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a b s t r a c t

We consider distributed static output-feedback stabilization of a damped semilinear beam equation.
Distributed in space measurements are either point or pointlike, where a pointlike measurement
is the state value averaged on a small subdomain. Network-based implementation of the control
law which enters the PDE through shape functions is studied, where variable sampling intervals
and transmission delays are taken into account. Our main objective is to derive and compare the
results under both types of measurements in terms of the upper bound on the delays and sampling
intervals that preserve the stability for the same (as small as possible) number of sensors/actuators.
For locally Lipschitz nonlinearities, regional stabilization is achieved. Numerical results show that the
pointlike measurements lead to larger delays and samplings, provided the subdomains, where these
measurements are averaged, are not too small.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The problem of distributed in-domain sensing and actuation
for systems governed by the beam equation is related to intelli-
gent materials and structures, in which the mechanical structure
is equipped with sensors and actuators in order to achieve a
desired performance [1,2]. Recently, intelligent structures have
been drawing increasing attention due to their wide range of
applications in aerospace, civil structures, medical devices etc.
The damped beam equation as a classical Petrovsky type system
was studied in [3,4]. Boundary stabilization of the undamped
Euler–Bernoulli beam with arbitrary decay rate was addressed
in [5].

Data sampling and delays are unavoidable in modern control
systems that employ digital technology and in networked control
systems (NCSs), where the plant is controlled via communication
network. General results on sampled-data control of linear time-
invariant partial differential equations (PDEs) were presented
in [6]. A model-reduction-based approach to distributed sampled-
data control of parabolic systems was suggested in [7,8]. For
linear systems of conservation laws, event-triggered boundary
control was suggested in [9]. Sampled-data boundary controllers
for linear transport and heat equations were introduced in [10]
and [11].
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Distributed sampled-data and/or delayed control of parabolic
PDEs has been studied in [12–15,15–17]. In-domain (point or
averaged) sampled-data measurements of the state together with
control actions applied through characteristic functions have
been considered, and sufficient conditions for the exponential
convergence and induced L2-gain in terms of LMIs have been
derived by using the time-delay approach to sampled-data con-
trol and appropriate Lyapunov–Krasovskii functionals. All the
above results on distributed sampled-data and delayed control
were devoted to parabolic systems. Recently, sampled-data ob-
servers for the damped semilinear wave equation under the point
measurements on the interval were introduced in [18].

For the non-delay case, the continuous-time distributed con-
trol of 1D heat equation under the pointlike measurements,
i.e. averaged over small subdomains measurements of the state,
was suggested in [19] and extended to the sampled-data case
in [20]. Distributed sampled-data observers and controllers for 2D
semilinear heat equation under the pointlike measurements were
proposed in [21]. Although several control methods under various
measurements (point, pointlike or averaged over the subdomains
that cover all the domain) have been considered for the PDEs,
none of them have compared performance under point versus
pointlike measurements.

In the present paper, we study, for the first time, stabilization
of 1D semilinear damped beam equation under point or pointlike
measurements. Network-based implementation of the control
law which enters the PDE through the shape functions is studied,
where variable sampling intervals and transmission delays are
taken into account. Our main objective is to compare the results
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under both types of measurements (point and pointlike) in terms
of the upper bound on the delays and sampling intervals that pre-
serve the stability for the same (as small as possible) number of
sensors/actuators. Under the pointlike measurements, the Linear
Matrix Inequalities (LMIs) are derived via the direct Lyapunov–
Krasovskii approach (which is applicable also to H∞ control [12,
13,21]), whereas under the point measurements, the Lyapunov–
Krasovskii approach is combined with Halanay’s inequality (as in
[14]).

For locally Lipschitz nonlinearities, regional stabilization is
achieved and we find a bound on domain of attraction. Suffi-
cient conditions in terms of LMIs for the exponential stability
of the closed-loop system are provided by using the time-delay
approach to networked control systems. Numerical results show
that the pointlike measurements lead to larger delays and sam-
plings provided the subdomains, where these measurements are
averaged, are not too small.

Some preliminary results for network-based control of damped
beam equation with globally Lipschitz nonlinearities were pre-
sented in [22].

Notation Throughout the paper the notation P > 0 with
P ∈ Rn×n means that P is symmetric and positive definite.
The symmetric elements of a symmetric matrix will be denoted
by ∗. Functions, continuous (continuously differentiable) in all
arguments, are referred to as of class C (of class C1). L2(0, π ) is
the Hilbert space of square integrable functions z(ξ ), ξ ∈ [0, π]

with the corresponding norm ∥z∥L2 =

√∫ π
0 z2(ξ )dξ . H 1(0, π )

is the Sobolev space of absolutely continuous scalar functions
z : [0, π] → R with dz

dξ ∈ L2(0, π ). H 2(0, π ) is the Sobolev space
of scalar functions z : [0, π] → R with absolutely continuous dz

dξ

and with d2z
dξ2

∈ L2(0, π ).

2. Problem formulation and preliminaries

Consider the semilinear, damped beam equation

ztt (x, t) = −zxxxx(x, t) − βzt (x, t) + ρ
(
z(x, t), x, t

)
+

N∑
j=1

χj(x)ujk(t), t ≥ t0, x ∈ (0, π ), (2.1)

under the boundary conditions{
z(0, t) = zx(0, t) = 0,
z(π, t) = zx(π, t) = 0, (2.2)

or{
z(0, t) = zxx(0, t) = 0,
zx(π, t) = zxxx(π, t) = 0, (2.3)

and the initial conditions{
z(x, 0) = z1(x),
zt (x, 0) = z2(x).

(2.4)

Here z(x, t) ∈ R is the state (modeling the beam height position),
ujk(t) is the control input, β > 0 is the damping coefficient (the
damping is proportional to an angle of inclination of the center
of the beam). It is assumed that ρ is of class C2 and satisfies
ρ(0, x, t) ≡ 0.

In Section 3 we consider the case of globally Lipschitz in z
nonlinearity ρ. We assume that

φm ≤ ρz(z, x, t) ≤ φM ∀z, x, t. (2.5)

Then

ρ(z, x, t) = φ(z, x, t)z, φ =

∫ 1

0
ρz(θz, x, t)dθ. (2.6)

Fig. 1. Networked system.

The later implies

φm ≤ φ ≤ φM (2.7)

for all z, x, t , where φm and φM are known bounds. In Section 4
we consider the case of locally Lipschitz ρ, where (2.7) holds for
|z| ≤ D, where D is some constant.

Boundary conditions (2.2) correspond to a beam with both
ends clamped, whereas boundary conditions (2.3) correspond to a
pinned (hinged) end at x = 0 and a guided (sliding) end at x = π .

Let the points 0 = x0 < x1 < · · · < xN = π divide the
domain Ω = [0, π] into N sampling domains [xj−1, xj) = Ωj, j =

1, . . . ,N , with the characteristic functions

χj(x) =

{
1, x ∈ Ωj,

0, x ̸∈ Ωj,
j = 1, . . . ,N. (2.8)

The size of the domains may be variable, but bounded

xj − xj−1 ≜ ∆j ≤ ∆.

A sensor and an actuator are placed in each domain Ωj.
We consider a network-based control, where measurements

from sensors to controller and control signals from the controller
to actuators are transmitted through communication network
(see Fig. 1). Let

0 = s0 < s1 < · · · < sk < . . . , lim sk = ∞,

be the sampling time instants on the side of sensors. The sampling
intervals in time may be variable, but have a known bound 0 ≤

sk+1 − sk ≤ MATI, k = 0, 1, . . . , where MATI is Maximum
Allowable Transmission Interval. The total round-trip transmis-
sion time-varying delays from sensors to actuators is ηk ≤ MAD,
where MAD is the Maximum Allowable Delay. The updating time
of the actuators is tk = sk+ηk and we assume that tk < tk+1, k =

0, 1, . . . .
We consider two types of measurements for all j = 1, . . . ,N, k =

0, 1, 2, . . .: pointlike measurements

yj =

∫
Ωj

cj(ξ )z(ξ, sk)dξ, (2.9)

cj(x) =

{
ε−1
j , x ∈ Ω

y
j

0, elsewhere
(2.10)

where Ωy
j is subinterval of Ωj of the length εj (see Fig. 2) and

εj ≤ ε with some ε ∈ (0,∆), or point measurements in the middle
of Ωj

yj = z(x̂j, sk), x̂j =
xj−1 + xj

2
. (2.11)

For less conservative results and adequate comparison, both mea-
surements are centered with respect to Ωj.

Remark 2.1. Note that in many cases a sensor cannot measure
exactly in one point: the measuring device relies on some physi-
cal phenomenon and, in fact, the sensor measures an average over
a certain region occupied by the measuring device.
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Fig. 2. Subdomains Ωy
j of pointlike measurements.

It is known that the open-loop system (2.1) under the bound-
ary conditions (2.2) or (2.3) is stable due to the damping term,
and becomes unstable for large enough φM . Our aim is to design
a controller that exponentially stabilizes the system, and compare
the performance under the point and pointlike measurements.
We suggest a static output-feedback controller of the form

uj(t) = −Kyj(tk − ηk), t ∈ [tk, tk+1) (2.12)

based on the measurements yj given by (2.9) or (2.11). This con-
troller can be implemented by zero-order hold devices. By using
the time-delay approach to networked control systems [23,24],
the resulting control input can be modeled as a delayed one:

uj(t) = −Kyj(t − τ (t)), t ≥ t0,

where τ (t) = t − tk + ηk, t ∈ [tk, tk+1) and

τ (t) ≤ tk+1 − tk + ηk ≤ MATI + MAD ≜ τM .

For brevity, later the time argument of τ will be omitted.

2.1. Well-posedness of the closed-loop system

We prove the well-posedness of the closed-loop system (2.1),
(2.12) under the boundary conditions (2.2) (for boundary condi-
tions (2.3), the well-posedness can be established similarly). We
use the step method. For t ∈ [t0, t1), the closed-loop system can
be represented as an abstract differential equation by defining the
state ζ (t) = [ζ0(t) ζ1(t)]T = [z(t) zt (t)]T and the operators

A =

[
0 I

−
∂4

∂x4
−βI

]
, F (ζ , t) =

[
0

F1(ζ0, t)

]
. (2.13)

Here F1 : H 2(0, π ) × [t0,∞) → L2(0, π ) is defined as

F1(ζ0, t) = ρ(ζ0, ·, t) − K
N∑
j=1

χj(x)yj(t0 − η0)

so that it is continuous in t for each ζ0 ∈ H 2(0, π ). The resulting
differential equation

ζ̇ (t) = A ζ (t) + F (ζ (t), t), t ≥ t0 (2.14)

is considered in the Hilbert space H = H 2
0 × L2(0, π ), where

H 2
0 =

{
ζ0 ∈ H 2(0, π )

⏐⏐⏐⏐ζ0(0) = ζ0x(0) = ζ0(π ) = ζ0x(π ) = 0

}
,

and the induced norm ∥ζ∥2
H = ∥ζ0xx∥

2
L2

+ ∥ζ1∥
2
L2
. The operator

A with the dense domain

D(A ) =

{[
ζ0
ζ1

]
∈ H 4(0, π )

⋂
H 2

0 × H 2
0

}
generates an exponentially stable semigroup [25].

Consider first the case of uniformly bounded ρz , where F is
continuous in t and globally Lipschitz in ζ

∥F1(ζ0, t) − F1(ζ̄0, t)∥L2 ≤ L∥ζ0 − ζ̄0∥L2 (2.15)

with some constant L > 0 for ζ0, ζ̄0 ∈ H 2(0, π ), t ∈ [t0, t1].
Then by Theorem 6.1.2 of [26], there exists a unique mild solution
ζ ∈ C([t0, t1); H ) of (2.14) initialized by

ζ0(t0) = z0 ∈ H 2
L , ζ1(t0) = z1 ∈ L2(0, π ). (2.16)

We note that F : H ×[t0,∞) → H is continuously differentiable.
If ζ (t0) ∈ D(A ), then this mild solution is in C1([t0, t1); H ) and
it is a classical solution of (2.1), (2.3) with ζ (t) ∈ D(A ) (see
Theorem 6.1.5 of [26]). By using the same argument step by
step on [t1, t2], [t2, t3], . . . , we obtain the well-posedness of the
closed-loop system for all t ≥ t0.

In the case of locally Lipschitz ρ with locally Lipschitz condi-
tion (2.15), well-posedness follows from Theorems 6.1.4 and 6.1.5
of [26]). Note that if the solution admits a priori estimate, then the
solution exists on the entire interval [tk, tk+1] (see Theorems 6.1.4
and 6.1.5 of [26] and [27]). The a priori estimates on the solutions
starting from the domain of attraction will be guaranteed by the
regional stability conditions of Theorem 4.1.

3. Stabilization of damped beam equations: globally Lipschitz
nonlinearities

Throughout this section we assume that ρ is globally Lipschitz
in z, i.e. that (2.7) holds for all z, x, t .

3.1. Continuous-time exponential stabilization

In the sequel, we will present some preliminary results in the
non-delayed continuous-time case. Namely, we will design expo-
nentially stabilizing controllers for (2.1), based on the pointlike
measurements (2.9), where sk is changed by t ,

uj(t) = −K
∫
Ωj

cj(ξ )z(ξ, t)dξ (3.1)

or under the point measurements

uj(t) = −Kz(x̂j, t) (3.2)

with some controller gain K > 0.
By employing the mean-value theorem as suggested in [19],

we present the controller (3.1) under the pointlike measurements
in the form

uj(t) = −K
∫
Ωj

cj(ξ )z(ξ, t)dξ = −Kz(xtj , t), (3.3)

where xtj ∈ Ω
y
j is some point (see Fig. 2). Then, both con-

trollers (3.1) and (3.2) can be represented as a state feedback, and
disturbance given by

uj = −K [z(x, t) − fj], (3.4)

where

fj = z(x, t) − z(xtj , t) (3.5)

for pointlike-based controller (3.1), and

fj = z(x, t) − z(x̂j, t) (3.6)

for point-based controller (3.2).
Then the closed-loop system under both controllers has the

form

ztt = −zxxxx − βzt + [φ(z, x, t) − K ]z + K
N∑
j=1

χjfj, t ≥ t0, (3.7)

where fj are given by (3.5) or (3.6), under the boundary conditions
(2.2) or (2.3). By applying arguments of the previous section, we



4 M. Terushkin and E. Fridman / Systems & Control Letters 136 (2020) 104617

find that the closed-loop system has a unique mild (classical) so-
lution initialized by [z(·, t0), zt (·, t0)]T ∈ H ([z(·, t0), zt (·, t0)]T ∈

D(A )).
For the stability analysis of the damped beam equation (3.7)

we employ the following Lyapunov function:

V0(t) = p3

∫ π

0
z2xxdx +

∫ π

0
[z zt ]P[z zt ]Tdx, (3.8)

where P =

[
p1 p2
∗ p3

]
and p3 > 0. To guarantee the positivity of

V0, we apply Wirtinger’s inequality (A.1) with σ = 1 for boundary
conditions (2.2) and σ =

1
4 for boundary conditions (2.3). Then

the positivity of V0 is guaranteed if

P0 ≜

[
p1 + σ 2p3 p2

∗ p3

]
> 0, (3.9)

since

V0(t) ≥
∫ π
0 [z zt ]P0[z zt ]Tdx.

Proposition 3.1. Consider the closed-loop system (3.7) under the
boundary conditions (2.2) or (2.3) with the bounds φm, φM , ∆ and
ε > 0 for pointlike and ε = 0 for point measurements. Let σ = 1
and σ =

1
4 for boundary conditions (2.2) and (2.3) respectively.

Given K > φM − σ 2 and a positive scalar δ, let there exist scalars
p1, p2, p3 and λ1 ≥ 0 that satisfy the LMIs: (3.9),

δp3 − p2 ≤ 0, (3.10)

and

Ξ |φ=φm,φM ≤ 0, (3.11)

Ξ ≜

[2p2(φ − K ) + 2δp1 − σλ1 ψ12 Kp2
∗ 2p2 + 2p3(δ − β) Kp3
∗ ∗ ψ33

]
≤ 0,

ψ12 = p1 + p2(2δ − β) + p3(φ − K ),

ψ33 = −[2c(p2 − δp3) − λ1]π
2/(∆+ ε)2.

Then the closed-loop system is exponentially stable with a decay rate
δ, meaning that the following inequality holds:

V0(t) ≤ exp(−2δt)V0(t0), t ≥ t0.

The stability conditions under the pointlike measurements for ε → 0
coincide with the conditions under the point measurements. In the
linear case with φ ≡ φM , the gain

K = φM − σ 2
+ β2/4 (3.12)

leads to the maximal achievable decay rate δ = 0.5β for ∆ → 0.

Proof. Differentiating (3.8) along (3.7) we obtain

V̇0(t) = 2
∫ π

0

[
p3zxxzxxt + p1zzt + p2z2t + (p2z + p3zt )ztt

]
dx

= 2
∫ π

0

[
p3zxxzxxt + p1zzt + p2z2t

+ (p2z + p3zt )
(
(φ − K )z − zxxxx − βzt

)]
dx

+ 2K
N∑
j=1

∫
Ωj

fj(p2z + p3zt )dx (3.13)

Integrating by parts twice, and substituting boundary conditions,
we have

−p3
∫ π
0 ztzxxxxdx = −p3

∫ π
0 zxxtzxxdx,

−p2
∫ π
0 zzxxxxdx = −p2

∫ π
0 z2xxdx.

Then

V̇0 + 2δV0 ≤ 2(δp3 − p2)
∫ π

0
z2xxdx +

∫ π

0
[z zt ]C[z zt ]Tdx

+ 2K
N∑
j=1

∫
Ωj

fj(p2z + p3zt )dx (3.14)

where

C =

[
2p2(φ − K ) + 2δp1 p1 + p2(2δ − β) + p3(φ − K )

∗ 2p2 + 2p3(δ − β)

]
.

Taking into account (3.10), due to Wirtinger’s inequality

2(δp3 − p2)
∫ π

0
z2xxdx ≤ 2σ (δp3 − p2)

∫ π

0
z2x dx. (3.15)

For the pointlike measurements, Wirtinger’s inequality (A.1)
with (b − a) = (∆j + εj)/2 and σ = 1/4 is employed∫ π

0 z2x dx =
∑N

j=1

[∫ xtj
xj−1 z

2
x dx +

∫ xj
xtj

z2x dx
]

≥
π2

(∆j+εj)2
∑N

j=1

[ ∫ xtj
xj [z(x, t) − z(xtj , t)]

2dx

+
∫ xj
xtj

[z(x, t) − z(xtj , t)]
2dx
]

≥
π2

(∆+ε)2
∑N

j=1

∫
Ωj

[z(x, t) − z(xtj , t)]
2dx

=
π2

(∆+ε)2
∑N

j=1

∫
Ωj

(
fj
)2 dx.

(3.16)

For the point measurements, inequality (3.16) holds with xtj re-
placed by x̂j and ε = 0.

By S-procedure, we add the non-negative term (due to
Wirtinger’s inequality (A.1))

λ1

∫ π

0

(
z2x − σ z2

)
dx ≥ 0, λ1 ≥ 0 (3.17)

to V̇0 + 2δV0. Denote ηΞ = [z zt fj]T . Then, under (3.11)

V̇0 + 2δV0 ≤ −[2σ (p2 − δp3) − λ1]
π2

(∆+ ε)2

N∑
j=1

∫
Ωj

f 2j dx

+

∫ π

0
[z zt ]C[z zt ]Tdx + 2K

∫
Ωj

(p2z + p3zt )fjdx

− λ1σ

∫ π

0
z2dx ≤

N∑
j=1

∫
Ωj

ηTΞΞηΞdx ≤ 0, (3.18)

where Ξ is given by (3.11). Note that Ξ is affine in φ. Thus, it is
sufficient to verify (3.11) in the vertices φm, φM .

In the sequel, we find the gain K that leads to a larger decay
rate. For ∆ → 0 the inequality V̇0 + 2δV0 ≤ 0 holds if p2 ≥ δp3
and (3.9), and Ξ ≤ 0 with λ1 = 2σ (p2 − δp3) are feasible, i.e. if

Ξ0 =

[
ξ11 ξ12
∗ 2p2 + 2p3(δ − β)

]
≤ 0, (3.19)

ξ11 = 2δp1 + 2p2(φ − K − σ 2) + 2σ 2δp3,
ξ12 = p1 + p2(2δ − β) + p3(φ − K ).

The inequalities Ξ0 ≤ 0 and P0 > 0 coincide with the Lyapunov
inequality for the exponential stability with a decay rate δ of the
second-order ODE

ζ̇ (t) =

[
0 1

φ − K − σ 2
−β

]
ζ (t), ζ ∈ R2. (3.20)

In the linear case with φ ≡ φM , (3.20) is the first mode in the
modal decomposition of ztt = −zxxxx − βzt + (φ − K )z under
the corresponding boundary conditions, and thus, the choice of
K given by (3.12) leads to the maximal achievable decay rate
δ = 0.5β for ∆ → 0. □
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Remark 3.1. The proposed controllers (3.1) and (3.2) are based
on a proportional action. To stabilize the undamped beam equa-
tion or to improve the performance, it is desirable to add a
derivative action. However, we cannot benefit from the spa-
tially sampled derivative actions (terms like (3.1) and (3.2) with
z changed by zx). Indeed, our method for spatial sampling is
based on presentation (3.4), where the approximation errors fj
are compensated in V̇0 by the negative term 2(δp3 − p2)

∫
z2xxdx

via Wirtinger’s inequality (cf. (3.14), (3.15) and (3.16)). In order to
manage with zx(x̂j) or

∫
Ωj

cj(x)zxx(x)dx we need to obtain c
∫
z2txdx

with some c < 0 in V̇0, but we have no such term in V̇0. Moreover,
in the delayed case, for the wave equation, arbitrary small delay
in the damping termmay destabilize the system [28]. We suppose
that the same may be true for the beam equation. For sure, our
Lyapunov–Krasovskii method cannot cope with such delay. Thus,
we do not introduce the derivative action in the controller.

3.2. Network-based exponential stabilization

Differently from the continuous-time control, for the network-
based control, the stability analysis of the closed-loop system
under the point and pointlike measurements is provided not in
the same way: the direct Lyapunov–Krasovskii method is applied
under the pointlike measurements (like under the averaged mea-
surements in [12,13]), whereas the analysis under the point mea-
surements requires additional application of Halanay’s inequality
(as introduced in [14]).

Similar to (3.4), the delayed control input can be represented
as:

uj(t − τ ) = −K [z(x, t) − fj − ϑj], t ≥ t0. (3.21)

Here

fj = z(x, t) − z(xtj , t), ϑj =

∫
Ωj

cj(x)[z(x, t) − z(x, t − τ )]dx (3.22)

for the pointlike measurements (2.9), and

fj = z(x, t − τ ) − z(x̂j, t − τ ), ϑj = z(x, t) − z(x, t − τ ) (3.23)

for the point measurements (2.11). Then the closed-loop system
has the form

ztt = −zxxxx − βzt + [φ(z, x, t) − K ] z

+K
N∑
j=1

χj
[
fj + ϑj

]
, t ≥ t0. (3.24)

Theorem 3.1. Consider the closed-loop system (3.24) under the
boundary conditions (2.2) or (2.3) with the bounds φm, φM ,∆, τM
(and ε > 0 for the pointlike measurements). Let the controller gain
K > φM − σ 2 be given. Define σ = 1 and σ =

1
4 for boundary

conditions (2.2) and (2.3) respectively. Then the following holds:
(i) The closed-loop system under the point measurements (with

notations (3.23)) is exponentially stable if given δ0 > δ1 > 0, there
exist scalars p1, p2, p3, q12 and nonnegative scalars λ1, λ2, r, s that
satisfy LMIs (3.9), (3.10),

R =

[
r q12
∗ r

]
≥ 0, (3.25)

and

Φ|φ=φm,φM ≤ 0, (3.26)

Φ ≜

⎡⎢⎢⎢⎢⎢⎣
ϕ11 ϕ12 ϕ13 se−2δ0τM Kp2 −2δ1p2
∗ ϕ22 Kp3 0 Kp3 0
∗ ∗ ϕ33 ϕ34 0 2δ1p2
∗ ∗ ∗ ϕ44 0 0
∗ ∗ ∗ ∗ ϕ55 0
∗ ∗ ∗ ∗ ∗ −2δ1p3

⎤⎥⎥⎥⎥⎥⎦ , (3.27)

where

ϕ11 = 2p2(φ − K ) + 2p1(δ0 − δ1)

+ 2σ 2(δ0p3 − p2) + s(1 − e−2δ0τM ),
ϕ12 = p1 + p2(2δ0 − β) + p3(φ − K ),

ϕ13 = Kp2 + 2δ1p1 + se−2δ0τM , ϕ22 = 2p2 + 2p3(δ0 − β) + τ 2Mr,

ϕ33 = −(r + s)e−2δ0τM − 2δ1p1, ϕ34 = −(s + q12)e−2δ0τM ,

ϕ44 = −(r + s)e−2δ0τM , ϕ55 = −2δ1p3σ
π2

∆2 . (3.28)

The resulting decay rate δ is a unique positive solution of δ =

δ0 − δ1 exp(2δτM ).
(ii) The closed-loop system under the pointlike measurements

(with notations (3.22)) is exponentially stable with a decay rate
δ > 0 if given δ, there exist scalars p1, p2, p3, q12 and nonnegative
scalars λ1, λ2, r, s that satisfy LMIs (3.9), (3.10), (3.25) and

Ψ |φ=φm,φM≤ 0, (3.29)

Ψ ≜

⎡⎢⎢⎢⎢⎢⎣
ω11 ω12 Kp2 0 Kp2 0
∗ ω22 Kp3 0 Kp3 0
∗ ∗ ω33 ω34 0 se−2δτM

∗ ∗ ∗ ω44 0 se−2δτM

∗ ∗ ∗ ∗ ω55 0
∗ ∗ ∗ ∗ ∗ ω66

⎤⎥⎥⎥⎥⎥⎦ , (3.30)

where

ω11 = 2p2(φ − K ) + 2δp1 − σλ1 + λ2∆ε
−1,

ω12 = p1 + p2(2δ − β) + p3(φ − K ),

ω22 = 2p2 + 2p3(δ − β) + τ 2Mr∆ε−1,

ω33 = ω44 = −(r + s)e−2δτM , ω34 = −(q12 + s)e−2δτM ,

ω55 = −[2σ (p2 − δp3) − λ1]
π2

(∆+ ε)2
,

ω66 = −λ2 − s(e−2δτM − 1). (3.31)

Proof. In order to derive stability conditions for (3.24) we employ
Lyapunov–Krasovskii functional of the form

V (t) = V0(t) + Vs(t) + Vr (t), t ∈ [tk, tk+1), (3.32)

where V0(t) is given by (3.8) and

Vs(t) = s
N∑
j=1

∫
Ωj

∫ t

t−τM

e2δ0(s−t)κ2(x, s)ds dx, (3.33)

Vr (t) = rτM
N∑
j=1

∫
Ωj

∫ 0

−τM

∫ t

t+θ
e2δ0(s−t)κ2

s (x, s)ds dθ dx,

with some scalars s, r ≥ 0, and κ given by

κ(x, s) =

{ ∫
Ωj

cj(ξ )z(ξ, s)dξ, pointlike measurements,
z(x, s), point measurements.

Here, Vs and Vr treat time-delay terms as introduced in [14]
for the point and in [21] for the pointlike measurements. By
differentiating Vs and Vr we have

V̇s + 2δ0Vs = s
N∑
j=1

∫
Ωj

(
κ2(x, t) − e−2δ0τM κ2(x, t − τM )

)
dx, (3.34)

and

V̇r + 2δ0Vr ≤ τMr
N∑
j=1

∫
Ωj

[
τMκ

2
t − e−2δ0τM

∫ t

t−τM

κ2
s (x, s)ds

]
dx.

(3.35)
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Note that ϑj = κ(x, t) − κ(x, t − τ ). Denote

ν = κ(x, t − τ ) − κ(x, t − τM ).

Then, under (3.25) by Lemma 3.4 of [29] we find

− τMr
N∑
j=1

∫
Ωj

∫ t

t−τM

κ2ds dx ≤ −

N∑
j=1

∫
Ωj

[ϑj ν]R[ϑj ν]
Tdx.

(i) For the closed-loop system (3.24) under the point measure-
ments (with notations (3.23)) we have in (3.34) κ2(x, t − τM ) =

(z − ϑj − ν)2. Then, differentiating (3.32) along (3.24) with (3.23)
we have (cf. (3.18))

V̇ + 2δ0V ≤ −2(p2 − δ0p3)
∫ π

0
z2xxdx +

∫ π

0
[z zt ]C[z zt ]Tdx

+ 2K
N∑
j=1

∫
Ωj

(p2z + p3zt )
(
fj + ϑj

)
dx

+ s
N∑
j=1

∫
Ωj

(
z2 − e−2δ0τM (z − ϑj − ν)2

)
dx

+ τ 2Mr
∫ π

0
z2t dx − e−2δ0τM

N∑
j=1

∫
Ωj

[ϑj ν]R[ϑj ν]
Tdx,

By applying Wirtinger’s inequality (A.1) we obtain

−2(p2 − δ0p3)
∫ π

0
z2xxdx ≤ −2(p2 − δ0p3)σ 2

∫ π

0
z2dx.

Next, Halanay’s inequality (A.3) is applied. For some δ1 < δ0 we
have

W ≜ V̇ (t) + 2δ0V (t) − 2δ1 sup
−h≤θ≤0

V (t + θ )

≤ V̇ (t) + 2δ0V (t) − 2δ1p3

∫ π

0
z2xx(x, t − τ )dx

− 2δ1

∫ π

0

[
z(x, t − τ )
zt (x, t − τ )

]T
P
[
z(x, t − τ )
zt (x, t − τ )

]
dx.

By applying Wirtinger’s inequality (A.1) and further using (3.16)
with ε = 0 we obtain

− 2δ1p3

∫ π

0
z2xx(x, t − τ )dx ≤ −2δ1p3σ

∫ π

0
z2x (x, t − τ )dx

≤ −2δ1p3σ
π2

∆2

N∑
j=1

∫
Ωj

(
fj
)2 dx.

Denote ηΦ = [z zt ϑj ν fj zt (x, t − τ )]T . Then,

W ≤ −2(p2 − δ0p3)σ 2
∫ π

0
z2dx +

∫ π

0
[z zt ]C[z zt ]Tdx

+ 2K
N∑
j=1

∫
Ωj

(p2z + p3zt )
(
fj + ϑj

)
dx

+ s
∫ π

0

(
z2 − e−2δ0τM (z − ϑj − ν)2

)
dx

+ τ 2Mr
∫ π

0
z2t dx − e−2δ0τM

∫ π

0
[ϑj ν]R[ϑj ν]

Tdx

− 2δ1

∫ π

0
[z − ϑj zt (x, t − τ )]P[z − ϑj zt (x, t − τ )]Tdx

− 2δ1p3σ 2 π2

(∆+ ε)2

N∑
j=1

∫
Ωj

(
fj
)2 dx ≤

N∑
j=1

∫
Ωj

ηΦ
TΦηΦdx ≤ 0

if Φ ≤ 0, where Φ is given by (3.26). Note that Φ is affine in φ.
Thus it is sufficient to verify (3.26) in the vertices φm and φM .

(ii) Consider now the closed-loop system (3.24) under the
pointlike measurements (with notations (3.22)). We have in (3.34)
κ2(x, t − τM ) = (κ − ϑj − ν)2. Differentiating (3.32) with δ0 = δ

along (3.24) with notations (3.22) and taking into account (3.18)
we have

V̇ + 2δV ≤ −[2σ (p2 − δp3) − λ1]
π2

(∆+ ε)2

N∑
j=1

∫
Ωj

(
fj
)2 dx

− σλ1

∫ π

0
z2dx +

∫ π

0
[z zt ]C[z zt ]Tdx

+ 2K
N∑
j=1

∫
Ωj

(p2z + p3zt )
(
fj + ϑj

)
dx

+ s
N∑
j=1

∫
Ωj

[
κ2(x, t) − e−2δτM (κ − ϑj − ν)2

]
dx

+ τ 2Mr
N∑
j=1

∫
Ωj

κ2
t dx − e−2δτM

N∑
j=1

∫
Ωj

[ϑj ν]R[ϑj ν]
Tdx.

Due to Jensen’s inequality∫
Ωj

κ2
t dx = ∆j

(∫
Ωj

cj(ξ )zt (ξ, t)dξ

)2

≤ ∆j

∫
Ωj

cj(ξ )dξ
∫
Ωj

cj(ξ )z2t (ξ, t)dξ

≤
∆j

εj

∫
Ωj

z2t (x, t)dx ≤
∆

ε

∫
Ωj

z2t (x, t)dx.

Similarly∫
Ωj

κ2dx = ∆j

(∫
Ωj

cj(ξ )z(ξ, t)dξ

)2

≤
∆

ε

∫
Ωj

z2(x, t)dx. (3.36)

Denote ηΨ = [z zt ϑj ν fj κ(x, t)]T . By adding to V̇ + 2δV
the left-hand side of

λ2

(
∆

ε

∫
Ωj

z2(x, t)dx −

∫
Ωj

κ2dx

)
≥ 0

we arrive at

V̇ + 2δV ≤
∑N

j=1

∫
Ωj
ηΨ

TΨ ηΨ dx ≤ 0

if Ψ ≤ 0, where Ψ is given by (3.29). Note that Ψ is affine in φ.
Thus it is sufficient to verify (3.29) in the vertices φm, φM . □

3.3. Numerical example

Consider the damped beam equation (2.1) under the boundary
conditions (2.2), with the parameters

β = 4, φM = −φm = 6.2. (3.37)

The open-loop system with ψ = 6.2z is unstable. Indeed, sim-
ulation of the solution of the open-loop system with z(x, t0) =

x2(x−π )2, zt (x, t0) = 0, t0 = 0 (by employing the finite-difference
method) shows instability (see Fig. 3).

We choose the controller gain K = φM − σ 2
+

β2

4 = 9.2
and compare the performance of the resulting closed-loop system
in terms of maximal τM that preserves stability for both types
of measurements (2.9) and (2.11) under the same (as small as
possible) number of sensors. For simplicity, we assume that the
intervalsΩj have the same length∆ =

π
N and formulate results in

terms of the number of sensors N (that coincides with the number
of actuators).
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Fig. 3. The unstable open-loop system.

Table 1
Maximal values of τM for φ ≡ φM and δ → 0.

N Point Point like

τM
δ0 ≈ δ1 = 0.4

τM ε/∆

4 0.019
0.015 0.0006
0.019 0.001
0.061 0.1

7 0.24
0.16 0.05
0.24 0.1
0.31 0.2

1000 0.33
0.27 0.1
0.33 0.15
0.38 0.2

Table 2
Maximal values of τM for |φ|≤ φM and δ → 0.

N Point Point like

τM τM ε/∆

7 0.011
δ0 ≈ δ1 = 0.4

0.007 0.0001
0.011 0.0003
0.022 0.001

10 0.07
δ0 ≈ δ1 = 0.4

0.03 0.001
0.07 0.009
0.1 0.02

1000 0.16
δ0 ≈ δ1 = 0.2

0.08 0.01
0.16 0.04
0.28 0.1

We start with the continuous-time controller. Consider the
case of either linear ρ = φMz, where we verify the LMIs of
Proposition 3.1 in one vertex φ = φM , or the general case with
φ ∈ [φm, φM ], where the LMIs are verified in both vertices. For
small δ > 0, the conditions of Proposition 3.1 hold for a minimal
N = 3 in the linear case, and a minimal N = 4 in the general
case. By taking N → ∞ we approach the maximal achievable
decay rate δ → β/2 for both measurements.

Consider further the network-based control. By verifying the
LMI conditions of Theorem 3.1, we find maximal values of τM
that preserve the exponential stability of the closed-loop system
with a small decay rate. Tables 1 and 2 show these maximal
values of τM under the point measurements (2.11) and under the
pointlike measurements (2.9) (in the latter case we show also the
corresponding values of the ratio ε/∆). It is seen that for larger
values of ε/∆, the controller under the pointlike measurements
preserves the stability for larger values of τM than the controller
under the point measurements.

4. Regional stabilization: locally Lipschitz nonlinearities

In this section, we consider network-based stabilization of
system (2.1) with a locally Lipschitz nonlinearity under boundary
conditions (2.2) of (2.3) and pointlike (2.9) or point (2.11) mea-
surements. Assume that ρ is locally Lipschitz in the first argument,
and satisfies

φm ≤ ρz ≤ φM ∀|z|≤ D, x ∈ [0, π], t ≥ t0 (4.1)

for some D > 0. Consider the initial conditions (2.4). For locally
Lipschitz ρ, we are looking for a bound on the set of initial
functions [z1, z2]T ∈ H , starting from which the solutions of the
system exist for all t ≥ t0 and are exponentially converging to
zero with a decay rate δ > 0.

Consider a region of initial conditions defined by

XD0 =

{
[z1, z2]T ∈ H

⏐⏐⏐ ∫ π

0
(z21xx + z22 )dx ≤ D2

0

}
, (4.2)

where D0 > 0 is some constant. We will derive conditions that
guarantee the following: all the solutions of (2.1) under (2.2) or
(2.3) starting from XD0 are exponentially converging with a decay
rate δ > 0 and satisfy |z|≤ D ∀x ∈ [0, π], t ≥ t0, meaning that
the following implication holds:

[z1, z2]T ∈ XD0 ⇒ |z|< D ∀x ∈ [0, π], t ≥ t0. (4.3)

We aim to find a region of initial conditions XD0 (a bound on
the domain of attraction) that leads to exponentially converging
solutions with as large as possible D0. For simplicity, we assume
η0 ≡ 0. Note that if η0 > 0, additional conditions for the solution
bound on the first time interval are needed, where the system is
in the open-loop (see [30]).

Theorem 4.1. Consider the closed-loop system (3.24) subject to the
locally Lipschitz nonlinearity that satisfies (4.1) under the boundary
conditions (2.2) or (2.3) and the initial conditions (2.4). Let the
controller gain K be given by (3.12). Define σ = 1 and σ =

1
4

for boundary conditions (2.2) and (2.3) respectively. Assume that
LMIs of Theorem 3.1, where (3.9) is changed by a stronger condition
P > 0, are feasible. Let

D2
0 <

σp3D2

π [(λmax(P) + τM · s · s0)σ−2 + p3]
, (4.4)

s0 ≜

{
1 for point measurements,
∆
ε

for pointlike measurements,

where λmax(P) denotes the maximal eigenvalue of P. Then the system
is regionally exponentially stable with a decay rate δ for all initial
conditions from XD0 .

Proof. We first assume that implication (4.3) holds, then (4.1) is
satisfied and LMIs of Theorem 3.1 yield exponential convergence
of V (t) given by (3.32), and thus V (t) ≤ V (t0) for all t ≥ t0. Then
by Sobolev’s and Wirtinger’s inequality

max
x∈[0,π ]

z2 ≤ π

∫ π

0
z2x dx ≤

π

σ

∫ π

0
z2xxdx

≤
π

σp3
V (t) ≤

π

σp3
V (t0) ∀t ≥ t0. (4.5)

To upper-bound V (t0), we follow [30]. Since η0 = 0, the solution
to the closed-loop system does not depend on the values of z(x, t)
for t < t0, and we may define the initial conditions to be constant:
z(x, t) = z1(x), zt (x, t) = z2(x) ∀t ≤ t0. Then (cf. (3.33) and (3.36))

V (t0) ≤

∫ π

0
[λmax(P)(z21 + z22 ) + τM · s · s0 · z21 + p3z21xx]dx.
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By employing Wirtinger’s inequality (A.1) twice, we have

σ 2
∫ π

0
z21dx ≤

∫ π

0
z21xxdx,

implying

V (t0) ≤
∫ π
0

[[
(λmax(P) + τM · s · s0)σ−2

+ p3
]
z21xx

+ λmax(P)z22
]
dx

≤ [(λmax(P) + τM · s · s0)σ−2
+ p3]D2

0.

Taking into account (4.4), the latter inequality together with (4.5)
yield for t ≥ t0

max
x∈[0,π ]

z2 ≤
π

σp3
V (t0) < D2. (4.6)

We prove next that under the LMIs of the theorem implication
(4.3) holds. By contradiction, assume that given some [z1, z2]T ∈

XD0 there exists t∗ > t0 such that

max
x∈[0,π ]

z2(x, t) < D2 t ∈ [t0, t∗) and max
x∈[0,π ]

z2(x, t∗) = D2. (4.7)

Then due to continuity of V (t), we have V (t) ≤ V (t0) for all t ∈

[t0, t∗], implying (4.6) for t ∈ [t0, t∗], i.e. maxx∈[0,π ] z2(x, t∗) < D2.
The latter contradicts (4.7) and completes the proof. □

Remark 4.1. Note that in the LMIs of Theorem 4.1 (for the
stability analysis), we can always choose p3 = 1 and have
equivalent conditions. Then in order to enlarge the bound D0,
in the LMIs of Theorem 4.1 we choose p3 = 1 and add the LMI
P < λI , where we minimize λ.

4.1. Numerical example — regional stabilization

Consider the damped beam equation (2.1) with ρ = 0.1z|z|q

(q ≥ 1) under boundary conditions (2.2) or (2.3). Here |ρz |≤

0.1(1 + q)|z|q≤ φM = −φm if |z|≤
(

10φM
1+q

)1/q
. We choose q = 1.5

and φM = 6.2, meaning that (4.1) holds with D = 8.5042. As
in Section 3.3, we choose β = 4 and K = 9.2. We use the
results of Table 2 for the minimal number of sensors N = 7 with
τM = 0.011, where in the case of pointlike measurements ε

∆
=

0.0003. To maximize the domain of attraction XD0 , we employ
Remark 4.1. Under both, point and pointlike measurements, we
obtain

D2
0 ≤ 0.0379D2

= 1.65562,

where the LMIs are feasible with λ = 7.3926, p1 = 7.235, p2 =

1.0039, s = 4.6352 · 10−11.
For simulations we consider the initial conditions of the form

z1 = γ x2(x − π )2, z2 = 0, x ∈ [0, π]. Therefore, the initial con-
ditions that guarantee stability satisfy the following inequality:∫ π

0
(z21xx + z22 )dx = γ 2 4π

5

5
≤ D2

0,

leading to |γ | ≤ 0.1058. Simulations of solutions of the net-
worked system under N = 7, τM = 0.011, MAD = 0.0007
confirm the theoretical results. Fig. 4 shows the energy E(t) ≜∫ π
0 (z2xx + z2t )dx of the closed-loop system for γ = 0.1058 and γ =

5.3394 under the point measurements. Note that simulations
under the pointlike measurements look similar. From simulations
we see that stability is preserved for much larger |γ | ≤ 5.3 that
may illustrate the conservativeness of the results.

Fig. 4. E(t) of the closed-loop system: γ = 0.1058 — solid (scaled by 1.5 · 103),
γ = 5.3395 — dotted.

5. Conclusions

In this paper we designed a network-based distributed con-
troller for the damped semilinear beam equation, based on point
or pointlike measurements. Quantitative LMI-based conditions
were provided for the minimal number of sensors/actuators and
the maximal values of delays and sampling intervals that preserve
the exponential stability of the closed-loop system. For beam
equations with locally Lipschitz nonlinearities, regional network-
based stabilization was studied.
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Appendix. Useful lemmas

The following inequalities will be useful:
Lemma A.1. Let z ∈ H 1

[a, b] be a scalar function, with the bound-
ary values stated below. Then the Wirtinger inequality holds [31]:

σ

∫ b

a
z2(ξ )dξ ≤

(b − a)2

π2

∫ b

a

[
dz(ξ )
dξ

]2
dξ (A.1)

where

σ =

{
1, if z(a) = z(b) = 0;
1
4 , if z(a) = 0 or z(b) = 0.

Moreover, the Sobolev inequality is satisfied:

max
z∈(a,b)

z2(x) ≤ (b − a)
∫ b

a
z2x (x)dx. (A.2)

Lemma A.2 (Halanay’s Inequality [32] & p. 138 of [29]). Let 0 <
δ1 < δ0 and let V : [t0 − h,∞) −→ [0,∞) be an absolutely
continuous function that satisfies

V̇ (t) + 2δ0V (t) − 2δ1 sup
−h≤θ≤0

V (t + θ ) ≤ 0, t ≥ t0.
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Then

V (t) ≤ exp
(
−2δ(t − t0)

)
sup

−h≤θ≤0
V (t0 + θ ), t ≥ t0, (A.3)

where δ > 0 is a unique positive solution of δ = δ0 − δ1 exp(2δh).

Lemma A.3 (Jensen’s Inequality [33]). Let c : [a, b] → [0,∞) and
z : [a, b] → R be such that the integration concerned is well defined.
Then[∫ b

a
c(ξ )z(ξ )dξ

]2
≤

∫ b

a
c(ξ )dξ

∫ b

a
c(ξ )z2(ξ )dξ . (A.4)
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