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The discretized Lyapunov functional method is ex-
tended to linear systems with both, discrete and
distributed delays, and to Hoo control. The coefficients
associated with the distributed delay are assumed to be
piecewise constant. A new Bounded Real Lemma
(BRL) is derived in terms of Linear Matrix Inequal-
ities (LMIs) via descriptor approach. In three numer-
ical examples considered for retarded type systems, the
resulting values of Hoo-norm converge to the exact
ones. The analysis results are applied to state-feedback
Hoo control of linear neutral systems with discrete and
distributed delays, where the controller may be either
instantaneous or may contain discrete or distributed
delay terms. A numerical example illustrates the
efficiency of the design method and the advantage of
using distributed delay term in the feedback for Hoo
control of systems with state delay.
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1. Introduction

Systems with both, discrete and distributed delays,
appear in different applications (see e.g. [2], [3], [12],
[19], [22]). Moreover, it is well-known that the optimal
linear quadratic regulator for state-delay systems (see
e.g. [19]) as well as Hoo state-feedback controller that
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results from Riccati equations [6] possess a distributed
delay term. Therefore, the distributed delay term in
the state feedback may improve the performance of
the system with state delay.

Robust control of systems with discrete and dis-
tributed delays has been studied via simple Lyapunov-
Krasovskii Functionals (LKFs) only (see e.g. [14],
[20], [26—28]). The necessary condition for the
application of simple LK Fs is the asymptotic stability
of the closed-loop non delayed system. If the latter
conditions does not hold, the complete LKF should be
applied. Stability and Hoo-norm of linear retarded
systems with discrete and distributed delays have been
analyzed via complete LKF

Vo(x,) =xT(¢)Px(t) +2xT( / O(&)x(t+&)d¢

/ / (t+5)R(s,&)dsx(t+&)dE,
Pi>0, R(&m)=R"(1,€) (1)

in [7], where Riccati partial differential equations have
been derived.

LMI stability conditions via complete LKF and
discretization were introduced by K. Gu [9] and
appeared to be very efficient, leading in some exam-
ples to results close to analytical ones. The discretized
LKF method has been developed for stability analysis
of either systems with discrete delays [15], [19] or
distributed delays [10], [11].
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Parameter-dependent LMIs for stability and Hoo
control via complete LKF were derived for linear
systems with discrete and distributed delays in [1], [18],
[25]. Some technique for reduction of these LMIs to a
finite number of parameter-independent LMIs was
suggested. However, it was not shown that in some
examples the analysis results can approach to ana-
lytical ones, while the design procedure was based on
the restrictive assumption that Q(§) = Py.

Recently a descriptor discretized LKF method was
introduced in [5], which combined the application of
the complete LKF and the discretization procedure of
Gu [9] with the descriptor model transformation [4].
In the descriptor approach both x(¢) and x(7) are the
state variables, which allows to avoid some terms in
the LKF derivative condition (since x(¢) is not sub-
stituted everywhere by the right hand side of the
system). As a result, the descriptor discretized LKF
method leads to simpler conditions and can be easily
applied to design problems. In [5] the state-feedback
stabilization of systems with a single discrete delay
was considered.

The objective of this paper is to extend the dis-
cretized LKF to Hoo control and to systems with
both, single discrete and piecewise constant dis-
tributed delays by applying descriptor approach. The
method is extended also to nonuniform mesh, which
was not relevant in the case of single delay. Numerical
examples (one of them is Hoo control of combustion
in rocket motor chambers) illustrate the efficiency of
the new method and show that the distributed delay
term in the feedback improves the Hoo performance.
Notation: Throughout the paper the superscript “7"”
stands for matrix transposition, R" denotes the n
dimensional Euclidean space with vector norm || - ||,
R™™ is the set of all n x m real matrices, and the
notation P > 0, for P € R™" means that P is sym-
metric and positive definite. The symmetric elements
of the symmetric matrix will be denoted by .

2. BRL via Descriptor Discretized LKF
Method

Consider a linear system
x(1) = Aox(1) + Aix(t —r) + Fx(t — g)
0
+/ Aq(0)x(t + 0)dd + Byw(t),

z(t) = Cox(t) + Cyx(t —r)

+ / ' Ca(0)x(t + 6)do, (2)

r
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where x(7) € R", w(t) € RY, r > 0 is constant time-
delay. Ay , 4y, Cy, Cy, and F are constant matrices. 4,4
and C, are piecewise constant matrices. It is assumed
that the eigenvalues of F are inside the unit circle.

For a prechosen ~ > 0, we consider the following
performance index:

= OOZT z — 2W’T w .
J= /0 T (0)2(1) — P (w(0))de 3)

We are looking for conditions which guarantee that
Eq. (2) is internally stable and has Hoo-norm less than
7, i.e. that J < 0 for all 0 # w(t) € L.

We note that distributed delay appears for example
in the model of combustion in rocket motor chambers
[2], [3]. State-feedback stabilization and Hoo control
of combustion will be considered in section 3 and is
based on stability and Hoo-norm analysis of system
(2). Another example is a model of a mechanical
rotational cutting process [21], where stability analysis
is reduced to the stability of linear comparison system
with distributed delay (see Example 2.3).

We apply a complete LKF

0

V(x) =Volx) + / ST (4 QU (1 + E)de

U>0,Vo(x,) = x"(t)P1x()

24T /Q
/4/ t+s

+/_y (1+&)S(E)x(t+&)de, Py >0,
(4)

where Q(€) € R™", R(€,1) = R(1,€) € R™", S(€) =
ST(¢) € R™", and Q, R, S are continuous matrix
functions. LKF ¥ is of the same form as in [9], [10],
and it corresponds to the retarded type system (2) with
F = 0. The last (nonnegative) term in Eq. (4) is added
due to the neutral-type system.

We apply the descriptor complete LKF, which
means that V satisfies the following derivative condi-
tion along (2):

x(t+ &)de

(s, &)dsx(1 + §)dg

V(x;) 4 27 (0)z(t) — ywT(£)w(r)

5
< = e (IxOI> + 1517 + Iw(0)1?), ®)

where € > 0 is some constant. Inequality (5) guaran-
tees that (2) is internally stable and J < 0.
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Differentiating LKF (4) along (2) we have
/ o(¢
270 [ 0@+ e

+2/_(:/_th([+5‘)

0
+2 / 4)'cT(l+§)S(§)x(t+ €)de
+xT (U (1) — x(t — g)Ux(t — g).  (6)

V(x,) =2xT()[P1x(1) x(t+ &)dg]

R(s,&)dsx (1 + &)de

Adding to V(x,) the right part of the expression

0 =2[x"(1) P! + x"(1)PT]
[ Agx(t) — %(1) + Ayx(t — r) + Fx(1 — g)
+/0 Ad(H)x(l+9)d9—|—31W(l‘)], (7)

where P, and P; are n X n matrices, which is equi-
valent to descriptor model transformation of [4], we
integrate by parts in Eq. (6). We find

0

) =72+ 2570 [l

—r

+PTA4())x(t + §)d§

/_/_ (1 + &) (52

O R(e,0)x(1 + 0)dbde

(,g, 0)

0 .
+2x7(1) /7.[P2TAd(§) - 0(§)
+R(0,8)]x(1 + £)d§

—2xT(t—r) /_(: R(—

0
_ / xT<z+g>S<s>x<r+£>dé

[ (1) P] +xT( )Ps][FX(f* )
+Byw(1)], ®)

r,0)x(t + 6)dd

where

(1]

= Ay —1 I -1

*
P, 0}

= [x"(0) &) x"(t—r)].P _{Pz Py

3

We apply the discretization of Gu [10].
Divide the delay interval [—r,0] into N segments

0p,0,-1], p=1,...,N of length h, = 6,_; — 6, in such
a way that
Ad(e) = Adp, p= 17 ...,N, 0 c [9,,,9,]_1], (10)

where A4y, are constant matrices. This divides the
square [—r,0] x [-r,0] into N x N small squares
[0),60,-1] % [04,6,—1]. Each small square is further
divided into two triangles.

The continuous matrix functions Q(&) and S(€) are
chosen to be linear within each segment and the con-
tinuous matrix function R(¢, 0) is chosen to be linear
within each triangular:

00y + ahy) = (1 — )0y + aQp-1, S(6), + ahy)
=(1-a)S,+aS,-1, a€l0,1],
R(8, + ahy, 0, + Bhy)
(1 = ) Rpg + BRy-1,4-1
+(a — /B)Rpfl.,qa a> B,
(I = B)Rpg + aRp—14-1

+(B—a)Rpy1, < 3. (11)

Thus the LKF is completely determined by
Pl?QPa Spa quvPJ] = 07 17 ) N

The LKF condition V(x,) > Vo(x,) > eo||x(0)||* is
satisfied for some ¢ >0 (see 10) if S, >0, p=

A R A R

0,1,...,N and
P 0
2
where
- — 1 1 1
0=(0001 -0, S=diag{ =S, =S1.e7-Sx |
l;o:hl,l;p:max{hp,hpﬂ},p:1,...,N—l,l;N:hN,
Roo Rop ... Roy
- Rio Ri1 ... R
i | R0 Ru w | (13)
RNO Rn1 ... Ry
050 0] il 0[]
0 Ay 0 ,
—S(-1)
(9a —¢)
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Eqgs (8), (9), and (11) imply (cf. [10])

1
Vix,) = ¢T2¢ - /0 T () Sap(a)da + X7 (1) Ux(1) — X(t — g)Ux(t — g)

F2XT(OPT + 57 () PTIIFi(1 — ) + Biw(1) [ / #(a da] Ra [ / e da} (14)
1 @ 0 R(Iu ¢(OZ)
— T () &7 (B ( )( >da}dﬁ+2CT/ + (1 = 2a) D9 p()der,
L@ ) (G 1+ (1 - 20)000)
where ( is given by (9b) and
T) N _ 1 T T T
o () =[x (t+ 61 +ah) x (t+ 0, +ah) ... x" (t+ 0y + ahy)],
_ PT[ 0 I } N [0 AOT]P+ [Q0+QOT+S0 0} Pl 4, B {QN}
== A() -1 1 -1 0 0 PgAl 0 ’
* —SN
Sq = diag{Sy — S1,S1 — S2,..., Sn—1 — Sn}
Ryir Ry ... Ryaw Riai Ruaiz - Ruan
Ryp1 Ru ... Ruon Ryt Ruwz ... Raown
RdS: 5 da — 5
(152 1)
Rynt Runy .. Runw Ruanvi Raana - Ruany
Raspg = 1/2[hy + hg](Rp—14-1 — Rpg) + 1/2[hy — hy](Rp4—1 — Rp-14),
Rdapq 1/2[/11, ](Rp_qu_l — Rp—l.q - Rp,q—l + R]h,q)a p,gq=12..,N,
D' =[D} DS ... Dy}, D* = [D% D¢ ... D4,
hyP3 Agp “‘h?p(RO,pfl + Rop) — (Qp-1 — O)) - 4 (Rop-1 — Rop)
Dy, = | hyP{Aqgp +h7p(Qﬂ—1 +0p) WSS hp 7(Qp-1—0p)
_/17,, (RN,p—l + RNp) 7 (RN,p—l - RNp)
Applying arguments of [10], [12] to (14) we verify
that for any matrices U > 0 and W > 0 the following
holds:
. ! , U -1 D + (1 —2a)D9)"
V(x,) = —/ [gT[Dj + (1 = 2a) D] ng(a)] N D>+ D¢ do
0 —IN Sd - W gb(a)
_ - 1 N 1 r 1
+gT(E+DSUDST+§D“UD“T)g— / o () Sap(a)da — [ / ¢(a)da] Ry [ / qb(a)da}
0 0
1 « W Ry, ¢(oz)
[ ) )da] a5
At w w) Lo
+ X1 () Ux(1) — x(t — g)Ux(t — g) + 2[xT () PY + X7 (¢) PT|[Fx(t — g) + Byw(?)]. (16)
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We assume that Assuming that
0 —IN Cd(g) = Cdpv P = 17 “'an XS [gpaapfl]v (22)
[_IN S,/—W} > 0. (17)
Then applying to the first integral in the right side of
(16) Jensen’s inequality (see e.g. [12]), we find that
. 1 7 —I 1 s o a1 T
Vix)< — / (T + (1 - 200D ()] dor v / D+ (1 = 200D ¢
0 —Iy Sa—W|Jo )
- _ 1 ~ 1 1 T 1
+ CT(E + D'UDT +§D"UD“T)( - / o () Syp()da — [ / ¢>(a)da] Ry [ / qb(a)da]
0 0 0
W Rua ¢(04) .T . . .
3)) < ) < )dadﬁ + X' (UX(r) — %(t — g)Ux(t — g)
+ 2 )P2 + x7(0)PI][Fx(t — g) + Biw(1)]
E+1pUDT Ds ¢
— ¢ / o7(a)da)| = F3 1
D’ —Rgs = Sa+ W] | [y o(a)da

+

Eliminating U from the latter inequality we con-
clude that if

W Ry,
[* W] >0, (19)
then
V(x,) <T@y 4 2[x7 (1) PT + X7 (¢) PT|Byw(1),
1 1
W=7 #7(a)da / 67 (0)do
0 0
Mr—g) *(1—g), (20)
where
I PIF] [07]
= D’ D PIF| |U
0 0
OL |« —Ry—S;+W 0 0 0
* % —3(Sq—W) 0 0
* * * U 0
| * * * * -U

e () (G
2[x

T(t)PY + X" (1) PY][Fx(t — g) + Biw(1)].

(21)

)dadﬁ +xT (U (1) — x(t — g)Ux(t — g)

where (g4, are constant matrices, we find (after

application of Schur complements to z7z) that ¥ +
2Tz —?wlw < 0if

| PIB T ]
| PIB 0
|0 ct
P | 0 h CE
| <0. (23)
| 0 hyCly
| 0 0
* —721,1 0
B * -1, |

Moreover, & < 0 implies that Sy1 > ...Sy > 0. Hence,
(13) guarantees V(x;) > €l|x(1)||*, e >0. We thus
proved the following BRL:

Lemma 2.1: The system (2) is internally stable and has
Hoo-norm less than ~ if there exist n x n-matrices
Py >0, Py, P;, U, Sp = SpT, Qp, qu = R;;, p=
0,1,...N, ¢g=0,1,.... N and nN x nN-matrix W such



6

that LMIs (12), (19) and (23) are satisfied with
notations defined in (13), (15) and (21).

Notice that in the case of uniform mesh, one can
choose W =0 and (19) can be omitted.

Remark 2.1. In the case of system matrices from the
uncertain time-invariant polytope

M M
Q=) £ 0<f<L Y fi=1,
j=1 j=1

Q_].:[A}’) A9 ) B P Cf,’”,
(24)

wherei=0,1,p=1,..., N by the descriptor discretized
method one have to solve the LMIs (12), (23), (19)
simultaneously for all the M vertices §);, applying
the same matrices P, and Py and solving for the M
vertices.

Example 2.1. /7] Consider the system
x(t) —fx(t—g) = —0.7x(t) — 0.3x(t — r)

_ /0 x(t+60)do + 0.5w(z), z(1) = x(2),

r

where f=0. For the values of r given in Table 1 it has
been verified in [7] that the system is internally stable
and has H.-norm ~* given in Table 1, where ~* is found
as the peak value of the frequency response of the
transfer function

Tuu(s) = 0.5s[s” + /57 - exp(—gs) +5-0.7s

+ 0.35 - exp(—rs) + 1 — exp(—rs)] .

By applying Lemma 2.1 for N=1 N =1,2,3 we find
the same (for N = 1,2.3) values we find the achievable
value of v, given in Table 1, which are close to ~v*.

Considering next f# 0, we find the corresponding
values of v* (for g=r) and ~, (for all g > 0). As it is

Table 1. Example 2.1.
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expected, for greater values of f the influence of the term
fx(t —g) on the performance of the system becomes
greater and, thus, the gap increases between the actual
value of ~* for g=r and g-independent value of
achievable ~,.

Example 2.2: Consider (2), where
A {_45 0] A =0, Co=][11]
0 — 0.5 1 A1 — Uy 0 — 3

1
C1:07 C{1:07 BIZ |:1:|)

0=y o] eeng
a0 =[5 O] eegn

Stability of the latter system was studied in [10] via
discretized Lyapunov functional and asymptotic stabi-
lity was guaranteed for all r < rpqy, where for N=24
the following values of ryqx were found: r%jf = 1.97 and
rfx;f = 1.99. The analytical value is ry = 2. In this
example, application of Lemma 2.1 (with uniform
mesh) leads to a slightly slower speed of convergence:
N2 = 1.84, N4 = 1.97 and rN-6 = 1.99.

Applying next Lemma 2.3 with N=2 and N=4 we
calculate for different values of r the minimum achiev-
able values of ~n given in Table 2. For r < 1.5 the
resulting values of v are close to the exact values ~* (see

Table 2), obtained in the frequency domain.

Example 2.3: The following model of a mechanical
rotation cutting process has been considered in [21]
(see also the references therein).

%(1) + 26wnx (1) + wix(1)

k
= (x(t = 7(1))=x(1), k>0, (25)
where m = 100, w, = 632.45,& = 0.039585. The peri-
odic delay has a form 7(t) = 7o + 6f1(Q),6 > 0,Q > 0,
where f1(t) is a sawtooth function (cf. [21] ). For T(t) =

r 0.1 0.2 0.3 0.4 0.5 0.6
f=0 ~¥* 0.4545 0.4167 0.3846 0.3571 0.3333 0.3125
f=0 ol 0.4548 0.4167 0.3847 0.3572 0.3334 0.3129
f=02 ~¥* 0.4227 0.4154 0.3837 0.3565 0.3329 0.3123
f=02 M 0.4647 0.4279 0.3964 0.3723 0.3581 0.3613
f=05 ~¥* 0.4253 0.4151 0.3835 0.3563 0.3328 0.3121
f=0.5 M 0.5320 0.4993 0.4813 0.4864 0.5216 0.5843
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Table 2. Example 2.2.

r 0.1 0.5 1 1.5 1.7

v* 2.10 2.65 3.95 7.79 12.62
Y2 2.11 2.67 4.01 8.03 17.22
Y4 2.11 2.67 4.00 8.00 13.34

0 the system is not stable. It was shown in [21] that
(25) is asymptotically stable for high enough frequency
Q, if the following comparison system with distributed
delay (and w=20) is asymptotically stable:

¥(2) + 2€w,x(1) + w2x(1) + wlw(2)
l*T()thsx 26
_ku (9)d0_() (26)

m —10—6 26

Choosing as in [21] 6 = 0.051y and applying Lemma
2.1 with N=21, we find that (26) is asymptotically

stable for all 0 < k < 10°, which is close to results of

[21].

It was shown in [21] that ““distributing” of the point-
wise delay over the interval enlarges the stability region.
the stability region of the comparison distributed delay
system (26 ) is larger than the one of the original system
(25) with the discrete constant delay T = 1y. Consider
(25), where z(t) = x(t), 7o = 0.06, 6 = 0.257), £ = 10
k=10* and w, = 632.45. Applying Lemma 2.1 for
N=7 we find the minimum achievable ~ = 1.00020.
This is close to the analytical value ~* = 0.9997
obtained in the frequency domain. When taking the
same setup with the discrete delay 7(t) = 19 and N=7
we find a slightly larger value of v = 1.00023, whereas
the analytical one is v* = 1. In this example “distrib-
uting”’ of the point-wise delay over the interval slightly
improves the Hoo-norm of the system.

3. Hoo Control

Given the following system:

0
5(1) = Aox(r) + Arx(t — ) + / Aa(0)x(1 + 6)d0

+Fx(t—g)+ Biw(t) + ;?;u(l),
z(t) = Cox(t) + C1x(t —r)

0
+/ Ca(0)x(t+0)d0 + Du(r),

r

(27)

where x(7) € R" is the system state vector, u(z) € R”
is the control input, z(¢) € R¥ is the controlled output,

7

A;, Biyy,Ci, i = 0,1 are constant matrices, 4; and Cy
are given by (10) and (22) for some discretization
segments [0,,6,_1], p =1,..., N. We are looking for a
stabilizing state feedback

0

ult) = Koxl0) + Kix(t =)+ [ Ka(@)xe+ €0
h 28)
where K is piecewise constant:
Ki0) =Ky, p=1,..,N, 0€0,,0,_1]. (29)
The closed-loop system (27), (28) has the form

x(t) =(A¢ + BKo)x(t) +
—|—Bz/ Ky (¢
2(t) = (Co + DKy)x(1) +

0
+ / (Ca(€) + DK4(€))x(1 + €)de.

r

(41 + BKy)x(t —r)

x(t+&)de + Fx(t — g),

(C] + DK])X([ — r)

(30)

Following [24] we choose P; = 6P,,6 € R, where §is a

tuning scalar parameter. Note that P, is nonsingular

due to the fact that the only matrix which can be

negative definite in the second block on the diagonal

of (21) is —6(P> + PI). Defining:

—1 = ~ ~ = -

2 [Pl Qp Sp qu U]
=p'[pP QP S,P R,P UP],

Y, = Kip, i=0,1, Y5 = dep,

P

I
~

p=1,.,Ngqg=1,. NW/\J—P WP,
j=1,..,N, k:j,...,N.
(31)
we multiply (12) and (21), (19) by diag{P, ..., P} and

its transpose, from the right and the left, we obtain:

Theorem 3.1: Given v > 0 and N > 0, the system (27)
is stabilizable and achieves Hoo-norm less than -~y if
for some tuning scalar parameter 5 there exist n X n
matrices 0 < Py, P, R,, U, S = Qw = Rqu,
p=0,1,...N, ¢g=0,1,...,N, ij7]—l , k=
Js -y N and m x n-matrices Yy, Y1, Y4, such Zhat satisfy
(19) and the following LMIs:

*

Fl RgS‘} >0, (32)
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i R FP 0
= D'+ Y D“ SFP U
0 0
* —Rgs—Sq+ W 0 0 0
* * =3(Sq—w) 0 0
k k * —U O
* * * * —U
* % * * *
E * * *
where
AoP + PTAY + BYy + YIB" + Qo + O + Sp
== *
* —
hBY 4 Wi
Y = [Y]...7Y] Y, = OhBY gy, |, W= -
0 wl,

and where R, Q, S and D*, D, Rys, Ryq, Sy are given by
(13) and (15) correspondingly with bars over
R,y, 0,8y, p=1,..,N, g=1,...,N.

The gains of state-feedback (28) are given by
Ky = Y()Pil7 K, = Y]Pil, de = ,/ppil.

Remark 3.1: Our design method is based on the
assumption Py = 6P5,6 € R, which may be restrictive.
We note that since P, and Ps are slack variables, the
above assumption is not too much conservative. An
alternative method seems to be the iterative one. The
iterative method based on the discretized Lyapunov
functional is not desirable, because each iteration may
need a lot of computational time.

Remark 3.2: Consider (27) with Ay, A1, Agp, F, B1, B>,
Co,C1,Cq (p=1,...,N) and D from the uncertainty
polytope given by (24), where

=44y 4 F0 BY B ¢y ) po|.

To design a state-feedback Hoo control law for the
system inside the polytope one have to solve LMIs (32),
(33) and (19) simultaneously for all the M vertices,
applying the same matrices P and Yy, Y1, Y.

E. Fridman and G. Tsodik

B PTCI+YIDT
OB 0

0 PTCT+YTDT

m YL DT

hNY5NDT <0, (33)
0 0

0 0
0 0
721q 0
* _Ik

I/T/N N

Py — P+6PTAT +8Y[BT AP+ BY, - Qy

—6P — 6PT 8(A1P+ BYy) |,

* 75‘]\/

I/i/]N

Example 3.1: The following model of combustion Hoo
control in rocket motor chambers has been considered in
[26]: Eq. (27), where

T Ap 0 0 0
0 0 0 -5
A0: ’
~0.5556 0 —0.5556 0.5556
0 1 1 0
=40 g 1 9
ay— 0 0 0 0 7
0 0 0 0
L 0 0 0 0

‘Ap| < Appax, A1 =0,

B,=[0500", r=1, F=0,
1 000

B =[0010]", Co= 7
0000

1
C;=0,Cy=0, D= [o]'

The above model was derived in [2], [3]. Robust sta-
bilization of this model (described as a system with
norm-bounded uncertainty ) has been studied in [ 28] via
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a simple LKF, where it has been found that the system is
stabilizable by memoryless state-feedback u(t) =
Kox(1) for Appay = 0.16. Simulations in [28] showed
that the system is stabilizable for greater value of
Apmax = 0.5. Representing the above system as a
polytopic system with two vertices reached by Ap =
+Appax and applying Remark 3.2 for Apyax = 0.5 with
6=1 and N=1 we find that the system is internally
stabilizable by memoryless state-feedback and has Hoo-
norm less than v = 3.5262.

Consider next Apya = 0.15. It has been found in
[26] by using a simple descriptor Lyapunov functional
and the polytopic representation that the Hoo control
problem is solvable for the following minimum values

of v:
v = 14 for u(t)

= Kox(1) + KL;/

—r

= Kox(1), v =22 for u(t)
0
x(t+ 0)db.

By applying Remark 3.2 with uniform mesh for N =
1,2,3,5,10 and choosing (for simplicity) 6 =1, we
achieve essentially smaller values of ~y (see Table 3) for
either memoryless control uy or delayed control u, or
distributed control uy given by

uo (1) = Kox(1), u(

/Kd

where Ky is defined by (29) (only values of Ky are
given in Table 3). The values of v become smaller for
greater values of N. The distributed control law leads to
a better performance than the other controllers.
In Table 3 we give also the computational time
(in minutes) and the number of the scalar variables in

= Kox(1) + Ky x(t —r),

( K()X l + 9)0’9

Table 3. Example 3.1.

the LMIs (including ). We see that the improvement is
achieved at the expence of the computational time.

Though the improvement of the Hoo performance by
distributed control law was discussed in the existing
literature (see e.g. [6], [18]), the presented method
seems to be the first LMI method that shows this
improvement explicitly in the numerical example
(compare e.g. with the result (35) of [26]).

4. On Numerical Complexity and Further
Improvements

Alternative Lyapunov-based methods for Hoo-norm
analysis of system (2) are the methods which apply
simple Lyapunov functionals. Thus, in the case of
constant 4, , C; the following simple LKF can be
chosen (see [14], [26])

ol [0 2]

o () Sx(s)ds + / (€ Us(€)de

/ﬂ/te s)dsdf
/ / Ryx(s)dsdo, (36)

with positive constant matrices Py, U, R, Ry, S. It is
well-known that the LMIs derived via simple LKFs
are convex in r: if these LMIs are feasible for r = r,
then they are feasible for all 0 < r <ry. Hence, the
resulting value of achievable ~(rg) for r = ry is valid
for all r € [0, 7] and therefore v(ro) > sup,ejo ] ¥(r),

N u ~ Ky K, /Ky Time nb vars
1 U 1.53 18.76 -10.50 5.16 -24.53 0 0.15 255
1 uj 1.52 19.81 -5.41 2.70 -12.26 0.07 0.01 -0.11 -0.003 0.15 259
1 Uy 1.47 42.09 -17.53 3.21 -51.70 -19.74 7.74 -0.75 24.05 0.15 259
2 im 1.12 5.44 -3.97 1.06 -8.67 0 0.3 487
2 u 1.11 8.25-5.44 0.93 -13.07 -0.26 0.15 -0.06 0.32 0.3 491
2 Uy 1.10 30.28 -16.54 -1.44 -48.42 -25.51 13.37 1.85 40.98 0.3 491
3 m 1.065 2.28 -2.49 -0.36 -4.25 0 1 815
3 u; 1.063 1.75-2.04 -0.21 -3.11 -0.25 0.23 0.09 0.42 1 819
3 Uy 1.054 7.157 -7.2064 -1.84 -14.10 -9.04 8.50 2.83 18.25 1 819
5 im 1.045 12.39 -7.48 -0.30 -20.38 0 6 1759
5 u 1.047 0.003 -0.058 -0.002 0.012 -0.001 0.003 -0.000 -0.001 6 1763
5 Uy 1.040 24.85 -12.96 -3.47 -39.16 -18.85 9.22 3.26 29.61 6 1763

10 uo 1.043 12.02 -7.11 -0.55 -19.61 0 70 5799

10 uj 1.039 11.64 -6.64 -0.81 -18.41 -1.03 0.49 0.06 1.37 70 5803

10 Uy 1.035 35.94 -18.58 -5.35 -57.14 -30.57 15.14 5.29 48.62 70 5803
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i.e. y(ro) > sup,cp,, 7" (r). We note that *(r) is not
necessarily a monotonically increasing function of r
(see e.g. Example 2.1 and also Example 1 from [0]).
Thus, in Example 2.1 the simple LKFs-based methods
cannot achieve v < 0.4545 for r = 0.6, whereas the
discretized LKF with N=1 leads to v =0.3132. Of
course, the improvement is achieved at the account of
numerical complexity.

LMISs for stability analysis of neutral systems via the
simple LKF (36) involve 4.5n% + 2.5n scalar variables,
whereas the descriptor discretized LKF-based LMIs
for N=1 involve 7.5n> +2.5n scalar variables (of
symmetric matrices Py, Ry, Roo, So, S| and non-sym-
metric Py, P3, Qo, Q1, Ro1). The difference of 3n” scalar
variables may become essential for large n.

If the same numerical result can be achieved by a
discretized method and by a simple LKF-based one,
then the number of scalar variables in the LMIs by the
discretized Lyapunov functional method may be less.
Thus, the stability in the well-known example

=5 g+ Ofse-n

has been recently analyzed by delay fractioning
method and a corresponding simple LKF in [8]. The
stability for r = 6.05 in this example was proved by
using 42 scalar variables in LMIs of [8], whereas the
discretized methods for N = 1 lead to the same result
and use less variables (27 by method of Gu [9] and 35
by the descriptor discretized LKF). We note, that the
result by simple LKF is stronger in the sense that the
stability is proved for all 0 < r < 6.05.

For arbitrary N and uniform mesh, the number
of scalar variables for stability analysis by the
descriptor discretized method is 3n? +n+ (2N +
1) @ +N(3N+3) % The descriptor discretized
Lyapunov method uses additional matrices P, and Ps
and thus involves 2#> more scalar variables than the
method of Gu [9]. These additional matrices can lead
to a slower convergence in the stability analysis than
by Gu’s method (see Example 2.2). However, as we
mentioned in Introduction, the main advantages of
the descriptor method are in the simplified form of
BRL and in the application to the design problems.
We note that in the design we choose P, = 6 P; with a
scalar 6 and thus the difference in the number of scalar
variables becomes n>. However, the only possible
design procedure via the discretized method of Gu
seems to be the iterative one, which is not desirable since
each iteration may need a lot of computational time.

The reduction of the number of variables in the
LMI conditions via complete LKF is important

E. Fridman and G. Tsodik

direction for the future research. Some results in this
direction were presented recently in [23], where LKF
with special forms of Q and Rin (1) led to LMIs with a
fewer variables, but with worse numerical results.
Finally the results for neutral systems may be further
improved by combining the augmented Lyapunov func-
tional [17] with the complete one. However, such
improvements lead to further computational complexity.

5. Conclusions

Descriptor discretized Lyapunov functional method is
extended to state-feedback Hoo control of systems
with both, discrete and distributed delays. The new
method leads to simplified BRL conditions for sys-
tems with distributed delays and, for the first time,
treats both, discrete and distributed delays, via dis-
cretized Lyapunov functional method. In three
numerical examples considered for the retarded-type
systems, the resulting values of Hoo-norm converge to
the exact ones. The presented method seems to be the
first LMI method that in some numerical examples
leads to values of H,,-norm close to analytical ones
for retarded type systems.

A numerical example shows that the distributed
delay term in the state feedback improves the Hoo
performance. The new method essentially improves
the existing Hoo control results even for small values
of N. Moreover, it provides new tools for the
important design problems, such as Hoo control of
systems, which are not stabilizable without delay.

The presented method, as other discretized Lyapu-
nov functional methods, is encountered with heavy
computations. The reduction of the number of vari-
ables in the LMI conditions as well as further
improvements (especially for neutral systems) may be
the topics for the future research.
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