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a b s t r a c t

A matrix A is called totally positive (TP) if all its minors are positive, and totally nonnegative (TN) if all
its minors are nonnegative. A square matrix A is called oscillatory if it is TN and some power of A is TP.
A linear time-varying system is called an oscillatory discrete-time system (ODTS) if the matrix defining
its evolution at each time k is oscillatory. We analyze the properties of n-dimensional time-varying
nonlinear discrete-time systems whose variational system is an ODTS, and show that they have a
well-ordered behavior. More precisely, if the nonlinear system is time-varying and T -periodic then
any trajectory either leaves any compact set or converges to an ((n−1)T )-periodic trajectory, that is, a
subharmonic trajectory. These results hold for any dimension n. The analysis of such systems requires
establishing that a line integral of the Jacobian of the nonlinear system is an oscillatory matrix. This is
non-trivial, as the sum of two oscillatory matrices is not necessarily oscillatory, and this carries over
to integrals. We derive several new sufficient conditions guaranteeing that the line integral of a matrix
is oscillatory, and demonstrate how this yields interesting classes of discrete-time nonlinear systems
that admit a well-ordered behavior.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Positive dynamical systems arise naturally when the state-
variables represent physical quantities that can only take non-
negative values (Farina & Rinaldi, 2000; Rantzer & Valcher, 2018).
For example, in compartmental systems the state-variables rep-
resent the ‘‘density’’ at each compartment (Sandberg, 1978), in
models of traffic flow or communication networks the state-
variables represent the state of queues in the system (Shorten,
Wirth, & Leith, 2006), and in Markov chains the state-variables
are probabilities (Margaliot, Grüne, & Kriecherbauer, 2018).

Here, we introduce and analyze a new class of positive systems
called oscillatory discrete-time systems. Recall that a matrix A ∈

Rn×m is called totally positive (TP) if every minor of A is positive,
and totally nonnegative (TN) if every minor of A is non-negative.1
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1 Unfortunately, the terminology in this field is not uniform. We follow the

terminology used by Fallat and Johnson (2011).

Note that this implies in particular that every entry in a TP [TN]
matrix is positive [non-negative]. TN and TP matrices have a
remarkable variety of interesting mathematical properties (Fallat
& Johnson, 2011; Pinkus, 2010). One important property is that
multiplying a vector by a TP matrix cannot increase the number
of sign variations in the vector. This is known as the variation
diminishing property (VDP).

Oscillatory matrices are in the ‘‘middle ground’’ between TN
and TP matrices. A matrix A ∈ Rn×n is called oscillatory if A is TN
and there exists an integer k > 0 such that Ak is TP. For example,
it is easy to verify that all the minors of

A =

[0.2 0.1 0
9 11 1
0 1 3

]
(1)

are nonnegative, so A is (TN) (but not TP as it has zero entries),

and also that all the minors of A2
=

[ 0.94 1.12 0.1
100.8 122.9 14

9 14 10

]
are

positive, so A is oscillatory.
The product of two TP/TN/oscillatory matrices is a

TP/TN/oscillatory matrix, but the sum of two TP/TN/oscillatory
matrices is not necessarily a TP/TN/oscillatory matrix. For exam-

ple, the matrix A =

[
1 0.1
9 1

]
and its transpose A′ are TP (and
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thus in particular TN and oscillatory), yet A+ A′
=

[
2 9.1
9.1 2

]
is

not TN (and thus not TP nor oscillatory), as det(A + A′) < 0.
TP matrices have important applications in the asymptotic

analysis of both continuous-time and discrete-time dynamical
systems. Schwarz (1970) introduced the notion of a totally positive
differential system (TPDS). This is the linear time-varying (LTV)
system

ẋ(t) = A(t)x(t), (2)

satisfying that the associated transition matrix Φ(t1, t0) is TP for
any pair (t1, t0) with t1 > t0. The transition matrix is the matrix
satisfying x(t1) = Φ(t1, t0)x(t0) for all x(t0) ∈ Rn. In the particular
case where A(t) ≡ A the transition matrix is Φ(t, t0) = exp((t −

t0)A), and then (2) is TPDS if and only if (iff) A is tridiagonal with
positive entries on the super- and sub-diagonals. Schwarz used
the VDP to show that the number of sign variations in x(t) is a
(integer-valued) Lyapunov function for the TPDS (2). Margaliot
and Sontag (2019) have shown that TPDSs have important ap-
plications in the stability analysis of continuous-time nonlinear
cooperative dynamical systems with a tridiagonal Jacobian.

An extension to discrete-time systems, called a totally pos-
itive discrete-time system (TPDTS), has been suggested recently
by Alseidi, Margaliot, and Garloff (2019). The LTV

x(k + 1) = A(k)x(k), (3)

with A : N → Rn×n
+ , is called a TPDTS if A(k) is TP for all k ∈ N.

It was shown that time-varying nonlinear systems, whose varia-
tional equation is a TPDTS, satisfy strong asymptotic properties
including entrainment to a periodic excitation. The variational
equation is an LTV with a matrix described by a line integral of
the Jacobian of the nonlinear system. Since the sum of two TP
matrices is not necessarily TP, it is not trivial to verify that this
line integral is indeed TP.

The main contributions of this paper are two-fold. First, we
introduce the new notion of an oscillatory discrete-time system
(ODTS). The LTV (3) is called an ODTS if A(k) is oscillatory for
all time k. This is an important generalization of a TPDTS, as
oscillatory matrices are much more common than TP matrices.
We analyze the properties of discrete-time time-varying nonlin-
ear systems, whose variational equation is an ODTS, and show
that they satisfy useful asymptotic properties. In particular, if the
n-dimensional time-varying nonlinear system is T -periodic then
every solution either leaves every compact set or converges to
an ((n − 1)T )-periodic solution, i.e. a subharmonic solution.

The variational equation associated with the nonlinear system
is an LTV with a matrix described by a line integral of the Jacobian
of the nonlinear system. Since the sum of two oscillatory matrices
is not necessarily oscillatory, it is not trivial to verify that this line
integral is indeed oscillatory.

The second contribution of this paper is deriving several new
sufficient conditions guaranteeing that the line integral of a ma-
trix is oscillatory. Our first condition considers the special case
of a system with scalar nonlinearities. In this case we show
that the integration can be performed in closed-form. The other
conditions are based on sufficient conditions for a matrix to be
oscillatory or TP. We demonstrate how these conditions yield new
classes of discrete-time nonlinear systems with a well-ordered
behavior.

The remainder of this paper is organized as follows: Section 2
reviews known definitions and results that will be used later on
including the VDPs of TN and TP matrices, and TPDTSs. The next
two sections describe our main results. Section 3 defines and
analyzes ODTSs. Section 4 provides several sufficient conditions
verifying that the line integral of the Jacobian of a time-varying
nonlinear system is oscillatory. This section also details several

applications of the theoretical results. The final section concludes
and describes several topics for further research.

We use standard notation. The set of nonnegative integers
is N := {0, 1, 2, . . . }. Matrices [vectors] are denoted by capital
[small] letters. The transpose of a matrix A is denoted A′. We
use diag(v1, . . . , vn) to denote the n × n diagonal matrix with
entries v1, . . . , vn on the diagonal.

2. Preliminaries

We begin by reviewing the VDP of TN and TP matrices. More
details and proofs can be found in the excellent monographs (Fal-
lat & Johnson, 2011; Gantmacher & Krein, 2002; Pinkus, 2010).
For a vector z ∈ Rn with no zero entries the number of sign
variations in z is

σ (z) := |{i ∈ {1, . . . , n − 1} : zizi+1 < 0}| . (4)

For example, for n = 3 consider the vector z(ε) :=
[
2 ε −3

]′.
Then for any ε ∈ R\{0}, σ (z(ε)) is well-defined and equal to one.
More generally, the domain of definition of σ can be extended,
via continuity, to the set:

V :={z ∈ Rn
: z1 ̸= 0, zn ̸= 0, and if zi = 0

for some i ∈ {2, . . . , n − 1} then zi−1zi+1 < 0}.

We recall two more definitions for the number of sign variations
in a vector that are well-defined for any y ∈ Rn (Fallat & Johnson,
2011). Let

s−(y) := σ (ȳ),

where ȳ is the vector obtained from y by deleting all zero entries
(with s(0) defined as zero), and let

s+(y) := max
x∈P(y)

σ (x),

where P(y) is the set of all vectors obtained by replacing every
zero entry of y by either −1 or +1. For example, for y =[
−1 0 0 4

]′, s−(y) = 1 and s+(y) = 3. These definitions
imply that

0 ≤ s−(y) ≤ s+(y) ≤ n − 1 for all y ∈ Rn, (5)

and that s−(y) = s+(y) iff y ∈ V .
The following theorem states the VDPs of TP and TN matrices.

Theorem 1 (Fallat & Johnson, 2011). Let A ∈ Rn×m.

(1) If A is TP then

s+(Ax) ≤ s−(x) for all x ∈ Rm
\ {0},

(2) If A is TN (and in particular if it is TP) then

s−(Ax) ≤ s−(x) for all x ∈ Rm. (6)

For example, the matrix A =

[
1 2
1 4

]
is TP and for x =

[
1 −1

]′,

we have

s+(Ax) = s+(
[
−1 −3

]′) < s−(x).

For square matrices (which is the relevant case when considering
the transition matrices of dynamical systems) more precise re-
sults are known. Recall that a matrix is called strictly sign-regular
of order k (denoted SSRk) if its minors of order k are either all

positive or all negative. For example, A =

[
1 2
3 4

]
is SSR1 because

all its entries are positive, and SSR2 because it single minor of
order 2 is negative. It was recently shown (Ben-Avraham, Sharon,
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Zarai, & Margaliot, 2020) that if A ∈ Rn×n is non-singular then for
any k ∈ {1, . . . , n − 1} we have that A is SSRk iff

x ∈ Rn
\ {0} and s−(x) ≤ k − 1 H⇒ s+(Ax) ≤ k − 1.

For example, for k = 1 this implies that for a non-singular
matrix A ∈ Rn×n the following two conditions are equivalent:
(1) all the entries of A are either all positive or all negative;
and (2) for every x ̸= 0 with all entries non-negative or all
non-positive the vector Ax has all entries positive or all negative.

We now review applications of total positivity to discrete-time
dynamical systems.

2.1. Totally positive discrete-time systems

Consider the discrete-time LTV (3) with A : N → Rn×n. The
system is called a TPDTS (Alseidi et al., 2019) if A(k) is TP for
all k ∈ N. Intuitively speaking, this is the discrete-time analogue
of a TPDS. The VDP and (5) imply that for any x(0) ∈ Rn

\ {0} we
have

· · · ≤ s−(x(1)) ≤ s+(x(1)) ≤ s−(x(0)) ≤ s+(x(0)). (7)

In other words, both s−(x(k)) and s+(x(k)) can be viewed as
integer-valued Lyapunov functions for the trajectories of a TPDTS.
Furthermore, there can be no more then n − 1 strict inequalities
in (7), as s− and s+ take values in {0, 1, . . . , n − 1}. This implies
that there existsm ∈ N such that s−(x(k)) = s+(x(k)) for all k ≥ m,
i.e. x(k) ∈ V for all k ≥ m. In particular, x1(k) ̸= 0 (and xn(k) ̸= 0)
for all k ≥ m. Moreover, the following eventual monotonicity
property holds: there exists p ∈ N such that either x1(k) > 0 for
all k ≥ p or x1(k) < 0 for all k ≥ p (and similarly for xn(k)) (Alseidi
et al., 2019).

This property can be applied to study the asymptotic proper-
ties of time-varying nonlinear discrete-time systems. Consider the
system

x(k + 1) = f (k, x(k)). (8)

We assume that f : N × Rn
→ Rn is C1 with respect to its

second variable, and denote its Jacobian by J(k, x) :=
∂
∂x f (k, x).

We also assume that the trajectories of (8) evolve on a compact
and convex state-space Ω ⊂ Rn. For a ∈ Ω and j ∈ N, let x(j, a)
denote the solution of (8) at time j with x(0) = a.

Fix a, b ∈ Ω and let z(k) := x(k, b) − x(k, a). Then (see,
e.g. Alseidi et al., 2019)

z(k + 1) = M(k, a, b)z(k), (9)

where

M(k, a, b) :=

∫ 1

0
J(k, rx(k, b) + (1 − r)x(k, a)) dr. (10)

The LTV system (9) is called the variational equation associated
with (8), as it describes how the variation between the two
solutions x(k, b) and x(k, a) evolves in time.

Alseidi et al. (2019) pose two assumptions.

Assumption 1. The matrix

F (k, a, b) :=

∫ 1

0
J(k, ra + (1 − r)b) dr (11)

is TP for all k ∈ N and all a, b ∈ Ω .

Note that this implies that (9) is a TPDTS.

Assumption 2. There exists T ∈ {1, 2, . . . } such that the map
in (8) is T -periodic, that is,

f (k, a) = f (k + T , a) for all k ∈ N and all a ∈ Ω.

Note that in the particular case where f is time-invariant this
holds (vacuously) for every T ∈ N.

Theorem 2 (Alseidi et al., 2019). If Assumptions 1 and 2 hold then
every solution of (8) emanating from Ω converges to a T-periodic
solution of (8).

If the time-dependence in f is due to an input (or excita-
tion) u, that is, f (k, x(k)) = g(u(k), x(k)) for some map g then
Assumption 2 holds if u is T -periodic. Theorem 2 then implies that
the system entrains to the periodic excitation, as every solution
converges to a periodic solution with the same period T . En-
trainment is an important property in many natural and artificial
systems (Margaliot et al., 2018; Margaliot, Sontag, & Tuller, 2014;
Russo, di Bernardo, & Sontag, 2010). For example, many biological
processes, like the sleep–wake cycle, entrain to the 24 h-periodic
solar day.

In the special case where f is time-invariant Theorem 2 yields
the following result.

Corollary 1 (Alseidi et al., 2019). Consider the time-invariant non-
linear system

x(k + 1) = f (x(k)) (12)

whose trajectories evolve on a compact and convex state-space Ω ⊂

Rn. Suppose that

F (a, b) :=

∫ 1

0
J(ra + (1 − r)b) dr (13)

is TP for all a, b ∈ Ω . Then every solution of (12) emanating from Ω
converges to an equilibrium point.

Note that the equilibrium point is not necessarily unique.
The condition on F (a, b) implies that every minor of J(x) is

positive for all x ∈ Ω . In particular, the first-order minors,
i.e. the entries of J(x), are positive so the nonlinear system is
strongly cooperative (Smith, 1995, 2017). The conditions here
require more than strong cooperativity and as a consequence
yield more powerful results on the asymptotic behavior of the
system; see, e.g. Hirsch and Smith (2003) and Smith (1998).

In the particular case of planar systems, the conditions here
require that the entries of J(x) are positive, and that det J(x) is
positive. The latter condition is an orientation-preserving con-
dition that has been used in the analysis of planar cooperative
systems (Smith, 1998).

The next result, which seems to be new, shows that total posi-
tivity (in fact, a slightly weaker condition) implies an orientation-
preserving property (with respect to a specific order) for any
dimension n. For two vectors x, y ∈ Rn, we write x ≪ y if xi < yi
for all i ∈ {1, . . . , n}. Let D± ∈ Rn×n be the diagonal matrix
with dii = (−1)i+1 for all i ∈ {1, . . . , n}. Note that (D±)−1

= D±.
We say that z ∈ Rn is alternating if zizi+1 < 0 for all i ∈

{1, . . . , n − 1}. This implies of course that s−(z) = s+(z) = n − 1.

Lemma 1. Let P ∈ Rn×n be TN and nonsingular. If x, y ∈ Rn are
such that

D±PD±x ≪ D±PD±y (14)

then

x ≪ y.

The proof is placed in Appendix.

Example 1. Consider the TP matrix P =

[
1 2
3 8

]
. Then (14)

becomes
[

1 −2
−3 8

]
(x − y) ≪ 0 and this holds iff x1 − y1 < 0

and 3
8 <

x2−y2
x1−y1

< 1
2 , so in particular x ≪ y.
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In the context of the LTV z(k + 1) = Pz(k), z(0) = z0 ∈ Rn,
Lemma 1 implies the following. Suppose that P is TN and non-
singular and let y(k) := D±z(k). Then it is not possible that for
some i ≥ 1 we have

y(0) ≪ y(1) ≪ · · · ≪ y(i − 1) ≪ y(i) and y(i) ≫ y(i + 1). (15)

Indeed, the last inequity here yields

D±PD±y(i − 1) ≫ D±PD±y(i),

so Lemma 1 gives

y(i − 1) ≫ y(i),

and this contradicts (15).
Smillie (1984) and Smith (1991) proved convergence to an

equilibrium and entrainment in a certain class of continuous-
time nonlinear dynamical systems. Their results are based on
using the number of sign variations in the solution of the asso-
ciated (continuous-time) variational system as an integer-valued
Lyapunov function. It was recently shown that these results are
closely related to the theory of TPDSs (Margaliot & Sontag, 2019).
Theorem 2 and Corollary 1 may be regraded as discrete-time
analogues of these results.

It is well-known that asymptotically stable linear systems en-
train to periodic excitations. However, nonlinear systems do not
necessarily entrain. This is true even for strongly monotone sys-
tems. Takáč (1992) provides interesting examples of continuous-
time, strongly cooperative dynamical systems whose vector field
is T periodic and admit a solution that is periodic with minimal
period nT , for any integer n ≥ 2. Furthermore, this subharmonic
solution may be asymptotically stable.

In order to apply Theorem 2 and Corollary 1 one needs to
verify that the line integral of the Jacobian is TP. This is not trivial
because the sum of two TP matrices is not necessarily a TP matrix,
and this is naturally carried over to integrals.

Example 2. It is straightforward to verify that A(t) =[
1.01 t + 1

1
t+1 1

]
is TP for all t ∈[0, 1], yet

∫ 1
0 A(t) dt=

[
1.01 3/2
ln(2) 1

]
is not TP (and not even TN), as it has a negative determinant.

A matrix A ∈ Rn×n is called oscillatory if it is TN and there
exists k ∈ N such that Ak is TP. The smallest such k is called
the exponent of the oscillatory matrix A. The set of oscillatory
matrices is larger than the set of TP matrices (which are oscil-
latory with exponent one). Thus, the assumption that a matrix
is oscillatory is less restrictive than the assumption that it is TP.
Furthermore, oscillatory matrices appear much more frequently
in applications; see e.g. Gantmacher and Krein (2002) for appli-
cations to mechanical systems. The next result provides a simple
characterization of oscillatory matrices.

Theorem 3 ((Gantmacher & Krein, 2002, Ch. 7)). A TN matrix A ∈

Rn×n is oscillatory if and only if it is non-singular and irreducible,
and then An−1 is TP.

Gantmacher and Krein (2002) describe several specific classes
of oscillatory matrices. One of these is the class of Jacobi matrices.

Example 3. Consider the tridiagonal matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 . . . 0

c1 a2
. . . . . .

...

0
. . .

. . . . . .
...

...
. . .

. . . . . . bn−1
0 . . . . . . cn−1 an

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(16)

with bi, ci ≥ 0 for all i. In this case, the dominance condition

ai ≥ bi + ci−1 for all i ∈ {1, . . . , n}, (17)

with c0 := 0 and bn := 0, guarantees that A is TN (see e.g. Fallat
& Johnson, 2011, Ch. 0). If, furthermore, bi, ci > 0 for all i then A
is irreducible. Thus, if A is also non-singular then it is oscillatory.

The next two sections describe our main results.

3. Oscillatory discrete-time systems

We begin by introducing the new notion of an ODTS.

Definition 1. The discrete-time LTV

y(k + 1) = A(k)y(k), (18)

with A : N → Rn×n, is called an ODTS of order p if A(k)
is oscillatory for all k ∈ N, and every product of p matrices in
the form:

A(kp) . . . A(k2)A(k1), 0 ≤ k1 < · · · < kp,

is TP.

For example, if A(k) is TP for all k then (18) is an ODTS of
order one. Also, since the product of any n−1 oscillatory matrices
is TP (Pinkus, 2010), (18) is always an ODTS of order n − 1. In
general, checking that any product of p matrices is TP is not triv-
ial. We believe that this may be addressed using the bidiagonal
factorization of TN matrices; see Fallat and Liu (2007).

We now describe the applications of ODTS to the time-varying
nonlinear system:

x(k + 1) = f (k, x(k)), (19)

where f (k, x) satisfies Assumption 2. We assume that the trajec-
tories of (19) evolve in a compact and convex state-space Ω ∈ Rn.
For k ∈ N and a, b ∈ Ω , let

F (k, a, b) :=

∫ 1

0
J(k, ra + (1 − r)b) dr. (20)

We pose the following assumption.

Assumption 3. For any a, b ∈ Ω , the system

z(k + 1) = F (k, a, b)z(k) (21)

is an ODTS of order h.

We can now state the main result in this section.

Theorem 4. Suppose that Assumptions 2 and 3 hold. Let u
:= hT . Then every solution of (19) emanating from Ω converges
to a u-periodic solution of (19).

Remark 1. If F (k, a, b) is TP for all k ∈ N and all a, b ∈ Ω

then Assumption 3 holds with h = 1 so Theorem 4 implies
that every solution of (19) emanating from Ω converges to a
T -periodic solution of (19). This recovers the TPDS case. If F (k, a,
b) is oscillatory for all k ∈ N and all a, b ∈ Ω then in particular
every product of n − 1 matrices is TP, so Theorem 4 implies that
every solution of (19) emanating from Ω converges to an ((n −

1)T )-periodic solution of (19).

Remark 2. The LTV (18) is of course a special case of (19) with
Jacobian J(k, x(k)) = A(k), and thus F (k, a, b) = A(k) for all a, b ∈

Ω and all k ∈ N. We conclude that if A(k) = A(k+ T ) for all k ∈ N
then every solution of an ODTS of order h converges to periodic
solution of (18) with period u := hT .
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Proof of Theorem 4. Pick α, β ∈ Ω with α ̸= β . Let

z(k) := x(k, β) − x(k, α)

and recall that z satisfies the variational equation (9), with

M(k, α, β) :=

∫ 1

0
J(k, rx(k, β) + (1 − r)x(k, α)) dr.

Assumption 3 implies that M(k, α, β) is oscillatory. Let v(k) :=

z(ku). Then

v(k + 1) = M((k + 1)u − 1, α, β) . . .M(ku, α, β)v(k). (22)

The product on the right-hand side includes u = hT matrices, and
is TP, as the product of any h matrices is TP, and the product of
any two TP matrices is TP. Thus, (22) is a TPDS. Theorem 6 in Al-
seidi et al. (2019) implies the following eventual monotonicity
property: there exists m ∈ N such that either v1(k) > 0 for all
k ≥ m or v1(k) < 0 for all k ≥ m.

Pick a ∈ Ω and let x(k, a) denote the trajectory of (19)
emanating from x(0) = a. Let b := x(u, a). If x(k, a) is u-periodic
then there is nothing to prove. Therefore, we can assume that the
trajectories x(k, a) and x(k, b) are not identical. Assumption 2 im-
plies that both trajectories are solutions of (19). By the eventual
monotonicity property, there exists m ∈ N such that, without loss
of generality,

x1((k + 1)u, a) − x1(ku, a) > 0 for all k ≥ m. (23)

Let

ωu(a) := {p : there exist mi ∈ N with m1 < m2 < · · ·

such that lim
i→∞

x(miu, a) = p},

that is, the u-omega limit set corresponding to a. By compactness
of Ω it follows that ωu(a) ̸= ∅. We now show that ωu(a) is a sin-
gleton. Assume that there exist p, q ∈ ωu(a), with p ̸= q. We claim
that p1 = q1. Indeed, there exist sequences {mk}

∞

k=1 and {sk}∞k=1
such that p = limmk→∞ x(mku, a) and q = limsk→∞ x(sku, a).
Passing to sub-sequences, if needed, we may assume that mk <
sk < mk+1 for all k ∈ N. Now (23) implies that p1 = q1.
We conclude that any two points in ωu(a) have the same first
coordinate.

Consider the trajectories emanating from p and q, that is, x(k, p)
and x(k, q). Since p, q ∈ ωu(a) and ωu(a) is an invariant set,

x(ku, p), x(ku, q) ∈ ωu(a) for all k ∈ N.

This implies that

x1(ku, p) = x1(ku, q) for all k ∈ N.

However, this contradicts the eventual monotonicity of (22).
We conclude that ωu(a) is a singleton, and this completes the
proof. □

Remark 3. Note that the proof of Theorem 4 relies on the fact
that any product of u = hT matrices in (22) is TP. In practice, it
may be the case that a product of a smaller number of matrices in
the variational equation is TP. In this case, every solution x(k, a)
will converge to a periodic solution of (19) with period less
than hT . Nevertheless, the minimal period of the limit solution
must divide hT .

The next section provides several sufficient conditions guar-
anteeing that Assumption 3 indeed holds, and applications to
several dynamical systems.

4. Conditions guaranteeing that a matrix line integral is oscil-
latory

Our first sufficient condition is based on the sufficient condi-
tion for a matrix to be oscillatory described in Example 3.

4.1. Discretizing nonlinear tridiagonal strongly cooperative systems

Consider the nonlinear time-varying dynamical system ẋ =

f (t, x). For ε > 0, let

x(k + 1) = x(k) + εf (k, x(k)) (24)

denote its Euler discretization. Note that the Jacobian of this
system is

J(k, a) := I + ε
∂

∂x
f (k, a). (25)

Lemma 2. Suppose that the trajectories of (24) evolve on a compact
and convex set Ω ⊂ Rn, and that ∂

∂x f (k, a) is tridiagonal, with
positive entries on the super- and sub-diagonals for all k ∈ N and
all a ∈ Ω . Then the system (24) satisfies Assumption 3 with h =

n − 1 for any ε > 0 sufficiently small.

Note that since J(k, a) is tridiagonal, it is not TP, so the TPDTS
framework cannot be used to analyze this case.

Proof. Pick k ∈ N and a ∈ Ω . The assumptions on ∂
∂x f (k, a) imply

that J(k, a) is irreducible for all ε > 0. Also, J(k, a) is nonsingular
and satisfies the dominance condition described in Example 3 for
any ε > 0 sufficiently small, and is thus TN. Furthermore, all these
properties carry over to the matrix F defined in (20). □

The next example demonstrates Lemma 2 in a simple case.

Example 4. Consider the continuous-time system: ẋ =[0 1 0
1 0 1
0 1 0

]
x. Its Euler discretization is x(k + 1) = Ax(k) with

A :=

[1 ε 0
ε 1 ε

0 ε 1

]
, where ε > 0. The matrix A is irreducible,

and it is nonsingular for any ε ̸= 1/
√
2. Combining this with

Example 3 implies that A is oscillatory for any ε ∈ (0, 1/2], and
thus An−1

= A2 is TP.

The next example describes an application of Lemma 2 to an
important nonlinear model from systems biology.

Example 5. Cells often sense and respond to various stimuli by
modification of proteins. One mechanism for this is phosphorelay
(also called phosphotransfer), in which a phosphate group is
transferred through a serial 1D chain of proteins from an initial
histidine kinase (HK) down to a final response regulator (RR). The
nonlinear compartmental system:

ẋ1 = (p1 − x1)c − η1x1(p2 − x2) − ξ1x1,
ẋ2 = η1x1(p2 − x2) − η2x2(p3 − x3) − ξ2x2,

...

ẋn−1 = ηn−2xn−2(pn−1 − xn−1) − ηn−1xn−1(pn − xn)
− ξn−1xn−1,

ẋn = ηn−1xn−1(pn − xn) − ηnxn, (26)

has been suggested as a model for phosphorelay by Csikasz-Nagy,
Cardelli, and Soyer (2011); see also Bar-Shalom, Ovseevich, and
Margaliot (2020) for an application of a similar model to mRNA
translation and for rigorous analysis. Here c(t) ≥ 0 is the strength
at time t of the stimulus activating the HK, xi(t) ∈ [0, pi] is
the concentration of the phosphorylated form of the protein at
the i’th layer at time t , the parameter pi > 0 denotes the total
protein concentration at that layer, and ηi > 0, ξi ≥ 0 are reaction
rates. Note that ηnxn(t) is the flow at time t of the phosphate
group to an external receptor molecule.
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In the particular case where pi = 1 and ξi = 0 for all i Eq. (26)
becomes the ribosome flow model (RFM) (Reuveni, Meilijson, Ku-
piec, Ruppin, & Tuller, 2011). This is the dynamic mean-field
approximation of a fundamental model from non-equilibrium
statistical physics called the totally asymmetric simple exclusion
process (TASEP); see Blythe and Evans (2007). The RFM describes
the unidirectional flow along a chain of n sites. The state-variable
xi ∈ [0, 1] describes the normalized occupancy at site i, where xi
= 0 [xi = 1] means that site i is completely free [full], and ηi
is the capacity of the link that connects site i to site i + 1.
This has been used to model and analyze mRNA translation (see,
e.g., Nanikashvili, Zarai, Ovseevich, Tuller, & Margaliot, 2019;
Poker, Zarai, Margaliot, & Tuller, 2014; Raveh, Margaliot, Sontag,
& Tuller, 2016; Zarai, Margaliot, & Tuller, 2016), where every site
corresponds to a group of codons on the mRNA strand, xi(t) is the
normalized occupancy of ribosomes at site i at time t , c(t) is the
initiation rate at time t , and ηi is the elongation rate from site i
to site i + 1.

Write (26) as ẋ = f (x). Then ∂
∂x f (x) is tridiagonal, with en-

tries ηixi on the super-diagonal, and ηi(pi+1 − xi+1), i = 1, . . . ,
n − 1, on the sub-diagonal.

Consider the corresponding discretized system (24). It is not
difficult to show that Ω := [0, p1] × . . . × [0, pn] is an invariant
set of (24) for any ε > 0 sufficiently small. Furthermore, for
any a ∈ Ω we have that x(k, a) ∈ int(Ω) for all k ≥ 1 and then
the conditions in Lemma 2 on J(k, a) defined in (25) hold. Fig. 1
depicts the trajectories of the discretized system with n = 4,
ε = 0.1, ξi = 3, ηi = 1, p1 = 0.8, p2 = p3 = p4 = 2,
initial condition x(0) =

[
0.5 0.1 0.6 0.3

]′, and the periodic
stimulus c(k) = 3+ sin(kπ/4). Note that this means that the map
is T -periodic with (minimal) period T = 8. Combining Theorem 4
and Lemma 2, we conclude that any solution of the discretized
system converges to a periodic solution with period (n−1)T = 24.
It may be seen that the specific solution depicted in Fig. 1 con-
verges to a periodic solution with period 8.

In general, our approach is to find sufficient conditions guar-
anteeing that the line integral of a matrix is oscillatory without
actually calculating the integral. However, there is an important
special case where the integral can be computed explicitly.

4.2. Strictly monotone scalar nonlinearities

Let fi : R → R, i = 1, . . . , n, be C1 functions such that

f ′

i (y) :=
∂

∂y
fi(y) > 0 for all i and all y ∈ R. (27)

Consider the time-varying nonlinear system:

x(k + 1) = C(k)

⎡⎢⎢⎣
f1(x1(k))
f2(x2(k))

...

fn(xn(k))

⎤⎥⎥⎦ , (28)

with C : N → Rn×n.

Theorem 5. Suppose that the trajectories of (28) evolve on a
compact and convex state-space Ω , and that C(k) is T -periodic.
If z(k + 1) = C(k)z(k) is an ODTS of order h then every solution
of (28) emanating from Ω converges to an (hT )-periodic solution
of (28).

Proof. The Jacobian of (28) is

J(k, x) = C(k) diag(f ′

1(x1), . . . , f
′

n(xn)).

Substituting this in (11) and integrating yields

F (k, a, b) = C(k) diag(g1(a1, b1), . . . , gn(an, bn)), (29)

Fig. 1. The trajectory x1(k) (marked by o), x2(k) (*), x3(k) (x), and x4(k) (+) in
Example 5.

with

gi(ai, bi) :=

{
fi(ai)−fi(bi)

ai−bi
if ai ̸= bi,

f ′

i (bi) if ai = bi.

Note that (27) and the fact that Ω is compact imply that there
exists δ > 0 such that gi(ai, bi) ≥ δ for all a, b ∈ Ω and all i.

Pick 1 ≤ r ≤ n, and indexes 1 ≤ i1 < · · · < ir ≤ n and 1 ≤

j1 < · · · < jr ≤ n. Let F (α|β) denote the minor of F = F (k, a, b)
indexed by rows i1, . . . , ir and columns j1, . . . , jr . Then applying
the Cauchy–Binet formula (see, e.g. Fallat & Johnson, 2011) to (29)
yields

F (α|β) = C(α|β)gj1gj2 . . . gjr . (30)

Since all the gi’s are positive, this means that the total positivity
properties of C are copied to F . Applying Theorem 4 completes
the proof. □

The next example demonstrates Theorem 5.

Example 6. Consider the system:[
x1(k + 1)
x2(k + 1)

]
= C(k)

[
tanh(x1(k))
tanh(x2(k))

]
, (31)

where

c11(k) = 2 + cos(kπ + 0.5),

c12(k) = 2 − sin(
kπ
2

+ 1.5),

c21(k) ≡ 1/4,

c22(k) = 3 + cos(
kπ
3

+ 2).

Note that C(k) is TP for all k ∈ N,

1/4 ≤ |cij(k)| ≤ 4 for all i, j, k, (32)

and that the map in (31) is periodic with (minimal) period
T = 12.

We claim that (for example) the square

Ω := [1, 8] × [1, 8]

is an invariant set for the dynamics. To show this, suppose
that x(k) ∈ Ω . Then x1(k), x2(k) ≥ 1, so x(k + 1)
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Fig. 2. The trajectory x1(k) (marked by *), x2(k) (o) for the initial condition
x1(0) = 2, x2(0) = 3 in Example 6.

≥

[
1 1

1/4 2

][
tanh(1)
tanh(1)

]
≥

[
1
1

]
. Also, since tanh(z) ≤ 1 for all z,

and cij(k) ≤ 4, we have x1(k + 1), x2(k + 1) ≤ 8, so x(k + 1) ∈ Ω .
It is clear that this system satisfies the conditions in

Theorem 5, with h = 1, and thus the system entrains. The
trajectory of the system for x(0) =

[
2 3

]T
∈ Ω is depicted

in Fig. 2. It may be seen that x1(k), x2(k) indeed converges to a
T -periodic solution with T = 12.

From here on we consider the following general problem.

Problem 1. Consider a measurable and essentially bounded
matrix function A : [0, 1] → Rn×n. When is

Ā :=

∫ 1

0
A(t) dt

an oscillatory matrix?

Some of the conditions given below actually guarantee that Ā
is TP (and thus, in particular, oscillatory with exponent one).

4.3. Sufficient condition based on the checkerboard partial order

For A, B ∈ Rn×n we write A ≤ B [A ≪ B] if aij ≤ bij [aij < bij]
for all i, j.

Definition 2. The checkerboard partial order on Rn×n is defined
by

A ≤
† B ⇐⇒ D±AD± ≤ D±BD±.

In other words, A ≤
† B iff

(−1)i+jaij ≤ (−1)i+jbij for all i, j ∈ {1, . . . , n}. (33)

Note that (33) implies that the matrix interval{
C ∈ Rn×n

: A ≤
† C ≤

† B
}

is compact. For more on such matrix intervals, see Garloff (2003)
and the references therein. It is well-known (Fallat & Johnson,
2011) that if A, B are TP and A ≤

† C ≤
† B then C is TP.

Theorem 6. Let A : [0, 1] → Rn×n be a Riemann integrable matrix
function. If there exist δ > 0 and TN matrices G and H such that

δ + (−1)i+jgij ≤ (−1)i+jaij(t) ≤ −δ + (−1)i+jhij (34)

for all i, j and all t ∈ [0, 1] then Ā is TP.

Proof. Recall that the set of n× n TP matrices is dense in the set
of n × n TN matrices (Whitney, 1952). Combining this with (34)
implies that there exist TP matrices P and Q such that

P ≤
† A(t) ≤

† Q for all t ∈ [0, 1]. (35)

We claim that this implies that every minor of Ā is positive. We
will show that det Ā > 0. The proof for any other minor is very
similar. Fix k ∈ {1, 2 . . . , } and consider the partition of [0, 1]
defined by

t0 := 0, t1 := 1/k, t2 := 2/k, . . . , tk := 1.

Consider the Riemann sum B :=
∑k−1

ℓ=0(tℓ+1 − tℓ)A(tℓ). Then for
any i, j ∈ {1, . . . , n} we have

(−1)i+jbij =

k−1∑
ℓ=0

(−1)i+j(tℓ+1 − tℓ)aij(tℓ),

and combining this with (35) gives
k−1∑
ℓ=0

(−1)i+j(tℓ+1 − tℓ)pij ≤ (−1)i+jbij

≤

k−1∑
ℓ=0

(−1)i+j(tℓ+1 − tℓ)qij.

Since
∑k−1

ℓ=0(tℓ+1 − tℓ) = tk − t0 = 1, we conclude that

P ≤
† B ≤

† Q .

By compactness of the set {C ∈ Rn×n
: P ≤

† C ≤
† Q } and the fact

that any C in this set is TP, there exists α > 0 such that det B ≥ α.
Taking k → ∞ and using the continuity of the determinant, we
conclude that det Ā ≥ α > 0. □

Suppose that every entry aij(t) of A(t) attains a maximum
value āij and a minimum aij over [0, 1]. Define P,Q by

pij :=

{
aij, if i + j is even,

āij, if i + j is odd,

and

qij :=

{
āij, if i + j is even,

aij, if i + j is odd,

Then (35) holds, so the required condition is that P and Q are TP.
The next result describes an application of Theorem 6 to a

dynamical system.

Corollary 2. Consider the nonlinear system:

x(k + 1) = Ax(k) + εg(x(k)), (36)

where g is C1 and ε > 0 is small. Suppose that A is TP, and that the
trajectories of (36) evolve on a compact and convex set Ω ⊂ Rn.
Define B ∈ Rn×n by

bij := max
x∈Ω

⏐⏐⏐⏐∂gi(x)∂xj

⏐⏐⏐⏐ ,
and define matrix functions P,Q : R → Rn×n by

P(v) := A − vD±BD±, Q (v) := A + vD±BD±. (37)
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Then there exists w > 0 such that for all v ∈ [0, w) and all x ∈ Ω

P(v) ≤
† J(x) ≤

† Q (v),

and P(v),Q (v) are TP, and for any ε ∈ [0, w) every solution of (36)
emanating from Ω converges to an equilibrium point.

Proof. It follows from (37) that P(0) = Q (0) = A, and P(v) ≤
†

A ≤
† Q (v) for all v ≥ 0. By continuity of the minors, there

exists w > 0 such that

P(v),Q (v) are TP for all v ∈ [0, w).

The Jacobian of (36) is J(x) = A + ε ∂
∂xg(x), so for any s, r ∈

{1, . . . , n} and any x ∈ Ω we have

|jsr (x)| = |asr + ε
∂

∂xr
gs(x)|

≤ asr + εbsr .

It is straightforward to verify that this implies that for any v ≥ 0
and any ε ∈ [0, v] we have

(−1)s+rpsr (v) ≤ (−1)s+r jsr (x) ≤ (−1)s+rqsr (v),

that is,

P(v) ≤
† J(x) ≤

† Q (v).

Now fix ε ∈ [0, w). Pick v ∈ [ε, w). Then for these values all the
conditions in Theorem 6 hold, so the matrix F (a, b) in (13) is TP
for all a, b ∈ Ω , and this completes the proof. □

Example 7. Consider (36) with n = 3,

A = 0.65

[ 1 exp(−1) exp(−4)
exp(−1) 1 exp(−1)
exp(−4) exp(−1) 1

]
, (38)

and g(k, x(k)) =
[
tanh((50 + 50 sin(kπ/5))x3(k)) 0 0

]′. This
model may represent a cooperative linear chain where the effect
of xi(k) on xj(k+1) decays exponentially with the ‘‘distance’’ (i−j)2
between xi and xj. It is well-known that A in (38) is TP (see Gant-
macher & Krein, 2002, Ch. II). The nonlinear term represents a
time-varying and T -periodic, with T = 10, positive feedback
from x3 to x1.

It is clear that we can take the ‘‘bounding matrix’’ B ∈ R3×3

as the matrix with b13 = 1, and zero in all other entries. It is not
difficult to verify that for this B we have that P(v),Q (v) defined
in (37) are TP for all v ∈ [0, w), with w := 0.65 exp(−4). Fig. 3
depicts the solution of the system with ε = 0.0118 < w and
initial condition x(0) = (2/50)

[
1 1 1

]′. It may be seen that
every xi(k) converges to a periodic solution with period T = 10.

4.4. Integrating TP Hankel matrices

Recall that A ∈ Rn×n is called a Hankel matrix if for any i, j, p, q
with i + j = p + q we have aij = apq. For example, for n = 3 a
Hankel matrix has the form

A =

[a11 a12 a13
a12 a13 a23
a13 a23 a33

]
.

Note that a Hankel matrix is in particular symmetric. Our main
result in this subsection is that the integral of a time-varying TP
Hankel matrix is TP.

Theorem 7. Let A : [0, 1] → Rn×n be a measurable matrix function
such that A(t) ∈ L∞([0, 1]). Suppose that A(t) is a TP Hankel matrix
for almost every t ∈ [0, 1]. Then Ā is TP.

Fig. 3. State-variables x1(k) (marked with ‘*’), x2(k) (‘o’), and x3(k) (‘x’) as a
function of k for the system in Example 7.

Remark 4. Note that for n = 2 this implies that if A : [0, 1] →

R2×2 is a continuous matrix function with A(t) symmetric and TP
for all t ∈ [0, 1] then Ā is TP (compare with Example 2).

To prove Theorem 7 we recall several definitions and results.
A set of indices I ⊆ {1, . . . , n} is called an interval if it has the
form I = {p, p + 1, p + 2, . . . , q}. A square sub-matrix of a
matrix B ∈ Rn×n with row indices I ⊆ {1, . . . , n} and column
indices J ⊆ {1, . . . , n} is called a contiguous sub-matrix if both I
and J are intervals.

It is well-known and straightforward to show that the follow-
ing three conditions are equivalent: (1) B ∈ Rn×n is a Hankel
matrix; (2) every contiguous sub-matrix of B is a Hankel matrix;
(3) every contiguous sub-matrix of B is symmetric.

We can now prove Theorem 7.

Proof. We start by showing that det Ā > 0. First, note that
the function t ↦→ det(A(t)) is measurable (as it is a polynomial
in the entries ai,j(t), i, j ∈ {1, . . . , n}) and essentially bounded.
Therefore, it is Lebesgue integrable. For N ∈ {1, 2, . . . , }, let

BN :=
{
t ∈ [0, 1] : det(A(t)) ≥ N−1} .

Since A(t) is TP for almost every t ∈ [0, 1] and

B1 ⊆ B2 ⊆ . . . ,

the monotone convergence theorem (see e.g. Bogachev, 2007)
yields

lim
N→∞

µ(BN ) = 1,

where µ is the Lebesgue measure on [0, 1]. Therefore, there
exists N0 ∈ N such that µ(BN0 ) > 1/2. Markov’s inequality (see
e.g. Bogachev, 2007) yields∫ 1

0
(det A(t))

1
n dµ(t) ≥ N

−
1
n

0 µ(BN0 )

> N
−

1
n

0 /2. (39)

Since A(t) is Hankel and TP for almost all t ∈ [0, 1], it is symmetric
with positive principal minors, so A(t) is positive-definite for
almost all t ∈ [0, 1]. Minkowki’s determinant inequality (see
e.g. Marcus & Minc, 1992, p. 115) states that B ↦→ (det B)

1
n

is a concave function over the space of semi-positive definite
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matrices of order n. Thus, by using (39) and Jensen’s inequality
(see e.g. Bogachev, 2007) we obtain

(det Ā)
1
n =

(
det

∫ 1

0
A(t) dµ(t)

) 1
n

≥

∫ 1

0
(det A(t))

1
n dµ(t)

≥ N
−

1
n

0 /2,

so det Ā > 0.
Recall that every contiguous sub-matrix of A(t) is also a TP

and Hankel matrix for almost all t ∈ [0, 1], so the same argu-
ment shows that every contiguous minor of Ā is positive. It is
well-known (Fallat & Johnson, 2011, Chapter 3) that if all the
contiguous minors of a matrix are positive then the matrix is TP,
so we conclude that Ā is TP. □

The next example demonstrates an application of Remark 4 to
a dynamical system.

Example 8. Consider the nonlinear system:

x1(k + 1) = h1(x1(k)) + g(x1(k), x2(k)),

x2(k + 1) = h2(x2(k)) + g(x1(k), x2(k)), (40)

with h1, h2, g ∈ C1, whose trajectories evolve on a compact
and convex state-space Ω ⊂ R2. Suppose that ∂

∂x1
g(x1, x2) =

∂
∂x2

g(x1, x2) for all x1, x2 ∈ Ω (e.g. g(x1, x2) = tanh(x1 + x2)). Note
that this implies that the Jacobian

J(x) =

[
h′

1(x1) +
∂

∂x1
g(x1, x2) ∂

∂x2
g(x1, x2)

∂
∂x1

g(x1, x2) h′

2(x2) +
∂

∂x2
g(x1, x2)

]
is symmetric. If J(x1, x2) is TP for all (x1, x2) ∈ Ω then combin-
ing Corollary 1 and Remark 4 implies that any solution of (40)
emanating from Ω converges to an equilibrium point.

5. Conclusion

We introduced a new class of positive discrete-time LTV sys-
tems called ODTSs of order p. Discrete-time nonlinear systems,
whose variational system is an ODTS of order p, have a well-
ordered behavior. More precisely, if the map defining the dynam-
ical system is T -periodic then every solution either leaves any
compact set or converges to a (pT )-periodic solution, i.e. a sub-
harmonic solution. This is important because, as noted by Smith
(1998), ‘‘. . . in the class of all discrete dynamical systems, we do
not know so many special classes which have relatively simple
dynamics’’.

The ODTS framework requires establishing that certain line
integrals of the Jacobian of the time-varying nonlinear system
are oscillatory matrices. This is non-trivial, as the sum of two
oscillatory matrices is not necessarily oscillatory, and this nat-
urally extends to integrals. We derived several sufficient condi-
tions guaranteeing that the line integral of a matrix is oscillatory
(or TP).

Topics for further research include the following. First, ex-
tending the oscillatory framework to other dynamical models
e.g. systems with time-delays or discretized PDEs. Second, co-
operative discrete-time systems frequently arise as the Poincaré
maps of continuous-time systems (see, e.g. Golubyatnikov & Mi-
nushkina, 2019). It may be of interest to explore the implica-
tions of oscillatory Poincaré maps. Third, it may be of interest
to generalize the ODTS framework to discrete-time systems with
control inputs, as was done for continuous-time monotone sys-
tems by Angeli and Sontag (2003). Finally, when the discrete-time
system follows from discretization of a continuous-time system,
it may be of interest to classify nonlinear systems that yield ODTS
and study the effect of the sampling time.

Appendix

Proof of Lemma 1. Let z := D±(x − y). Then (14) implies
that v := D±Pz ≪ 0. Thus, the vector Pz = D±v is alternating,
with

(Pz)1 = v1 < 0.

Applying the VDP (6) yields

n − 1 = s−(Pz) ≤ s−(z).

Thus, s−(z) = n − 1, i.e. z is alternating. Recall that if a matrix H
is TN, non-singular, and s−(Hq) = s−(q) for some q ∈ Rn

\ {0}
then the first non-zero entry in Hq and the first non-zero entry
in q have the same sign (Gantmacher & Krein, 2002, p. 254).
Since s−(Pz) = s−(z) = n − 1, and (Pz)1 < 0, the first non-
zero entry of z is negative. Since z is alternating this implies
that D±z ≪ 0, and this completes the proof. □
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