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Abstract.For linear singularly perturbed system with delay sufficient conditions for sta-
bility for all small enough values of singular perturbation parameter ¢ are obtained in the
general case, when delay and ¢ are independent. The sufficient delay-dependent condi-
tions are given in terms of linear matrix inequalities (LMIs) by applying an appropriate
Lyapunov-Krasovskii functional. LMIs are derived by using a descriptor model trans-
formation and Park’s inequality for bounding cross terms. A memoryless state-feedback
stabilizing controller is obtained. Solution is given also in the case of systems with poly-
topic parameter uncertainties. Numerical examples illustrate the effectiveness of the new
theory.

Keywords. Singular perturbations, time-delay systems, stability, LMI, delay-dependent
criteria.

AMS (MOS) subject classification: This is optional. But please supply them when-

ever possible.

1 Introduction

It is well-known that if the ordinary differential system of equations is
asymptotically stable, then this property is robust with respect to small
delays (see e.g. [2], [12]). Examples of the systems, where small delays change
the stability of the system are given in [13] (see also references therein).
All these examples are infinite-dimensional systems, e.g. difference systems,
neutral type systems with unstable difference operator or systems of partial
differential equations. Another example of a system, sensitive to small delays,
is a descriptor system [18]. Recently a new example has been given of a finite
dimensional system that may be destabilized by introduction of small delay
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in the loop [5]. This is a singularly perturbed system. Consider the following

simple example:
e(t) = u(t), wu(t)=—z(t—h), (1)

where z(t) € R and € > 0 is a small parameter. Eq. (1) is stable for h = 0,
however for small delays h = g with g > /2 this system becomes unstable
(see e.g.[2]).

Stability of singularly perturbed systems with delays has been studied in
two cases: 1) h is proportional to € and 2) £ and h are independent. The first
case, being less general than the second one, is encountered in many publi-
cations (see e.g. [3], [LO] and references therein). The second case has been
studied in the frequency domain in [19], [20] (see also references therein). A
Lyapunov-based approach to the problem leading to LMIs has been intro-
duced in [5] for the general case of independent delay and €. LMI conditions
are only sufficient and, thus more conservative. However the method of LMIs
is better (than the frequency domain methods) adapted for robust stability
of systems with uncertainties and for other control problems (see e.g.[17],
[22)).

LMTI stability conditions of [5] are based on the conservative model trans-
formation of regular systems with delay used by many authors (see [17], [16]
and references therein). The conservatism of [5] , as well as in the regular
case (see e.g. [14], [11]) is twofold: the transformed equation is not equiva-
lent to the corresponding differential equation and the bounds placed upon
cross terms are wasteful. Recently a new (equivalent to the original equation)
model transformation - a descriptor one - has been introduced for stability
analysis of regular systems with delay [4]. Moreover, a new bounding of the
cross terms and new delay-dependent stability criterion have been obtained
in [21].

In the present paper we adopt the methods of [4] and [21] for constructing
appropriate Lyapunov-Krasovskii functionals and deriving LMI stability con-
ditions for singularly perturbed systems with delay in the case of independent
delay and £. We show that if a certain e-independent LMI is feasible than the
system is asymptotically stable for all small enough ¢ > 0. Moreover, given
€ > 0 we obtain e-dependent LMI conditions for stability. Thus, by solving
the latter LMI for increasing values of ¢, one can find an upper bound on &
preserving stability. The stability conditions are obtained also for systems
with polytopic uncertainties. We construct an e-independent state-feedback
controller, that stabilizes the system for all small enough £ > 0, by solv-



ing e-independent LMI. The latter LMI corresponds to the state-feedback
stabilization of the corresponding descriptor system.

Notation: Throughout the paper the superscript ‘I’ stands for matrix
transposition, R™ denotes the n dimensional Euclidean space with vector
norm |- |, R™*™ is the set of all n x m real matrices, and the notation P >0,
for P € R™ ™ means that P is symmetric and positive definite. We also
denote z¢(0) = z(t + 6) (6 € [—h,0]).

2 LMI Stability Conditions

2.1. Delay-dependent conditions for € > 0. Given the following system:
E.i(t) = Aox(t) + A1z(t — h), (2)

where z(t) = col{z1(t),z2(t)}, z1(t) € R™, z2(t) € R™ is the system state
vector, The matrix E. is given by

I,
E,. = [ ' 0 ] ) (3)
0 eI,

where ¢ > 0 is a small parameter. The time delay h > 0 is assumed to
be known. We took for simplicity one delay, but all the results are easily
generalized for the case of any finite number of delays.

Denote n 2 n1 +ns. The matrices Ag and A, are constant n X n matrices
of appropriate dimensions. The matrices in (2) have the following structure:

A Ap

A=
Az Ai

,i=0,L (4)

In this section we require Ags to be nonsingular.
Consider the fast system

Zo(t) = Aoaza(t) + Araz2(t —g), g€ [0,00) (5)
with characteristic equation
A(N) = det(M — Agy — Age™9). (6)
A necessary condition for robust stability of (2) is given by

Lemma 2.1 [5] Let (2) is stable for all small enough € and h. Then for all
g > 0 characteristic equation (6) has no roots with positive real parts.
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According to this lemma we derive criterion for asymptotic stability which
is delay-independent in the fast variables and delay-dependent in the slow
ones. Following [4] we represent (2) in the equivalent form:

Io(t A A A A A
exa(t) 03 + A3 04 (t) + 14 ot — ) — 13
y(t) Aot + A Ao A1z A
(7)
The latter system can be represented in the form:
0
E.x(t) = Aoz (t) + A1z(t — h) + H/ y(t + s)ds, (8)
—h
where
T1 I, 0 0 0 0 I,
T=| 29 |, Ec = 0 el 0 , Ag=| Aoz + A1z Ao 0
Y 0 0 Onixmy Aot + A1 A —Iny,
0 0 0 0
Ai=|0 Ay 0|, H=| —As;3
0 A12 0 _All
9)

A Lyapunov-Krasovskii functional for the system (7) has the form:
V(t) = 3T () E.P.2(t) + [, aT(1)Szi()dr + [}, aT (1)Us(r)dr

A
+f3h ftt+o y" (s)[Ay Af}]Rs l 1 y(s)dsde

Ap
(10)
where P, has the structure of
P, P; pPT
p=|D O po=| el (11)
P, P P, P

with P11 € R"lxnl, P13 [= anxnz’ P3 € RmXm gnd
0<SeR™ ™  (0<Ue€R™*™, (< RzeR"™".

The first term of (10) corresponds to the descriptor system, the second and
the fourth terms - to the delay-dependent conditions with respect to x1 and
the third - to the delay-independent conditions with respect to 2. For e = 0
Lyapunov-Krasovskii functional of (10) corresponds to descriptor system of
(8) with € = 0 [6]. We obtain the following:



Theorem 2.2 (i) Givene > 0, h > 0, the system (2) is asymptotically stable
if there exist matrices P. € Rm+m)x(m+n) of (11) 0 < Py € R™M*™ | 0 <
Pz € Rmxm Py e RM*X" Py € R™M*™M gych that E.Py. > 0 and matrices
S =8T ¢ Rm o = UT ¢ Rr2Xn2 W e Ri+n)x(ni+n) ond R = RT €
Rmtn)x(mi+n) “that satisfy the following LMI:

0 0
¥, hX —-WT| A PT | Au
A Ajs

Con b b4l <o 12
* * —S 0
* * * —U
where
X=wt+PL,
) 0 0 O 0 ATg Aﬂ
U, =0, +WT | 45 0 0O|+|0 O 0o | W
Ai; 0 0 0 O 0
and
T
0 0 Inl 0 0 In1
‘I’séPsT Aps+ A3 Ay O + | Aoz +Aiz Aps O P,
Aot + A Age —In, Aot + A A —In,
S 0 0
0 U 0
+ 0
0 0 A0 Afg Airl]R A
Agy
(13)

(ii) Given h > 0, if there exists Py of (11) 0 < Pj; € R™*™ (0 < Pi3 €
RreXn2 Py ¢ RMXn Py ¢ RMX™M gnd matrices S = ST € Rmxm, [J =
Ul € Rraxm2 W e Rmtmx(m+n) gng B = RT € Rmtn)x(mtn) gyep
that (12) is feasible for ¢ = 0 then (2) is asymptotically stable for all small
enough € >0 and 0 < h < h.

Proof: (i) Differentiating the first term of (10) with respect to ¢t we have:

d

E:T:T(t)EEPE:T:(t) =237 (t)P.E.&(t). (14)
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Substituting (7) into (14) we obtain:

0
U, PT| A
dV(zs) _ ¢T e I¢ 14
dt 3 AL £+
* -U
A
_ [xlT(t — h)Sz1(t — h) + 35 (t — W)Uz (t — h) + [, v (s)[AL; AT ]R3 Aij y(s)ds] ,
(15)

where & 2 col{Z(t) ,z2(t — h)}, . is defined by (13) and

0
t
w0 2-2 [ OPF | A | u(s)ds
t—h
All

For any (n; + n) x (n; + n)-matrices R > 0 and M the following inequality
holds [21]:

- t la ] a(s)
-9 tihb (s)a(s)ds < /tih [ b(s) ] [ b(s)

for a(s) € R™*t", b(s) € R™*T™ given for s € [t — h,t]. Here (2,2) =
(MTR+I)R™Y(RM +1I).

Denoting W = RM P. and using this inequality for a(s) = col{0 A11 A13}y(s)
and b = P.Z(t) we obtain

R RM
MTR (2,2)

] ds (16)

n(t) <zt (t)(WT + P)RY(W + P.)z(t) + 2(z (t) — z{ (t — h)) [ 0 AL AL ] WZ(t)

0
+ [0,y (s)[0 ATy, ALIRs | Ais | y(s)ds.
All

(17)

We substitute (17) into (15). Hence, if (12) holds then dV/dt < 0 and (2)
is internally stable.

(if) If (12) is feasible for £ = 0, then it is feasible for all small enough & > 0
and thus due to (i) (2) is asymptotically stable for these values of € > 0. LMI
(12) is convex with respect to h. Hence, if it is feasible for some h then it is
feasible for all 0 < h < h.

2.2. Delay-dependent stability of the descriptor system. We will
show that (12) for ¢ = 0 guarantees asymptotic stability of the descriptor
system (2), where € = 0. The following lemma will be useful:



Lemma 2.3 [6] Assume that the difference equation
Dxy = z(t) + Ay Auz(t —g) =0

is asymptotically stable, or equivalently [12] assume that all the eigenvalues of
A541A14 are inside a unit circle. Then if there exist positive numbers a, 3, 7y
and a continuous functional V : Cpyn,[—h,0] = R such that

Blor(0)* < V() <7l8]>, V(g) < —alg(0)]?, (18)

and the function V() = V(%) is absolutely continuous for T; satisfying (7)
with € =0, then (7) (and thus (2) with e = 0) is asymptotically stable.

Consider the descriptor system (2) with e = 0. If (12) holds for e = 0, then
the Lyapunov-Krasovskii functional of (10) with € = 0 is nonnegative and
has a negative-definite derivative. By Lemma 2.3 the latter guarantees the
asymptotic stability of the descriptor system provided that all the eigenvalues
of Ay A4 are inside a unit circle. We show next that (12) with ¢ = 0 yields
the following inequality:

Al Pi3 + Pi3Aps + U Pi3Aug

<0, 19
AT Prs U (19)

that guarantees the stability of the fast system (5) for all delays g > 0. Hence
, Agy is Hurwitz and all the eigenvalues of Aj," 414 are inside a unit circle [6].

Lemma 2.4 If (12) with € = O is feasible, then (19) is feasible, the fast
system (5) is asymptotically stable for all delays g > 0, Aos is Hurwitz and
all the eigenvalues of Ag41A14 are inside a unit circle.

Proof. It is obvious from the requirement of 0 < P, 0 < P;3, and the
fact that in (12) —P; — P§ must be negative definite, that Py is nonsingular.

| Qu O
’ Ql_lQm Qs

Defining

Q1 O

Q Q , Qll E Rn1><’n,17 Q13 6 anXﬂ,z, Q3 E Rn1><n17
2 3

Poil = QO = [
(20)
and A = diag{Q, Isnin,} we multiply (12) by AT and A, on the left and

on the right, respectively. Since the term (2,2) of the matrix is equal to zero,
the latter inequality implies

Q13AL, + A0sQ13 + Q13U Q13 A1s

< 0. 21
Q13Aly -U )
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Multiplying (21) by diag{Pi3, In,} from the left and the right we obtain
(19). From (19) it follows that A4 is Hurwitz and all the eigenvalues of
AgtAyy are inside a unit circle [6].

From Theorem 2.2, Lemmas 2.3 and 2.4 we obtain

Corollary 2.5 Given h > 0, if there exists Py of (11)0 < Pj; € R™M*™ (<

P € R™*"2 Py, € RM*X" P € R™M*™ gnd matrices S = ST €
RMxm 7 =UT € Rr2xn2 W e Rmtm)x(mtn) gng B = RT € Rm+n)x(natn)
such that (12) is feasible for ¢ = 0 then (2) is asymptotically stable for all
small enough € > 0 and 0 < h < h.

Remark 1 For stability of descriptor system (2) with € = 0 it is sufficient
to require feasibility of (12) for ¢ = 0 with Pyy > 0, whereas P13 may be
non-symmetric. Positivity of P13 guarantees stability of (2) for small enough
e>0.

Example 1 [5]. Consider the system
.’fl'l = IEQ(t) +x1 (t - h), Si'g = —X2 (t) + 0.5.’172(t - h) - 2.731 (t) (22)

For h = 0 this system is asymptotically stable for all small enough ¢ since
Al and A2 hold. It is well-known (see e.g. [12]) that the fast system
Z2(t) = —x2(t) + 0.522(t — g) is asymptotically stable for all g. Thus neces-
sary condition for robust stability with respect to small ¢ is satisfied. It was
shown in [5] that the system is robustly asymptotically stable with respect to
small € and h and for € = 0.5, h = 0 the system is unstable. The conditions
of [5] are conservative. Thus for ¢ = 0 (22) is delay-independently stable [6],
while LMI of [5] for € = 0 is feasible only for h < 0.144.

Applying Theorem 2.2 we find that for 0 < e < 0.3 the system is asymp-
totically stable for all delays, while for e = 0.4 the system is asymptotically
stable for 0 < h < 0.0048 (compare with 0 < h < 0.001 obtained in [5]).
For e = 0.5 LMI (12) is not feasible for h — 0 since the system is unsta-
ble for h = 0. We see that the results of the present paper are essentially
less conservative than those of [5]. This is due to new (descriptor) model
transformation of the system and Park’s bounds of the cross terms.

2.2. Delay-independent conditions

Theorem 2.6 . Given € > 0 the system (2) is asymptotically stable for all
h > 0 if there exist n X n-matrix P. of the form

P1 6P2T

P. =
P, P




with n1 x ni-matrix P, > 0 and ny x nao-matriz P3 and n X n matrices
U=UT, R=RT that satisfy the following LMI:

PTAy+ ATP.+Q PIA,

0. 23
. v |5 (23)

If (23) is feasible for ¢ = 0, then system (2) is delay-independently asymp-
totically stable for all small enough £ > 0.

Proofis obtained by similar to Theorem 2.2 arguments by using Lyapunov-
Krasovskii functional of the form

t
V(t) = o7 () E. Po(t) + /t T (@)

Another delay-independent condition follows from Theorem 2.2. For

ol
W=-P., R= }f" (24)
LMI (12) implies for § — 0T the following delay-independent LMI:
0 0
. PI| Az PT | A
A1x A1z <0, (25)
* —-S 0
* * U
where
T
0 0 I, 0 0 I, S 0 0
U. =P | Az Aps O +| Aoz Ags O P+l 0 U 0
Agy Ape I, Aot Agx —1In, 0 0 0

If LMI (25) is feasible then (12) is feasible for small enough £ > 0 and W and
R given by (24). Thus, from Theorem 2.2 the following corollary follows:

Corollary 2.7 Given € > 0, system (2) is asymptotically stable for all g >
0,h > 0, if there exist 0 < P, = PT, Py, P3, and Q = Q7, S = ST, that
satisfy (25).

2.5. Stability of singularly perturbed systems with polytopic
uncertainties. Stability criteria of this section were derived for the system
(2) where the system matrices A;, i = 0,1 are known. However, since the
LMIs of these criteria are affine in the system matrices, the theorems can
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be used to derive criteria that will guarantee stability in the case where
the system matrices are not exactly known and they reside within a given
polytope.

Denoting Q = [ Ay A ] we assume that Q@ € Co{Q;, j = 1,..N},

namely,
N

N
Q:ijﬂj for some Offjfl,ijzl
j=1

=1

where the N vertices of the polytope are described by
Q=4 i=01].
Then e.g. from Corollary 2.5 we readily obtain the following:

Corollary 2.8 Consider the system of (2), where the system matrices re-
side within the polytope Q). This system is asymptotically stable for all small
enough € > 0 if there exist Py of (11) with 0 < Pl(f) € Rm*m_ Py €
RMXm2 ) < Py € R™X™2, Py € RMX", P; € RM*™ gnd WU) ¢
R (n+n1) x(n+n1) j=1,..,N, 0< RY ¢ R(n+m)><("+"1)7 0 < UW ¢
Rrexn2 () < SU) ¢ Rm*nt j = 1, N that satisfy (12) for ¢ = 0 and
7 =1,..., N, where the matrices

Ay, Pii,W, R, S

are taken with the upper indez j.

3 Delay-Dependent Robust Stabilization by Mem-
oryless State-Feedback

We apply the results of the previous section to the stabilization problem.
Given the system

E.i(t) = Aox(t) + A1z(t — h) + Bau(t), (26)

where E. is defined by (3). In this section we do not assume that Ags
is nonsingular. Similarly to case without delay (with A4;=0), we call such a
system as a non-standard singularly perturbed system. In the case of singular
Aps open-loop system (26) with e = o0 and without delay, i.e. with 4; = 0,
have index more than one (see e.g. [1]). Hence, index of system (26) with
u = 0 and with delay, which is defined in [6] to be equal to the index of (26)
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with A; = 0, is higher than one. Such a system have an impulse solution
[6]. The non-singularity of Ags guarantees the existence and the uniqueness
of solution to initial value problem for (26) with u = 0 [9].

We look for the state-feedback e-independent gain matrix K which, via
the control law

stabilizes system (26) for all small enough €. We derive delay-dependent
conditions since they are less conservative. Substituting (27) into (26), we
obtain the structure of (2) with Ay + B2K instead of Ay . Applying (ii) of
Theorem 3.1 to the above matrices, results in a nonlinear matrix inequality
because of the terms P2T B>K and P3T B>y K. We therefore consider another
version of the Theorem 2.1 which is derived from (12).

In order to obtain an LMI we have to restrict ourselves to the case of
Wy = 6P, where § € R is a scalar parameter. Note that for § = —1 (12)
yields the delay-independent condition of Corollary 3.6. As it was mentioned
in the proof of Lemma 2.3, P, is nonsingular. Defining Py' = Qo by (20)
and A = diag{Q, Ispin,} we multiply (12) by AT and A, on the left and
on the right, respectively. Applying the Schur formula to the quadratic term
in @, we obtain the following inequality:

r 0 0 I 0
E1+E52 h(6+VIayn, 6| A A1a QT [ 81 } QY| I, hQ*
A Ajqz 0
* —hR 0 0 0 0
* * -s 0 0 0
* * * U 0 0
* * * * ~s ! 0
* * * * * _U—l
' (28)
where
0 0 I, 0 0
Ei=| Aps+(1+8)As Aps O Q+Q" | Apz+(1+0)A1z Aos
Aot + (14 0)A1n Age —1In, Aot + (1+0)A11  Aoe
(29)
= 0
By = [K 0,,]Q + QT [0 BI].
B ny

Denoting K1 =Y we obtain the following:
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Theorem 3.1 Consider the system of (26), (3). The state-feedback law of
(27) asymptotically stabilizes (26), (3) for all small enough € > 0 if for some
prescribed scalar § € R, there exist 0 < Q1 € R™ ", 0 < § = S ! ¢
RMXm 0 <U=U"1eR™X"2 Qy € R and Q3 € R™*™ of (20)
0 < R= R ¢ Rintn)x(ntn) 'y ¢ REXN that satisfy

r 0 0 p 0 0 o
E1+E82 h(5+1)R 6| A3 | S A |T QT [ 761 :| QT | I, rQT | o 0
Apy As 0 0 Af,
* —hR 0 0 0 0 0
* * -S 0 0 0 0
* * * -U 0 0 0
* * * * -S 0 0
* * * * * -U 0
L * * * * * * —hR
(30)
where
_ 0 yT
By = [Y 0,,]+ [0 BT].
BZ ni
The state-feedback gain is then given by K =Y Q7 L
Example 2:  We consider the system
E.i(t) = A1z(t — h) + Bu(t), (31)
where
1 -1 —-0.5
E=|t "], a-= ° |, B= .
0 ¢ 1 -1 1

Note that in this example Agqy = 0. Applying Theorem 3.1 for e.g. h =1
we find the stabilizing state-feedback v = Kz, where K = [42.4 — 1940.1].
Applying next Theorem 2.2 to the closed loop system (31), u = Kz, we
verify that the closed-loop system is asymptotically stable for A < 1.39 and
all € > 0. For h = 1.4 LMIs of these theorems are not feasible for all values
of € > 0.

The LMI in Theorem 3.1 is affine in the system matrices. It can thus be
applied also to the case where these matrices are uncertain and are known
to reside within a given polytope.

4 Conclusions

A LMI solution is proposed for the problem of stability and robust state-
feedback stabilization of linear time-invariant singularly perturbed systems

T
All

}_

<0,
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with delay. Sufficient conditions for asymptotic stability of system for small
enough values of £ are given in terms of e-independent LMI, that guar-
antees stability of the corresponding descriptor system. State-feedback e-
independent stabilizing controller is derived then from this LMI for non-
standard singularly perturbed system. The controller stabilizes the descrip-
tor system and singularly perturbed system for all small enough € > 0. One
additional advantage of the new method that, unlike conventional singularly
perturbed methods (see e.g. [15]), it gives also sufficient conditions for sta-
bility for prechosen £ > 0 in terms of e-dependent LMI. By solving the latter
LMI for increasing values of € one can find an upper bound on the values of
¢ for which the system preserves asymptotic stability.

The method develops LMI approach to stability of singularly perturbed
systems with delay introduced in [5]. In this paper a new less conservative
criterion is derived. It is based on the new Lyapunov function approach
to systems with delay introduced in [5], [6] and [8]. The LMI sufficient
conditions that are obtained allow solutions to the stabilization problem in
the uncertain case where the system parameters lie within an uncertainty
polytope.

One question that often arises when solving control problems for systems
with time-delay is whether the solution obtained for certain delays h will
satisfy the design requirements for all delays h < h. The answer is the
affirmative since the LMIs in Theorems are convex in the time delays.
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