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On Delay-Dependent Passivity

E. Fridman and U. Shaked

Abstract—Sufficient conditions for passivity (positive realness) are
obtained for continuous-time, linear, retarded, and neutral-type systems.
A delay-dependent solution is given in terms of linear matrix inequalities
(LMIs) by using a descriptor model transformation of the system and
by applying Park’s inequality for bounding cross terms. A memoryless
state-feedback solution is derived. Numerical examples are given which
illustrate the effectiveness of the new theory.

Index Terms—Delay-dependent criteria, linear matrix inequalities
(LMIs), positive-real lemma, time-delay systems.

I. INTRODUCTION

Positive realness (passivity) theory plays an important role in both
electrical network and control systems (see, e.g., [1], [2]) and it has
roots in circuit theory ([3], [4]). For systems with delay of retarded-
type, positive realness has been studied by [5]–[7]. In [5], delay-in-
dependent sufficient conditions in terms of LMIs have been derived.
In [6] necessary and sufficient conditions are given in terms of posi-
tivity of some kernel matrix constructed via transition matrix. In [7]
frequency domain approach is applied and sufficient conditions are
obtained. For infinite-dimensional systems, a positive-real lemma has
been obtained in terms of Riccati operator equations (see [2] and the
references therein).

In the present note we give delay-dependent sufficient conditions
for passivity of neutral type systems. We apply descriptor-type
Lyapunov–Krasovskii functionals that were recently introduced in
[10]–[12] for delay-dependent stability and control and Park’s in-
equality for bounding cross terms [13]. We also present a memoryless
state-feedback controller via LMIs, such that the resulting closed-loop
system is passive.

Notation: Throughout the note, the superscriptT stands for matrix
transposition,Rn denotes then dimensional Euclidean space,Rn�m

is the set of alln � m real matrices, and the notationP > 0, for
P 2 Rn�n means thatP is symmetric and positive–definite. Denote
xt(�) = x(t + �)(� 2 [�h; 0]).

II. PASSIVITY AND POSITIVE REALNESS FORLINEAR TIME-DELAY

SYSTEMS

Given the following system

_x(t)� F _x(t� g) =

2

i=0

Aix (t� hi) +B1w(t)

z(t) =Cx(t) +Dw(t) (1a-b)

wherex(t) 2 Rn is the system state vector,w(t) 2 Rq is the exoge-
nous input, which can be either a control input or a reference signal
andz(t) 2 Rq is the output of the system. The time delays0 = h0,
0 < hi, i = 1; 2 andg > 0 are assumed to be known. The matrices
Ai, i = 0; . . . ; 2, F , B1 andC are constant matrices of appropriate
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dimensions. Denoteh = maxfh1; h2g. For simplicity only we con-
sider a single delayg and two delaysh1 andh2. The results of this
note can be easily applied to the case of multiple delaysg1; . . . ; gm,
h1; . . . ; hm and a distributed delay.

Equation (1a) describes a system of neutral type since it contains
a derivative with delay. In the case ofF = 0 (1a) is a retarded type
system (see, e.g., [8]). Neutral systems are encountered in modeling of
lossless transmission lines, or in dynamical processes including steam
and water pipes (see, e.g., [8] and the references therein). Unlike re-
tarded systems, linear neutral systems may be destabilized by small
changes of the delay and may be unstable even in the case when all the
roots of the characteristic equation have negative real parts [8].

We are looking for a criterion for passivity that depends on the delays
hi and does not depend ong. Delay-independence with respect tog
guarantees that small changes ing do not destabilize the system [8].
To guarantee robustness of the results with respect to small changes of
delay, we assume that the difference equationDxt = x(t)� Fx(t �
g) = 0 is asymptotically stable for all values ofg or, equivalentaly, that

A1 F is a Schur–Cohn stable matrix, i.e., all the eigenvalues ofF

are inside the unit circle.
The transfer function of (1a-b) fromw to z is given by

G(s) = C s I � Fe
�sg �

2

i=0

Aie
�sh

�1

B1 +D:

Definition 1: [1] The system (1a-b) is called passive if

2
t

0

w
T (t)z(t)dt � 0 (2)

for all t1 � 0 and for all solution of (1a-b) withx0 = 0.
Another less restrictive definition of passivity is given by [14].
Definition 2: [14] The system (1a-b) is called passive if there exists

 � 0 such that

2
t

0

w
T (t)z(t)dt� �

t

0

w
T (s)w(s)ds: (3)

for all t1 � 0 and for all solution of (1a-b) withx0 = 0.
Different model transformations were used in the past for delay-de-

pendent stability (see, e.g., [9] and [13]). Recently, a new (descriptor)
model transformation has been introduced [10]. Unlike previous trans-
formations, the descriptor model leads to a system which is equivalent
to the original one, it does not depend on additional assumptions for the
stability of the transformed system and it requires bounding of fewer
crossterms. It was shown in [10] and [12] that the latter transformation
leads to less conservative conditions for stability andH1 control.

Following [10], we represent (1a-b) in the equivalent descriptor form

_x(t) = y(t); y(t) = Fy(t�g)+

2

i=0

Aix (t� hi)+B1w(t): (4)

The latter is equivalent to the following descriptor system with discrete
and distributed delay in the variabley:

_x(t) =y(t)

y(t) =Fy(t� g) +

2

i=0

Ai x(t)

�

2

i=1

Ai

t

t�h

y(� )d� +B1w(t): (5)
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A Lyapunov–Krasovskii functional for the system (5) has the form

V (xt; yt) = x
T (t)yT (t) EP

x(t)

y(t)

+

2

i=1

t

t�h

x
T (� )Six(�)d� +

t

t�g

y
T (�)Uy(�)d�

+

2

i=1

0

�h

t

t+�

y
T (s)AT

i Ri3Aiy(s)d�d� (6)

where

E =
In 0

0 0
P =

P1 0

P2 P3
P1 > 0; U > 0; Si > 0:

(7a-b)
The first term of (6) corresponds to the descriptor system, the third—to
the delay-independent conditions with respect to the discrete delays of
y, while the second and the fourth terms correspond to the delay-de-
pendent conditions with respect to the distributed delays (with respect
to x).

We obtain the following.
Theorem 1: Assume A1. Consider the system of (1a-b). Let

there existn � n-matrices0 < P1; P2; P3; Si = ST
i , U = UT ,

Wi1; Wi2; Wi3; Wi4, Ri1 = RT
i1; Ri2; Ri3 = RT

i3; i = 1; 2 and
 � 0 that satisfy the linear matrix inequality (LMI), as shown in (8)
at the bottom of the page,where

	1 =

2

i=0

A
T
i P2 + P

T
2

2

i=0

Ai

+

2

i=1

W
T
i3Ai + A

T
i Wi3 +

2

i=1

Si

	2 =P1 � P
T
2 +

2

i=0

A
T
i P3 +

2

i=1

A
T
i Wi4

	3 =� P3 � P
T
3 +

2

i=1

Ui + hiA
T
i Ri3Ai

�i1 = [WT
i1 + P1 WT

i3 + P T
2 ]

�i2 = [WT
i2 WT

i4 + P T
3 ]

Ri =
Ri1 Ri2

RT
i2 Ri3

: (9)

Then, the following holds.

i) The system (1a-b) is passive in the sense of Definition 2.
ii) In the case of = 0 for all ! 2 R with

det i! I � Fe
�i!g �

2

i=0

Aie
�i!h 6= 0 (10)

the transfer matrixG of (1a-b) is positive real, i.e.,

G(i!)� +G(i!) � 0:

Proof: (i) We note that

x
T
y
T

EP
x

y
= x

T
P1x

and, hence, differentiating the first term of (6) with respect totwe have

d

dt
x
T (t)yT (t) EP

x(t)

y(t)
=2xT (t)P1 _x(t)

=2 x
T (t)yT (t) P

T _x(t)

0
:

(11)

Substituting (5) into (11), we obtain

dV (xt; yt)

dt
� 2zTw � w

T
w

=�T
	 P T 0

B1

�
CT

0
P T 0

F

� �I �D �DT 0

� � �U

�

�

2

i=1

x
T (t� hi)Six (t� hi)

+
t

t�h

y
T (�)AT

i Ri3Aiy(�)d� � �i

(12)

where� colfx(t); y(t); w(t); y(t � g)g and

	 P
T 0 I

2

i=0
Ai �I

+
0 2

i=0
AT
i

I �I
P

+
2

i=1
Si 0

0 2

i=1
Ui + hiA

T
i Ri3Ai

�i(t) � 2
t

t�h

x
T (t)yT (t) P

T 0

Ai

y(s)ds: (13)

For any2n � 2n-matricesRi > 0 andMi, the following inequality
holds [13]:

�2
t

t�h

b
T (s)a(s)ds

�
t

t�h

a(s)

b(s)

T
Ri RiMi

MT
i Ri (2; 2)

a(s)

b(s)
ds (14)

for a(s) 2 R2n, b(s) 2 R2n given fors 2 [t � hi; t]. Here,(2; 2) =
(MT

i Ri + I)R�1i (RiMi + I).

	1 	2 P T
2 B1 � CT h1�11 h2�21 �WT

13A1 �WT
23A2 P T

2 F

� 	3 P T
3 B1 h1�12 h2�22 �WT

14A1 �WT
24A2 P T

3 F

� � �I �D �DT 0 0 0 0 0

� � � �h1R1 0 0 0 0

� � � � �h2R2 0 0 0

� � � � � �S1 0 0

� � � � � � �S2 0

� � � � � � � �U

� 0 (8)
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Using this inequality for a(s) = colf0 Aigy(s) and
b = Pcolfx(t) y(t)g, we obtain

�i �hi [ x
T yT ]P T

M
T
i Ri + I R

�1
i (RiMi + I)P

x

y

+ 2 x
T (t)� x

T (t� hi) [ 0 AT
i ]RiMiP

x

y

+
t

t�h

y
T (s) [ 0 AT

i ]Ri

0

Ai

y(s)ds: (15)

We substitute (15) into (12) and integrate the resulting inequality in
t from 0 tot1. We obtain (by Schur complements) that (3) holds if the
LMI, as shown in (16) at the bottom of the page, is feasible, where for
i = 1; 2

Wi =RiMiP; Wi =
Wi1 Wi2

Wi3 Wi4
;

�i =W
T
i + P

T
; �i = [�i1 �i2 ] ;

�	 =	+

2

i=1

W
T
i

0 0

Ai 0
+

2

i=1

0 AT
i

0 0
Wi:

LMI (8) results from the latter LMI by expansion of the block ma-
trices.

(ii) Let ! be such that (10) holds and considerw(t) = ei!tw0,
w0 2 Rq . Define

x(t) = e
i!t

i! I � Fe
�i!g �

2

i=0

Aie
�i!h

�1

B1!0

andz(t) = Cx(t) + Dw(t). Thenz(t) = ei!tG(i!)w0, the triple
(w; x; z) satisfies (1a-b) and

2wT (t)z(t) = w
T
0 [G�(i!) +G(i!)]w0:

From (2), it follows that for allt1 � 0:

2
t

0

w
T (t)z(t)dt= t1w

�

0 (G
�(i!) +G(i!))w0 � 0:

Sincew0 is arbitrary, this yields (ii).
Remark 1: For = 0 andD = 0 LMI (8) implies that

P
T 0

B1
=

CT

0
: (17)

For

Wi = �P; Ri =
"I2n

hi
; i = 1; . . . ;m (18)

LMI (8) implies for "! 0+ the delay-independent LMI shown in (19)
at the bottom of the page. If LMI (19) is strictly feasible (i.e., holds
with strict inequality) then (8) is feasible for a small enough" > 0
and forRi andWi that are given by (18). Thus, from Theorem 1 the
following corollary holds.

Corollary 1: Items (i) and (ii) of Theorem 1 hold if there exist0 <
P1 = P T

1 ; P2; P3, U = UT andSi = STi ; i = 1; 2 such that (19) is
strictly feasible.

Remark 2: As we have seen above, the delay-dependent conditions
of Theorem 1 [with strict LMI (8)] are most powerful in the sense that
they provide sufficient conditions for both the delay-dependent and the
delay-independent cases (where (19) is strictly feasible). In the latter
case, (8) is feasible forhi ! 1; i = 1; 2. Moreover, strict LMI (8)
yields the following LMI:

�P3 � P T
3 + U P T

3 F

� �U
< 0 (20)

and, thus, implies A1 [10].
Remark 3: In the case of system (1a-b), with distributed delay

_x(t)� F _x (t� gi) =

2

i=0

Aix (t� hi)

+
0

�h

Ad(s)x(t+ s)ds+B1w(t)

and exponential matrixAd(s) = Ad1 expf�Ad0sg, Theorem 1 can
be applied to the following augmented system with discrete delays:

_v(t) =x(t)� e
A d

x(t� d) +Ad0v(t);

_x(t)� F _x(t� g) =

2

i=0

Aix (t� hi)

+Ad1v(t) +B1w(t) (21)

wherev(t) = t

t�h
eA (t�s)x(s)ds.

Example 1 [5]: We consider the following system:

_x(t) = A0x(t) +A1x(t� h) +B1w z(t) = Cx(t) (22)

�	 P T 0

B1
�

CT

0
h1�1 h2�2 �WT

1

0

A1
�WT

2

0

A2
P T 0

F

� �I �D �DT 0 0 0 0 0

� � �h1R1 0 0 0 0

� � � �h2R2 0 0 0

� � � � �S1 0 0

� � � � � �S2 0

� � � � � � �U

� 0 (16)

AT
0 P2 + P T

2 A0 +
2
i=1 Si P1 � P T

2 + AT
0 P3 P T

2 B1 � CT P T
2 A1 P T

2 A2 P T
2 F

� �P3 � P T
3 + U P T

3 B1 P T
3 A1 P T

3 A2 P T
3 F

� � �I �D �DT 0 0 0

� � � �S1 0 0

� � � � �S2 0

� � � � � �U

� 0: (19)
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where

A0 =
�a1 k

�k �a2
; A1 =

0 0

�c 0

B1 = [ 0 1 ]T ; and C = [ 0 1 ] :

In [5], it is shown that the system is passive with = 0 for

a1 > 0 a2 > 0 c
2
< a

2

2:

By Theorem 1, choosinga1 = 1, a2 = 2, c = 2:3 andk = 2:2, which
do not satisfy the conditions of [5], we find that the system is delay
independently passive with = 0. Increasingc and takingc = 2:7 we
obtain that the system is passive for0 � h < 9:8.

The polar plot of the transfer function fromw to z is depicted in
Fig. 1. It resides entirely in the right half of the complex plane.

We note that in the latter example we utilized (17) and the fact that
P T

3 B1 = 0. SinceB1 = [ 0 1 ]T andC = BT

1 P2, we had that

P2 =
1

0
�P2 +

0

1
C andP3 =

�P3
0

where �P2, �P3 2 R1�2. Thus, we solved (8) forP1, �P2, �P3, S, Ri,
i = 1, 2, 3, andWj , j = 1 . . . 4.

III. STATE-FEEDBACK CONTROL

We apply the results of the previous section to the state-feedback
design of passive systems. Given the system

_x(t)� �F _x(t� g) = �A0x(t) + �A1x (t� h1)

+ �A2x (t� h2) +B1w(t) +B2u(t)

z(t) = �Cx(t) +D12u(t) +Dw(t) (23)

wherex andw are defined in Section II,u 2 R` is the part of the
control input that is used for feedback,�F , �A0, �A1, �A2, B1, B2 are

Fig. 1. The polar plot of the transfer function fromw to z in Example 1 for
h = 9:7.

constant matrices of appropriate dimension,z is the objective vector,
�C 2 Rq�n, D12 2 R

q�` andD 2 Rq�q.
We look for the state-feedback gain matrixK which, via the control

law

u(t) = Kx(t) (24)

achieves passivity with � 0 of the closed-loop system.

�
0

B1

+QT CT

0
h1 ("1I + I) h2 ("2I + I) "1

0

A1

"2
0

A2

0
�F

� �I �D �DT 0 0 0 0 0

� � �h1R1 0 0 0 0

� � � �h2R2 0 0 0

� � � � �S1 0 0

� � � � � �S2 0

� � � � � � �U1

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

QT In

0
QT In

0
QT 0

In
h1Q

T 0 0

0 AT
1

h2Q
T 0 0

0 AT
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�S�1
1

0 0 0 0

� �S�1
2

0 0 0

� � �U�1
1

0 0

� � � �h1R
�1

1
0

� � � � �h2R
�1

2

�0 (27)
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Remark 4: The case whereB1 = B2 in the system description of
(23) corresponds to the standard case wherew is the external control
command and the actual input to the plant isw+Kx. The case where
B1 6= B2 describes the situation where only a part of the control inputs
is used for feedback.

Substituting (24) into (23), we obtain the structure of (1a-b) with

A0 = �A0 +B2K; Ai = �Ai; i = 1; 2; C = �C +D12K: (25)

Applying Theorem 1 to the above matrices, results in a nonlinear matrix
inequality because of the termsP T

2 B2K andP T

3 B2K. We therefore
consider another version of LMI condition which is derived from (16).

In order to obtain an LMI, we have to restrict ourselves to the case
of Wi = "iP , i = 1, 2, where"i 2 R is a scalar parameter. Note
that for"i = 0 (8) implies the delay-dependent conditions of [10] (for
�F = 0), while for "i = �1 (8) yields the delay-independent condition
of Corollary 1. It is obvious, from the requirement of0 < P1 and the
fact that in (8) the term�(P3+P T

3 )must be negative–definite, thatP
is nonsingular. Defining

P
�1 = Q =

Q1 0

Q2 Q3

and � = diag fQ; Ig (26a-b)

we multiply (16) by�T and�, on the left and on the right, respectively.
Applying the Schur formula to the quadratic term inQ, we obtain the
inequality, as shown in (27) at the bottom of the previous page, where

� =
0 I

2

i=0
Ai �I

Q+Q
T 0 2

i=0
AT

i

I �I

+
0 0

2

i=1
"iAi 0

Q+Q
T 0 2

i=1
"iA

T

i

0 �I
:

We substitute (25) into (27), denoteKQ1 by Y and obtain the fol-
lowing.

Theorem 2: AssumeA1. Consider the system of (23). The state-
feedback law of (24) achieves passivity of the closed-loop system with
 � 0 if for some prescribed scalars"1, "2 2 R, there existQ1 > 0,
0 < �S1 = S�1

1
, 0 < �S2 = S�1

2
, 0 < �U = U�1, Q2; Q3;2 R

n�n,
0 < �R1 = R�1

1
, 0 < �R2 = R�1

2
2 R2n�2n, K 2 R`�n and

Y 2 R`�n that satisfy the LMIshown in (28) at the bottom of the
page,where �Ri1, �Ri2 and �Ri3 are the (1,1), (1,2) and (2,2) blocks of
�Ri, i = 1, 2, and where

�1 = Q3 �Q
T

2 +Q1

2

i=0

�AT

i +

2

i=1

"i �A
T

i + Y
T
B

T

2 :

The state-feedback gain is then given by (24), where

K = Y Q
�1

1 : (29)

Q2 +QT

2 �1 Q1
�CT + Y TDT

12 h1 ("1 + 1) �R11 h1 ("1 + 1) �R12 h2 ("2 + 1) �R21 h1 ("2 + 1) �R22

� �Q3 �QT

3 B1 h1 ("1 + 1) �RT

12 h1 ("1 + 1) �R13 h2 ("2 + 1) �RT

22 h2 ("2 + 1) �R23

� � �I �D �DT 0 0 0 0

� � 0 �h1 �R11 �h1 �R12 0 0

� � � � �h1 �R13 0 0

� � � � � �h2 �R21 �h2 �R22

� � � � � � �h2 �R23

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

0 0 Q1 Q1 0 QT

2 0 h1Q
T

2 A
T

1 0 h2Q
T

2 A
T

2

"1A1
�S1 "2A2

�S2 0 0 �F �U QT

3 0 h1Q
T

3 A
T

1 0 h2Q
T

3 A
T

2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

� �S1 0 0 0 0 0 0 0 0 0

� � �S2 0 0 0 0 0 0 0 0

� � � �S1 0 0 0 0 0 0 0

� � � � �S2 0 0 0 0 0 0

� � � � � �U 0 0 0 0 0

� � � � � � �U 0 0 0 0

� � � � � � �h1 �R11 �h1 �R12 0 0

� � � � � � � �h1 �R13 0 0

� � � � � � � � �h2 �R21 �h2 �R22

� � � � � � � � � �h2 �R23

�0 (28)
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Fig. 2. The polar plot of the closed-loop transfer function fromw to z for
D = 0:1 in Example 2.

The LMIs in Theorems 1 and 2 are affine in the system matrices.
Thus, it can be applied also to the case where these matrices are uncer-
tain and are known to reside within a given polytope.

Example 2: We consider the system

_x(t)� �F _x(t� g) = �A0x(t) + �A1x(t� h)

+B1w(t) +B2u(t)

z(t) = �Cx(t) +D12u(t) +Dw(t) (30)

where

�A0 =
0 0

0 2
�A1 =

�1 0

�3 0

B1 =
0

1
B2 =

0

1
�C = [ 0 1 ]

D12 =0:1; and �F = 0: (31)

This system describes a case where the external inputw and the feed-
back inputu are applied via the same input matrixB1 = B2. Consid-
eringD = 0, we seek a state-feedback gain matrixK that will result
in a passive closed-loop system. Applying Theorem 2 we obtained that
for  = 0:2, h = 1:26 and� = �:3, the closed-loop system (30) with

u = Kx(t) = [ :0143 �99:4224 ] x(t)

is passive. The same state-feedback gain matrix makes the system pos-
itive real in the case of = 0 andD = 0:1. The polar plot of the re-
sulting closed-loop transfer function, from the control inputw toz (with
D = :1) is depicted in Fig. 2. It is clearly seen that this plot resides en-
tirely in the right half of the complex plane and its “distance” from the
imaginary axis may be considered as the overdesign that stems from the
fact that the condition provided by Theorem 2 is only sufficient.

The above results refer to the case where�F = 0. For �F =
diagf�:1;�:2g we obtained, applying� = �:33 and = 0:2, that
the state feedback gain

K = [ :0015 �99:8821 ]

yields a passive system8 h 2 [0 1:145].
Remark 5: Note that the products�iAi

�Si and �iRij (i = 1, 2,
j = 1, 2, 3) in (28) are nonlinear in the unknown parameters. However,
since�i are scalars, we solve (28) for different values of�i that lead to
a minimum. For example, in Example 2 we calculated the minimum
achievable for different values of�. We have found there that the
function�() is convex and this is how we obtained the optimal value
of � = �0:33.

IV. CONCLUSION

A delay-dependent solution is proposed for the problem of passive
state feedback control of linear time-invariant neutral and retarded type
systems. The solution provides sufficient conditions in the form of
LMIs. Although these conditions are not necessary, the overdesign en-
tailed is minimal since it is based on an equivalent (descriptor) model
transformation, which leads to the bounding of a smallest number of
cross terms and since a new less conservative bounding is applied.

One question that often arises when solving control problems for
systems with time-delay is whether the solution obtained for certain
delayshi will satisfy the design requirements for all delays�hi � hi.
The answer is the affirmative, since the LMI in Theorem 2 is affine in
the time delays.
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