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Abstract

A new approach to robust sampled-data control is introduced. The system is modelled as a continuous-time one, where the control input
has a piecewise-continuous delay. Su5cient linear matrix inequalities (LMIs) conditions for sampled-data state-feedback stabilization
of such systems are derived via descriptor approach to time-delay systems. The only restriction on the sampling is that the distance
between the sequel sampling times is not greater than some prechosen h¿ 0 for which the LMIs are feasible. For h → 0 the conditions
coincide with the necessary and su5cient conditions for continuous-time state-feedback stabilization. Our approach is applied to two
problems: to sampled-data stabilization of systems with polytopic type uncertainities and to regional stabilization by sampled-data saturated
state-feedback.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Modelling of continuous-time systems with digital control
in the form of continuous-time systems with delayed control
input was introduced by Mikheev, Sobolev, and Fridman
(1988), Astrom and Wittenmark (1989) and further devel-
oped by Fridman (1992). The digital control law may be
represented as delayed control as follows:

u(t) = ud(tk) = ud(t − (t − tk)) = ud(t − �(t));

tk6 t ¡ tk+1; �(t) = t − tk ; (1)

where ud is a discrete-time control signal and the
time-varying delay �(t) = t − tk is piecewise-linear with
derivative �̇(t) = 1 for t �= tk . Moreover, �6 tk+1 − tk .
Based on such a model, for small enough sampling inter-
vals tk+1 − tk , asymptotic approximations of the trajectory
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(Mikheev et al., 1988) and of the optimal solution to the
sampled-data LQ Gnite horizon problem (Fridman, 1992)
were constructed.
Robust stability conditions for systems with time-varying

delays were derived via Lyapunov–Krasovskii functionals
in the case where the derivative of the delay is less than one
(see e.g. Niculescu, de Souza, Dugard, & Dion, 1998). The
stability issue in the case of time-varying delay without any
restrictions on the derivative of the delay has been treated
mainly via Lyapunov–Razumikhin functions, which usually
lead to conservative results (see e.g. Hale & Lunel, 1993;
Cao, Sun, & Cheng, 1998; Kolmanovskii &Myshkis, 1999).
Only recently for the Grst time this case was treated by
Lyapunov–Krasovskii technique (Fridman & Shaked,
2002).
Two main approaches have been used to the sampled-data

robust stabilization problem (see e.g. Dullerud & Glover,
1993; Sivashankar & Khargonekar, 1994; Basar & Bernard,
1995; Oishi, 1997). The Grst one is based on the lifting
technique (Bamieh et al., 1991; Yamamoto, 1990) in which
the problem is transformed to equivalent Gnite-dimensional
discrete problem. However, this approach does not work in
the cases with uncertain sampling times or uncertain system
matrices.
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The second approach is based on the representation of the
system in the form of hybrid discrete/continuous model. Ap-
plication of this approach to linear systems leads to neces-
sary and su5cient conditions for stability and L2-gain analy-
sis in the form of diMerential equations (or inequalities) with
jumps (see e.g. Sivashankar & Khargonekar, 1994). The lat-
ter approach has been applied recently to sampled-data sta-
bilization of linear uncertain systems for the case of equidis-
tant sampling (Hu, Cao, & Shao, 2002; Hu, Lam, Cao, &
Shao, 2003). To overcome di5culties of solving diMer-
ential inequalities with jumps, a piecewise-linear in time
Lyapunov function has been suggested. As a result in Hu
et al. (2002) a countable sequence of matrix inequalities
has been derived, which has been proposed to solve by it-
erative method. The feasibility of these matrix inequalities
is not guaranteed even for small sampling periods. In Hu
et al. (2003) LMIs have been derived (see Corollary 2)
which do not depend on the sampling interval and thus are
very conservative.
In the present paper we suggest a new approach to the

robust sampled-data stabilization. We Gnd a solution by
solving the problem for a continuous-time system with
uncertain but bounded (by the maximum sampling inter-
val) time-varying delay in the control input. The condi-
tions which we obtain are robust with respect to diMerent
samplings with the only requirement that the maximum
sampling interval is not greater than h. Moreover, the fea-
sibility of the LMIs is guaranteed for small h if the corre-
sponding continuous-time controller stabilizes the system.
As a by-product we show that for h → 0 the conditions
coincide with the necessary and su5cient conditions for
the continuous-time stabilization. Such convergence in H2

framework and related results were proved by Mikheev
et al. (1988), Chen and Francis (1991), Fridman (1992),
Osborn and Bernstein (1995), Trentelman and Stoorvogel
(1995) and Oishi (1997).
For the Grst time the new approach allows to develop dif-

ferent robust control methods for the case of sampled-data
control. The LMIs are a5ne in the system matrices and thus
for the systems with polytopic type uncertainty the stabi-
lization conditions readily follow. We consider the regional
stabilization by sampled-data saturated state-feedback,
where we give an estimate on the domain of attraction.
For continuous-time stabilization of state-delayed systems
by saturated-feedback see e.g. Tarbouriech and Gomes da
Silva (2000), Cao et al. (2002).

Notation. Throughout the paper the superscript ‘T ’ stands
for matrix transposition, Rn denotes the n dimensional
Euclidean space with vector norm | · |, Rn×m is the set
of all n × m real matrices, and the notation P¿ 0, for
P ∈Rn×n means that P is symmetric and positive deG-
nite. Given Pu = [ Pu 1; : : : ; Pum]T; 0¡ Pu i; i = 1; : : : ; m, for any
u = [u1; : : : ; um]T we denote by sat(u; Pu) the vector with
coordinates sign(ui)min(|ui|; Pu i). By stability of the system
we understand the asymptotic stability of it.

2. Sampled-data stabilization of uncertain systems

2.1. Problem formulation

Consider the system

ẋ(t) = Ax(t) + Bu(t); (2)

where x(t)∈Rn is the state vector, u(t)∈Rm is the con-
trol input. We are looking for a piecewise-constant control
law of the form u(t) = ud(tk); tk6 t ¡ tk+1, where ud is a
discrete-time control signal and 0= t0¡t1¡ · · ·¡tk ¡ : : :
are the sampling instants. Our objective is to Gnd a
state-feedback controller given by

u(t) = Kx(tk); tk6 t ¡ tk+1; (3)

which stabilizes the system.
We represent a piecewise-constant control law as a

continuous-time control with a time-varying piecewise-
continuous (continuous from the right) delay �(t) = t − tk
as given in (1). We will thus look for a state-feedback con-
troller of the form: u(t)=Kx(t−�(t)). Substituting the latter
controller into (2), we obtain the following closed-loop
system:

ẋ(t) = Ax(t) + BKx(t − �(t));

�(t) = t − tk ; tk6 t ¡ tk+1: (4)

We assume that
A1: tk+1 − tk6 h ∀k¿ 0.
From A1 it follows that �(t)6 h since �(t)6 tk+1 − tk .

We will further consider (4) as the system with uncertain
and bounded delay.

2.2. Stability of the closed-loop system

Similarly to Fridman and Shaked (2002), where the con-
tinuous delay was considered, we obtain for the case of
piecewise-continuous delay the following result:

Lemma 2.1. Given a gain matrix K, system (4) is stable
for all the samplings satisfying A1, if there exist n × n
matrices 0¡P1; P2; P3; Z1; Z2; Z3 and R¿ 0 that satisfy the
following LMIs:

�1¡ 0; and

[
R [0 KTBT]P

∗ Z

]
¿ 0; (5a,b)

where

P =

[
P1 0

P2 P3

]
; Z =

[
Z1 Z2

∗ Z3

]
;

�1 =�0 + hZ +

[
0 0

0 hR

]
;

�0 = PT

[
0 I

A+ BK −I

]
+

[
0 I

A+ BK −I

]T

P:
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Proof. Proof is based on the following descriptor represen-
tation of (4):

ẋ(t) = y(t); 0 = −y(t) + Ax(t) + BKx(t − �(t));
(6a,b)

or equivalently

ẋ(t) = y(t);

0 =




−y(t) + Ax(t) + BKx(t − �(t)); if t ∈ [0; h);

−y(t) + (A+ BK)x(t)

−BK
∫ t

t−�(t)
y(s) ds; if t¿ h;

(7a,b)

which is valid in the case of piecewise-continuous delay
�(t) for t¿ 0. Given a matrix K and initial condition x(t)=
�(t) (t ∈ [ − h; 0]), where � is a continuous function, x(t)
satisGes (4) for t¿ 0 iM it satisGes (6) (or equivalently (7)).
Note that the descriptor system (6) has no impulsive so-
lutions since in (6) y(t) is multiplied by the nonsingular
matrix I (Fridman, 2002).
We apply the Lyapunov–Krasovskii functional of the

form

V (t) = V1 + V2; V1 = PxT(t)EP Px(t);

V2 =
∫ 0

−h

∫ t

t+!
yT(s)Ry(s) ds d!; (8)

where

Px(t) = col{x(t); y(t)}; E =

[
In 0

0 0

]
;

P =

[
P1 0

P2 P3

]
; P1 = PT

1 ¿ 0; (9a–d)

which satisGes the following inequalities:

a|x(t)|26V (t)6 b sup
s∈[−h;0]

| Px(t + s)|2;

a¿ 0; b¿ 0: (10)

DiMerentiating V (t) along the trajectories of (7) for t¿ h
we Gnd (see Fridman & Shaked, 2002) that

V̇ (t)¡ PxT(t)�1 Px(t)¡− c|x(t)|2; c¿ 0; t¿ h; (11)

provided that (5a,b) hold. Integrating (11) we have

V (t) − V (h)6− c
∫ t

h
|x(s)|2 ds (12)

and, hence, (10) yields

|x(t)|26V (t)=a6V (h)=a6 b=a sup
s∈[−h;0]

| Px(h+ s)|2:

Since sups∈[−h;0] |x(h + s)|6 c1 sups∈[−h;0] |�(s)|; c1¿ 0
(cf. Hale & Lunel, 1993, p. 168) and thus ẋ, deGned
by the right-hand side of (4), satisGes sups∈[−h;0] |ẋ(h +
s)|6 c2sups∈[−h;0] |�(s)|; c2¿ 0, we obtain that

|x(t)|26V (h)=a6 c3 sup
s∈[−h;0]

|�(s)|; c3¿ 0:

Hence, (4) is stable (i.e. x(t) is bounded and small for
small �).
To prove asymptotic stability we note that x(t) is uni-

formly continuous on [0;∞) (since ẋ(t) deGned by the
right-hand side of (4) is uniformly bounded). Moreover,
(12) yields that |x(t)|2 is integrable on [h;∞). Then, by
Barbalat’s lemma, x(t) → 0 for t → ∞.

Applying now the continuous state-feedback u(t)=Kx(t)
to (2) we obtain the system

ẋ(t) = (A+ BK)x(t): (13)

It is clear that the stability of (13) is equivalent to the stability
of its equivalent descriptor form

ẋ(t) = y(t); 0 = −y(t) + (A+ BK)x(t); (14)

which coincides with (6) for h=0. It is well-known (Takaba,
Morihira, & Katayama, 1995) that the stability of the latter
system is equivalent to the condition �0¡ 0. If there exists
P of the form (9c,d) which satisGes �0¡ 0, then for small
enough h¿ 0 LMIs of Lemma 2.1 are feasible (take e.g.
Z = I2n and R = [0 KTBT]PPT[0 KTBT]T). We, therefore,
obtain the following result:

Corollary 2.2. If the continuous-time state-feedback
u(t) = Kx(t) stabilizes the linear system (2), then the
sampled-data state-feedback (3) with the same gain K
stabilizes (2) for all small enough h.

Remark 1. In the case where the matrices of the system
are not exactly known, we denote '=[ A B ] and assume
that '∈Co{'j; j = 1; : : : ; N}, namely, '=

∑N
j=1 fj'j for

some 06fj6 1;
∑N

j=1 fj =1, where the N vertices of the
polytope are described by 'j = [ A(j) B(j) ]. In order to
guarantee the stability of (2) over the entire polytope one can
use the result of Lemma 2.1 by applying the same matrices
P2 and P3 and solving (5a,b) for the N vertices only.

2.3. Sampled-data stabilization

LMIs of Lemma 2.1 are bilinear in P and K . In order to
obtain LMIs we use P−1. It is obvious from the requirement
of 0¡P1, and the fact that in (5) −(P3 + PT

3 ) must be
negative deGnite, that P is nonsingular. DeGne

P−1 = Q =

[
Q1 0

Q2 Q3

]
and ,= diag{Q; I}: (15a,b)

Applying Schur formula to the term hR in (5a), we multiply
(5a,b) by ,T and ,, on the left and on the right, respectively.
Denoting PR = R−1 and PZ = QTZQ we obtain, similarly to
Fridman and Shaked (2002), the following

Lemma 2.3. The control law of (3) stabilizes (2) for
all the samplings with the maximum sampling interval
not greater than h and for all the system parameters
that reside in the uncertainty polytope ', if there exist:
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Q1¿ 0; Q( j)
2 ; Q( j)

3 ; PR; PZ ( j)
1 ; PZ ( j)

2 ; PZ ( j)
3 ∈Rn×n, PY ∈Rq×n

that satisfy the following nonlinear matrix inequalities:

Q( j)

2 +Q( j)T
2 +h PZ ( j)

1 /̂( j) hQ( j)T
2

∗ −Q( j)
3 −Q( j)T

3 +h PZ ( j)
3 hQ( j)T

3

∗ ∗ −h PR


¡ 0;



Q1 PR−1Q1 0 PY TB(j)T

∗ PZ ( j)
1

PZ ( j)
2

∗ ∗ PZ ( j)
3


¿ 0; (16a,b)

where

/̂( j) = Q( j)
3 − Q( j)T

2 + Q1A(j)T + h PZ ( j)
2 + PY TB(j)T;

j = 1; 2; : : : ; N: (17)

The state-feedback gain is then given by K = PYQ−1
1 .

For solving (16) there exist two methods. The =rst uses
the assumption

PR= 0Q1; 0¿ 0; (18)

and thus leads to 2N LMIs with tuning parameter 0:

Q( j)

2 +Q( j)T
2 +h PZ ( j)

1 /̂( j) hQ( j)T
2

∗ −Q( j)
3 −Q( j)T

3 +h PZ ( j)
3 hQ( j)T

3

∗ ∗ −0hQ1


¡ 0;



0Q1 0 0 PY TB(j)T

∗ PZ ( j)
1

PZ ( j)
2

∗ ∗ PZ ( j)
3


¿ 0; (19a,b)

where /̂( j) and j are given by (17).
Similarly to Corollary 2.2 we can show that if sys-

tem (2) is quadratically stabilizable by a continuous-time
state-feedback u(t) =Kx(t), then for all small enough h the
latter LMIs are feasible and the sampled-data state-feedback
with the same gain stabilizes the system.
The second method for solving (16) is based on the itera-

tive algorithm developed recently by Gao and Wang (2003).
This method is preferable in the cases of comparatively large
h, since it leads to less conservative results. However it may
take more computer time due to iterative process. In the se-
quel we shall adopt the Grst method for solving (16).

Example 1. We consider (2) with the following matrices:

A=

[
1 0:5

g1 −1

]
; B=

[
1 + g2

−1

]
;

where |g1|6 0:1, |g2|6 0:3. It is veriGed by using (19)
that for all uncertainities the system is stabilizable by a
sampled-data state-feedback with the maximum sampling

interval h6 0:35. Thus, for h = 0:35 the resulting K =
[ − 2:6884 − 0:6649] (with 0 = 0:7). Simulation results for
the closed-loop system with the latter gain and the uniform
samplings show that for the sampling period not greater than
0:35 and g1 = 0:1 sint; g2 = 0:3 cost the system is stable.

3. Stabilization by saturated sampled-data controller

3.1. Problem formulation

Consider the system (2) with the sampled-data control
law (3) which is subject to the following amplitude con-
straints: |ui(t)|6 Pu i; 0¡ Pu i; i = 1; : : : ; m. We represent
the state-feedback in the delayed form u(t) = sat(Kx(t −
�(t)); Pu); �(t)= t− tk ; tk6 t ¡ tk+1. Applying the latter con-
trol, law the closed-loop system obtained is

ẋ(t) = Ax(t) + B sat(Kx(t − �(t)); Pu);

�(t) = t − tk ; tk6 t ¡ tk+1: (20)

Though the closed-loop system (20) has a delay, in the case
of sampled-data control the initial condition is deGned in
the point t = 0 and not in the segment [ − h; 0]. Denote by
x(t; x(0)) the state trajectory of (20) with the initial condition
x(0)∈Rn. Then the domain of attraction of the origin of
the closed-loop system (20) is the set A = {x(0)∈Rn :
limt→∞ x(t; x(0))=0}. We seek conditions for the existence
of a gain matrix K which leads to a stable closed loop.
Having met these conditions, a simple procedure for Gnding
the gain K should be presented. Moreover, we obtain an
estimate X1 ⊂ A on the domain of attraction, where

X1 = {x(0)∈Rn : xT(0)P1x(0)6 1−1}; (21)

and where 1¿ 0 is a scalar and P1¿ 0 is an n× n matrix.
Reducing the original problem to the problem with input

delay, we solve it by modifying derivations of Fridman,
Pila, and Shaked (2003), where the case of state delay was
considered.

3.2. A linear system representation with polytopic type
uncertainty

For the estimation of A we can restrict ourself to the
following initial functions �(s); s∈ [ − h; 0]:

�(0) = x(0); �(s) = 0; s∈ [ − h; 0); (22)

because the initial condition for (20) is deGned in the point
t = 0. Denoting the ith row by ki, we deGne the polyhedron

L(K; Pu) = {x∈Rn : |kix|6 Pu i; i = 1; : : : ; m}:
If the control and the disturbance are such that x∈L(K; Pu)
then system (20) admits the linear representation. Following
Cao et al. (2002), we denote the set of all diagonal matrices
in Rm×m with diagonal elements that are either 1 or 0 by 2 ,
then there are 2m elementsDi in2 , and for every i=1; : : : ; 2m

D−
i , Im − Di is also an element in 2 .
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Lemma 3.1 (Cao et al., 2002). Given K and H in Rm×n.
Then

sat(Kx(t); Pu)∈Co{DiKx + D−
i Hx; i = 1; : : : ; 2m}

for all x∈Rn that satisfy |hix|6 Pu i; i = 1; : : : ; 2m.

The following is obtained from Lemma 3.1.

Lemma 3.2. Given 1¿ 0, assume that there exists H
in Rm×n such that |hix|6 Pu i for all x(t)∈X1. Then
for x(t)∈X1 the system (20) admits the following
representation.

ẋ(t) = Ax(t) +
2m∑
j=1

4j(t)Ajx(t − �(t)); (23)

where

Aj = B(DjK + D−
j H) j = 1; : : : ; 2m;

2m∑
j=1

4j(t) = 1; 06 4j(t); ∀0¡t: (24)

We denote

'5 =
2m∑
j=1

4j'j for all 06 4j6 1;
2m∑
j=1

4j = 1; (25)

where the vertices of the polytope are described by 'j =
[ Aj ]; j = 1; : : : ; 2m. The problem becomes one of Gnding
X1 and a corresponding H such that |hix|6 Pu i; i=1; : : : ; 2m

for all x∈X1 and that the state of the system

ẋ(t) = Ax(t) + Ajx(t − �(t));

�(t) = t − tk ; tk6 t ¡ tk+1; (26)

remains in X1 .

3.3. Regional stabilization

By using the Grst method for solving the stabilization
matrix inequalities (with tuning parameter 0), we obtain the
following result:

Theorem 3.3. Consider system (2) with the constrained
sampled-data control law (3). The closed-loop sys-
tem (20) is stable with X1 inside the domain of at-
traction for all the samplings with the maximum
sampling interval not greater than h, if there exist
0¡Q1; Q

(j)
2 ; Q( j)

3 ; PZ ( j)
1 ; PZ ( j)

2 ; PZ ( j)
3 ∈Rn×n, PY ; G ∈Rm×n;

0¿ 0 and 1¿ 0 that satisfy LMI (19a) for j = 1; : : : ; 2m,
where

7j =Q( j)
3 − QT( j)

2 + Q1AT + ( PY TDj + GTD−
j )B

T

+h PZ ( j)
2 ; B(j) = B (27)

and

0Q1 0 0( PY TDj + GTD−

j )B
T

∗ PZ ( j)
1

PZ ( j)
2

∗ ∗ PZ ( j)
3


¿ 0; j = 1; : : : ; 2m;

[
1 gi

∗ Pu2iQ1

]
¿ 0; i = 1; : : : ; m: (28a,b)

The feedback gain matrix which stabilizes the system is
given by K = PYQ−1

1 .

Proof. For V given by (8) conditions are sought to ensure
that V̇ ¡ 0 for any x(t)∈X1. As in Fridman et al. (2003),
the inequalities (28b) guarantee that |hix|6 Pu i;∀x∈X1; i=
1; : : : ; m, where gi , hiQ1; i=1; : : : ; m and Q1 , P−1

1 , and
the polytopic system representation of (26) is thus valid.
Moreover, (19a,b) guarantee that V̇ ¡ 0.
From V̇ ¡ 0 it follows that V (t)¡V (0) and therefore for

the initial conditions of the form (22)

xT(t)P1x(t)6V (t)¡V (0) = xT(0)P1x(0)6 1−1: (29)

Then for all initial values x(0)∈X1, the trajectories of x(t)
remain within X1, and the polytopic system representation
(26) is valid. Hence x(t) is a trajectory of the linear system
(26) and V̇ ¡ 0 along the trajectories of the latter system
which implies that limt→∞ x(t) = 0.

Example 2. We consider (2) with the following matrices
(Cao et al., 2002), where h= 0):

A=

[
1:1 −0:6

0:5 −1

]
; B1 =

[
1

1

]

and where Pu = 5. Applying Theorem 3.3 a stabilizing gain
was obtained for all samplings with the maximum sampling
interval h6 0:75. In order to ‘enlarge’ the volume of the
ellipse we minimized the value of 1 (to improve the re-
sult we also added the inequality Q1¿5I and chose such
5¿ 0 that enlarged the resulting ellipse). The ellipse vol-
ume increases when h decreases. For, say, h=0:75 we obtain
K = [ − 1:6964 0:5231] (with 0 = 0:325, 1 = 0:1261; P1 =[

0:9132 −0:2816

−0:2816 0:0868

]
; 5 = 1) and we show (see Fig. 1)

that a trajectory starting on the periphery of the ellipse (for
the case of the uniform sampling with the sampling period
tk+1 − tk = 0:75) never leaves this ellipse and converges to
the origin, while a trajectory starting not far from the ellipse
remains outside the ellipse.

4. Conclusions

A new approach to robust sampled-data stabilization of
linear continuous-time systems is introduced. This approach
is based on the continuous-time model with time-varying
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Fig. 1. Trajectories and estimate of the domain of attraction for h=0:75.

input delay. Under assumption that the maximum sampling
interval is not greater than h¿ 0, the h-dependent su5cient
LMIs conditions are derived for stabilization of systems with
polytopic type uncertainty and for regional stabilization of
systems with sampled-data saturated state-feedback.
The derived conditions are conservative since they guar-

antee stabilization for all sampling intervals not greater than
h and due to assumption (18). However, these conditions are
simple. The problem of reducing their conservatism is cur-
rently under study. The input delay approach may be applied
to a wide spectrum of robust sampled-data control problems.
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