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1. Introduction

Positive systems appear in various models that are composed
of interconnected subsystems, where each subsystem presents
a compartment. Compartments exchange variable nonnegative
quantities of material with conservation laws describing transfer,
accumulation, and outflows between compartments and the
environment [1]. Transfers between the compartments have to
account time for material, energy, or information in transit
between the compartments. This leads to analysis of delay systems
of the following form

x′(t)+ A0(t)x(t)+

m
k=1

Ak(t)x(t − θk(t)) = 0,

t ∈ [0,+∞), (1.1)
x(ξ) = ϕ(ξ), ξ < 0, (1.2)

where ϕ : (−∞, 0) → Rn is a given continuous n-vector
function, defining what can be substituted into the equation for
t − θk(t) < 0, Ak(t) =


akij(t)


i,j=1,...,n

, k = 0, . . . ,m, are
n×nmatrices with bounded piecewise continuous entries, x(t) =
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col {x1(t), . . . , xn(t)} ∈ Rn is n-vector with absolutely continuous
components, the delays θk(t) are measurable bounded functions
for k = 1, . . . ,m.

In this paper, we deal with the positivity-based stability
analysis of (1.1). This approach was started in [2], and was further
developed in [3–7]. For difference and delay differential systems
this approach was developed in [8–11,6,1,12–18]. For applications
of this approach to additive neural networks see [19,13]. In all
the above works that treat (1.1) it is assumed that there is a non-
delayed term A0(t)x(t) with positive terms on the main diagonal
of A0. These diagonal terms should be sufficiently large in order
to achieve dominance of the main diagonal of the matrix A0
over all the other terms (see, for example, the condition (5) of
Theorem 3.1 in [1] and condition (iii) of Theorem III. I in [16]).
Such an assumption can be interpreted as follows: the diagonal
ordinary differential equations describing every compartment,
should be exponentially stable, and interconnections between
different compartments should be sufficiently weak in order not
to destabilize the system (1.1).

The approaches of above papers are not applicable to
stabilization of an open-loop unstable system

x′(t)+ A0(t)x(t)+

m
k=1

Ak(t)x(t − θk(t)) = u(t),

t ∈ [0,+∞), (1.3)

by the delayed feedback u(t) = −
m

k=1 B(t)x(t − τk(t)), with
τk(t) > θk(t) > 0 for t ∈ [0,+∞), k = 1, . . . ,m. The latter
inequality may naturally appear in applications. The presence of
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time-delay in the control input may destabilize the closed-loop
systems, as pointed out, for example, in [20,21,7]. One of the
popular approaches used to cope with delays in the input is the
predictor-based approach (see e.g. [22]). Recent developments in
this area were presented in [23]. Another way to cope with delays
in the input is to reduce systems of the delay differential equations
to systems of ‘‘integral equations’’ (see, for example, [24,4] and
the references therein). This approach allows to deal with variable
delays and coefficients leading to simple stability conditions in
a form of inequalities. Based on this approach the positivity-
based stability analysis-results were provided in [25–28], where
a smallness of delays on themain diagonal was assumed instead of
their absence (see, for example, Proposition 2.3). Positivity-based
stability of neutral systemswith small delays on themain diagonal
was considered in [25,29,17] see also the recent paper [30]. Results
on stability of systems with distributed delay can be found, for
example, in [31,18], where ‘‘smallness of delays’’ on the main
diagonal is also assumed.

In the present paper, for the first time, the stability conditions
for systems with large time-varying delays are provided under
assumption of the closeness of the delays instead of the delays’
smallness. Theorems 3.2 and 3.3 present sufficient conditions for
the exponential stability in this case. Theorem 3.4 generalizes to
systems with large delays the classical theorem about equivalence
of the exponential stability, existence of positive solution to
a system of linear algebraic inequalities and the fact that a
matrix constructed from the coefficients is Hurwitz for system
of ordinary differential equations with Metzler matrix (see
Definition 2.2 and Proposition 2.2). The presented approach allows
to stabilize unstable state-delay systems by feedback with large
input delays. The corresponding result is proved under assumption
about nonoscillation of the ‘‘diagonal’’ scalar delay equations in
Theorem 3.5. A principal possibility to achieve stabilization of
system (3.22) (see below) by the feedback control (3.23), where
the delays τij(t) are greater than the state delays θij(t) of (3.22),
is formulated in Corollaries 3.1 and 3.2. The stability results are
formulated in terms of inequalities on the delays and on the
coefficients.

The present paper is organized as follows. In Section 2, we
discuss positivity-based methods in the stability analysis. In
Section 3, we formulate our main results. In Section 4, the proofs
of the main results are given.

Notations: Throughout the paper e denotes the Euler number.
L∞ is the space of essentially bounded measurable functions y :

[0,+∞) → R. For y ∈ L∞ denote y∗
= esssupt≥0y(t), y∗ =

essinft≥0y(t) and for yk ∈ L∞(k = 1, . . . ,m) − y+(t) =

maxk=1,...,m

yk(t)


, y−(t) = mink=1,...,m


yk(t)


.

2. Preliminaries on positivity and stability of time-delay
systems

Consider the non-homogeneous system

x′(t)−

m
k=1

Ak(t)x(t − θk(t)) = f (t), t ∈ [0,+∞), (2.1)

x(ξ) = 0, ξ < 0, (2.2)

where Ak(t) =

akij(t)


i,j=1,...,n

are n×nmatrices with entries akij ∈

L∞, θk ∈ L∞ for k = 1, . . . ,m, f (t) = col {f1(t), . . . , fn(t)}, fi ∈

L∞, for i = 1, . . . , n. The components xi : [0,+∞) → R
of the vector x = col {x1, . . . , xn}, are assumed to be absolutely
continuous and their derivatives x′

i ∈ L∞. A vector-function x is
a solution of (2.1) if it satisfies system (2.1) for almost all t ∈

[0,+∞).
It was explained in [24] that without loss of generality, the
zero initial condition (2.2) can be considered instead of (1.2). The
homogeneous system

x′(t)−

m
k=1

Ak(t)x(t − θk(t)) = 0, t ∈ [0,+∞), (2.3)

with initial function defined by (2.2), has n-dimensional space of
solutions [24] and this fact is the basis of solutions’ representations
which will be used below.

Let us define the Cauchy matrix C(t, s) =

Cij(t, s)


i,j=1,...,n as

follows [24]. For every fixed s ≥ 0, as a function of the variable t , it
satisfies the matrix equation

C ′

t (t, s) =

m
k=1

Ak(t)C(t − θk(t), s), t ∈ [s,+∞), (2.4)

where

C(ξ , s) = 0, for ξ < s, (2.5)

and

C(s, s) = I. (2.6)

I is the unit matrix. The general solution of system (2.1), (2.2) can
be represented in the form [24]

x(t) =

 t

0
C(t, s)f (s)ds + C(t, 0)x(0). (2.7)

Definition 2.1. The Cauchy matrix C(t, s) is said to satisfy the
exponential estimate if there exist positive numbers N and α such
thatCij(t, s)

 ≤ N exp {−α(t − s)} , i, j = 1, . . . , n,

0 ≤ s ≤ t < +∞. (2.8)

In this case we say that (2.3) is exponentially stable.

Our main results will be based on the following extension of the
classical Bohl–Perron theorem:

Proposition 2.1 ([4]). In the case of bounded delays θk(t) and
coefficients in the matrices Ak(t) (k = 1, . . . ,m), the fact that
for every bounded right-hand side f (t) = col {f1(t), . . . , fn(t)},
the solution x(t) = col {x1(t), . . . , xn(t)} of system (2.1) is
bounded on the semiaxis [0,+∞) is equivalent to the exponential
estimate (2.8) of the Cauchy matrix C(t, s).

T. Wazewski [5] proved that for system of ordinary differential
equations x′(t) = A(t)x(t) the nonnegativity of all off-diagonal
elements of A(t)

aij(t) ≥ 0 for i ≠ j, i, j = 1, . . . , n, t ∈ [0,+∞), (2.9)

is necessary and sufficient for the nonnegativity of all entries of the
Cauchy matrix C(t, s) =


Cij(t, s)


i,j=1,...,n of the system.

Definition 2.2. The matrix A is Metzler if all its off-diagonal
elements are nonnegative for t ≥ 0, i.e. (2.9) is fulfilled.

The fact that all matrices Ak(t) are Metzler together with
the smallness of diagonal delays (see condition (2.12)) implies
Cij(t, s) ≥ 0 for 0 ≤ s ≤ t < +∞, i, j = 1, . . . , n [25,26]. In
Theorems 3.1 and 3.2 of the present paper, we propose new as-
sumptions on the diagonal delay differential equations (actually,
nonoscillation of their solutions), which together with the condi-
tion that thematrices Ak(t) areMetzler, imply the nonnegativity of
C(t, s).
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Consider particular case of (2.3)

x′(t)−

m
k=1

Akx(t − θk(t)) = 0, t ∈ [0,+∞),

x(ξ) = 0, ξ < 0, (2.10)
where all the matrices Ak(t) are constant, i.e. Ak(t) ≡ Ak for t ∈

[0,+∞). In the case of θk(t) ≡ 0 for t ∈ [0,+∞), we have the
autonomous system

x′(t)− Ax(t) = 0, t ∈ [0,+∞), (2.11)
of ordinary differential equations (here A =

m
k=1 Ak). System

(2.11) is asymptotically stable (and also exponentially stable) if and
only if the matrix A is Hurwitz.

Proposition 2.2 (See, for example, [16,32]). If matrix A is Metzler, the
following 4 facts are equivalent:
(A) A is Hurwitz,
(B) there exists a constant-vector z = col {z1, . . . , zn} with all

positive components such that all components of the constant
vector Az are negative,

(C) the matrix (−A)−1 exists and all its entries are nonnegative,
(D) the system of ordinary differential equations (2.11) is exponen-

tially stable.
It is well-known that (2.10) with a Hurwitz matrix A =m
k=1 Ak can be unstable for sufficiently large delays, i.e. the

condition (A) does not imply that for all possible delays the
following condition holds:

(E) the system (2.10) is exponentially stable.

Remark 2.1. Consider, for example, the scalar delay equation
x′(t) = ax(t − θ), t ∈ [0,+∞), where a < 0, |a| θ > π

2 . It is clear
that the matrix A = a is Metzler and Hurwitz, but this equation is
unstable [20,21].

The first result about equivalence of the conditions (B) and
(E) for delay systems in the case of Metzler matrices Ak for k =

1, . . . ,m, was obtained in [26] under the additional assumption
on smallness of the products of elements on the main diagonals
in Ak, and delays. Taking into account Proposition 2.2, the result
of [26] can be presented in the following form:

Proposition 2.3. Let matrices Ak in system (2.10) be Metzler and the
following inequalities be fulfilled

Θ

m
k=1

akii ≤
1
e
, i = 1, . . . , n, (2.12)

where Θ = max1≤k≤m esssupt≥0θk(t). Then for system (2.10) the
facts (A), (B), (C) and (E) are equivalent.

In this paperwe extend Propositions 2.2 and 2.3 to systemswith
large delays.

3. Main results

We study positivity and stability of the following system:

x′

i(t)+

n
j=1

m
k=1

akij(t)xj(t − θ kij (t)) = 0, t ∈ [0,+∞),

i = 1, . . . , n, (3.1)
xi(ξ) = 0, ξ < 0, i = 1, . . . , n, (3.2)
where akij ∈ L∞, θ

k
ij ∈ L∞ for k = 1, . . . ,m.

An important role in analysis of (3.1) is played by the system of
n scalar diagonal equations (3.3), (3.2), where

x′

i(t)+

m
k=1

akii(t)xi(t − θ kii (t)) = 0, t ∈ [0,+∞),

i = 1, . . . , n. (3.3)
3.1. Positivity of the system

Definition 3.1. The system (3.1) is called positive if all the entries
of its Cauchymatrix C(t, s) =


Cij(t, s)


i,j=1,...,n are nonnegative in

the triangle 0 ≤ s ≤ t < ∞.

In all the existing results, the positivity was obtained under
the assumption of smallness of the diagonal delays θ kii (t) (see, for
example, the inequality (2.12) and its generalizations on systems
with variable delay and coefficients [25] and on equations with
distributed delay [31]). In the following assertion, we obtain the
nonnegativity of the Cauchy matrix in the case of ‘‘large’’ diagonal
delays θ kii (t), assuming a corresponding ‘‘compensation’’ of positive
and negative coefficients akii, k = 1, . . . ,m.

Denote∆i = esssupt≥0{θ
+

ii (t)− θ−

ii (t)}.

Theorem 3.1. Let the following conditions be fulfilled:

(1) for every i = 1, . . . , n, at least one of the condi-
tions 1(a) or 1(b) be fulfilled:

1(a) there exists mi such that akii(t) ≥ 0, ajii(t) ≤ 0, θ kii (t) ≥ θ
j
ii(t)

for k = 1, . . . ,mi, j = mi + 1, . . . ,m,
mi

k=1 a
k
ii(t) ≥

1
e

m
j=mi+1

ajii(t) for t ∈ [0,+∞), and t

t−θ+

ii (t)


mi
k=1

akii(s)−
1
e

m
j=mi+1

ajii(s)

ds ≤

1
e
,

t ∈ (0,+∞). (3.4)

1(b) there exists mi such that akii(t) ≥ 0 ajii(t) ≤ 0, θ kii (t) ≤ θ
j
ii(t)

for k = 1, . . . ,mi, j = mi + 1, . . . ,m,
mi

k=1 a
k
ii(t) ≥m

j=mi+1

ajii(t) for t ∈ [0,+∞), t

t−θ+

ii (t)


mi
k=1

akii(s)−

m
j=mi+1

ajii(s)

ds ≤

1
e
,

t ∈ [0,+∞), (3.5)

and s+∆i

s

mi
k=1

akii(ξ)dξ ≤
1
e

∀s ≥ 0. (3.6)

(2) akij(t) ≤ 0 for i ≠ j, i, j = 1, . . . , n, k = 1, . . . ,m.
Then system (3.1) is positive.

Remark 3.1. Results about the nonnegativity of the Cauchy
matrices obtained in [25,26] (see e.g. Proposition 2.3) follow from
Theorem 3.1 in the case of ajii(t) = 0 for j = mi + 1, . . . ,m, t ∈

[0,+∞).

3.2. Positivity-based stability conditions

Theorem 3.2. Assume the following conditions (1) and (2) are true:

(1) The condition (1) of Theorem 3.1 is fulfilled.
(2) There exist positive numbers z1, . . . , zn such that

m
k=1

akii(t)zi −
n

j=1, j≠i

m
k=1

akij(t) zj ≥ 1, t ∈ [0,+∞),

i = 1, . . . , n. (3.7)

Then
(a) system (3.1) is exponentially stable;
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(b) the integral estimates

sup
t∈[0,∞)

 t

0

n
j=1

Cij(t, s)
 ds ≤ zi, i = 1, . . . , n, (3.8)

are true;
(c) if θ kii (t) ≤ θ rij(t) for k, r = 1, . . . ,m, i ≠ j, i, j = 1, . . . , n and

m
k=1

akii(t)−

n
j=1, j≠i

m
k=1

akij(t) ≥ 1, t ∈ [0,+∞),

i = 1, . . . , n, (3.9)

the estimatesCij(t, s)
 ≤


1, t < s +Θ

exp {−β(t − s)} , t ≥ s +Θ


,

i, j = 1, . . . , n, (3.10)

where β = min1≤i≤n essinft≥0

m
k=1 a

k
ii(t)−

n
j=1, j≠i

akij(t)
andΘ = max1≤i≤n esssupt≥0θ

k
ii (t), are true.

Remark 3.2. Existence of positive numbers z1, . . . , zn and ε such
that
m

k=1

akii(t)zi −
n

j=1, j≠i

m
k=1

akij(t) zj ≥ ε, t ∈ [0,+∞),

i = 1, . . . , n,

is equivalent to condition (2) of Theorem 3.2.

Remark 3.3. Let us construct the matrix

A =



−


m

k=1

ak11(t)


∗

m
k=1

ak12(t)∗ · · ·

m
k=1

ak1n(t)∗
m

k=1

ak21(t)∗ −


m

k=1

ak22(t)


∗

· · ·

m
k=1

ak2n(t)∗
· · · · · · · · · · · ·

m
k=1

akn1(t)∗ m
k=1

akn2(t)∗ · · · −


m

k=1

aknn(t)


∗


, (3.11)

which is constant and Metzler. The conditions (A) and (B) are
equivalent for the matrix A according to Proposition 2.2. Thus, for
system (3.1) with constant coefficients and akij ≤ 0 for i ≠ j, i, j =

1, . . . , n, k = 1, . . . ,m, the condition (2) of Theorem 3.2 is true if
and only if the matrix (3.11) is Hurwitz.

Remark 3.4. Estimates (3.8), (3.10) play an important role in the
analysis of systems with uncertain coefficients/delays from given
intervals [24,4,29].

Theorem 3.3. Assume that the following conditions are true:

(1) the conditions (1) and (2) of Theorem 3.1 are fulfilled;
(2) there exist positive numbers Z1, . . . , Zn and nonnegative ε1, . . . ,

εn such that at least one εi1 is positive, max1≤i≤n,i≠i1 esssupt≥0m
k=1 a

k
ii1
(t) < 0, and

n
j=1

m
k=1

akij(t)Zj ≥ εi, t ∈ [0,+∞),

i = 1, . . . , n. (3.12)

Then system (3.1) is exponentially stable.
3.3. Generalization of Proposition 2.2 on delay systems

Theorem 3.4. Assume that condition (1) of Theorem 3.1 is ful-
filled, all the coefficients akij in system (3.1) are constants, and off-
diagonal coefficients are nonpositive, i.e. akij ≤ 0 for i ≠ j, i, j =

1, . . . , n, k = 1, . . . ,m. Then system (3.1) is exponentially stable if
and only if the matrix

A =



−


m

k=1

ak11


m

k=1

ak12 · · ·

m
k=1

ak1n
m

k=1

ak21 −


m

k=1

ak22


· · ·

m
k=1

ak2n
· · · · · · · · · · · ·

m
k=1

akn1 m
k=1

akn2 · · · −


m

k=1

aknn




, (3.13)

is Hurwitz.

Remark 3.5. Under the conditions of Theorem 3.4, the constant
matrix of coefficients A in (3.1) is Metzler and system (3.1)
is positive according to Theorem 3.1. Theorem 3.4, giving the
equivalence of assertions (A) and (E) (see Proposition 2.2, where
the matrix A is given by (3.13)), actually implies the equivalence of
the assertions (A), (B), (C) and (E) for delay system (3.1).

Remark 3.6. If all conditions of Theorem 3.4 are satisfied and the
matrixAdefined by (3.13) is Hurwitz, the following equalities hold:

lim
t→∞

 t

0

n
j=1

Cij(t, s)
 ds = zi, i = 1, . . . , n, (3.14)

where z = col {z1, . . . , zn} is the solution of the algebraic systemn
j=1

m
k=1 a

k
ijzj = 1, i = 1, . . . , n. Thus, solving the latter

algebraic system, we arrive at the best possible result (3.14),
i.e. estimates (3.8) on the Cauchy matrix in Theorem 3.2 cannot be
improved.

3.4. Stabilization of systemswith state-delays by the delayed feedback

Consider the system

x′

i(t)−

n
j=1

m
k=1

akij(t)xj(t − θ kij (t)) = u(t),

where u(t) = −
n

j=1
m

k=1 b
k
ij(t)xj(t − τ kij (t)). The closed-loop

system is given by

x′

i(t)−

n
j=1

m
k=1

akij(t)xj(t − θ kij (t))

+

n
j=1

m
k=1

bkij(t)xj(t − τ kij (t)) = 0,

t ∈ [0,+∞), i = 1, . . . , n, (3.15)
xi(ξ) = 0, ξ < 0, i = 1, . . . , n, (3.16)

where the coefficients akij, b
k
ij and the delays τ kij are measurable

essentially bounded functions.

Remark 3.7. Application of Theorem 3.2 to the stability analysis
of (3.15) may lead to hard limitations. Indeed, condition (2) of
Theorem 3.2 implies that

m
k=1 a

k
ii(t) have to be sufficiently large

for i = 1, . . . , n, but from conditions 1(a) and 1(b) it follows that
they have to be small enough. In the following assertion we avoid
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this limitation, assuming the smallness of the differences τ kij (t) −

θ kij (t) of input and state delays, the corresponding ‘‘compensation’’
of the coefficients akij(t) by bkij(t) described by inequalities (3.17)
and (3.18), and condition (3.20).

Denote∆i = esssupt≥0{τ
+

ii (t)− θ−

ii (t)}.

Theorem 3.5. Assume that the following conditions (1) and (2) are
satisfied.
(1) For every i = 1, . . . , n, at least one of the conditions 1(a)

or 1(b) holds:
1(a) akii(t) ≥ 0 and bkii ≥ 0 (k = 1, . . . ,m) and τ rii (t) ≥ θ kii (t)

for k, r = 1, . . . ,m,
m

k=1 b
k
ii(t) ≥

1
e

m
k=1 a

k
ii(t) for t ∈

[0,+∞), and t

t−τ+

ii (t)


m

k=1

bkii(s)−
1
e

m
k=1

akii(s)


ds ≤

1
e
,

t ∈ (0,+∞), (3.17)

where bkii(ξ) = akii(ξ) = 0 for ξ < 0.
1(b) akii(t) ≤ 0 and bkii(t) ≤ 0 (k = 1, . . . ,m) and τ rii (t) ≥ θ kii (t) for

k, r = 1, . . . ,m,
m

k=1(b
k
ii(t)− akii(t)) ≥ 0 for t ∈ [0,+∞), t

t−τ+

ii (t)


m

k=1

(bkii(s)− akii(s))


ds ≤

1
e
,

t ∈ [0,+∞), (3.18)

where bkii(ξ) = akii(ξ) = 0 for ξ < 0, and s+∆i

s

mi
k=1

akii(ξ) dξ ≤
1
e

∀s ≥ 0. (3.19)

(2) There exists a positive ε such that
m

k=1

bkii(t)−

m
k=1

akii(t) ≥ ε, t ∈ [0,+∞),

i = 1, . . . , n (3.20)

and

max
1≤i≤n

n
j=1,j≠i


m

k=1

akij∗

1 +

1
ε


m

k=1

akij∗ +
bkij∗



× (τ kij (t)− θ kij (t))
∗
+

1
ε

m
k=1

akij(t)− bkij(t)
∗ < 1. (3.21)

Then system (3.15) is exponentially stable.

One of the goals of this paper is to ensure stabilization of state-
delay system

x′

i(t)+

n
j=1

aij(t)xj(t − θij(t)) = ui(t), t ∈ [0,+∞),

i = 1, . . . , n, (3.22)
where aij : [0,+∞) → (−∞,+∞), aii : [0,+∞) → [ε,+∞),
where ε > 0, θij : [0,+∞) → [0,+∞), by the delayed feedback
control

ui(t) = −

n
j=1

bij(t)xj(t − τij(t)), t ∈ [0,+∞),

i = 1, . . . , n, (3.23)
where aij, bij, θij, τij ∈ L∞, and the input delays τij(t) are greater
than the state delays θij(t) of this system. Speaking about exponen-
tial stabilization, we mean that the corresponding to (3.22), (3.23)
closed-loop system is exponentially stable. Theorem 3.5 leads to
the following corollaries.
Corollary 3.1. System (3.22) can always be exponentially stabilized
by the control (3.23) with the delays τij(t) > θij(t) for i, j =

1, . . . , n, t ∈ [0,+∞).
The following assertion explains how the coefficients bij(t) and

delays τij(t) could be chosen in (3.23). Denote a = max1≤i,j≤n,i≠jaij∗.
Corollary 3.2. It is sufficient for the exponential stabilization of
system (3.22) by the control (3.23), to choose bij(t) = aij(t) for
i ≠ j, bii(t) = aii(t) − ε ≥ 0, τij(t) = θij(t) + δ, ε > 0, δ > 0, for
i, j = 1, . . . , n, such that

θii(t)+ δ ≤
1
eε
,

 t+δ

t
aii(ξ)dξ <

1
e
, t ∈ [0,+∞),

i = 1, . . . , n, (3.24)

(n − 1)a

1 +

2
ε
a

<

1
δ
. (3.25)

It is clear that choosing ε small enough, we achieve the first
inequality in (3.24), then we can choose δ small enough such that
the second inequality in (3.24) and (3.25) is fulfilled.

3.5. Examples

Example 3.1. Consider the following system of delay differential
equations with constant coefficients and time-varying delays:

x′

1(t)+ x1(t − θ11(t))− b1x1(t − θ11(t)− ε1(t))
= a12x2(t − θ12(t)),

x′

2(t)+ x2(t − θ22(t))− b2x2(t − θ22(t)− ε2(t))
= a21x1(t − θ21(t)),

(3.26)

where 0 ≤ θii(t) ≤ 1.8, 0 < εi(t) ≤ 0.2. The coefficients
a12 ≥ 0, a21 ≥ 0, b1 ≥ 0 and b2 ≥ 0 are assumed to be uncertain.
For b1 = b2 = a12 = a21 = 0 the system may be unstable (e.g. for
θii = const > π

2 ). To stabilize (3.26) we choose b1 = 0.85 and
b2 = 0.9, this leads to the following closed-loop system:

x′

1(t)+ x1(t − θ11(t))− 0.85x1(t − θ11(t)− ε1(t))
= a12x2(t − θ12(t)),

x′

2(t)+ x2(t − θ22(t))− 0.9x2(t − θ22(t)− ε2(t))
= a21x1(t − θ21(t)).

(3.27)

The existing Lyapunov-based methods [20,21] and positivity-
based methods for small delays [25,29,26] are not applicable to
stability analysis of (3.27) even for a12 = a21 = 0. The results
of [33] guarantee positivity and stability of the system with a12 =

a21 = 0, but are not applicable if the latter coefficients are nonzero.
Theorem 3.1 guarantees positivity for all nonnegative a12 and a21.
Moreover, Theorem 3.4 gives necessary and sufficient conditions
for exponential stability of (3.27) in the form of the following
inequality: a12a21 < 0.015.

Example 3.2. Consider the systemof n delay differential equations
with bounded time-varying coefficients and bounded large delays

x′

i(t)+ xi(t − θii(t))− bi(t)xi(t − θii(t)− εi(t))

=

n
j=1,j≠i

aij(t)xj(t − θij(t)), (3.28)

where 0 < bi∗ ≤ bi(t), εi(t) > 0 for t ∈ [0,+∞), i = 1, . . . , n.
Note that (3.28) for n = 2 coincides with (3.26), where the existing
methods [25,29,26,20,21] are not applicable. Theorem 3.2 (see also
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Remark 3.2, where z1 = · · · = zn = 1) implies the following
sufficient condition for the exponential stability of system (3.28):

(1 − bi∗)(θii(t)+ εi(t)) ≤
1
e
, εi(t) ≤

1
e
, (3.29)

and there exists ε > 0 such that bi(t) +
n

j=1,j≠i

aij(t) + ε <

1, t ∈ [0,+∞), i = 1, . . . , n. By Theorem 3.1 inequalities (3.29)
guarantee positivity of system (3.28) for aij(t) ≥ 0. In the case of
constant coefficients bi(t) = bi, we obtain that the inequalities
εi(t) ≤

1
e and existence of a positive ε such that

n
j=1,j≠i

aij(t) +

ε < 1 − bi ≤
1

e(θii(t)+εi(t))
, t ∈ [0,+∞), i = 1, . . . , n, imply

the exponential stability of (3.28). If all aij(t) = aij are nonnegative
constants and

θii(t) ≤ 5.9, 0 < εi(t) ≤ 0.1, 0.95 ≤ bi < 1, (3.30)

then (3.29) is fulfilled and, according to Theorem 3.4, (3.28) is
exponentially stable if and only if ∆

i

∆
> 0 for all i = 1, . . . , n. Here

∆ =


1 − b1 −a12 · · · −a1n
−a21 1 − b2 · · · −a2n
· · · · · · · · · · · ·

−an1 −an2 · · · 1 − bn

 ,
and ∆i is obtained from ∆ by setting col {1, . . . , 1} instead of the
ith column. Let us consider (3.28) for n = 3 under condition (3.30)
and a12 = 0.03, a13 = 0.02, a21 = 0.01, a23 = 0.02, a31 =

0.02, a32 = 0.01, b2 = 0.96, b3 = 0.95. In this case system (3.28)
is exponentially stable if and only if b1 < 0.975.

Example 3.3. In [32] (see Example 2), a model which could, for
example, be used to describe a formation of four vehicles is
considered. Following [34] we consider a more realistic situation,
where the distance between the vehicles and the position
of a certain vehicle are measured with delays θ(t) and τ(t)
respectively. Introducing delays in drivers’ reactions, we can
present this model in the following form:

x′

1(t) = a13[x3(t − θ(t))− x1(t − θ(t))] − b11x1(t − τ(t)),

x′

2(t) = a23[x3(t − θ(t))− x2(t − θ(t))]

+ a21[x1(t − θ(t))− x2(t − θ(t))] − b22x2(t − τ(t)),

x′

3(t) = a34[x4(t − θ(t))− x3(t − θ(t))]

+ a32[x2(t − θ(t))− x3(t − θ(t))] + b33x3(t − τ(t)),

x′

4(t) = a43[x3(t − θ(t))− x4(t − θ(t))] − b44(t)x4(t − τ(t)).

(3.31)

In the case of θ = τ = 0, b22 = b33 = 0, b11 = 1, b44 = 4
we get the system of Example 2 in [32]. The parameters aij ≥ 0
represent position adjustments based on distance measurements
between the vehicles. The situation analyzed in [32], reflects
the case when the first and fourth vehicles can maintain stable
positions on their own, but the second and third vehicles rely
on the distance measurements for stabilization. Our objective is
to find conditions on the coefficients and delays in system (3.31)
that guarantee its exponential stability. Note that the exponential
stabilization in the case of θ = τ = 0 can be achieved also by
the direct control only on third vehicle. Theorem 3.3 implies the
following:

Proposition 3.1. Let θ = τ = 0, b11 = b22 = b44 = 0. Then
system (3.31) is exponentially stable for every positive number b33.

Theorems 3.2 and 3.1 imply the exponential stability and positivity
of system (3.31) respectively:
Proposition 3.2. If τ(t) > θ(t), bii > 0 for i = 1, . . . , 4, (a13 +

b11)τ (t) ≤
1
e , (a23 +a21 +b22)τ (t) ≤

1
e , (a34 +a32 +b33)τ (t) ≤

1
e ,

(a43 + b44)τ (t) ≤
1
e for t ∈ [0,+∞), then system (3.31) is positive

and exponentially stable.

Consider the case where the control input enters only the third
vehicle: b33 > 0, b11 = b22 = b44 = 0. Here Theorems 3.3 and
3.1 imply the exponential stability and nonnegativity of the Cauchy
matrix:

Proposition 3.3. If τ(t) > θ(t), b33 > 0, b11 = b22 = b44 =

0, a13 > 0, a23 > 0, a43 > 0, a13τ(t) ≤
1
e , (a23 + a21)τ (t) ≤

1
e , (a34 + a32 + b33)τ (t) ≤

1
e , a43τ(t) ≤

1
e for t ∈ [0,+∞), then

system (3.31) is positive and exponentially stable.

4. Proofs

Lemma 4.1. Let the condition (1) of Theorem 3.1 be fulfilled, then the
Cauchy functions of all scalar diagonal equations (3.3) are positive in
the triangle 0 ≤ s ≤ t < +∞.

Proof. The proof is a straightforward extension of the proof of
Theorem 9.5 and Corollary 9.2 [33] from the case of one pair to m
pairs of delays.

Proof of Theorem 3.1. The initial value problem

x′

i(t)+

n
j=1

m
k=1

akij(t)xj(t − θ kij (t)) = fi(t), xi(ξ) = 0,

ξ < 0, xi(0) = 0, i = 1, . . . , n (4.1)

is equivalent to the system of integral equations

xi(t) = −

 t

0
Ci(t, s)

n
j=1,j≠i

m
k=1

akij(s)xj(s − θ kij (s))ds

+

 t

0
Ci(t, s)fi(s)ds, i = 1, . . . , n. (4.2)

System (4.2) can be presented in the vector form

x(t) = (Tx)(t)+ ψ(t),

where x = col {x1, . . . , xn}, with the operator

(Tx)(t)

= −col

 t

0
Ci(t, s)

n
j=1,j≠i

m
k=1

akij(s)xj(s − θ kij (s))ds

n

i=1

, (4.3)

xi(ξ) = 0, ξ < 0, i = 1, . . . , n, (4.4)

and the vector-function

ψ(t) = col
 t

0
Ci(t, s)fi(s)ds

n

i=1
. (4.5)

Lemma 4.1 implies the positivity of the Cauchy functions Ci(t, s) of
all n scalar diagonal equations (3.3) in the triangle 0 ≤ s ≤ t <
+∞. Together with the assumption akij(t) ≤ 0 for i ≠ j, i, j =

1, . . . , n, k = 1, . . . ,m, this leads to the positivity of the operator
T . On every finite interval [0, ω], the spectral radius of the operator
T : Cn

[0, ω] → Cn
[0, ω], where Cn

[0, ω] is the space of continuous
vector-functions y : [0, ω] → Rn, is zero [24]. There exists a
bounded operator (I − T )−1

= I + T + T 2
+ T 3

+ · · ·, which is
positive. Now it is clear that for every vector f = col {f1, . . . , fn}
with nonnegative components f1, . . . , fn, all the components of
the solution-vector x = col {x1, . . . , xn} of system (4.2) will be
nonnegative. We can conclude from solution representation (2.7)
that all elements of the Cauchy matrix C(t, s) are nonnegative in
the triangle 0 ≤ s ≤ t < +∞.
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Proof of Theorem 3.2. Assume for simplicity that t − θ kij (t) ≥ 0
for i, j = 1, . . . , n, k = 1, . . . ,m, t ≥ 0. Consider the initial value
problems for the differential equations

x′

i(t)+

n
j=1

m
k=1

akij(t)xj(t − θ kij (t)) = fi(t), t ∈ [0,+∞),

i = 1, . . . , n, (4.6)

and

y′

i(t)+

m
k=1

akii(t)yi(t − θ kii (t))−

m
j=1,j≠i

m
k=1

akij(t) yj(t − θ kij (t))

= fi(t), t ∈ [0,+∞), i = 1, . . . , n (4.7)

with the same initial conditions

xi(0) = βi, yi(0) = βi, i = 1, . . . , n. (4.8)

These problems are equivalent to the systems of the integral
equations

xi(t) = −

 t

0
Ci(t, s)

m
j=1,j≠i

m
k=1

akij(s)xj(s − θ kij (s))ds

+

 t

0
Ci(t, s)fi(s)ds + Ci(t, 0)βi, i = 1, . . . , n, (4.9)

yi(t) =

 t

0
Ci(t, s)

m
j=1,j≠i

m
k=1

akij(s) yj(s − θ kij (s))ds

+

 t

0
Ci(t, s)fi(s)ds + Ci(t, 0)βi, i = 1, . . . , n, (4.10)

where Ci(t, s) are the Cauchy functions of the diagonal equations
(3.3), respectively.

Define the operators T and |T | : Cn
[0,∞) → Cn

[0,∞), where
Cn

[0,∞) is the space of measurable essentially bounded functions
by the equalities (4.3) and

(|T | y)(t)

= col

 t

0
Ci(t, s)

n
j=1,j≠i

m
k=1

akij(s) yj(s − θij(s))ds

n

i=1

, (4.11)

respectively.
The condition (1), according to Lemma 4.1, implies that the

Cauchy functions Ci(t, s) of the diagonal scalar equations (3.3) sat-
isfy the inequalities Ci(t, s) > 0 in the triangle 0 ≤ s ≤ t < +∞.
The operator |T | : Cn

[0,∞) → Cn
[0,∞) is a positive Volterra

operator. On every finite interval [0, ω], the spectral radius of the
operator |T | : Cn

[0, ω] → Cn
[0, ω] is zero (where Cn

[0, ω] is the
space of continuous vector-functions y : [0, ω] → Rn) [24]. Then
there exists a bounded operator (I−|T |)−1

= I+|T |+|T |
2
+|T |

3
+

· · ·, which is positive. Since y = (I −|T |)−1(ψ + r), whereψ is de-
fined by (4.5) and r(t) = col {r1(t), . . . , rn(t)} , ri(t) = Ci(t, 0)βi,
then for every nonnegative fi and βi, i = 1, . . . , n, all the com-
ponents yi of the solution-vector to integral equation (4.10) and
to problem (4.7), (4.8) are nonnegative. It means that all elements
C0
ij (t, s)


i,j=1,...,n

of the Cauchy matrix C0(t, s) of system (4.7) are
nonnegative.

Substituting yi(t) = zi, i = 1, . . . , n, into the left-hand side
of (4.7), we obtain there

m
k=1 a

k
ii(t)zi −

n
j=1,j≠i

m
k=1

akij(t) zj.
Now it is clear that yi(t) = zi satisfies the following initial value
problem:

y′

i(t)+

m
k=1

akii(t)yi(t − θ kii (t))

−

m
j=1,j≠i

m
k=1

akij(t) yj(t − θ kij (t)) = ψi(t),

t ∈ [0,+∞), yi(0) = zi, i = 1, . . . , n (4.12)

where

ψi(t) =

m
k=1

akii(t)zi −
n

j=1,j≠i

m
k=1

akij(t) zj,
t ∈ [0,+∞), i = 1, . . . , n. (4.13)

According to condition (2) of Theorem 3.2, ψi(t) ≥ 1 > 0. It is
clear that in the case βi = zi, i = 1, . . . , n, this vector function
z = col {z1, . . . , zn} satisfies also the system of integral equations
(4.10). We have

zi =

 t

0
Ci(t, s)

n
j=1,j≠i

aij(s) zjds
+

 t

0
Ci(t, s)ψi(s)ds + Ci(t, 0)zi, (4.14)

for i = 1, . . . , n, leading to

z = (|T | z) (t)+ Φ(t), (4.15)

where the vectorΦ(t) is defined by the equality

Φ(t) = col
 t

0
Ci(t, s)ψi(s)ds + Ci(t, 0)zi

n

i=1
. (4.16)

From the inequalities ψi(s) ≥ 1 > 0 for t ∈ [0,+∞), i =

1, . . . , n, it follows that every component of the vector Φ(t) is
greater than a positive constant.

The solution y = col {y1, . . . , yn} of the initial value problem
(4.12) can be written in the form

y(t) =

 t

0
C0(t, s)ψ(s)ds + C0(t, 0)z, (4.17)

where C0(t, s) =

C0
ij (t, s)

n
i,j=1

is the Cauchy matrix of system
(4.7) and ψ = col {ψ1, . . . , ψn}.

By virtue of the theorem about the integral inequality (see
Theorem 5.6, in paragraph 2, Chapter 2 of the book [35]), the
spectral radius of the completely continuous operator |T | :

Cn
[0,∞) → Cn

[0,∞) is less than one. It follows from this fact and
nonnegativity of the Cauchy matrix C0(t, s) that the solution y =

col {y1, . . . , yn} of system (4.7) is bounded for every bounded right
hand side f = col {f1, . . . , fn}. Now the Bohl–Perron theorem (see
Proposition 2.1) implies the exponential estimate (2.8), i.e. there
exist positive numbers N and α such thatC0

ij (t, s)
 ≤ N exp {−α(t − s)} , i, j = 1, . . . , n,

≤ s ≤ t < +∞. (4.18)

Using representation (4.17) for solution of initial value problem
(4.12), we obtain

zi =

 t

0

n
j=1

C0
ij (t, s)ψi(s)ds +

n
j=1

C0
ij (t, 0)zi,

i = 1, . . . , n. (4.19)
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Nonnegativity of all elements C0
ij (t, s) of the Cauchymatrix C0(t, s)

implies the inequality t

0

n
j=1

C0
ij (t, s)ds ≤ zi, i = 1, . . . , n. (4.20)

By virtue of Theorem 5.3 in Chapter 2 of the book [35], the
following inequality for the spectral radii of the operators T and
|T | : Cn

[0,∞) → Cn
[0,∞) is true: ρ(T ) ≤ ρ(|T |) < 1.

Comparing now solutions x and y of problems (4.6)–(4.8)
and (4.8) respectively, we obtain |xi(t)| ≤ |yi(t)| for t ∈

[0,+∞), i = 1, . . . , n. Using the representations of solutions, we
obtain

Cij(t, s)
 ≤ C0

ij (t, s) for i, j = 1, . . . , n, in the triangle
0 ≤ s ≤ t < +∞ and consequently exponential estimate (2.8)
is true for the Cauchy matrix C(t, s) of system (3.1).

Assume now that the inequalities (or at least one of them)
t − θ kij (t) ≥ 0 for t ≥ 0 are not true. In this case we extend
all the coefficients on the interval [−Θ, 0) such that θij(t) ≡ 0
for t ∈ [−Θ, 0), the coefficients aij(t) can be extended such that
condition (1) of Theorem 3.1 is fulfilled for t ∈ [−Θ,+∞).

It is clear that the Cauchy matrices of system (3.1) and new
extended on [−Θ,+∞) system coincide in the triangle 0 ≤ s ≤

t < +∞. Repeating all the proofs on the interval [−Θ,+∞),
we obtain the proof of the assertions (a) and (b) of Theorem 3.2
without the assumption t − θij(t) ≥ 0 for t ≥ 0.

To prove estimate (3.10) consider the problem

(£s
i v)(t, s) ≡ x′

i(t)+

m
k=1

akii(t)xi(t − θ kii (t))

−

n
j=1,j≠i

m
k=1

akij(t) xj(t − θ kij (t)) = 0,

t ∈ [s,+∞), i = 1, . . . , n, (4.21)

xi(ξ) = 0, ξ < s, i = 1, . . . , n. (4.22)

It is clear from the definition of the Cauchy matrix that for
every fixed s, the columns of the C0(t, s) satisfy the problem (4.21),
(4.22) with the initial condition C0(s, s) = I . The matrix-function
v(t, s) = col {v1(t, s), . . . , vn(t, s)}, where the components
vij(t, s)(i = 1, . . . , n) of the vector vj(t, s) are defined by the
equalities

vij(t, s) =


1, t < s +Θ

exp {−β(t − s)} , t ≥ s +Θ


, i = 1, . . . , n,

satisfies the inequalities

(£s
i v)(t, s) ≥ 0, t ∈ [s,+∞), i = 1, . . . , n. (4.23)

vi(ξ) = 0, ξ < s, i = 1, . . . , n. (4.24)

All entries of the Cauchy matrix C0(t, s) of system (4.7) are
nonnegative in the triangle 0 ≤ s ≤ t < +∞ according to
Theorem3.1 and, consequently. This implies v(t, s) ≥ C0(t, s) and,
using the inequality C0(t, s) ≥ |C(t, s)|, we obtain that v(t, s) ≥

C0(t, s) ≥ |C(t, s)| in the triangle 0 ≤ s ≤ t < +∞.

Proof of Theorem 3.3. Let us demonstrate that choosing suffi-
ciently small δwe can obtain the vector zi1 = Zi1 , zi = Zi(1+δ) for
i = 1, . . . , n, i ≠ i1, satisfying the condition (2) of Theorem 3.2.

Denoting ε = −max1≤i≤n esssupt≥0
m

k=1,i≠i0
akii1(t), and,

using the assumption that ε > 0 in the condition (2), we get for
all i ≠ i1 the following

n
j=1

m
k=1

akij(t)zj =

n
j=1

m
k=1

akij(t)Zj + δ

n
j=1

m
k=1

akij(t)Zj

− δ

m
k=1

akii1(t)Zi1 ≥ εi + δεi + ε ≥ ε > 0, t ∈ [0,+∞).(4.25)
For i = i1 we can choose sufficiently small δ such that ε0 ≡

δ
m

k=1 a
k
i1 i1
(t)Zi1 < εi1 and get the existence of a positive ε such

that
n

j=1

m
k=1

aki1j(t)zj =

n
j=1

m
k=1

aki1j(t)Zj + δ

n
j=1

m
k=1

aki1j(t)Zj

− δ

m
k=1

aki1 i1(t)Zi1 ≥ εi1 + δεi1 − ε0 ≥ ε > 0,

t ∈ [0,+∞). (4.26)

Thus, the condition (2) of Theorem 3.2 is fulfilled. Reference to
Theorem 3.2 completes the proof.

Proof of Theorem 3.4. In order to prove sufficiency we note that
conditions (A) and (B) are equivalent for the Metzler matrix A (see
Proposition 2.2). The condition (B) coincides with the condition (2)
of Theorem 3.2. Then all the conditions of Theorem 3.2 are fulfilled
and, according to Theorem 3.2, we obtain the exponential stability
of system (3.1).

To prove necessity, let us consider initial value problem
(4.6), (4.8), where βi = zi, fi(t) ≡ 1 for t ≥ Θ, i =

1, . . . , n,Θ = max1≤i,j≤n max1≤k≤m esssupt≥0θ
k
ij (t). The constant

vector z = col {z1, . . . , zn} satisfies this system. The representation
of solutions (2.7) leads to the equalities

zi =

 t

0

n
j=1

Cij(t, s)fi(s)ds +

n
j=1

Cij(t, 0)zi

=

 Θ

0

n
j=1

Cij(t, s)fi(s)ds +

 t

Θ

n
j=1

Cij(t, s)ds

+

n
j=1

Cij(t, 0)zi, i = 1, . . . , n. (4.27)

The exponential estimate (2.8) of the Cauchy matrix implies
that Θ

0

n
j=1

Cij(t, s)fi(s)ds → 0, Cij(t, 0) → 0 for t → +∞,

i = 1, . . . , n. (4.28)

The condition Cii(s, s) = 1 leads to existence of the interval
[s, s + δ] where Cii(t, s) > 0. This and nonnegativity of Cij(t, s)
lead to the conclusion that all components of the constant vector
z are positive. We have proven that the exponential estimate (2.8)
implies assertion (B) for system (3.1). Equivalence of (A) and (B)
(see Proposition 2.2) completes the proof.

Proof of Theorem 3.5. Assume for simplicity that t − θ kij (t) ≥ 0
and t − τ kij (t) ≥ 0 and use the transform

xi(t) =

 t

0
Ci(t, s)ui(s)ds, t ∈ [0,+∞), i = 1, . . . , n, (4.29)

where Ci(t, s) are the Cauchy functions of the diagonal scalar
equations

x′

i(t)−

m
k=1

akii(t)xi(t − θ kii (t))+

m
k=1

bkii(t)xi(t − τ kii (t)) = 0,

t ∈ [0,+∞), (4.30)

where xi(ξ) = 0, ξ < 0, and ui ∈ L∞, i = 1, . . . , n.
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After substitution (4.29) into the system

x′

i(t)−

n
j=1

m
k=1

akij(t)xj(t − θ kij (t))

+

n
j=1

m
k=1

bkij(t)xj(t − τ kij (t)) = fi(t), (4.31)

i = 1, . . . , n, with the zero initial functions, we get the following
system

ui(t)−

n
j=1,j≠i

m
k=1

akij(t)
 t−θkij (t)

t−τ kij (t)


uj(s)+

 s

0

∂

∂s
Ci(s, ξ)uj(ξ)dξ


ds

+

n
j=1,j≠i

m
k=1

[bkij(t)− akij(t)]
 t−τ kij (t)

0
Cj(t, s)uj(s)ds = fi(t), (4.32)

for t ∈ [0,+∞), i = 1, . . . , n, for u = col {u1, . . . , un} , ui ∈ Ln
∞
.

According to the definition of the Cauchy function, Ci(t, s) as a
function of t for fixed s satisfies the equation

∂

∂t
Ci(t, s) =

m
k=1

akii(t)Ci(t − θ kii (t), s)

−

m
k=1

bkii(t)Ci(t − τ kii (t), s), (4.33)

where Ci(t, s) = 0 for t < s. According to Lemma4.1, the condition
(1) implies that Ci(t, s) ≥ 0 in the triangle 0 ≤ s ≤ t < +∞. From
this and the condition (2) it follows that t

0
Ci(t, s)ds ≤

1
ε
, i = 1, . . . , n.

Define the operatorΩ : Ln
∞

→ Ln
∞

by the formula

(Ωu)(t) = col


n

j=1,j≠i

m
k=1

akij(t)
 t−θkij (t)

t−τ kij (t)


uj(s)+

 s

0

∂

∂s
Cj(s, ξ)uj(ξ)dξ


ds

−

n
j=1,j≠i

m
k=1

[bkij(t)− akij(t)]
 t−τ kij (t)

0
Cj(t − τ kij (t), s)uj(s)ds

n

i=1

. (4.34)

Estimating its norm, we obtain

∥Ω∥ ≤ max
1≤i≤n

n
j=1,j≠i

 m
k=1

akij∗

1 +

1
ε

m
k=1

akij∗ +
bkij∗



· (τ kij (t)− θ kij (t))+
1
ε

m
k=1

bkij(t)− akij(t)
. (4.35)

Now it is clear that inequality (3.21) implies ∥Ω∥ < 1. It follows
from this fact that solution x = col {x1, . . . , xn} of system (3.15)
is bounded for every bounded right hand side f = col {f1, . . . , fn}.
The Bohl–Perron theorem (see Proposition 2.1) claims that this fact
implies the exponential estimates of the Cauchy matrix of system
(3.15).

Let us assume now that at least one of the inequalities t −

θ kij (t) ≥ 0 or t − τ kij (t) ≥ 0 for t ≥ 0, i, j = 1, . . . , n, k =

1, . . . ,m, is not true. In this case we extend all the coeffi-
cients on the interval [−Θ, 0), where Θ = max1≤i,j≤n max1≤k≤m
esssupt≥0


θ kij (t), τ

k
ij (t)


, such that θ kij (t) ≡ 0 and τ kij (t) ≡ 0

for t ∈ [−Θ, 0). The coefficients akij(t) and bkii(t) can be extended
such that the conditions (1) and (2) of Theorem 3.5 are fulfilled for
t ∈ [−Θ,+∞). This completes the proof of Theorem 3.5.
Proof of Corollary 3.1. Under the conditions of Theorem 3.5, we
have: m = 1,mi = 1, τ 1ij (t) = τij(t), θ1ij (t) = θij(t), τ+

ii (t) =

τii(t), θ−

ii (t) = θii(t), b1ii(t) = bii(t), a1ij(t) = −aij(t). Choosing
bii(t) such that bii(t) − aii(t) is small enough, we can guarantee
the feasibility of inequality (3.18). Choosing τii(t) close to θii(t), we
can achieve that (3.19) is valid. Thus we can guarantee that the
condition 1(b) is satisfied. It is clear also that, choosing bij(t) =

aij(t) for all off-diagonal coefficients (i ≠ j) and τij(t) close enough
to θij(t), we can guarantee that the inequality (3.21) is valid.

Proof of Corollary 3.2. To prove it, we only note that conditions
(3.24) and (3.25) imply inequalities (3.18), (3.19) and (3.21).
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