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a b s t r a c t

The paper shows that the global exponential stability property is preserved, under suitably fast sampling
and small input-delay, whenever the dynamics of the time-delay system at hand and the related
stabilizing (in continuous-time) state feedback are described by globally Lipschitz maps. The Halanay’s
inequality is used in order to prove this result. Continuous-time, possibly non-affine in the control, state-
delay systems are considered. The knowledge of a Lyapunov–Krasovskii functional for the continuous-
time closed-loop system is not required, as long as this system is globally exponentially stable. The
knowledge of a Lipschitz Lyapunov–Krasovskii functional allows for an estimation of the sampling period
that preserves the exponential stability, as well as of the decay rate.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The sampled-data stabilization problem has been extensively
studied in the literature, with many approaches, for nonlinear
finite dimensional systems. See, for instance: Fridman and
Dambrine (2009), Fridman, Seuret, and Richard (2004), Grune and
Nesic (2003), Kellett, Shim, and Teel (2004), Khalil (2004), Laila,
Nesic, and Teel (2002), Monaco, Normand-Cyrot, and Tiefense
(2011), Naghshtabrizi, Hespanha, and Teel (2008), Nesic and Grune
(2005), Nesic and Laila (2002), Nesic and Teel (2004a,b), Postoyan,
Ahmed-Ali, and Lamnabhi-Lagarrigue (2009), Seuret and Gomes
Da Silva (2012) and Zaccarian, Teel, and Nesic (2003).

In general, semi-global stability results (for instance, of practical
type, with possible arbitrarily small final target ball of the
origin) are provided in the literature. The global (asymptotic,
exponential) stability preservation under sampling, for finite
dimensional nonlinear systems, has been dealt with in: Herrmann,
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Spurgeon, and Edwards (1999), Hsu and Sastry (1987), Karafyllis
and Kravaris (2009), Laila, Nesic, and Astolfi (2006), Mazenc,
Malisoff, and Dinh (2013) and Nesic, Teel, and Carnevale (2009).
It is shown in Herrmann et al. (1999) and Hsu and Sastry (1987)
that the global exponential stability is preservedunder suitably fast
sampling, for globally Lipschitz systems in control-affine form. The
global asymptotic stability preservation (and the input-to-state
stability preservation,with respect to external disturbances) under
suitably fast sampling, is studied in Karafyllis and Kravaris (2009),
where sufficient conditions, expressed by means of single and
vector Lyapunov functions, are provided. The maximum allowed
sampling period, by which the global (asymptotic, exponential)
stability is preserved under sampling, is studied in Nesic et al.
(2009), by means of Lyapunov-like sufficient conditions and
the hybrid systems approach. Sampled-data control of bilinear
systems is investigated in Omran, Hetel, Richard, and Lamnabhi-
Lagarrigue (2014), where local asymptotic stability of the (sampled
state feedback) closed-loop system is proved by means of the
feasibility of suitable linear matrix inequalities. In Ahmed-Ali,
Fridman, Giri, Burlion, and Lamnabhi-Lagarrigue (2016), sufficient
conditions, in terms of linear matrix inequalities, are given for
the exponential stability, under sampling, of linear systems with
globally Lipschitz perturbations, as well as of systems described by
semi-linear parabolic partial differential equations. A linear time-
varying state feedback is used, as standard in the generalized hold
functions theory (see Briat, 2014, and the references therein). As far
as sampled-data control of finite dimensional nonlinear systems,
affected by small delays in the input channel, is concerned,
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sufficient conditions, in terms of Lyapunov functions, are provided
for the global asymptotic stability preservation under sampling,
for control affine, time-varying systems, in Mazenc et al. (2013).
Sampled-data control of fully nonlinear (i.e., possibly non-affine
in the control) systems, with large delays in the input/output
channels, is extensively studied in Karafyllis and Krstic (2012). A
few results are available in the literature, concerning the stability
preservation under sampling for nonlinear systems affected by
state-delays. Sampled-data control of linear systems with state-
delays is studied in Suplin, Fridman, and Shaked (2009). Semi-
global practical stability results, with arbitrarily small final target
ball of the origin, are provided in Pepe (2014, 2016) for the class
of fully nonlinear systems with state-delays, admitting suitable
control Lyapunov–Krasovskii functionals and related steepest
descent feedbacks.

To our best knowledge, a proof of the expected global
exponential stability preservation under high frequency sampling,
for fully nonlinear, globally Lipschitz time-delay systems, is
missing in the literature. In this paper we provide this proof. We
assume that, in continuous time, the system at hand is globally,
exponentially stabilizable by a globally Lipschitz feedback. The
main tools here used are the Halanay’s inequality (Halanay, 1966),
as extended with the use of upper-right hand Dini derivatives
(Baker & Buckwar, 2005), and the derivative in Driver’s form of
Lyapunov functionals, whose existence is guaranteed by converse
theorems (Karafyllis, Pepe, & Jiang, 2008; Krasovskii, 1963; Pepe
& Karafyllis, 2013). The knowledge of a Lyapunov–Krasovskii
functional for the closed-loop continuous-time system is not
required, as long as this system is globally exponentially stable.
If a globally Lipschitz Lyapunov–Krasovskii functional is known,
then a precise characterization of the sufficiently small sampling
period is provided. This sampling period is computed by using
the involved Lipschitz constants and the lower and upper bounds
related to the Lyapunov–Krasovskii functional. However, the
results provided here are of the existence type, and the study of
the conservativeness of the provided sampling frequency is beyond
the aims of the paper. The existence results provided in the paper
can be used also for delay-free, globally Lipschitz, fully nonlinear
systems, which are globally exponentially stabilizable by globally
Lipschitz state feedback. Small input-delays, due to computations
and/or signal transmission, are also addressed. A preliminary
version of this paper has been published in the conference paper
(Pepe & Fridman, 2016). The main novelty of this paper, with
respect to Pepe and Fridman (2016), concerns the results for the
general case with memory feedback, which is the more frequent
case in the control of time-delay systems. Moreover, the problem
of a small input-delay is not studied in the conference paper.
Notation. The symbol R denotes the set of real numbers, R⋆ denotes
the extended real line [−∞, +∞], R+ denotes the set of non-
negative reals [0, +∞). The symbol | · | stands for the Euclidean
norm of a real vector, or the induced Euclidean norm of a matrix.
For a positive integer n, for a non-negative real ∆ (maximum
involved time-delay), C denotes the space of the continuous
functions mapping [−∆, 0] into Rn. The space C is endowed with
the supremumnorm, here denotedwith the symbol ∥·∥∞, defined,
for φ ∈ C, as ∥φ∥∞ = supθ∈[−∆,0] |φ(θ)|. Notice that, when
∆ = 0, the spaces C and Rn are isomorphic and, for any φ ∈ C,
∥φ∥∞ = |φ(0)|. For a continuous function x : [−∆, c) → Rn,
with 0 < c ≤ +∞, for any real t ∈ [0, c), xt is the function in
C defined as xt(τ ) = x(t + τ), τ ∈ [−∆, 0]. For given positive
integers n,m, a map f : C × Rm

→ Rn is said to be globally
Lipschitz if there exists a positive real L such that, for any φi ∈ C,
ui ∈ Rm, i = 1, 2, the inequality holds |f (φ1, u1) − f (φ2, u2)| ≤

L (∥φ1 − φ2∥∞ + |u1 − u2|). For a continuous function z : R+
→

R, D+z : R+
→ R⋆ denotes the upper right-hand Dini derivative

of z, defined, for t ∈ R+, as D+z(t) = lim suph→0+
z(t+h)−z(t)

h . For
given positive integers n,m, continuous map f : C × Rm
→ Rn,

continuous functional V : C → R+, D+V : C × Rm
→ R⋆ denotes

the derivative in Driver’s form of V , defined, for φ ∈ C, u ∈ Rm, as
follows (see Driver, 1962; Karafyllis et al., 2008; Pepe & Karafyllis,
2013) D+V (φ, u) = lim suph→0+

V (φh,u)−V (φ)

h , where φh,u ∈ C is
given, in the case ∆ > 0, for h ∈ [0, ∆), as

φh,u(θ) =


φ(θ + h), θ ∈ [−∆, −h),

φ(0) + (θ + h)f (φ, u), θ ∈ [−h, 0], (1)

and, in the case ∆ = 0, for h ∈ [0, 1), as

φh,u(0) = φ(0) + hf (φ, u). (2)

Throughout the paper, ODE stands for Ordinary Differential Equa-
tion, RFDE stands for Retarded Functional Differential Equation,
GES stands for Globally Exponentially Stable or Global Exponen-
tial Stability, GAS stands for Globally Asymptotically Stable or
Global Asymptotic Stability, LK stands for Lyapunov Krasovskii,
MASP stands for maximum allowed sampling period, MAD stands
for maximum allowed delay, ZOH stands for zero order hold, LMI
stands for linear matrix inequality. A system is said to be 0-GES (0-
GAS) if the origin of the state space is an equilibrium point and it
is globally exponentially (asymptotically) stable.

2. Preliminaries

Let us consider the system described by the following fully
nonlinear (i.e., non-affine in the control) RFDE

ẋ(t) = f (xt , u(t)), x(τ ) = x0(τ ), τ ∈ [−∆, 0], (3)

where∆ ≥ 0 is themaximum involved state time-delay, x(t) ∈ Rn,
x0, xt ∈ C, u(t) ∈ Rm, t ≥ 0, n,m are positive integers, f is
a map from C × Rm to Rn, satisfying f (0, 0) = 0 (regularity of
the map f will be established in forthcoming Assumption 2). The
following lemma establishes necessary and sufficient conditions
for the global exponential stability of the continuous-time system
described by (4), with f globally Lipschitz, in closed-loop with a
globally Lipschitz state feedback.

Lemma 1 (See Krasovskii, 1963; Karafyllis et al., 2008; Pepe &
Karafyllis, 2013). Let the map f in (3) be globally Lipschitz. Let k :

C → Rm be a globally Lipschitz map, satisfying k(0) = 0. Then,
the continuous-time closed-loop system described by (3), with u(t) =

k(xt), t ≥ 0, is 0-GES if and only if there exist a globally Lipschitz func-
tional V : C → R+, with LV as Lipschitz constant, and positive reals
αi, i = 1, 2, 3, such that the following inequalities hold for anyφ ∈ C:
(i) α1∥φ∥∞ ≤ V (φ) ≤ α2∥φ∥∞; (ii) D+V (φ, k(φ)) ≤ −α3∥φ∥∞.

We introduce here the following assumption for the system
described by (3).

Assumption 2. The map f : C × Rm
→ Rn is globally Lipschitz in

C × Rm with Lipschitz constant Lf ; there exists a globally Lipschitz
feedback k : C → Rm, with Lipschitz constant Lk, satisfying k(0) =

0, such that the continuous-time, closed-loop system described by
the RFDE

ẋ(t) = f (xt , k(xt)) (4)

is 0-GES.

The following lemma (Baker & Buckwar, 2005) is a key issue for
the results of the paper. It extends the Halanay’s inequality (see
Halanay, 1966) to the case of continuous functions and related
upper right-hand Dini derivative (the original Halanay’s inequality
is given for the case of continuous functions and related lower left-
hand Dini derivative, see Halanay, 1966). Actually, in forthcoming
study with an involved Lyapunov function or LK functional, the
upper right-hand Dini derivative is needed.
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Lemma 3 (Baker & Buckwar, 2005, Lemma 6 and Theorem 7). Let
a, b, r be positive reals, a > b. Let z : [−r, +∞) → R+ be a
continuous function satisfying the inequality

D+z(t) ≤ −az(t) + b sup
θ∈[−r,0]

z(t + θ), t ≥ 0. (5)

Let λ be the positive real solution of the equation

a − λ = beλr . (6)

Then, the inequality z(t) ≤ supθ∈[−r,0] z(θ)e−λt holds for any t ≥ 0.

Definition 4 (See Clarke, Ledyaev, Sontag, & Subbotin, 1997). A
partition π = {ti, i = 0, 1, . . .} of [0, +∞) is a countable,
strictly increasing sequence ti, with t0 ≥ 0, such that ti → +∞

as i → +∞. The diameter of π , denoted diam(π), is defined as
supi≥0 ti+1 − ti.

We denote with δu (the acronymMAD is used in Fridman, 2014)
an upper bound on the delay induced by data transmission and/or
by computations. We denote with δS (the acronym MASP is used
in Nesic & Teel, 2004b; Nesic et al., 2009) an upper bound for
the time elapsed between any two sensor updates (i.e., successive
sensor updates are separated by at most δS s). We denote with
πZOH = {t0, t1, . . .} the partition induced by the update times
of the ZOH device, assumed to be co-located with the controlled
system. That is, the value of the piece-wise constant control law
acting on the system, previously computed by the controller and
sent to the ZOH device after receiving the sensor data, is updated
at tk, k = 0, 1, . . . . We denote with πS = {s0 = 0, s1, . . .}
the partition induced by the update times of the sensor device,
assumed to be co-located with the controlled system. That is, the
sensor output is updated at times sk, k = 0, 1, . . . . Notice that
we assume s0 = 0. The plant sampler is time-driven, whereas
the controller, which may not be co-located with the controlled
system, and the ZOHdevice are event-driven. That is, the controller
starts computing a new value for the piece-wise control law as
soon as it receives a new sample, as well as the ZOH device updates
its output as soon as it receives the new data from the controller.
Finally, we denote with ηk, k = 0, 1, . . . , the time-delay due to
data transmission and/or to computations, elapsed from time sk,
at which the sensor’s output is updated, and the time the related
new value of the piece-wise constant control signal is received
by the ZOH device. We assume that, for any k = 0, 1, . . . , the
relation holds tk = sk + ηk. So, the piece-wise control law acting
on the system, related to the sampled data xsk , is updated at tk =

sk +ηk. We assume here that successive sensor’s messages, sent to
controller at times sk and sk+1, with sk < sk+1, k = 0, 1, . . . , reach
the ZOH device at successive times, that is at times tk and tk+1,
respectively, with tk < tk+1, k = 0, 1, . . . . Moreover, without any
loss of generality (no finite time escape phenomenon arises, since
the systems considered here are globally Lipschitz), we assume
that in the interval [0, t0] = [0, η0], the control signal, as provided
by the ZOH device to the system, is constant and equal to u, with
u ∈ Rm of given value. The reader can refer to Fridman (2014,
Chapter 7.5, pp. 309–314) (see, in particular, Figure 7.5), for more
detailed explanations on the above described control system.

3. Main results

In the following we show that, if the time-delay system at hand
is globally Lipschitz, and is globally exponentially stabilizable by a
globally Lipschitz state feedback, when applied in continuous time,
then there exists a positive real δmax such that, if δS + δu < δmax,
the global exponential stability is preserved.Moreover, we provide
also amethod for the computation of δmax, based on LK functionals.
Theorem 5. Let Assumption 2 hold. Let α1, α2, α3, LV , Lk, Lf be the
positive constants provided in Lemma 1 and Assumption 2. Let δmax
be the positive real

δmax =
α3α1

α2LV L2f Lk(1 + Lk)
. (7)

Let δS + δu < δmax. Let λ be the real positive solution of the equation

α3

α2
− λ =

LV L2f Lk(1 + Lk)

α1
(δS + δu)eλ(∆+2(δS+δu)). (8)

Then, the solution of the RFDE

ẋ(t) = f (xt , u(t)),
x(τ ) = x0(τ ), τ ∈ [−∆, 0], x0 ∈ C,

u(t) =

 u, t0 > 0, t ∈ [0, t0),
k(xsj), t ∈ [tj, tj+1), sj ∈ πS, tj ∈ πZOH ,

j = 0, 1, . . . ,
(9)

exists for all t ≥ 0, and, furthermore, satisfies the inequality

|x(t)| ≤ Re−λt , t ≥ 0, (10)

with

R =
α2

α1


∥x0∥∞ + Lf (∆ + 3(δS + δu))|u|


· e(Lf (1+Lk)+λ)(∆+3(δS+δu)). (11)

Proof. From the global Lipschitz property of the map f and
the properties of the partition πZOH , it follows that the system
described by (9) admits a (unique) locally absolutely continuous
solution in R+. Let xt ∈ C be the solution of (9). We show first that,
for any t ∈ [0, ∆ + 3(δS + δu)], the inequality holds

∥xt∥∞ ≤

∥x0∥∞ + Lf (∆ + 3(δS + δu))|u|


· eLf (1+Lk)(∆+3(δS+δu)). (12)

We have, for t ∈ [0, ∆ + 3(δS + δu)],

sup
θ∈[0,t]

∥xθ∥∞ ≤ ∥x0∥∞ +

 t

0
|f (xτ , u(τ ))|dτ

≤ ∥x0∥∞ +

 t

0
Lf (∥xτ∥∞ + |u(τ )|) dτ

≤ ∥x0∥∞ +

 t

0
Lf


(1 + Lk) sup

α∈[0,τ ]

∥xα∥∞ + |u|

dτ

≤ ∥x0∥∞ + Lf (∆ + 3(δS + δu))|u|

+

 t

0
Lf (1 + Lk) sup

α∈[0,τ ]

∥xα∥∞dτ . (13)

Let the function g : [0, ∆ + 3(δS + δu)] → R+ be defined, for
t ∈ [0, ∆ + 3(δS + δu)], as g(t) = supθ∈[0,t] ∥xθ∥∞. Let

µ1 = ∥x0∥∞ + Lf (∆ + 3(δS + δu))|u|,

µ2 = Lf (1 + Lk). (14)

Then, for t ∈ [0, ∆+ 3(δS + δu)], the inequality holds g(t) ≤ µ1 + t
0 µ2g(τ )dτ . By the Gronwall–Bellman Lemma (see Lemma A.1,

pp. 651–652, in Khalil, 2000), for t ∈ [0, ∆ + 3(δS + δu)], the
inequality follows g(t) ≤ µ1eµ2t . Therefore, we have, for t ∈

[0, ∆ + 3(δS + δu)],

∥xt∥∞ ≤ g(t) ≤ µ1eµ2t ≤ µ1eµ2(∆+3(δS+δu))

=

∥x0∥∞ + Lf (∆ + 3(δS + δu))|u|


· eLf (1+Lk)(∆+3(δS+δu)). (15)
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The inequality (12) is proved. Now, let w : R+
→ R+ be the

continuous function defined, for t ∈ R+, as w(t) = V (xt), with
V the functional provided in Lemma 1 (for the system described by
(4)). Let p be the smallest integer such that sp ≥ ∆ + 2(δS + δu). It
follows that tp ∈ [∆ + 2(δS + δu), ∆ + 3(δS + δu)]. The following
equalities hold for tj ≤ t < tj+1, j = p, p + 1, . . . ,

D+w(t) = lim sup
h→0+

1
h

(V (xt+h) − V (xt))

= lim sup
h→0+

1
h


V (xt+h) − V


(xt)h,k


xsj


+ V


(xt)h,k


xsj

− V (xt)


, (16)

where, for t ≥ 0, and any v ∈ Rm, (xt)h,v ∈ C is defined (see (1),
(2) in Notation section) as, in the case ∆ > 0, for h ∈ [0, ∆),

(xt)h,v(θ) =


xt(θ + h), θ ∈ [−∆, −h),

xt(0) + (θ + h)f (xt , v), θ ∈ [−h, 0], (17)

and as, in the case ∆ = 0, for h ∈ [0, 1),

(xt)h,v(0) = xt(0) + hf (xt , v). (18)

Now, the following equalities/inequality hold for any positive real
h < min{tj+1 − tj, ∆}, in the case ∆ > 0, and for any positive real
h < min{tj+1 − tj, 1}, in the case ∆ = 0 (see Yoshizawa, 1966;
Driver, 1962),

1
h

V (xt+h) − V


(xt)h,k

xsj


≤

LV
h

xt+h − (xt)h,k

xsj


∞

=
LV
h

sup
θ∈[−∆,0]

xt+h(θ) − (xt)h,k

xsj

(θ)

 ≤
LV
h

· sup
θ∈[−h,0]

x(t + h + θ) − x(t) − (θ + h)f

xt , k


xsj
 . (19)

From (19), we obtain

1
h

V (xt+h) − V


(xt)h,k

xsj


≤

LV
h

sup
θ∈[−h,0]

x(t) +

 t+h+θ

t
f

xτ , k


xsj


dτ

− x(t) − (θ + h)f

xt , k


xsj
 

=
LV
h

sup
θ∈(−h,0]

 t+h+θ

t
f

xτ , k


xsj


dτ

− (θ + h)f

xt , k


xsj
 

=
LV
h

sup
θ∈(−h,0]

(θ + h)


1
θ + h

 t+h+θ

t
f

xτ , k


xsj


dτ

− f

xt , k


xsj
   . (20)

From (20), it follows

1
h

V (xt+h) − V


(xt)h,k

xsj


≤ LV sup

θ∈(−h,0]

 1
θ + h

 t+h+θ

t
f

xτ , k


xsj


dτ

− f

xt , k


xsj
   . (21)
From (21), taking into account of the continuity of the map f and
of the solution xτ ∈ C, τ ∈ R+ (see Lemma 2.1, p. 40, in Hale &
Verduyn Lunel, 1993) the limit follows

lim
h→0+

1
h


V (xt+h) − V


(xt)h,k


xsj

 = 0. (22)

From (16) and (22) it follows that

D+w(t) = lim sup
h→0+

1
h


V


(xt)h,k

xsj

− V (xt)


= lim sup
h→0+

1
h


V


(xt)h,k

xsj

− V

(xt)h,k(xt )


+ V


(xt)h,k(xt )


− V (xt)


. (23)

From (23) we obtain, taking into account Lemma 1,

D+w(t) ≤ lim sup
h→0+

1
h


V ((xt)h,k(xt )) − V (xt)


+ lim sup

h→0+

1
h


V


(xt)h,k

xsj

− V

(xt)h,k(xt )


= D+V (xt , k(xt))

+ lim sup
h→0+

1
h


V


(xt)h,k

xsj

− V

(xt)h,k(xt )


≤ −α3∥xt∥∞

+ lim sup
h→0+

1
h

V (xt)h,k

xsj

− V

(xt)h,k(xt )

 . (24)

Moreover, we have

lim sup
h→0+

1
h

V (xt)h,k

xsj

− V

(xt)h,k(xt )


≤ lim sup

h→0+

LV
h

(xt)h,kxsj − (xt)h,k(xt )


∞

≤ lim sup
h→0+

LV
h

sup
θ∈[−h,0]

(θ + h)

·
f xt , k xsj− f (xt , k(xt))


≤ LV Lf Lk

xt − xsj


∞
. (25)

From (24), (25), we obtain

D+w(t) ≤ −α3∥xt∥∞ + LV Lf Lk
xsj − xt


∞

,

tj ≤ t < tj+1, j = p, p + 1, . . . . (26)

Now, notice that, for any t ∈ [δS + δu, +∞), there exists a real
θ ∈ [t − δS − δu, t] such that u(t) = k(xθ ). Let us pick any j ≥ p.
We have, for t ∈ [tj, tj+1),

∥xsj − xt∥∞ = sup
θ∈[−∆,0]

|x(sj + θ) − x(t + θ)|

≤ sup
θ∈[−∆,0]

x(sj + θ) − x(sj + θ) −

 t+θ

sj+θ

f

xβ , u(β)


dβ


≤ sup

θ∈[−∆,0]

 t+θ

sj+θ

Lf

∥xβ∥∞ + |u(β)|


dβ

≤ sup
θ∈[−∆,0]

 t+θ

sj+θ

Lf ·


sup

α∈[sj−∆,t]
∥xα∥∞ + sup

α∈[sj−∆,t]
|u(α)|


dβ

≤ sup
θ∈[−∆,0]

 t+θ

sj+θ

Lf (1 + Lk) sup
α∈[sj−∆−δS−δu,t]

∥xα∥∞dβ. (27)
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Now, the following equalities/inequalities hold

sj − ∆ − δS − δu

= −(sj+1 − sj) + sj+1 − ∆ − δS − δu

≥ sj+1 − ∆ − 2δS − δu

= tj+1 − ηj+1 − ∆ − 2δS − δu ≥ t − ∆ − 2(δS + δu). (28)

From (27), (28), we obtain

∥xsj − xt∥∞ ≤ sup
θ∈[−∆,0]

 t+θ

sj+θ

Lf (1 + Lk)

· sup
α∈[t−∆−2(δS+δu),t]

∥xα∥∞dβ

≤ Lf (1 + Lk)(t − sj) sup
α∈[t−∆−2(δS+δu),t]

∥xα∥∞

≤ Lf (1 + Lk)(δS + δu) sup
α∈[t−∆−2(δS+δu),t]

∥xα∥∞

≤
(δS + δu)Lf (1 + Lk)

α1
sup

α∈[t−∆−2(δS−δu), t]
w(α). (29)

By (26), (29), the following inequality holds for all t ≥ tp:

D+w(t) ≤ −
α3

α2
w(t) +

LV L2f Lk(1 + Lk)

α1
(δS + δu)

· sup
θ∈[−∆−2(δS+δu), 0],

w(t + θ). (30)

By (30), taking the bound on the maximum interval δS + δu into
account, the result of the theorem follows from the application of
Lemma 3 in the interval [tp, +∞), and from (12).

Next corollary readily follows from Theorem 5, and therefore the
proof is omitted.

Corollary 6. Let Assumption 2 hold. Then, there exist positive reals
M, λ, δ such that, if δS + δu < δ, the solution of the RFDE (9) exists
for all t ≥ 0, and, furthermore, satisfies the inequality

|x(t)| ≤ M(∥x0∥∞ + |u|)e−λt , t ≥ 0. (31)

4. Illustrative example

Let us consider the system described by the following scalar
RFDE

ẋ(t) = −x(t) + tanh(x(t) + x(t − ∆) + u(t)),
x(τ ) = x0(τ ), τ ∈ [−∆, 0], (32)

where x(t) ∈ R, ∆ is a positive real, u(t) ∈ R is the control input,
x0 ∈ C is the initial state. In this case we have, for φ ∈ C, u ∈ R,
f (φ, u) = −φ(0) + tanh(φ(0) + φ(−∆) + u) and Lf = 3. Let us
choose as state feedback the map k : C → R defined, for φ ∈ C, as
k(φ) = −φ(0) − φ(−∆) (i.e., on the solution, k(xt) = −xt(0) −

xt(−∆) = −x(t) − x(t − ∆)). Then the closed-loop continuous-
time system is described by the delay-free equation ẋ(t) = −x(t),
and is globally exponentially stable. Thus, by Corollary 6, we can
readily conclude that there exist suitable positive reals M , λ and δ
such that, if δS + δu < δ, the solution of the RFDE

ẋ(t) = −x(t) + tanh(x(t) + x(t − ∆) + u(t)),
x(τ ) = x0(τ ), τ ∈ [−∆, 0], x0 ∈ C,

u(t) =

 u, t0 > 0, t ∈ [0, t0),
−x(sj) − x(sj − ∆), t ∈ [tj, tj+1),

sj ∈ πS, tj ∈ πZOH , j = 0, 1, . . . ,
(33)

exists for all t ≥ 0, and, furthermore, satisfies the inequality (31).
In this case, no knowledge of any LK functional is needed for estab-
lishing the existence-type result as stated in Corollary 6. In order to
Fig. 1. State variable, ∆ = 0.1, sampling period and input-delay equal to 5 ms.

Fig. 2. Input signal, ∆ = 0.1, sampling period and input-delay equal to 5 ms.

provide an upper bound for δS + δu, according to Theorem 5, let us
choose V : C → R+ defined, for φ ∈ C, as V (φ) = |φ(0)|. Then we
haveα1 = α2 = α3 = LV = 1.Moreover, Lk = 2.Weobtain δmax =

18.5 ms, according to (7). For ∆ = 0.1, δS + δu = 10 ms, we ob-
tain λ = 0.43, according to (8). Simulations have been performed
with δS = δu = 5 ms. Uniform sampling is used, and the sampling
period has been chosen equal to δS . The input-delay, induced by
transmission and/or computations, has been chosen constant and
equal to δu. The initial state is chosen constant in [−0.1, 0] and
equal to 0.1. The initial input u is chosen equal to 0. In Fig. 1, the be-
havior of the state variable is reported. In Fig. 2, the control signal is
reported. The simulation fully validates the theoretical results. The
performance of the controller is similar with δS = δu = 100 ms.
Oscillations are observed with δS = δu = 350 ms. In-stability is
observed with δS = δu = 450 ms.

5. Discussions and conclusions

In this paper it is shown that the global exponential stability
is preserved, under suitable fast sampling, for globally Lipschitz,
fully nonlinear time-delay systems, which, in continuous-time,
are globally exponentially stabilizable by globally Lipschitz state
feedbacks. The result here stated is of the existence type,
and concerns the proof of an expected result, though so far
just conjectured. As far as the maximum allowed sampling
period is concerned, we believe that the provided result is
rather conservative. Anyway, the provision of a non conservative
sampling frequency is beyond the aims of this paper. The reader
can refer to the paper (Nesic et al., 2009), for a deep analysis of
the maximum allowed sampling period, in the delay-free case.
Whether the globally Lipschitz hypothesis may be weakened, in
order to obtain the same kind of results (i.e., the continuous-time
0-GASproperty is preserved,without any further conditions, under
suitable fast sampling), is an interesting open problem, which
is left for future investigations. More general Lyapunov converse
theorems (see Teel & Praly, 2000, and the references therein) may
be instrumental for this interesting research topic.
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