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Robust Filtering of Linear Systems
With Time-Varying Delay

E. Fridman, U. Shaked, and L. Xie

Abstract—A robust delay-dependent filtering design is proposed
for linear continuous systems with parameter uncertainty and time-varying
delay. The resulting filter is of the general linear observer type and it guar-
antees that the induced -norm of the system, relating the exogenous sig-
nals to the estimation error, is less than a prescribed level for all possible
parameters that reside in a given polytope. Our design is based on the ap-
plication of the descriptor model transformation and Park’s inequality for
the bounding of cross terms and is expected to be the least conservative as
compared to existing design methods. A numerical example indeed demon-
strates this advantage of the new filtering scheme.

Index Terms—Bounded-real lemma, delay-dependent stability, linear
matrix inequalities (LMIs), robust filtering, time-delay systems.

I. INTRODUCTION

H1 estimation has been attracting much interest in the past decades
[1], [2]. One of its main advantages is the fact that it is insensitive to the
exact knowledge of the statistics of the noise signals. This estimation
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procedure ensures that theL2-induced gain from the noise signals to
the estimation error will be less than a prescribed level, where the noise
signals are arbitrary energy-bounded signals. Several approaches have
been proposed to solve theH1 filtering problem ([1], [2], [4]).

The potential ofH1 estimation lies far beyond its insensitivity to
the noise statistics. It had been recognized in [3] that theH1 filtering
scheme is also less sensitive than itsH2 counterpart to uncertainty in
system parameters. TheH1 filtering approach was adopted for sys-
tems with norm-bounded type of parameter uncertainty using a Riccati
equation approach in [5] and a convex optimization approach in [6].
Recently, theH1 filtering for systems with a polytopic type of pa-
rameter uncertainty has been addressed in [7] and [8] where sufficient
conditions in terms of linear matrix inequalities (LMIs) are given.

The aforementioned works consider systems without time delays.
The existence of the delays is frequently encountered in many dynamic
systems [9] and their presence must be taken into account in a real-
istic design. Moreover, stability and noise attenuation level guaranteed
by aH1 filter that was designed without considering time delays can
collapse if the system actually possesses such delays. In [10] aH1

filter design for precisely known systems with a single time delayed
measurement was introduced. TheH1 observer design for precisely
known systems with state delays was considered in [11], where a suf-
ficient condition based on an algebraic Riccati equation was derived.
RobustH1 filtering of uncertain systems with state delays has been
considered in [12] and [13] where both delay independent and delay
dependent sufficient conditions have been given.

Unfortunately, all the proposed methods for robust filtering of pro-
cesses with delay are conservative. This conservatism stems from two
main sources. The first is the fact that a system with time-delay is,
in fact, infinite dimensional. Any attempt to analyze it via finite-di-
mensional models and criteria must therefore entail an overdesign. The
second source of conservatism comes from the uncertainty. The treat-
ment of norm-bounded uncertainties as an additional disturbance [5]
or the polytopic uncertainty via a single Lyapunov function [12] leads
to conservative results.

While the constraint of a single Lyapunov function has been
somehow relaxed by considering parameter-dependent Lyapunov
functions [14], the main source of conservatism that is caused by the
distributed nature of the delay has not been successfully tackled.

Recently, a new approach toH1 filtering has been introduced [15].
This approach applies a Lyapunov–Krasovskii functional [9] and is
based on representing the system by a descriptor type model [16] and
deriving a bounded-real lemma (BRL) [17] for the corresponding ad-
joint system. The new BRL was found to be very efficient and it con-
siderably reduced the achievable attenuation level as compared to other
results reported in the literature. By assuming a Leunberger-type es-
timator, the new BRL was applied to the resulting estimation error
system and provided a much less conservative filtering estimate in [15].
In spite of the advantage of the new filter design, it still entails a sig-
nificant amount of conservatism stemming from the overbounding of
mixed terms in the proof of the BRL in [15].

A new over-bounding technique has recently been proposed that pro-
duces tighter bounds [18]. In [19], this technique was applied to reduce
the over-design entailed in the approach of [15]. It cannot be used how-
ever when uncertainty is encountered because it is based on using a
Leunberger type filter to cancel the effect of the system states on the
dynamics of the estimation error.

In this note, we solve the robustH1 filtering problem for systems
with time-varying multiple delays and polytopic type uncertainties. A
general full order filter is sought that guarantees the required estima-
tion accuracy over the entire uncertainty polytope. We obtain sufficient
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conditions for the robust filtering for both the delay dependent and the
delay independent cases. It turns out that the condition for the latter
case is a special case of that for the former. An example, taken from
[13], is solved. The advantages of our results are clearly demonstrated
there.

In comparison with the results in [15] and [17], this note deals with
filters of general structure that allows the consideration of parameter
uncertainty. It applies the new bounding technique of [18] which con-
siderably reduces the overdesign entailed in robust estimation and it
deals with time varying delays.

Notation: Throughout the note the superscriptT stands for matrix
transposition,Rn denotes then dimensional Euclidean space,Rn�m

is the set of alln � m real matrices and the notationP > 0, for
P 2 Rn�n means thatP is symmetric and positive definite. The space
of functions inRq that are square integrable over[01) is denoted by
Lq
2
[0; 1).

II. PROBLEM FORMULATION

Consider the following system:

_x(t) =A0x(t) +

2

i=1

Aix (t� �i) +Bw(t) (1a)

z(t) =Lx(t) +Dw(t) (1b)

wherex(t) 2 Rn is the system state vector withx(t) = 0 for any
t � 0, w(t) 2 Lq2[0; 1) is the exogenous disturbance signal and
z(t) 2 Rp is the signal to be estimated.

The measurement is given by

y(t) = col fC0x(t); C1x (t� �1) ; C2x (t� �2)g+D21w(t) (2)

wherey(t) 2 Rr . The time varying delays�i(t) > 0 satisfy�i(t) �
hi over [0 1) wherehi, i = 1, 2 are known. The matricesAi, Ci,
i = 0, 1, 2,B; D; D21, andL are constant matrices of appropriate
dimensions (Ci 2 R

r �n; r0+r1+r2 = r). The exact values of these
matrices are not precisely known. Denoting


 = [A0 A1 A2 C0 C1 C2 B D D21 L ]

we assume that
 2 Cof
j ; j = 1; . . .Ng, namely


 =

N

j=1

fj
j for some 0 � fj � 1;

N

j=1

fj = 1 (3)

where theN vertices of the polytope are described by


j=[A
(j)
0 A

(j)
1 A

(j)
2 C

(j)
0 C

(j)
1 C

(j)
2 B(j) D(j) D

(j)
21 L(j) ] :

Remark 1 : In (2), we allowed for the general case of delayed mea-
surements. It will be shown below that a delay in the measurement, if
exists, will result in a nonlinear optimization problem. It will also be
clarified below how to cope with delayed measurements, indirectly, in
a way that allows a solution via LMIs. For simplicity, only two delays
are considered in this note. The results obtained can, however, be easily
generalized to any finite number of delays.

We seek a filter of the form

_̂x(t) =Af x̂(t) +Bfy(t) x̂(0) = 0

ẑ(t) =Cf x̂(t) + [Df 0 0 ] y(t) (4)

whereDf 2 R
p�r ; which ensures, for a prescribed value of, that

the performance index

J(w) =
1

0

~zT ~z � 
2
w
T
w dt (5)

where~z(t) z(t)� ẑ(t), is negative80 6= w(t) 2 Lq2[0; 1) and for
all the possible plant parameters in the above uncertainty polytope.

We will now treat two cases of time-varying delays.
Case 1: �i(t), i = 1; 2 are differentiable functions, satisfying, for

all t � 0 and for given scalars0 � di, _�i(t) � di, i = 1; 2.
Case 2: �i(t), i = 1; 2 are continuous for allt � 0 (satisfying the

above bound ofhi). In this case, very fast changes in the time delay are
allowed.

III. H1 FILTERING FOR CASE 1

A. Delay-Dependent Filtering

Defininge = x� x̂ and� = colfx; eg we derive from (1), (4), and
(2) the following augmented model, where:

_�(t) = �A0�(t) +

2

1

�Ai� (t� �i) + �Bw(t) (6a)

~z(t) =�L�(t) + �Dw(t) (6b)

where

�A0 =

A0 0

A0 �Af �Bf

C0

0

0

Af
(7a)

�A1 =

A1 0

A1 �Bf

0

C1

0

0
(7b)

�A2 =

A2 0

A2 �Bf

0

0

C2

0
(7c)

�B =
B

B �BfD21
(7d)

�L = [L� Cf �DfC0 Cf ] (7e)

�D =D � [Df 0 0 ]D21: (7f)

The filtering problem thus becomes one of finding the filter parameters
such that the inducedL2-norm of the system (6) will be less than the
prescribed for all the points in the uncertainty polytope and for all the
delays that correspond to case 1. To ensure the induced norm we have to
use the appropriate BRL. Unfortunately, the standard BRL for systems
with time delays (see for example [17]) is not suitable for solving the
filtering problem. Extending the arguments of [15] it can be shown that
theL2-induced norms of the system described by (6) and the following
system are equal:

_�(�t) = �AT
0 �(�t) +

2

i=1

�AT
i � (�t� �i) + �LT ~z(�t) (8a)

�(�t) =0 8�t � 0; ~w(�t) = �BT
�(�t) + �DT ~z(�t) (8b)

where�(�t) 2 Rn, ~z(�t) 2 Rp, and ~w(�t) 2 Rq. Note that the latter
system represents the forward adjoint of (6) (as defined in [20]).

An equivalent descriptor form representation of (8a) is given by [16]

_�(t) =�(t)

0 =� �(t) +

2

i=0

�AT
i �(t)

�

2

i=1

�AT
i

t

t��

�(s)ds+ �LT ~z(t) (9)
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In association with (9), we adopt the following Lyapunov–Krasovskii
functional:

V (t) = �
T (t) �T (t) EP

�(t)

�(t)

+

2

i=1

t

t��

�
T (�t)S�1i �(�t)d�t

+

2

i=1

0

�h

t

t+�

�
T (s) �AiR

�1

i
�AT
i �(s)dsd� (10)

where

E =
In 0

0 0
(11a)

P =
P1 0

P2 P3
P1 > 0; Si > 0; Ri > 0; i = 1; 2:

(11b)

The first term of (10) corresponds to the descriptor system ([17]) while
the second and the third terms—to the delay-dependent conditions with
respect to the distributed delays (with respect to�i). The third term is
included in order to compensate the term that emerges when Park’s
inequality [18] is used to obtain the required BRL.

Using this, along the lines of [20], an expression for_V (t) is first
derived and a term in the resulting expression which mixes� and�
is then bounded using inequality of [18]. The following BRL is thus
obtained.

Lemma 1: Consider the system of (6). For a prescribed > 0 and
for givenAf ; Bf ; Cf andDf , the cost function (5) achievesJ(w) <
0 for all nonzerow 2 Lq

2[0; 1) and for all the parameters that belong
to the uncertainty polytope, if there exist

P =
P1 0

P2 P3
P1 = P

T
1 > 0; P1 2 R

2n�2n

Wi =
�P1 0

Wi1 Wi2

; Wi2 2 R
2n�2n

; i = 1; 2 (12)

and2n � 2n-matricesSi andRi, i = 1; 2 that satisfy the inequality
over the uncertainty polytope
 of (3), as shown in (13) at the bottom
of the page, where

	 P
T

0 I2n
2

i=1

�AT
i �I2n

+
0

2

i=1

�Ai

I2n �I2n

P

+

2

i=1

S�1i 0

0
2

i=1

hi �AiR
�1

i
�AT
i

+

2

i=1

W
T
i

0 0
�AT
i 0

+

2

i=1

0 �Ai

0 0
Wi �T

i = [ 0 I2n ] [Wi + P ] :

In order to obtain a convex optimization problem, we restrict our-
selves to the case of

[Wi1 Wi2 ] = "i [ 0 I2n ]P (14)

where"i = diagf�"i; ~"ig is a diagonal matrix,�"i, ~"i 2 Rn�n, i =
1; 2. For"i = �I2n (13) yields the delay-independent condition since
in this case�1 = �2 = 0. For "i = 0 we have�WT

i [0 �Ai]
T = 0

and therefore (13) implies the delay-dependent condition which does
not depend ondi.

Observe from (13) that�(P3 + P T
3 ) must be negative definite as

	 < 0, which in conjunction with the requirement of0 < P1, implies
thatP is nonsingular. Defining

P
�1 = Q =

Q1 0

Q2 Q3

� = diag fQ; I8n+p+qg (15a-b)

we multiply (13) by�T and�, on the left and on the right, respec-
tively. Applying Schur formula to the quadratic term inQ we obtain
the following.

Lemma 2: Consider the system of (6). For a prescribed > 0 and
for givenAf ; Bf ; Cf andDf , the cost function (5) achievesJ(w) <
0 for all nonzerow 2 Lq

2[0; 1) and for all the parameters that belong
to the uncertainty polytope
, if for some diagonal matrices"1 and
"2 2 R2n�2n, there existQ1 > 0; S1; S2; Q2; Q3; R1; R2 2
R2n�2n that satisfy the inequality over the uncertainty polytope
 of
(3), shown in (16) at the bottom of the next page, where

� = Q3 �Q
T
2 +Q1

2

i=0

�Ai +

2

i=1

�Ai"i :

The inequality of the last lemma is affine inQ1,Qj+1, Sj , andRj ,
j = 1; 2. Thus, for given, "1 and"2 the estimation performance can
be verified, for a given filter of the form of (4), over the whole uncer-
tainty polytope, if the matricesQ1 > 0, Qj+1, Sj andRj , j = 1; 2
simultaneously satisfy theN inequalities of the type of (16) where
each corresponds to a vertex,
j , of the uncertainty polytope
 and
where the parameters of
j are substituted to construct in (16) the cor-
responding elements of (7).

We do not know, however, what are the optimal choice of the filter
parameters, and we will thus have to solve the inequality of (16) for
Q1 > 0, Qj+1, Sj , Rj , j = 1; 2, Af ; Bf ; Cf , andDf , simultane-
ously for theN vertices of
.

In order to linearize the resulting optimization problem we look for
Q1 that has the following block diagonal structure:

Q1 = diag fQ11;Q12g : (17)

This restriction is required to entangle the bilinear terms that appear in
(16). It introduces an additional conservatism to the solution proposed,
but one should bear in mind that in the standardH1 filtering problem
(without uncertainty), if one uses the Luenberger observer and solves

	 P T 0
�LT h1�1R1 h2�2R2 �WT

1

0
�AT
1

S1 �WT
2

0
�AT
2

S2
�B

0

� �2Iq 0 0 0 0 �D

� � �h1R1 0 0 0 0

� � � �h2R2 0 0 0

� � � � � (1� d1)S1 0 0

� � � � � � (1� d2)S2 0

� � � � � � �Ip

< 0 (13)
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the estimation problem for the augmented system forcolfx; eg, the so-
lution of corresponding Riccati equation indeed possesses the structure
of (17).

Applying (17) it is readily seen that if�A1 or �A2 possesses in (16) a
term withBf the resulting inequality will still be nonlinear. We, there-
fore, assume that in (2)r = r0, namely, that the output does not in-
clude any delayed measurements. We shall see later how to cope with
the more general case of delayed measurements. For this case of in-
stantaneous measurement, by considering (17) and (7), the following
result follows from (16).

Theorem 1: Consider the system of (1) and (2) withr = r0. For
a prescribed > 0 the cost function (5) achievesJ(w) < 0 for all
nonzerow 2 Lq

2
[0;1) and for all the parameters that belong to the

uncertainty polytope
 of (3), if for some diagonal matrices�"1; ~"1; �"2
and~"2 2 Rn�n, there existS1; S2; Q2; Q3; R1; R2 2 R

2n�2n, 0 <
Q11; 0 < Q12 andZa 2 R

n�n, Zb 2 R
n�r , Cf 2 R

p�n andDf 2
Rp�r that satisfy the set of LMIs forj = 1; 2; . . . ; N as shown in (18)
at the bottom of the next page, where�i = diagf�"i + In; ~"i + Ing,
i = 1; 2.

If a solution to this set of LMIs exists then the filter that guarantees
the estimation error level of is given by (4) with

Af = Q
�1

12 Za; Bf = Q
�1

12 Zb; Cf and Df :

The previous theorem explicitly requires measurements without any
delay. For the case where delay is encountered in the measurements
(r > r0 in (2)) an additional component can be placed in series with
the delayed components ofy. The state-space model of this component
is given by

_�(t) = ��Ir�r �(t) + [ 0 �Ir�r ] y(t) (19)

for 1 � �. Denoting the augmented state vector by��(t) =
colfx(t); �(t)g, the augmented system is then described by

_��(t) =

2

i=0

~Ai
�� (t� hi) + ~Bw (20)

where

~A0 =
A0 0

0 ��Ir�r
~A1 =

A1 0
0

�C1

0

0

~A2 =
A2 0
0

�C2

0
~B =

B

� [ 0 Ir�r ]D21

:

The results of Theorem 1 can readily be applied to the resulting
system of (20). If a solution is found to the corresponding set of LMIs,
for large enough�, it will provide a good approximation to the required
filter (see the arguments in [15]).

B. Delay-Independent Rate-Dependent Filtering

A filtering solution that is valid for all positive values ofhi, i = 1; 2
is readily obtained from the theory of the last subsection. Choosing in
(14) "i = �I2n andRi = h�1i �I2n, 0 < � ! 1, i = 1; 2, the
delay-independent version of Lemma 2 becomes the following.

Lemma 3: Consider the system of (6). For a prescribed > 0 and
for given rates of delaysd1 andd2 and filter parametersAf ; Bf ; Cf

andDf , the cost function (5) achievesJ(w) < 0, independently of
the delay lengths, for all nonzerow 2 Lq

2
[0; 1) and for all the pa-

rameters that belong to the uncertainty polytope
, if there existQ1 >

0; S1; S2; Q2; Q3; R1; R2 2 R
2n�2n that satisfy the inequality over

the uncertainty polytope
 of (3), as shown in (21) at the bottom of
the next page. Based on this lemma, the corresponding equivalent to
Theorem 1 is as follows.

Q2 +QT
2 � 0 0 0

� �Q3 �QT
3

�LT h1 ("1 + I2n)R1 h2 ("2 + I2n)R2

� � �2Iq 0 0

� � � �h1R1 0

� � � � �h2R2

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

0 0 Q1 Q1 Q1
�B h1Q

T
2
�A1 h2Q

T
2
�A2

"1 �AT
1 S1 "2 �AT

2 S2 0 0 0 h1Q
T
3
�A1 h2Q

T
3
�A2

0 0 0 0 �D 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

� (1� d1)S1 0 0 0 0 0 0

� � (1� d2)S2 0 0 0 0 0

� � �S1 0 0 0 0

� � � �S2 0 0 0

� � � � �Iq 0 0

� � � � � �h1R1 0

� � � � � � �h2R2

< 0 (16)
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Theorem 2: Consider the system of (1) and (2) withr = r0. For a
prescribed > 0 and given delay ratesd1 andd2, the cost function
(5) achievesJ(w) < 0 for all nonzerow 2 Lq

2[0;1); for all the
parameters that belong to the uncertainty polytope
 of (3) and for all

delay lengths, if there existS1; S2; Q2; Q3 2 R
2n�2n, 0 < Q11, 0 <

Q12 andZa 2 Rn�n, Zb 2 Rn�r , Cf 2 Rp�n andDf 2 Rp�r

that satisfy the set of LMIs forj = 1; 2 . . . ; N , as shown in (22) on
the next page. If a solution to this set of LMIs exists then a filter that

Q2 +QT
2 Q3 �QT

2 +
Q11 �2

i=0A
(j)
i +�2

i=1A
(j)
i �"i 0

Q12 �2
i=0A

(j)
i +�2

i=1A
(j)
i �"i � Za � ZbC0 Za

0

� �Q3 �QT
3

L(j)T � CT
f � C

(j)T
0 DT

f

CT
f

� � �2Ip
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

0 0 0 0 diag fQ11;Q12g

h1�1R1 h2�2R2
�"1A

(j)T
1

0
[ I I ]S1

�"2A
(j)T
2

0
[ I I ]S2 0

0 0 0 0 0

�h1R1 0 0 0 0

� �h2R2 0 0 0

� � � (1� d1)S1 0 0

� � � � (1� d2)S2 0

� � � � �S1
� � � � �

� � � � �

� � � � �

� � � � �

diag fQ11; Q12g
Q11B

(j)

Q12B
(j) � ZbD

(j)
21

h1Q
T
2

In

In
A
(j)
1 [ In 0 ] h2Q

T
2

In

In
A
(j)
2 [ In 0 ]

0 0 h1Q
T
3

In

In
A
(j)
1 [ In 0 ] h2Q

T
3

In

In
A
(j)
2 [ In 0 ]

0 D(j) �DfD
(j)
21 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

�S2 0 0 0

� �Iq 0 0

� � �h1R1 0

� � � �h2R2

(18)

Q2 +QT
2 Q1

�A0 0 0 0 Q1 Q1 Q1
�B

� �Q3 �QT
3

�LT �AT
1 S1 �AT

2 S2 0 0 0

� � �2Iq 0 0 0 0 �D

� � � � (1� d1)S1 0 0 0 0

� � � � � (1� d2)S2 0 0 0

� � � � � �S1 0 0

� � � � � � �S2 0

� � � � � � � �Iq

< 0: (21)
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guarantees the estimation error level of, independently of the lengths
of the time delays, is given by (4) with

Af = Q
�1
12 Za; Bf = Q

�1
12 Zb; Cf and Df :

IV. H1 FILTERING FOR CASE 2

Case 2 is characterized by time delays that may vary very fast.
Derivation of sufficient conditions for this case follows lines similar
to those used in deriving Theorem 1, where the second term in the
Lyapunov–Krasovski functional of (10) is omitted and where"i = 0,

i = 1; 2. We first define the set of LMIs, shown in (23) at the bottom
of the page.

Theorem 3: Consider the system of (1) and (2) withr = r0 where
the time-varying delays are continuous for all0 � t and satisfy0 <

�i(t) � hi. For a prescribed > 0, the cost function (5) achieves
J(w) < 0 for all nonzerow 2 Lq

2[0; 1) and for all the param-
eters that belong to the uncertainty polytope
 of (3), if there exist
Q2; Q3; R1; R2 2 R2n�2n, 0 < Q11, 0 < Q12 andZa 2 Rn�n,
Zb 2 Rn�r , Cf 2 Rp�n andDf 2 Rp�r that satisfy the set of
LMIs in (23) for j = 1; 2; . . . ; N . Further, if a solution to this set of
LMIs exists then a filter that guarantees the estimation error level of

is given by (4) with

Af = Q
�1
12 Za; Bf = Q

�1
12 Zb; Cf and Df :

Q2 +QT
2 Q3 �QT

2 +
Q11A

(j)
0 0

Q12A
(j)
0 � Za � ZbC0 Za

0 0

� �Q3 �QT
3

L(j)T � CT
f � C

(j)T
0 DT

f

CT
f

A
(j)T
1

0
[ I I ]S1

� � �2Ip 0

� � � � (1� d1)S1
� � � �

� � � �

� � � �

� � � �

0 diag fQ11;Q12g diag fQ11;Q12g
Q11B

(j)

Q12B
(j) � ZbD

(j)
12

A
(j)T
2

0
[ I I ]S2 0 0 0

0 0 0 D(j) �DfD
(j)
21

0 0 0 0

� (1� d2)S2 0 0 0

� �S1 0 0

� � �S2 0

� � � �Iq

< 0: (22)

Q2 +QT
2 Q3 �QT

2 +
Q11 �2

i=0A
(j)
i 0

Q12 �2
i=0A

(j)
i � Za � ZbC0 Za

0 0 0

� �Q3 �QT
3

L(j)T � CT
f � C

(j)T
0 DT

f

CT
f

h1R1 h2R2

� � �2Ip 0 0

� � � �h1R1 0

� � � � �h2R2

� � � � �

� � � � �

� � � � �
Q11B

(j)

Q12B
(j) � ZbD

(j)
12

h1Q
T
2

In

In
A
(j)
1 [ In 0 ] h2Q

T
2

In

In
A
(j)
2 [ In 0 ]

0 h1Q
T
3

In

In
A
(j)
1 [ In 0 ] h2Q

T
3

In

In
A
(j)
2 [ In 0 ]

D(j) �DfD
(j)
21 0 0

0 0 0

0 0 0

�Iq 0 0

� �h1R1 0

� � �h2R2

< 0:

(23)
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TABLE I
VALUES OF THEMINIMUM , AS A FUNCTION OF THEBOUND = =

V. EXAMPLE

Consider the system given in (1) where [13]

A0 =
0 2

�3 �4 + �
; A1 =

�:1 0

:2 �:2 + �

A2 =
0 :1

�:2 �:3 + �
; B =

0

1

C0 = [ 1 0 ] ; C1 = 0; C2 = 0; D = 0; D21 = 1

L = [ 1 2 ] :

The uncertain parameters satisfyj�j � 2 andj�j � 0:1.
Applying the delay-independent criterion of Theorem 2, assuming

that the delays are constants, i.e.,d1 = d2 = 0, we obtain that (21)
indeed has a solution and that the minimum achievable bound on the
estimation error is = 0:7869 which is essentially the same as =
0:7843 obtained in [13]. The corresponding matrices of the filter are

Af =
�0:0753 2:429

�2:4764 �0:7912

Bf =
0:0528

0:593

Cf = [ 0:0528 0:5930 ]

Df =0:7778:

Allowing for delay to change in time we obtain the values of the min-
imum , as a function of the boundd1 = d2 = d, that are described
in Table I. Ford � 0:78, the delay-independent criterion becomes in-
feasible.

The delay-dependent criterion of Theorem 1 is applied forh1 =
0:4 andh2 = 0:5 (for d1 = d2 = 0). A minimum value of =
0:6784 is obtained (for the simple choice of"1 = "2 = �0:52I4),
compared to the minimum achievable value of = 0:9725 that was
obtained in [13]. The result that we have obtained is not only 70% of
the other result, but it is also significantly smaller than the one obtained
by the delay-independent method. The corresponding matrices of the
H1 filter are

Af =
�0:7674 2:4320

�3:2390 �1:2999

Bf =
0:2067

0:5157

Cf = [ 0:3853 0:9931 ]

Df =0:5722:

Considering next the maximum value ofh = h1 = h2 for which the
delay-dependent criterion is still feasible, the value ofhmax = 0:92
was reported in [13]. With our method we can achieve any value ofh

by simply letting"1 and"2 tend to�I4. For, say,h = 1:35 it is enough
to choose"1 = "2 = �:6I4 in order to obtain a feasible solution.

It should be noted that we have specialized the free scaling parame-
ters"1 and"2 to be scaled identity matrices. Further improvement on
filtering performance can be made via optimization over these free ma-
trix parameters.

VI. CONCLUSION

Delay-independent and delay-dependent sufficient conditions are
presented which guarantee that theL2-induced norm of the estimation

error process that results from the application of a general full-order
filter will be less than a prescribed value over the entire range of uncer-
tainty. The results obtained are less conservative than corresponding
results in the literature due to the efficient BRL that was derived for
time delay systems based on an equivalent descriptor representation of
the system and due to the Park’s efficient overbounding method. The
example has clearly indicated the less conservatism of our design. The
approach of the present note can be applied to various problems with
time-delay, including control and estimation of stochastic systems and
generalH1 output-feedback control.
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