delay
may be either slowly varying (i.e. a differentiable
delay with _�ðtÞ � d5 1) or fast varying (piecewise-
continuous delay). Assume that the nominal linear
system (A,Ad,B,B1,C ) is known and that the input and
output matrices B and C are both of full rank. The
disturbance is assumed to be bounded whereby
kw(t)k�D with a known upper bound D4 0. A control
strategy will be sought which induces an ideal sliding
motion with desirable performance characteristics on
the surface

S ¼ fx 2 Rn : sðtÞ ¼ FCxðtÞ ¼ 0g ð2Þ

for some selected matrix F2Rm�p so that the motion,
when restricted to S, is stable.

3. A general framework for design

The first problem considered is how to choose F in
(2) so that the associated sliding motion is stable. A
control law will then be determined to guarantee the
existence of a sliding motion. A convenient system
representation closely allied to the usual regular
form used for sliding-mode control design is
employed. It can be shown that if rank(CB)¼m
and system triple (A,B,C ) are minimum phase, there
exists a coordinate system xr¼Trx, xr¼ [x1 x2]

T, in

which the system (A,Ad,B,B1,C ) has the trans-

formed structure

Ar ¼
A11 A12

A21 A22

" #
, Adr ¼

Ad11 Ad12

Ad21 Ad22

" #
,

Br ¼
0

B2

" #
, B1r ¼

B11

B12

" #
, Cr ¼ 0 T

� �
, ð3Þ

where B22R
m�m is nonsingular and T2Rp�p is

orthogonal (Edwards and Spurgeon 1995).

Furthermore, A11, Ad112R
(n�m)� (n�m) and the remain-

ing sub-blocks are partitioned accordingly. Let

F1 F2

� �
¼ FT, ð4Þ

where F12R
m�( p�m) and F22R

m�m. As a result

FCr ¼ F1C1 F2

� �
, ð5Þ

where

C1 ¼ 0ð p�mÞ�ðn�pÞ Ið p�mÞ
� �

: ð6Þ

It is straightforward to see that FCrBr¼F2B2 and the

square matrix F2 is non-singular. By assumption, the

system contains both matched and unmatched uncer-

tainties and therefore the sliding motion is independent

of the matched uncertainty but dependent on the

unmatched uncertainty. In terms of the coordinate

framework defined above, the reduced-order sliding-

mode dynamics are governed by the following reduced-

order system

_x1ðtÞ ¼ ðA11 � A12KC1Þx1ðtÞ þ ðAd11 � Ad12KC1Þ

� x1ðt� �ðtÞÞ þ B11wðtÞ: ð7Þ

The response of this system must therefore be ulti-

mately bounded, where K ¼ F�12 F1, and the problem

of hyperplane design is equivalent to a static output

feedback problem for the system (A11,Ad11,A12,Ad12,

C1), where (A11þAd11,A12þAd12) is assumed control-

lable and (A11þAd11,C1) observable. Note that

the presence of the unmatched uncertainty means

that, in general, asymptotic stability cannot be

attained by the system (7). This is formalised in terms

of the existence problem, which must be solved to

determine the switching surface, in the following

section.

4. Existence problem

It will be shown that the system (3) is exponentially

attracted to a bounded region in Rn if the reduced-

order system (7) is exponentially attracted to a bounded

domain in Rn�m. Consider the Lyapunov–Krasovskii
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functional below for the exponential stability analysis

of (7)

VðtÞ ¼ xT1 ðtÞPx1ðtÞ þ

Z t

t�h

e�ðs�tÞxT1 ðsÞEx1ðsÞds

þ

Z t

t��ðtÞ

e�ðs�tÞxT1 ðsÞSx1ðsÞds

þ h

Z 0

�h

Z t

tþ�

e�ðs�tÞ _xT1 ðsÞR _x1ðsÞds d� ð8Þ

with (n�m)� (n�m)-matrices P4 0 and E� 0, S� 0,

R� 0. To prove exponential stability of the system (7)

using (8), we will use the following lemma.

Lemma 4.1 (Fridman and Dambrine 2009): Let V :

[0,1)!Rþ be an absolutely continuous function. If

there exist �4 0 and b4 0 such that the derivative of V

satisfies almost everywhere the inequality

d

dt
VðtÞ þ �VðtÞ � bkwðtÞk2 � 0

then it follows that for all kw(t)k�D

VðtÞ � e��ðt�t0ÞVðt0Þ þ
b

�
D2, t � t0:

Differentiating V(t) from (8) yields

M � 2xT1 ðtÞP _x1ðtÞ þ h2 _xT1 ðtÞR _x1ðtÞ

� he��h
Z t

t�h

_xT1 ðsÞR _x1ðsÞdsþ xT1 ðtÞðEþ S Þx1ðtÞ

� xT1 ðt� hÞEx1ðt� hÞe��h þ �xT1 ðtÞPx1ðtÞ

� ð1� _�ðtÞÞxT1 ðt� �ðtÞÞSx1ðt� �ðtÞÞe
���ðtÞ

� bwTðtÞwðtÞ: ð9Þ

Further using the identity

� h

Z t

t�h

_xT1 ðsÞR _x1ðsÞds

¼�h

Z t��ðtÞ

t�h

_xT1 ðsÞR _x1ðsÞds� h

Z t

t��ðtÞ

_xT1 ðsÞR _x1ðsÞds

ð10Þ

and applying Jensen’s inequalityZ t

t��ðtÞ

_xT1 ðsÞR _x1ðsÞds �
1

h

Z t

t��ðtÞ

_xT1 ðsÞdsR

Z t

t��ðtÞ

_x1ðsÞds

ð11Þ

and Z t��ðtÞ

t�h

_xT1 ðsÞR _x1ðsÞds

�
1

h

Z t��ðtÞ

t�h

_xT1 ðsÞdsR

Z t��ðtÞ

t�h

_x1ðsÞds ð12Þ

then Equation (9) becomes

M � 2xT1 ðtÞP _xT1 ðtÞ þ �x
T
1 ðtÞPx1ðtÞ þ h2 _xT1 ðtÞR _x1ðtÞ

�

h�
x1ðtÞ � x1ðt� �ðtÞÞ

�T
R
�
x1ðtÞ � x1ðt� �ðtÞÞ

�
�
�
x1ðt� �ðtÞÞ � x1ðt� hÞ

�T
� R

�
x1ðt� �ðtÞÞ � x1ðt� hÞ

�i
e��h

þ xT1 ðtÞðEþ S Þx1ðtÞ � xT1 ðt� hÞEx1ðt� hÞe��h

� ð1� d ÞxT1 ðt� �ðtÞÞSx1ðt� �ðtÞÞe
��h

� bwTðtÞwðtÞ: ð13Þ

Using the descriptor method as in Fridman (2001) and

the free-weighting matrices technique from He, Wang,

Lin, and Wu (2007)

0� 2ðxT1 ðtÞP
T
2 þ _xT1 ðtÞP

T
3 Þ½� _x1ðtÞþ ðA11�A12KC1Þx1ðtÞ

þ ðAd11�Ad12KC1Þx1ðt� �ðtÞÞþB11wðtÞ�, ð14Þ

where matrix parameters P2,P3¼ "P22R
n�m are

added to the right-hand side of (13). Setting �ðtÞ ¼
colfx1ðtÞ, _x1ðtÞ, x1ðt� hÞ, x1ðt� �ðtÞÞ,wðtÞg, then M�

�T(t)��(t)� 0 if the matrix �5 0. Multiplying

matrix � from the right and the left by diagfP�12 ,

P�12 ,P�12 ,P�12 , I g and its transpose, respectively, and

denoting

Q2 ¼ P�12 , bP ¼ QT
2PQ2, bR ¼ QT

2RQ2,bE ¼ QT
2EQ2, bS ¼ QT

2SQ2

it follows �5 0, b�5 0 where

b� ¼
b�11 b�12 0 b�14 b�15
	 b�22 0 b�24 b�25
	 	 b�33 b�34 0

	 	 	 b�44 0

	 	 	 	 b�55

26666664

377777755 0, ð15Þ

and

b�11 ¼ ðA11 � A12KC1ÞQ2 þ �bPþQT
2 ðA11 � A12KC1Þ

T

þ bEþ bS� bRe��h,b�12 ¼ bP�Q2 þ �Q
T
2 ðA11 � A12KC1Þ

T,b�14 ¼ ðAd11 � Ad12KC1ÞQ2 þ bRe��h,b�15 ¼ B11, b�22 ¼ �"Q2 � "Q
T
2 þ h2bR,b�24 ¼ "ðAd11 � Ad12KC1ÞQ2, b�25 ¼ "B11,b�33 ¼ �ðbEþ bRÞe��h, b�34 ¼ bRe��h,b�44 ¼ �2e��hbR� ð1� d ÞbSe��h, b�55 ¼ �bI:

ð16Þ

4 X. Han et al.
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Select the LMI variable Q2 in the following form

Q2 ¼
Q11 Q12

Q22M �Q22

� �
, ð17Þ

where Q22 is a ( p�m)� ( p�m) matrix, M is a

( p�m)� (n� p) tuning matrix and � is a tuning

parameter to be selected by the designer. It follows that

KC1Q2 ¼ KQ22M �KQ22

� �
:

Defining Y¼KQ22 it follows that

KC1Q2 ¼ YM �Y
� �

: ð18Þ

To construct K, substitute (18) into (16) to yieldb�11 ¼ A11Q2 � A12½Y �Y � þQT
2A

T
11 þ �

bP,
� ½YM �Y �TAT

12 þ
bEþ bS� bRe��h,b�12 ¼ bP�Q2 þ "Q

T
2A

T
11 � "½YM �Y �TAT

12,b�14 ¼ Ad11Q2 � Ad12½YM �Y � þ bRe��h,b�15 ¼ B11, b�22 ¼ �"Q2 � "Q
T
2 þ h2bR,b�24 ¼ "Ad11Q2 � "Ad12½YM �Y �, b�25 ¼ "B11,b�33 ¼ �ðbEþ bRÞe��h, b�34 ¼ bRe��h,b�44 ¼ �2e��hbR� ð1� d ÞbSe��h, b�55 ¼ �bI:

ð19Þ

The following proposition can now be stated:

Proposition 4.2: Given scalars h4 0, d5 1, �4 0,

", �, b and a matrix M2R( p�m)�(n�p), if there exist

(n�m)� (n�m) matrices bP4 0, bE � 0, bS � 0, bR � 0

and matrices Q222R
( p�m)�( p�m), Q112R

(n�p)�(n�p),

Q122R
(n�p)�( p�m), Y2Rm�( p�m) such that the LMI

(15) with matrix entries (19) holds, then the reduced-

order system (7), where K ¼ YQ�122 , is exponentially

attracted to the ellipsoid

xT1 ðtÞPx1ðtÞ �
b

�
D2, ð20Þ

where P ¼ Q�T2
bPQ�12 , for all differentiable delays

0 � �ðtÞ � h, _�ðtÞ � d5 1. Moreover, the reduced

order dynamics (7) is exponentially stable for all

piecewise-continuous delays 0� �(t)� h, if the LMI

(15) is feasible with bS ¼ 0.

Remark 1: Since the LMI (15) is affine in the system

matrices A, Ad and B1, the results are applicable to the

case where these matrices are uncertain. Denote �¼

[A Ad B1] and assume that �2Co{�j, j¼ 1, . . . ,N},

namely � ¼
PN

j¼1 fj ðtÞ�j for some 0 � fj ðtÞ � 1,PN
j¼1 fj ðtÞ ¼ 1, where the N vertices of the polytope

are described by �j ¼
�
Að j Þ A

ð j Þ
d B

ð j Þ
1

�
. One has to

solve the LMIs simultaneously for all the N vertices,

applying the same decision matrices for all vertices.

Example 4.3: Consider the following simple system

which is in regular form, with polytopic uncertainties
and unknown (bounded) perturbations 	(t) and f(t)

_xðtÞ ¼

�3 2 1

2 1þ sinðx3ðtÞÞ 1

1 1 x22ðtÞ þ 1

264
375xðtÞ

þ

0:5 0 0

0 1 0:2

�0:2 �0:5 1

264
375xðt� �Þ

þ

0

0

1

264
375 �uðtÞ þ

	ðtÞx1ðtÞ þ 0:5wðtÞ

�0:5	ðtÞx1ðt� �Þ � 0:5wðtÞ

0:2	ðtÞx2ðtÞ þ wðtÞ

264
375,

yðtÞ ¼
0 1 0

0 0 1

� �
xðtÞ ð21Þ

with 0�	(t)� 2 and disturbance w(t)2 [�1, 1]. The
delay is assumed to be time-varying. In order to

present (21) in the form of (1) with uncertain matrices,
define the control variable �u(t) as follows:

�uðtÞ ¼ uðtÞ þ ðx22ðtÞ þ 1Þx3ðtÞ, ð22Þ

where u(t) is the sliding-mode control variable of the
form (26). This change is possible because x2(t) and
x3(t) are measured. Considering next sin(x3(t)) as
uncertainty 
(t)¼ sin(x3(t))2 [�1, 1], the above system
is represented as a polytopic system with four vertices
defined by 
¼
1, 	¼ 0 and 	¼ 2

_xðtÞ ¼
X4
j¼1

fj ðtÞ A
ð j ÞxðtÞþA

ð j Þ
d xðt� �Þ

h i
þB �uðtÞþB1wðtÞ,

ð23Þ

where

Að1Þ ¼

�3 2 1

2 2 1

1 1 0

264
375, Að2Þ ¼

�3 2 1

2 0 1

1 1 0

264
375,

Að3Þ ¼

�1 2 1

2 2 1

1 1:4 0

264
375, Að4Þ ¼

�1 2 1

2 0 1

1 1:4 0

264
375,

A
ð1Þ
d ¼ A

ð2Þ
d ¼

0:5 0 0

0 1 0:2

�0:2 �0:5 1

264
375,

A
ð3Þ
d ¼ A

ð4Þ
d ¼

0:5 0 0

�1 1 0:2

�0:2 �0:5 1

264
375,

B ¼

0

0

1

264
375, B1 ¼

0:5

�0:5

1

264
375: ð24Þ
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Note that state-feedback sliding-mode control of the
above system without unmatched disturbances and
polytopic uncertainties 0.2	(t)x2(t) in _x3ðtÞ was con-
sidered in Gouaisbaut et al. (2004). The work employs
LMI methods for the solution of the existence prob-
lem, and is suitable for uncertain systems where the
polytopic uncertainties appear only in the subsystem
(7). The control law is derived based on the assumption
that those states varying in the span of the control
input are bounded so that a large enough switching
gain can induce the sliding motion in finite time. An
appropriate switching gain must usually be determined
by trial and error.

The advantage of the proposed method is that it
facilitates analysis of polytopic uncertainties appearing
in the input channel and the switching gain is derived
from LMIs, ensuring finite time reachability onto the
sliding surface with a prescribed decay rate.

The initial function is taken as x(t)¼ [1, 1�1]T for
t2 [��, 0]. To construct K for the reduced-order system
(7) according to Proposition 4.2, the parameter settings
in the LMI (15) with entries (19) are selected with the
delay upper bound h¼ 1 s and the rate of change of
the time-varying delay _� � d ¼ 0:1. For �¼ 2, "¼ 0.3,
M¼ 2 and choosing �¼ 0.1, b¼ 0.005, then it is
obtained that the LMI variables

bP ¼ 949:4 39:5

	 925:9

" #
, Y ¼ 1237:4,

Q22 ¼ 175, K ¼ 7:07:

Once a stable sliding-mode dynamics has been
designed, the next step is to find a controller which
ensures the closed-loop system reaches the prescribed
sliding surface in finite time. This will now be
considered in general terms.

5. Reachability problem

It can be shown (Edwards et al. 2001) that the
following system transformation and control structure

exist such that z(t)¼T1xr(t), where T1 ¼
In�m 0
KC1 Im

h i
so

that the system ð �A, �Ad, �B,F �C Þ has the property

�A ¼
�A11

�A12

�A21
�A22

" #
, �Ad ¼

�Ad11
�Ad12

�Ad21
�Ad22

" #
,

�B ¼
0

Im

" #
, �B1 ¼

�B11

�B12

" #
, F �C ¼ 0 Im

� �
, ð25Þ

where z1(t)¼ x1(t), z2(t)¼ s(t), �A11¼A11�A12KC1 and
�Ad11¼Ad11�Ad12KC1 exhibit the reduced-order
sliding-mode dynamics. Also, �C ¼ ½0 �T �, where
�T 2 Rp�p is nonsingular. The control law is

considered as

uðtÞ ¼ �GyðtÞ � vyðtÞ, ð26Þ

where

G ¼ G1 G2

� �
�T�1 ð27Þ

vyðtÞ ¼
�

FyðtÞ

kFyðtÞk
, if FyðtÞ 6¼ 0,

0, otherwise,

8<: ð28Þ

where G12R
m�( p�m), G22R

m�m, F¼ [K Im]T
�1. The

uncertain system (1) becomes

_zðtÞ ¼ �AzðtÞ þ �Adzðt� �ðtÞÞ þ �BuðtÞ þ �B1wðtÞ: ð29Þ

Closing the loop in the system (29) with the control law

(26) yields

_zðtÞ ¼ A0zðtÞ þ �Adzðt� �ðtÞÞ � �BvyðtÞ þ �B1wðtÞ, ð30Þ

where A0 ¼ �A� �BG �C. Let �P be a symmetric positive

definite matrix partitioned conformably with (25)

so that �P ¼
�P1 0
0 �P2

h i
. It follows that �P �B ¼ ðF �C ÞTP2 and

from (25) Fy(t)¼ z2(t). It can be shown that

 ¼ �PA0 þ AT
0

�P

¼

�P1
�A11 þ �AT

11
�P1

�P1
�A12 þ ð �A21 � G1C1Þ

T �P2

	
�P2

�A22 þ �AT
22

�P2

� �P2G2 � ð �P2G2Þ
T

( )2664
3775

¼
�P1

�A11 þ �AT
11

�P1
�P1

�A12 þ �AT
21

�P2 � ðL1C1Þ
T

	 �P2
�A22 þ �AT

22
�P2 � L2 � ðL2Þ

T

" #
,

ð31Þ

where L1 ¼ �P2G1 and L2 ¼ �P2G2. A stability condition

for the full order closed-loop system can be derived

using the following Lyapunov–Krasovskii functional

VðtÞ ¼ zTðtÞ �PzðtÞ þ

Z t

t�h

e ��ðs�tÞzTðsÞ �EzðsÞds

þ

Z t

t��ðtÞ

e ��ðs�tÞzTðsÞ �SzðsÞds

þ h

Z 0

�h

Z t

tþ�

e ��ðs�tÞ _zTðsÞ �R _zðsÞds d�, ð32Þ

where �E� 0, �S � 0 and �R ¼
�R1 0
0 0

h i
where �R1 � 0 (as it is

desired to determine a stability condition for the time-

delay system which is delay independent of z2(t)). Then

�M ¼ _Vþ ��V� �bwTðtÞwðtÞ

� 2zTðtÞ �P _zTðtÞ þ ��zTðtÞ �PzðtÞ þ h2 _zTðtÞ �R _zðtÞ

�

h
ðzðtÞ � zðt� �ðtÞÞÞT �RðzðtÞ � zðt� �ðtÞÞÞ
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þ ðzðt� �ðtÞÞ � zðt� hÞÞT

� �Rðzðt� �ðtÞÞ � zðt� hÞÞ
i
e� ��h

þ zTðtÞð �Eþ �S ÞzðtÞ � zTðt� hÞ �Ezðt� hÞe� ��h

� ð1� d ÞzTðt� �ðtÞÞ �Szðt� �ðtÞÞe� ���ðtÞ � �bwTðtÞwðtÞ:

ð33Þ

Substitute the right-hand side of Equation (30) into (33).

Setting &(t)¼ col{z(t), z(t� h), z(t� �(t)),w(t)}, then

_VðtÞ � &ðtÞT�h&ðtÞ þ h2 _zTðtÞ �R _zðtÞ

þ 2zT �P �Bð �B12wðtÞ � vyðtÞÞ5 0 ð34Þ

is satisfied if &TðtÞ�h&ðtÞ þ h2 _zTðtÞ �R _zðtÞ5 0 and

2zT �P �Bð �B12wðtÞ � vyðtÞÞ5 0, where

�h ¼

�11 0 �P �Adþ �Re� ��h
�P1

�B11

0

" #
	 �22 �Re� ��h 0

	 	 �2e� ��h �R�ð1� d Þ �Se� ��h 0

	 	 	 � �bI

266666664

377777775
ð35Þ

with

�11 ¼  þ �� �Pþ �Sþ �E� �Re� ��h; �22 ¼ �ð �Eþ �RÞe� ��h:

Setting �(t)¼ col{z(t), z(t� h), z(t� �(t)),w(t), vy(t)}

and �I ¼ Iðn�mÞ 0
� �T

, it is obtained that

h2 _zTðtÞ �R _zðtÞ

¼ zTðtÞAT
0 þ zTðt� �ðtÞÞ �AT

d � vTy ðtÞ
�BT þ wTðtÞ �BT

1

h i
� h2 �R A0zðtÞ þ �Adzðt� �ðtÞÞ � �BvyðtÞ þ �B1wðtÞ

� �

¼ �TðtÞ

AT
0

0

�AT
d

�BT
1

�BT

26666664

37777775 �Ih2 �R1
�IT

AT
0

0

�AT
d

�BT
1

�BT

26666664

37777775

T

�ðtÞ: ð36Þ

Using the Schur complement, �TðtÞ�h�ðtÞ þ
h2 _zTðtÞ �R _zðtÞ5 0 holds if

�h

hAT
0

Iðn�mÞ

0

� �
�R1

0

h �AT
d

Iðn�mÞ

0

� �
�R1

h �BT
1

Iðn�mÞ

0

� �
�R1

	 	 	 	 � �R1

26666666666664

37777777777775
5 0 ð37Þ

for some ��4 0, �b4 0 and 0� �(t)� h, i.e. to ensure the

exponential attractiveness of (30) to the ellipsoid

zTðtÞ �PzðtÞ �
�b
��D

2. Given the control structure in (27),

then

2zTðtÞ �P �Bð �B12wðtÞ � vyðtÞÞ

¼ 2zT2 ðtÞ
�P2ð �B12wðtÞ � vyðtÞÞ

� �2� �P2kz2ðtÞk þ 2 �P2k �B12kkz2ðtÞkD

5 0:

The latter inequality implies exponential attractivity

of the ellipsoid zTðtÞ �PzðtÞ �
�b
��D

2, thus for t!1,

zTðt� �ðtÞÞ �Pzðt� �ðtÞÞ �
�b
��D

2 holds. The following

proposition can now be stated:

Proposition 5.1: Given scalars h4 0, d5 1, ��4 0,
�b4 0, assume there exist n� n matrices �P ¼ diagf �P1,
�P2g4 0 with P22R

m�m, �E � 0, �S � 0, a (n�m)�

(n�m)-matrix �R1 � 0, L12R
m�( p�m), L22R

m�m such

that LMI (37) is feasible. Then for �4 k �B12kD the

closed-loop system (30), where G1 ¼ �P�12 L1, G2 ¼
�P�12 L2, is exponentially attracted to the ellipsoid

zTðtÞ �PzðtÞ �
�b
��D

2 for all �(t)2 [0, h]. Consequently it

also holds that zTðt� �ðtÞÞ �Pzðt� �ðtÞÞ �
�b
��D

2 for t!1.

Denote

AL
0 ¼ ½0 Im�A0, �AL

d ¼ ½0 Im� �Ad, 	 ¼
�b

��
D2: ð38Þ

Given �14 0, �24 0, conditions will now be derived

that guarantee the solutions of (25) satisfy the bound

kAL
0 zðtÞk5 �1, kA

L
d zðt� �ðtÞÞk5 �2 ð39Þ

for t!1. The following inequalities

zTðtÞðAL
0 Þ

T
ðAL

0 ÞzðtÞ

� �21
zTðtÞ �PzðtÞ

	

zTðt� �ðtÞÞðAL
d Þ

T
ðAL

d Þzðt� �ðtÞÞ

� �22
zTðt� �ðtÞÞ �Pzðt� �ðtÞÞ

	
ð40Þ

guarantee (39). Hence equivalently

ðAL
0 Þ

T
ðAL

0 Þ �
�21

�P

	
, ðAL

d Þ
T
ðAL

d Þ �
�22

�P

	
ð41Þ

or by Schur complements

�
�21

�P

	
ðAL

0 Þ
T

	 �I

24 355 0,
�
�22

�P

	
ðAL

d Þ
T

	 �I

24 355 0:

ð42Þ
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Theorem 5.2: Given scalars ��4 0, �b4 0, let there
exist n� n matrices �P ¼ diagf �P1, �P2g4 0, �E � 0,
�S � 0, a (n�m)� (n�m)-matrix �R1 � 0, L12

R
m�( p�m), L22R

m�m such that the LMI (37) is feasible
for 0� �(t)� h, _�ðtÞ � d5 1. Let �1 and �2 satisfy (42)
with the notation given in (38). Then for

�4 kB12kDþ �1 þ �2 ð43Þ

an ideal sliding motion takes place on the surface S. The
closed-loop system (26), (29) is ultimately bounded by

lim supt!1 zTðtÞ �PzðtÞ �
�b

��
D2:

Proof: Substituting the control law it follows from
(29) that

_sðtÞ ¼ F �CA0zðtÞ þ F �C �Adzððt� �ðtÞÞ þ ð �B12wðtÞ � vyðtÞÞ:

Let Vc :R
m
!R be defined by VcðsÞ ¼ sTðtÞ �P2sðtÞ. It

follows that

�P2F �CA0 ¼ �P2A
L
0 ,

�P2F �CAd ¼ �P2A
L
d :

Starting from initial condition z(t0), it can be verified
that there exists t14 0 such that for all t� t1,

_VcðsÞ ¼ 2sTðtÞ �P2A
L
0 zðtÞ þ 2sTðtÞ �P2A

L
d zðt� �ðtÞÞ

þ 2sTðtÞ �P2ð �B12wðtÞ � vyðtÞÞ

� 2ksðtÞkk �P2kðkA
L
0 zðtÞk þ kA

L
d zðt� �ðtÞÞkÞ

� 2ð�1 þ �2ÞksðtÞkk �P2k

5 �2�ksðtÞk, ð44Þ

where � ¼ �1 þ �2 � kA
L
0 zðtÞk � kA

L
d zðt� �ðtÞÞk. A slid-

ing motion will thus be attained in finite time. œ

Remark 2: Since LMIs (15), (37) and (42) are affine in
the system matrices A, Ad and B1, the results are

applicable to the case where these matrices are uncer-

tain with polytopic type uncertainties (see Remark 1).

One has to solve the LMIs simultaneously for all the N

vertices, applying the same decision matrices for all

vertices. In contrast to the existing methods in the

literature (Gouaisbaut et al. 2004; Seuret, Edwards,

Spurgeon, and Fridman 2009), polytopic type uncer-

tainties can be incorporated in all the blocks ofA,Ad,B1

and not only in A11, Ad11 because the switching gain �
(and not only the sliding surface) is found using LMIs.

Example 5.3: Following on from Example 4.3, where

a sliding surface prescribing stable dynamics has been

designed for the uncertain system (21), then the control

law in (27) will have the sliding function matrix

F¼ [7.07, 1]. A control gain G must be designed

which will bring the closed-loop system into a bounded

region centred at the sliding surface. Setting �� ¼ 0:3,
�b ¼ 5 in Proposition 5.1, it is obtained that

�P¼

22:4 �12:8 0

	 29 0

	 	 0:68

2664
3775, L1 ¼�6:08, L2 ¼ 85:4,

which gives

G ¼ �9, 126:6
� �

�T�1, where �T ¼
1 0

�7:07 1

� �
:

Once the state of the closed-loop system has entered

the sliding patch zTðtÞ �PzðtÞ �
�b
��D

2, the switching gain

�¼ 753 derived from LMI (42) will ensure the sliding

surface is reached in finite time. Figure 1 shows that

the sliding surface is reached in finite time and the

outputs of the system are stable with ultimate bound

ky(t)k� 0.2.
Sliding-mode control has the advantage over

linear control for its absolute rejection of the

0 1 2 3 4 5 6 7 8 9 10
−7

−6

−5

−4

−3

−2

−1

0

1

2

Time (s)

O
ut

pu
ts

4 6 8 10
−0.4

−0.2

0

0.2

0.4

0 2 4 6 8 10
−5

0

5

10

15

20

25(b)(a)

Time

S
lid

in
g 

su
rf

ac
e

Figure 1. Closed-loop response with delay h¼ 1 s: (a) outputs and (b) sliding surface.
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matched uncertainties. To verify the statement, sup-

pose there is a change of the matched disturbance at

time 10 s of magnitude from 1! 50, then the sliding

surface remains unaffected so that B1¼ [0 0 50]T. While

keeping the same control parameters obtained so far

comparisons between using sliding-mode control and

only the linear control G for the new closed-loop

design with only matched disturbances are made in

Figure 3. As can be seen, the sliding-mode control is

more robust than the linear control to matched
disturbances. The difference between using the linear
part of the control G alone and SMC with switching
for a system with unmatched disturbances can be
demonstrated below. For the same uncertain system,
suppose the unmatched disturbances are changed from
B1¼ [0.5,�0.5, 1]T to B1¼ [2,�2, 1]T after the initial
10 s. Using the linear control G¼ [25, 4] alone in the
feedback, the responses for the outputs y(t), sliding
function s(t) and control input u(t) are plotted in
Figure 2(a). As can be seen the outputs ky(t)k� 1.4,
sliding function is bounded as ks(t)k� 1.16 and control
input ku(t)k� 4.7. If SMC is used with the same linear
gain and a switching gain �¼ 7, the system responses
are plotted in Figure 2(b), where ky(t)k� 0.81, s(t)¼ 0,
ku(t)k� 7. Therefore for a system with unmatched
disturbances, SMC can give an ideal sliding surface
response rather than the bounded sliding function
given by its linear control part. As a result, a smaller
bound of the outputs can be obtained. For linear
control to yield the similar bound on the outputs as by
SMC, the linear gain needs to be increased from
G¼ [25, 4] to Ĝ¼ [134, 21] as seen in Figure 2(c), where
ky(t)k� 0.83. To conclude, for a linear control to give
similar output performance in the presence of
unmatched disturbances, the linear gain needs to be
larger, but not substantially larger than the linear part
of the SMC. In another words, a linear control design
for a system with unmatched disturbances can give a
similar output bound as SMC if the linear control is
large enough.

6. Autonomous vehicle control

Autonomous vehicles are expected to operate effec-
tively in time-varying and uncertain conditions. Here a
case study described in Yao, Spurgeon, and Edwards
(2006) is considered, where the elevation angle of the
gun barrel of a vehicle in space should be maintained
while the hull of the vehicle is subject to external
disturbances resulting from the motion of the vehicle
across rough terrain. To meet the high control
specifications, sliding-mode control has been consid-
ered within the application domain for its robustness
against friction and disturbances and its ease of
implementation for motor drive control. The existence
problem must determine a sliding surface that mini-
mises the ultimate bound of the reduced-order dynam-
ics in the presence of time-varying state delay and
unmatched disturbances relating to frictional effects.
A fully nonlinear simulation model of the system is
available for controller analysis and testing (Yao et al.
2006). The model is physically based and is known to
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Figure 2. Closed-loop response with linear control and
SMC: (a) linear control with G, (b) SMC with linear part G
and (c) linear control with Ĝ.
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represent with high fidelity the dynamics and behav-

iour of the real system:

_xðtÞ ¼

�
Dm

JmN2
�

Km

JmN

Dm

JmN
0 0

1

N
0 �1 0 0

Dm

J1N

Km

J1

�Dm�D12

J1

�K12

J1

D12

J1
0 0 1 0 �1

0 0
D12

J2

K12

J2

�D12

J2

26666666666664

37777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

xðtÞ

þ

Kt

Jm
0

0

0

0

266666664

377777775
|fflfflffl{zfflfflffl}

B

uðtÞ

þ

�
DmðN� 1Þ

JmN2
�

1

Jm
0

1

JmN2
0

N� 1

N
0 0 0 0

DmðN� 1Þ

J1N
0 �

1

J1
0

1

J1
0 0 0 0 0

0 0 0 0 0

2666666666664

3777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B11

wðtÞ,

ð45Þ

where the state vector xðtÞ ¼ _�mðtÞ, �mbðtÞ, _�bðtÞ,
�

�blðtÞ, _�l ðtÞ�
T, and wðtÞ ¼ _�pðtÞ,!1mðtÞ,!1lðtÞ,

�
Fmb�

signð _�mðtÞ � _�pðtÞÞ, Fmb signð _�bðtÞ � _�pðtÞÞ�
T:The friction

related signals are

FmbðtÞ ¼ K�
Dm

N
_�mðtÞ þ

DmðN� 1Þ

N
_�pðtÞ þ Km�mbðtÞ

				 				,
!1mðtÞ ¼ fms � signð�amðtÞ � Jm €�pðtÞÞ,

!1lðtÞ ¼ fls � signð�a1ðtÞ � J1 €�pðtÞÞ,

where the second and third states of the disturbance

from w(t) are a function of the friction level fd, where

fd can take values 0, 1, 2, 3 (Yao et al. 2006). Note

�mb ¼ 1
N �m � �b þ ð1�

1
NÞ�p;

_�b breech velocity;
�m motor position;
_�l muzzle velocity;
_�p pitch rate disturbance;
Jm motor inertia;
N gearbox of ratio;
J1 elevation inertia on load one;

Km and Dm stiffness and damping

between the motor and the

load;
K12 and D12 stiffness and damping

between the load one and

the load two;
�am and �al applied torque to the motor

and the load;
!1m and !1l motor friction and the load

friction;
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Figure 3. Comparison between sliding mode control and linear control in the presence of matched disturbance and delay.
Available in colour online.
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fms and fls motor coulomb friction and
the load coulomb friction;

u control input defined as the
voltage input to the power
amplifier;

_�p disturbance input defined as
pitch rate disturbance;

!1m and signð _�m � _�pÞ motor friction disturbances;

!1l and signð _�b � _�pÞ load friction disturbances

The parameter values used in Yao et al. (2006)
define

A¼

�338:14 �2:55� 107 50942 0 0

0:0066 0 �1 0 0

0:66 50000 �110:1 �15000 10

0 0 1 0 �1

0 0 7:69 11538 �7:69

26666664

37777775,

B¼

4523:1

0

0

0

0

26666664

37777775,

B11 ¼

�50604 �769 0 5:1 0

1 0 0 0 0

99 0 �0:01 0 0:01

0 0 0 0 0

0 0 0 0 0

26666664

37777775,

C¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

264
375, ð46Þ

and the disturbance is known to be

k _�pk � 0:07, k!1mk � 0:5� fd, k!1lk � 10� fd,

kFmb signð _�m � _�pÞk � 4, kFmb signð _�b � _�pÞk � 4:

ð47Þ

The vehicle dynamics is augmented with an extra state
related to the breech position, where the desired breech
position is zero. Denote Ca¼ [0 0 1 0 0], the state space
representation of the augmented system is given by

Ac ¼
0 �Ca

0 A

� �
, Bc ¼

0

B

� �
, Cc ¼

1 0

0 C

� �
:

ð48Þ

6.1 Sliding-mode control design

A design which does not incorporate knowledge of
delay effects is first performed to yield a benchmark
level of performance. Firstly it is necessary to construct

K for the reduced-order system (7) according to
Proposition 4.2. The parameter settings in LMI (15)
with entries (19) are selected as Ad¼ 0, h¼ 0 s. If

� ¼ 11:5, " ¼ 0:0000002, M ¼

0:15 0:015

0:21 0:06

0:009 0:0003

264
375

and choosing �¼ 7.2, b¼ 0.0005, then it is obtained
that

K ¼ 0:9, 28, 327
� �

: ð49Þ

The poles of the corresponding reduced order system
are

�4:15
 j106, �389:6
 j160:7, �2823:7
� �

: ð50Þ

The control law in (27) will have the sliding
function matrix

F ¼ �327 0:0002 28 0:9
� �

: ð51Þ

A control G is designed which will bring the closed-
loop system into a bounded region centred about the
sliding surface. Setting �� ¼ 0:8, �b ¼ 3:88� 10�6 in
Proposition 5.1, it is obtained that

G ¼ �1:02� 107, 7:6, 910610, 27834
� �

: ð52Þ

The closed-loop poles of Ac�BcGCc are

�31257 �2810:4 �390:8
 j160:9 �4:2
 j106
� �

:

The switching gain �¼ 1561, which is derived from
LMI (42), will ensure the sliding surface is reached in
finite time. Figure 4 shows the position error and rate
error for fd¼ 1, 2, 3 using the proposed controller. In
the original case study (Yao et al. 2006), an observer
was used to estimate the effect of the disturbance and
the equivalent control method was used to synthesise
the control law, which was augmented with an addi-
tional PI control. With this strategy the position and
rate errors were kep(t)k� 0.2� 10�3 rad and ker(t)k�
0.01 rad/s respectively. Setting a fixed sampling fre-
quency of 10 kHz and choosing ode3 solver in
simulink, kep(t)k� 0.8� 10�5 rad, ker(t)k� 0.4�
10�3 rad/s was achieved, as seen in Figure 4, for
fd¼ 1, 2, 3 with the proposed control scheme. The
output feedback sliding-mode control approach pre-
sented in this section has thus improved the tracking
accuracy over previous results in Yao et al. (2006).
The ultimate bound of the outputs is a function of the
unmatched disturbance, but it can be seen that the
effect of the friction disturbance on the control
performance after changing fd¼ 1,! 3 is very small.

Speed control of a motor in the presence of
uncertainties such as friction normally exhibit delays
due to the fact that the mechanical response of the

International Journal of Control 11
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motor is slower than the electrical command. The size
of the delay will depend upon the physical parameters
of the actuator and can vary from milliseconds to
several seconds, depending on the application. To take
account of such delay effects in the actual system for
the control design purpose, it is desirable to introduce
a system model incorporating delay into the system
model used for design. This will provide a means to
analyse the potential delay effect on the stability of the
closed-loop system at the design stage. Assume the
delay matrix

Ad ¼

�10 20 0 0 0

0:007 0 0:1 0 0

0 20 �2 1 0

0 0 0:1 0 0:1

0 0 2 1 0

26666664

37777775
and the augmented matrix Adc ¼

0 0

0 Ad

� �
:

ð53Þ

The open-loop tests on system (46) with the delay
matrix Ad in (53) shows that the vehicle system with
state delay h� 3ms yields a breech position error of
kep(t)k� 0.01 rad/s as expected from the known system
response. The augmented linear system with delay has
dynamics close to those of the original plant.

Designing a controller without considering explic-
itly possible delay effects within the control design
process can lead to deterioration of the system perfor-
mance and sometimes even instability. Suppose there is
a constant delay h¼ 3ms in the system where the values
of F and G are taken as in (51) and (52) respectively,
with the delay distribution matrix in (53). In this case
the position error will increase from kep(t)k� 0.8� 10�5

to kep(t)k� 1.4� 10�3 rad. The closed-loop system
becomes unstable for h� 4ms when delay effects are
not incorporated in the design process.

A controller will now be designed based on a model
incorporating delay effects. Firstly to construct K
for the reduced-order system (7) according to
Proposition 4.2, the parameter settings in LMI (15)
with entries (19) are selected with the delay upper
bound h¼ 10ms and the rate of change of the time-
varying delay _� � d ¼ 0. If for

� ¼ 3, " ¼ 0:0013, M ¼

0:0018 0:002

0:22 0:22

7:54 1:1

264
375

and choosing �¼ 0.9, b¼ 0.0048, then it is obtained
that

K ¼ 0:01, 16, 16:8
� �

: ð54Þ

The poles of the reduced-order system are

�5:23
 j92:9, �71:3
 j254:8, �477:8
� �

: ð55Þ

Thus the control law in (27) will have the sliding
function matrix

F ¼ �16:8, 0:0002, 16, 0:01
� �

:

The control G is designed to bring the closed-loop
system into a bounded region centred about the
sliding surface. Setting �� ¼ 0:8, �b ¼ 3:88� 10�6 in
Proposition 5.1, it is obtained that

G ¼ �2:02� 106, 26:7, 1:94, 0:002
� �

:

The closed-loop poles of Ac�BcGCc are

�120700, �481:1, �75:2
 j253:2, �5:43
 j92:9
� �

:

The switching gain �¼ 68,632, which is derived from
LMI (42), will ensure the sliding surface is reached
in finite time. The initial function was chosen as
x(t0� �)¼ 0 for � 2 [0 h] in the simulation. The closed-
loop performance is shown in Figure 5 for fd¼ 1, 2, 3.
The position and rate errors are kept within the bound
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Figure 4. Closed-loop response without delay: (a) position error and (b) rate error. Available in colour online.
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kep(t)k� 0.8� 10�4 rad, ker(t)k� 0.1� 10�4 rad/s in the
presence of delay. Despite the effect of the friction
disturbance on the nonlinear model which is not fully
rejected, the controller is seen to be robust to the
disturbance even in the presence of delay. This has
demonstrated the efficiency of the proposed control
scheme on a system of practical interest.

7. Conclusion

The development of output feedback-based sliding-
mode control schemes for systems in the presence of
state delay and both matched and unmatched distur-
bances has been presented. A descriptor Lyapunov
functional approach has been used for switching
function design. The methodology has been imple-
mented using LMIs and can give desirable sliding-
mode dynamics. The advantage of the method is that
for the first time and despite only output feedback
being available, not only the switching function is
derived from LMIs but also the switching gain
required to solve the reachability problem is deter-
mined using LMIs. The method allows polytopic
uncertainties to be included in all blocks of A, Ad, B1

and not only in A11, Ad11 as with other methods. This
is novel even for systems without delay. As well as an
example incorporating polytopic uncertainties, the
methodology has also been applied to a nonlinear
autonomous vehicle control problem. Nonlinear sim-
ulations show that the gun barrel is maintained at the
desired position, despite variation in the vehicle motion
caused by friction.
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