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On Delay-Dependent Passivity dimensions. Denoté = max{h1, k> }. For simplicity only we con-
_ sider a single delay and two delaygi, andh.. The results of this
E. Fridman and U. Shaked note can be easily applied to the case of multiple delays. . , g,

h1,...,hy and a distributed delay.
Abstract—Sufficient conditions for passivity (positive realness) are Equation (1a) describes a system of neutral type since it contains
obtained for continuous-time, linear, retarded, and neutral-type systems. a derivative with delay. In the case 8f = 0 (1a) is a retarded type

A delay-dependent solution is given in terms of linear matrix inequalities System (see, e.g., [8]). Neutral systems are encountered in modeling of
(LMIs) by using a descriptor model transformation of the system and lossless transmission lines, or in dynamical processes including steam

by applying Park’s inequality for bounding cross terms. A memoryless and water pipes (see, e.g., [8] and the references therein). Unlike re-
state-feedback solution is derived. Numerical examples are given which tarded systems, linear neutral systems may be destabilized by small
illustrate the effectiveness of the new theory. ’ .
changes of the delay and may be unstable even in the case when all the
Index Terms—Delay-dependent criteria, linear matrix inequalities rgots of the characteristic equation have negative real parts [8].
(LMIs), positive-real lemma, time-delay systems. We are looking for a criterion for passivity that depends on the delays
h; and does not depend gn Delay-independence with respectg¢o
|. INTRODUCTION guarantees that small changesido not destabilize the system [8].

» » . ~ Toguarantee robustness of the results with respect to small changes of
Positive realness (passivity) theory plays an important role in boffa|ay, we assume that the difference equation = =(t) — Fa(t —

electrical network and control systems (see, e.g., [1], [2]) and it 29?: 0 is asymptotically stable for all values gbr, equivalentaly, that
roots in circuit theory ([3], [4]). For systems with delay of retarded- a1 p is a Schur—Cohn stable matrix, i.e., all the eigenvaluek of
type, positive realness has been studied by [5]-[7]. In [5], delay-ige inside the unit circle.

dependent sufficient conditions in terms of LMIs have been derived. e transfer function of (1a-b) from to = is given by
In [6] necessary and sufficient conditions are given in terms of posi-
tivity of some kernel matrix constructed via transition matrix. In [7] 2 -1
frequency domain approach is applied and sufficient conditions are  G(s) = C' |:s (I - Fe’s-") - ZAie*S’” B, +D.
obtained. For infinite-dimensional systems, a positive-real lemma has
been obtained in terms of Riccati operator equations (see [2] and the = | ) o
references therein). Definition 1: [1] The system (1a-b) is called passive if

In the present note we give delay-dependent sufficient conditions ty
for passivity of neutral type systems. We apply descriptor-type 2 / wl'(t);(t)dt >0 )
Lyapunov—Krasovskii functionals that were recently introduced in 0
[10]-[12] for delay-dependent stability and control and Park’s inf'or all
equality for bounding cross terms [13]. We also present a memoryles%noth
state-feedback controller via LMIs, such that the resulting closed-loopDefini
system is passive.

Notation: Throughout the note, the superscfipstands for matrix

=0

> 0 and for all solution of (1a-b) withry = 0.

er less restrictive definition of passivity is given by [14].
tion 2: [14] The system (1a-b) is called passive if there exists
~ > 0 such that

transpositionR™ denotes the dimensional Euclidean spacg, *"™ o o,

is the set of alln x m real matrices, and the notatidh > 0, for 2/ w (t)z(t)dt > —7/ w’ (s)w(s)ds. 3)
P € R™*" means thaf’ is symmetric and positive—definite. Denote 0 0

z(0) = x(t +6)(0 € [-h,0]). for all ¢, > 0 and for all solution of (1a-b) with:o = 0.

Different model transformations were used in the past for delay-de-

Il. PASSIVITY AND POSITIVE REALNESS FORLINEAR TIME-DELAY pendent stability (see, e.g., [9] and [13]). Recently, a new (descriptor)
SYSTEMS model transformation has been introduced [10]. Unlike previous trans-
formations, the descriptor model leads to a system which is equivalent
to the original one, it does not depend on additional assumptions for the
stability of the transformed system and it requires bounding of fewer

Given the following system

2
i(t) — Fi(t — g) = ZAM“ (t — hy) 4+ Brw(t) crossterms. It was shown in [10] and [12] that the latter transformation
’ = ‘ leads to less conservative conditions for stability #hd control.
2(t) =Cx(t) + Dw(t) (1a-b) Following [10], we represent (1a-b) in the equivalent descriptor form

2
whergm(t) € 72." is the systgm state vect(w.,(t) € R?isthe eX00€ i) — y(f), y(t) = Fy(t—g)-i—ZA,-w (t = hi)+ Brw(t). (4)
nous input, which can be either a control input or a reference signal
andz(¢) € R? is the output of the system. The time deldys= ho,
0 < hi,i = 1,2andg > 0 are assumed to be known. The matrice3he latter is equivalent to the following descriptor system with discrete
Ai,i=0,..., 2, F, B, andC are constant matrices of appropriateand distributed delay in the variabje

=0
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A Lyapunov—Krasovskii functional for the system (5) has the form

665

the transfer matr>xG of (1a-b) is positive real, i.e.,

r G(iw)" + G(iw) > 0.
V (eye) = [2 (1) ()]EP{ Eg} (i) + Gliw) 2
" Proof: (i) We note that
+ Z/ N T)S x(T)dT + / y'T(T)Uy(T)dT

t—g

+Z/ / y" (s)A] RisAiy(s)drdd (6)
=1 J—h; Ji+0

[:vaT] EP |:;:| = .[’T.Pl;L'

and, hence, differentiating the first term of (6) with respec¢tw® have

d x(t) T .
where =2x" (t)Pi(t
e {[fr (7‘)1/ (t) ] |:y(t) :|} 227 (£)Pr&(t)
I, 0 PO o[ T T T {:i'(t)}
= = 7 - . —2 &€ t t) P .
E {o o} P {PQ PJ Pi>0,U>0,8 >0 [ ()y(] 0
(7a-b) (1)
The first term of (6) corresponds to the descriptor system, the third—to
the delay-independent conditions with respect to the discrete delaySabstituting (5) into (11), we obtain
y, while the second and the fourth terms correspond to the delay-de-
pendent conditions with respect to the distributed delays (with respect 4V (#+.y+) — 2w — v w
to z). dt .
We obtain the following. v pT { 0 } — {C } pr {0}
Theorem 1: Assume Al. Consider the system of (la-b). Let =7 B OT F 13
there existr x n-matrices0 < Py, P», P5, S; = SF, U = U7, ‘ * —yI[-D-D 0 ‘
Wit, Wiz, Wis, Wia, Rix = RJj, Ris, Ris = Rls, i = 1,2 and * -U
~ > 0 that satisfy the linear matrix inequality (LMIas shown in (8) 2
at the bottom of the pagehere -> [ (t = hi) Six (t = i)
=1
-t
2 2 T T
+ y (1)A; RisAy(7m)dT — 15
\111:<ZA¢T> P+ Py (Z—L) /t hzy ™ sAw(r) ]}
' ' (12)
2
+ Z (” s Ai + A Wzd) Z where¢ 2 col{xz(t),y(t), w(t),y(t — g)} and
0 T 0 2 AF
W, =P — P <ZAT> PJ+ZA Wis ‘IféPT{(Zz 4) _[}4'{[ (Z'f} )}P
=0 7t
+ |:Z?:1 5 0 :|
Wy =P - P + Z (Ui + nial Risi) 0 XL, (Ui +hiA] RisAs)
= -t 0 )
B, =[Wh 4+ P Wh+ P! m(H) = -2 /l_, GGl L} y(o)ds. (13
o =[Wh Wh+P) _ o _
For any2n x 2n-matricesR; > 0 andM;, the following inequality
R =Ry i (9  holds [13]:
=Rt Ral olds [13]:
-t
Then, the following holds —2/l ; b (s)a(s)ds
i) The system (1a-b) is passive in the sense of Definition 2 : " T
. . 1(s R; R; M; a(s)
ii) Inthe case off = 0 for all w € R with < als) o, 1s
) / € = /l_,” {b(s) MER (2,2) ] Los) |45 4D

2

for a(s) € R*", b(s) € R*" given fors € [t — h;, t]. Here,(2,2) =

det |:iw (I - Feiwg> - Z&liei“hi:| #0 (10)
1=0

(MTR; + DR (R;M; + 1).
%, Uy, PIBi—CT ha®i he®y —WhA LA, PIFT
x Wy PfB, h®ry  he®yy  —WoHA 1 (A, PIF
« % —~yI—-D-DT 0 0 0 0 0
ES k * _thl 0 0 0 0
<
% * % * —haoRo 0 0 0 <0 ®
* * * * * -5 0 0
* * * * * -5 0
L = % % * * -U |
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Using this inequality for a(s) = col{0 A;}y(s) and For
b = Pcol{x(t) y(t)}, we obtain _
Wi=-P, R; =

. i=1,....m (18)
ni <hi[2¥ 4T 1P" (MiTRi + I) R (R:M; +T)P {}
Y LMI (8) implies fore — 07 the delay-independent LMI shown in (19)

+2 (T,T(t) —a' (t— h,)) [0 AT|R,M,P {T} at the bottom of the page. If LMI (19) is strictly feasible (i.e., holds
y with strict inequality) then (8) is feasible for a small enough> 0
i : 0 and for R; and¥; that are given b
T AT . , ; ; given by (18). Thus, from Theorem 1 the
+ /t_hz_ vy (5)[0 ATTR, {AL} y(s)ds. (15) following corollary holds.

Corollary 1: Items (i) and (ii) of Theorem 1 hold if there exisk

We substitute (15) into (12) and integrate the resulting inequality i ; i
(15) into (12) g gmeauaty B _ pr p, P, U = U andS; = S7, i = 1,2 such that (19) is

t from O to#; . We obtain (by Schur complements) that (3) holds if th

LMI, as shown in (16) at the bottom of the page, is feasible, where fg}rictly feasible.
i= 1.9 wnin (16) page. | ! W Remark 2: As we have seen above, the delay-dependent conditions
T ) ) of Theorem 1 [with strict LMI (8)] are most powerful in the sense that
W; =R;M:P, W, = {Wf‘l Wiz } they provide sufficient conditions for both the delay-dependent and the
Wis Wi |’ delay-independent cases (where (19) is strictly feasible). In the latter
o, =WF + Pl @, =[®; @], case, (8) is feasible fat; — o, i = 1,2. Moreover, strict LMI (8)
2 0 0 2 1o 4" yields the following LMI:
v — 7T Rt 1. -
T=vad W {Ai ()}JFZL) 0 }”“ B =P +U PF]_ 20
=1 =1 " _U- < ( )
LMI (8) results from the latter LMI by expansion of the block ma-
trices (8) resu y expans and, thus, implies Al [10]
(ii) Let w be such that (10) holds and considett) = ¢*“*w, Remark 3: In the case of system (1a-b), with distributed delay

wo € R?. Define , , 2
, . 2(t) — Fi (t — gi) :Zfli;v(f—hi)
z(t) = et (iw (I — Fefi/“)g) — Zlhliei”hi) Biwo =0 0
=0 +/ Aq(s)z(t+ s)ds + Brw(t)

andz(t) = Ca(t) + Duw(t). Thenz(t) = ¢“'G(iw)wo, the triple - ,
(w, =, z) satisfies (1a-b) and and exponential matrixl (s) = A4 exp{—Aaos}, Theorem 1 can
S - " be applied to the following augmented system with discrete delays:
2w (t)2(t) = wy [GF(iw) + Gliw)] wo.

b(t) =a(t) — e w(t — d) + Agov(t),
From (2), it follows that for alt; > 0: :

i(t)— Fa(t — g) :2;41‘,7? (t— hi)

~tq
2/ w' (1) z(t)dt = trwg (G (iw) + G(iw)) wo > 0. izo
0 + Agiv(t) + Brw(t) (21)
Sincewy is arbitrary, this yields (ii). O , e
Remark 1: Fory = 0 and D = 0 LMI (8) implies that whereu(t) = [, e (s)ds.
0 o Example 1 [5]: We consider the following system:
T _
P |:B1:| - |: 0 :| ’ an #(t) = Aox(t) + Ar2(t — h) + Biw  z(t) = Cx(t) (22)

— T -
T pP7 {131} - {C; } hi®y he®y W Dl } -wJ H } pT {2}
x* —~I-D-DY 0 0 0 0 0
* * —hiRy 0 0 0 0
<0 (16)
% * * —hoRo 0 0 0
* * * * -5 0 0
* * * * * -5, 0
| * * * * * * -U ]
AP, + P A+ S A-Pf+4alpr, P'Bi-Cct  PfA, PfA, PIF
* -P-PI'4+U PT B, PTA, PT'4, P/'F
* * —~I - D - DT 0 0 0
* * * -5 0 0 <0 (19)
* * . -5y 0
% * * -U
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where

e B T
By =[0 1], and C=[0 1].
In [5], it is shown that the system is passive with= 0 for
ar >0 ax >0 A< ai.

By Theorem 1, choosings = 1, a2 = 2,c = 2.3 andk = 2.2, which
do not satisfy the conditions of [5], we find that the system is dela
independently passive with= 0. Increasing: and taking: = 2.7 we
obtain that the system is passive foK n < 9.8.

The polar plot of the transfer function from to z is depicted in
Fig. 1. It resides entirely in the right half of the complex plane.

We note that in the latter example we utilized (17) and the fact th:
PI'B, =0.SinceB, = [0 1]" andC = B P», we had that

e[ [emn=[1

whereP,, P; € R'*2. Thus, we solved (8) foP,, 2, Ps, S, Ri,
i=1,2,3,andV;,j = 1...4.

180

270

IIl. STATE-FEEDBACK CONTROL Fig. 1. The polar plot of the transfer function fromto = in Example 1 for

We apply the results of the previous section to the state-feedbdtk 9-7-
design of passive systems. Given the system
constant matrices of appropriate dimensions the objective vector,

i(t) — Fa(t — g) =Aox(t) + A1z (t — hy) ¢ e R1*™. D € RI%* andD € RI*1.

+ Ao (t — ha) + Biw(t) + Bau(t) We look for the state-feedback gain matfixwhich, via the control
2(t) =Cz(t) + Dipu(t) + Dw(t) (23) law
wherez andw are defined in Section Iy € R’ is the part of the u(t) = Ku(t) (24)

control input that is used for feedback, Ao, A1, A2, By, B> are achieves passivity with > 0 of the closed-loop system.

"
_: |:_Bol:| +Ql |:C;) :| hl (61I+I) hz (62[+I) €1 |:4—/§,)1:| £2 |:f?2:| |:_(Fl:|
x —~I-D-DT 0 0 0 0 0
* * —hi Ry 0 0 0 0
* * * —haRo 0 0 0
* * * * -5 0 0
* * * * * —S5 0
* * * * * * -U;
* * * * * * *
* * * * * * *
L % * * * * * *

olo] els] erln] el ] el k]
0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 <0 (27)
0 0 0 0 0
-5 0 0 0 0
* —57! 0 0 0
* * -ut 0 0
* * % —h1R171 0
* * % * —haRy* J
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Remark 4: The case whel®, = B, in the system description of we multiply (16) byAT andA, on the left and on the right, respectively.
(23) corresponds to the standard case wheris the external control Applying the Schur formula to the quadratic term(n we obtain the
command and the actual input to the plantis+ K x. The case where inequality, as shown in (27) at the bottom of the previous page, where
By # B; describes the situation where only a part of the control inputs 2 g
X > 0 I r[0 37, Al
is used for feedback. E= 24 -1 Q+aQ 7 T

Substituting (24) into (23), we obtain the structure of (1a-b) with =0 2 7

+ 0 0 Q+QT 0 Zi:i 5714,
3P el 0 0 -I '
Ap = Ao+ Bo K, Ay = Ai, i =1,2, C=C+ DK (29) We substitute (25) into (27), denot€@; by ¥ and obtain the fol-
lowing.

Applying Theorem 1 to the above matrices, results in a nonlinear matrix | €0rem 2: Assumal. Consider the system of (23). The state-

inequality because of the tern# B, K and PY B2 K. We therefore feedback law of (24) achieves passivity of the closed-loop system with

consider another version of LMI condition which is derived from (16)y = O if for some prescribed scalars, =2 € R, there exist), > 0,

o —1 o —1 rr _— y7—1 nxn
In order to obtain an LMI, we have to restrict ourselves to the ca()e< S1=5 ’_(1) <52 =5 ’0_<1 v QL,,XQ;QZi @s, EMR,, '

. ) . < R =Ry ,0< Ry =R, R K e€R and
of W; = ¢;P,i = 1, 2, wherez; € R is a scalar parameter. Note . Uxn . 2 )

o . Y € R that satisfy the LMkhown in (28) at the bottom of the

that fore; = 0 (8) implies the delay-dependent conditions of [10] (for =S =
— . . . .. pagewhereR;1, R;> and R;3 are the (1,1), (1,2) and (2,2) blocks of
F = 0), while fors; = —1 (8) yields the delay-independent conditio %" '— 1 2 and where
of Corollary 1. It is obvious, from the requirement®f< P, and the ~ "' ! T

fact that in (8) the term-(Ps + P ) must be negative—definite, thBt . L R I
is nonsinglgla)r. Defining( > ’ Ei=Qs-Q + <ZD4'1 + 26“4'4> +Y'B;.
0 0 The state-feedback gain is then given by (24), where
Plog= {Q; QJ and A =diag{Q, I}  (26a-b) K—vort, 29)
[ Q2 + QZT = Q1C_7T + YTD1T2 hi(s1+1) Ry m (e1+1) Rz hy (e2+1) Roi hy (22 +1) Ry
£ —Q;g —- é B1 hl (51 =+ 1) R{z hl (61 =+ 1) ng hz (62 -+ 1) I_?ég hZ (52 1) RZB
* * —~I —-D-DT 0 0 0 0
* * 0 —h1R11 —h1Ris 0 0
% % % * —hiRis 0 0
* * * * * —ha Ray —ha Rao
* * * * * * —hoRos
X b3 X * X % *
* * * * * * *
L ko % % k) % % £
0 0 Qi Q1 0 3 0 hiQ3 AT 0 haQ4 A3 7
14181 £2455, 0 0 FU QF 0 R QY AT 0 haQF AY
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
-5 0 0 0 0 0 0 0 0 0
* -5 0 0 0 0 0 0 0 0
% % -5 0 0 0 0 0 0 0 <0 (28)
* £ * —52 0 0 0 O 0 0
* * * * -U o 0 0 0 0
* * * * x  =U 0 0 0 0
* * * * * * —h1Ri1  —hiRis 0 0
% % % % % * * —hiRys 0 0
* * * * * * * % —hyRy1  —hoRas
% % % * * % * % * —haRos |
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The above results refer to the case whéte= (. For I' =
diag{—.1,—.2} we obtained, applying = —.33 and~v = 0.2, that
the state feedback gain

K =1[.0015 —99.8821]

yields a passive systeih € [0 1.145].

Remark 5: Note that the productsA;S; ande;R;; (i = 1, 2,
j =1,2,3)in(28) are nonlinear in the unknown parameters. However,
sincee; are scalars, we solve (28) for different values ofhat lead to
a minimumyy. For example, in Example 2 we calculated the minimum
achievable~y for different values ot. We have found there that the
functione(+) is convex and this is how we obtained the optimal value
of e = —0.33.

180

IV. CONCLUSION

A delay-dependent solution is proposed for the problem of passive
state feedback control of linear time-invariant neutral and retarded type
systems. The solution provides sufficient conditions in the form of
LMIs. Although these conditions are not necessary, the overdesign en-
tailed is minimal since it is based on an equivalent (descriptor) model
transformation, which leads to the bounding of a smallest number of
cross terms and since a new less conservative bounding is applied.
Fig. 2. The polar plot of the closed-loop transfer function franto = for One question that often arises when solving control problems for
D = 0.1 in Example 2. systems with time-delay is whether the solution obtained for certain

delaysh; will satisfy the design requirements for all delays< h..
e‘ghe answer is the affirmative, since the LMI in Theorem 2 is affine in

270

The LMIs in Theorems 1 and 2 are affine in the system matric ¢
Thus, it can be applied also to the case where these matrices are untpé’r-t'me delays.
tain and are known to reside within a given polytope.
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