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a b s t r a c t

In this paper we analyze the global asymptotic stability of the trivial solution for a multi-stage maturity
acute myeloid leukemia model. By employing the positivity of the corresponding nonlinear time-delay
model, where the nonlinearity is locally Lipschitz, we establish the global exponential stability under
the same conditions that are necessary for the local exponential stability. The result is derived for the
multi-stage case via a novel construction of linear Lyapunov functionals. In a simpler model of
hematopoiesis (without fast self-renewal) our conditions guarantee also global exponential stability with
a given decay rate. Moreover, in this simpler case the analysis of the PDE model is presented via novel
Lyapunov functionals for the transport equations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In order to better understand the dynamics of unhealthy
hematopoiesis, and in particular to find theoretical conditions for
the efficient delivery of drugs in acute myeloblastic leukemia, the
stability of a system modeling its cell dynamics was studied in
[1–5] and the references therein. The model is given by nonlinear
transport equations, which are transformed by the characteristic
method to nonlinear time-delay systems. In the aboveworks either
local asymptotic stability of the resulting time-delay systems is
provided or some sufficient global asymptotic stability conditions
are given. In the latter case these conditions for the trivial solutions
are either sufficient only [2] or they are derived for the case of
nonlinearity subject to a sector bound [3].

In this paper we analyze the global asymptotic stability of
the trivial solution for the multi-stage acute myeloid leukemia
model. By employing the positivity of the corresponding nonlinear
time-delay model, where the nonlinearities are monotone func-
tions, we establish the global asymptotic stability under the same
conditions that are necessary for the local exponential stability.
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The result is derived via the construction of novel linear Lyapunov
functionals for multi-stage case. For the Lyapunov-based analysis
of positive linear time-delay systems, as well as nonlinear systems
with the nonlinearities subject to a sector bound, we refer to [6–9].
In a simpler model of hematopoiesis (without fast self-renewal)
our conditions guarantee global exponential stability with a given
decay rate. Moreover, in this simpler case, the analysis of the PDE
model is presented via novel Lyapunov functionals for the trans-
port equations. These are linear in the state Lyapunov functionals
with some weighting functions. Note that the idea of weighting
functions in Lyapunov functionals for Euler equations was intro-
duced in [10] and was used later for nonlinear systems of conser-
vation laws in [11].

The structure of this paper is as follows. Section 2 provides
the exponential stability analysis of hematopoiesis model, where
the Lyapunov-based analysis is developed for both, the time-delay
and the PDE model. Section 3 is devoted to the global asymp-
totic/regional exponential stability of the acute myeloid leukemia
model via Lyapunov-based analysis of the corresponding time-
delaymodel. Finally, in Section 4, concluding remarks are outlined.

Some preliminary sufficient conditions for local asymptotic
stability of 1-stage Acute Myeloid Leukemia PDE model were
presented in [12].

Notation and preliminaries: Throughout the paper the super-
script ‘T ’ stands formatrix/vector transposition,R+ denotes the set
of nonnegative real numbers, Rn denotes the n-dimensional Eu-
clidean space. For a, b ∈ Rn the inequality a < b (a ≤ b) means
componentwise inequality ai < bi (ai ≤ bi) for all i = 1, . . . , n.
Similarly is defined the opposite vector inequality a > b (a ≥ b).
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Rn
+

denotes the set of vectors a ∈ Rn with nonnegative compo-
nents, i.e. a ≥ 0. The space of continuous functions φi : [−τi, 0] →

R (i = 1, . . . , n) with the norm ∥φ∥C =
n

i=1 maxs∈[−τi,0] |φi(s)|
is denoted by Cn

τ ; C
n
τ+

= {φ ∈ Cn
τ : φi(s) ≥ 0 s ∈ [−τi, 0], i =

1, . . . , n}; xt(s) = x(t + s), s ∈ [−τ , 0] for xt : [−τ , 0] → Rn.
Thematrix A ∈ Rn×n with nonnegative off-diagonal terms is called
Metzler matrix, the matrix A is called nonnegative if all its entries
are nonnegative.

2. Stability of the model of cell dynamics in hematopoiesis

A model of hematopoietic stem cell dynamics, that takes two
cell populations into account, an immature and a mature one, was
proposed and analyzed in [1]. Immature cells may have n different
stages of maturity before they become mature. All cells are able
to self-renew, and immature cells can be either in a proliferating
or in a resting compartment. The resulting model for n stages of
immature cells is given by

∂t ri + ∂ari = −(δi + βi(xi))ri, a > 0, t > 0, i = 1, . . . , n,
∂tpi + ∂api = −(γi + gi(a))pi, 0 < a < τi, t > 0,

(1)

where ri are pi are resting and proliferating cell densities, a is the
age of the cells, τi is the maximum possible time spent by a cell
in proliferation in compartment i before it divides, δi > 0 and
γi > 0 are the death rates for the quiescent and for the proliferating
cell population, n is the number of compartments, βi > 0 is the
introduction rate that depends on the total density of resting cells

xi(t) =


∞

0
ri(t, a)da.

Boundary conditions, describing the flux between the two
phases and two successive generations, are given by

ri(t, 0) = 2(1 − Ki)

 τi

0
gi(a)pi(t, a)da

+ 2Ki−1

 τi−1

0
gi−1(a)pi−1(t, a)da,

pi(t, 0) = βi(xi(t))xi(t), t > 0, i = 1, . . . , n,

(2)

where K0 = 0 and 0 < Ki < 1 is the probability of cell
differentiation.

Following [1], we have taken into account the following as-
sumptions:

• The division rates gi (a) are continuous functions such that τi
0 gi (a) da = +∞. This property implies τi

0
gi (t) e−

 t
0 gi(w)dwdt = 1.

• lima→+∞ ri (t, a) = 0.
• The re-introduction term βi is a Locally Lipschitz, differentiable

and decreasing function with βi (0) > 0 and βi (x) → 0 as
x → ∞. Typical selection of βi is in the form of Hill function

βi (xi) =
βi (0)

1 + bix
Ni
i

,

where bi > 0 and Ni > 0.

By using the method of characteristics, the following explicit
formulation for pi(t, a) was derived in [1]:

pi(t, a) =


pi(0, a − t)e−

 a
a−t (γi+gi(s))ds, t ≤ a,

pi(t − a, 0)e−
 a
0 (γi+gi(s))ds, t > a,

(3)

where pi(0, a) ≥ 0. Then, the authors obtained the following
time-delay model for the total population densities of resting cells

ẋi(t) = −(δi + βi(xi(t)))xi(t) + 2(1 − Ki)

 τi

0
e−γiafi(a)

× βi(xi(t − a))xi(t − a)da + 2Ki−1

 τi−1

0
e−γi−1a

× fi−1(a)βi−1(xi−1(t − a))xi−1(t − a)da,
t > 0, i = 1, . . . , n, (4)

where

fi(a) := gi(a)e−
 a
0 gi(s)ds, 0 < a < τi

is a density function with
 τi
0 fi(a)da = 1.We denote for a later use

f ∗

i = sup
a∈[0,τi]

gi(a)e−
 a
0 gi(s)ds, i = 1, . . . , n. (5)

It is easy to see that nonlinear time-delay system (4) with a
nonnegative initial condition

xi(s) = φi(s) ≥ 0, ∀s ∈ [−τi, 0], φi ∈ C1
τi+

has nonnegative solutions, meaning that (4) is a positive system.
Assume also nonnegativity of the initial function p(0, a). Then,
taking into account that pi(t − a, 0) = βi(xi(t − a))xi(t − a) ≥ 0,
(3) implies pi(t, a) ≥ 0 for all t ≥ 0 and a ∈ [0, τi].

Local asymptotic stability of (4) was studied in [1,2,5,4,3] by
the analysis of the linearized system. For systems with nonlin-
earities satisfying sector condition, the stability conditions for the
strictly positive steady state were found in [3] by using Popov,
circle and nonlinear small gain criteria. More recently, sufficient
stability conditions for the 0-equilibrium and the strictly positive
equilibrium were derived in [5] by a Lyapunov approach. Notice
that knowing Lyapunov functionals allows us, for instance, to esti-
mate rates of convergence and to determine approximations of the
basin of attraction of a locally stable equilibrium point.

In the present paper, we focus on the stability analysis of the
0-equilibrium and we will show that necessary conditions for
the local exponential stability are also sufficient for the global
exponential stability of the trivial solution by using the direct
Lyapunov method developed for the time-delay models and, for
the first time, for the PDEmodel. Wewill also present estimates on
the exponential decay rate for the nonlinear full-order system.

2.1. Global exponential stability of the zero solution of the time-delay
model

We will start with the time-delay model (4). The linearized
around the zero solution model has the following form

ẋi(t) = −(δi + βi(0))xi(t) + 2(1 − Ki)

 τi

0
e−γiafi(a)

× βi(0)xi(t − a)da + 2Ki−1

 τi−1

0
e−γi−1afi−1(a)

× βi−1(0)xi−1(t − a)da, t > 0, i = 1, . . . , n. (6)

This is a positive linear system that can be presented as

ẋ(t) = Ax(t) +

n
i=1

 τi

0
Ai(a)x(t − a)da,

x = col{x1, . . . , xn} (7)

whereA isMetzler (since it is diagonal) and eachAi is non-negative.
Note that for such a system the following holds:

Lemma 1 ([6,8]). Consider (7), where A is Metzler and Ai is non-
negative. Then the following conditions are equivalent:

(i) The system (7) is asymptotically stable;
(ii) A +

n
i=1

 τi
0 Ai(s)ds is Hurwitz;
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(iii) There exists a vector 0 < λ ∈ Rn such that

λT


A +

n
i=1

 τi

0
Ai(s)ds


< 0.

Note that sufficiency of (iii) for the asymptotic stability of (7)
can be derived by using the following Lyapunov functional [6,8]

V (xt) = λT


x(t) +

n
i=1

 τi

0
Ai(a)

 t

t−a
x(s)dsda


. (8)

Due to ‘‘triangular’’ structure of (4), the condition (ii) for this
system is equivalent to the following inequalities
2(1 − Ki)

 τi

0
e−γiafi(a)da − 1


βi(0) < δi, i = 1, . . . , n. (9)

The inequalities (9) are also necessary and sufficient conditions
for the local exponential stability of the nonlinear system (4) (see
e.g. Proposition 3.17 in [13]). The conditions (9) for the local
asymptotic stability were derived in [2]. Sufficient Ki-independent
conditions τi

0
e−γiafi(a)da − 1


βi(0) < δi, i = 1, . . . , n

for the global asymptotic stability of (4) were derived in [2] via the
linear in state Lyapunov functional

V (xt) =

n
i=1


xi(t) + 2

 τi

0
e−γiafi(a)

 t

t−a
βi(xi(s))xi(s)dsda


.

Keeping in mind the Lyapunov candidate (8) and a special
triangular structure of (4), we suggest the following Lyapunov
functional for the global exponential stability of (4):

V (xt) =

n
i=1

εi
[xi(t) + V2i(xt)], ε > 0,

V2i(xt) = 2[1 − Ki(1 − ε)]

 τi

0

 t

t−a
e−η(t−a−s)−γia

× fi(a)βi(xi(s))xi(s)dsda,

(10)

where ε is small enough and where η > 0 is a decay rate for the
exponential stability. We will find conditions that guarantee

V̇ (xt) + ηV (xt) ≤ 0, (11)

implying the exponential stability of (4) with a decay rate η > 0 in
the ‘‘norm’’ defined by V :

V (xt) ≤ e−ηtV (x0), t ≥ 0. (12)

Proposition 1. Let there exist η ∈ (0,min{δ1, . . . , δn}) such that
the following inequalities are satisfied:
2(1 − Ki)

 τi

0
e−(γi−η)afi(a)da − 1


βi(0) < δi − η,

i = 1, . . . , n. (13)

Then the system (4) is globally exponentially stablewith the decay rate
η. Moreover, if the inequalities (13) are satisfied with η = 0 (i.e. if
(9) are satisfied), then (4) is globally exponentially stable with a small
enough decay rate.

Proof. We have along (4)
n

i=1

εiẋi(t) =

n
i=1

εi

−(δi + βi(xi(t)))xi(t) + 2[1 − Ki]

×

 τi

0
e−γiafi(a)βi(xi(t − a))xi(t − a)da + 2Ki−1

×

 τi−1

0
e−γi−1afi−1(a)βi−1(xi−1(t − a))xi−1(t − a)da


≤

n
i=1

εi

−(δi + βi(xi(t)))xi(t) + 2[1 − Ki(1 − ε)]

×

 τi

0
e−γiafi(a)βi(xi(t − a))xi(t − a)da


.

Then differentiating V of (10) along (4) we obtain

V̇ (xt) + ηV (xt) ≤

n
i=1

εi

−δi + η +


2(1 − Ki(1 − ε))

×

 τi

0
e−(γi−η)afi(a)da − 1


βi(xi(t))


xi(t). (14)

For each i = 1, . . . , n and for small enough ε > 0 we have either

2(1 − Ki(1 − ε))

 τi

0
e−(γi−η)afi(a)da < 1

or due to 0 ≤ βi(xi) ≤ βi(0)
2(1 − Ki(1 − ε))

 τi

0
e−(γi−η)afi(a)da − 1


βi(xi(t))

≤


2(1 − Ki(1 − ε))

 τi

0
e−(γi−η)afi(a)da − 1


βi(0) < δi − η.

Note that the latter inequality holds for small enough ε due to (13).
Therefore, in both cases, for small enough ε Eq. (14) implies (11).

Now, if inequalities (13) are satisfiedwith η = 0, we can always
find a small enough η1 > 0 such that (13) are satisfied. The latter
guarantees global exponential stability of (4) with a decay rate
η1 > 0. �

Summarizing, the inequalities (9) are necessary for the local and
sufficient for the global exponential stability of the trivial solution
of (4).

Remark 1. In [4] the division rates gi, i = 1, . . . , n were chosen
as

gi (a) =
mi

emi(τi−a) − 1
, 0 ≤ a ≤ τi,

where mi ≥ γi are integers. It was found that fi (a) =

gi (a) e−
 a
0 gi(s)ds has a form

fi (a) =
mi

emiτi − 1
emia, 0 ≤ a ≤ τi.

Here the term f ⋆
i is well-defined, although lima→τi gi (a) = ∞, and

f ⋆
i =

mi

emiτi − 1
emiτi .

Example 1. Choosing fi(a) =
mi

emiτi−1 e
mia, with mi > 0 for all

i ∈ [1, n], the following parameters satisfy (13).
For i = 1: δ1 = 1, L1 = 1−K1 = 0.95,m1 = 1, τ1 = 1, γ1 = 0.8

and β1(x) =
1

1+x2
.

For i = 2: δ2 = 0.8, L2 = 1 − K2 = 0.95, m2 = 1, τ2 = 1.2,
γ2 = 0.7 and β2(x) =

1
1+x3

.
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Fig. 1. Trajectories of the states x1 and x2 for the parameters of Example 1.

These parameters yield to

2(1 − K1)

 τ1
0 e−γ1af1(a)da − 1


β1(0) = 0.2241 < δ1 and consequently no positive equilibrium
exists.

According to Proposition 1, η ∈ (0,min{δ1, δ2}) = (0, 0.8).
Numerically, we find that the largest value ηmax which verifies (13)
is ηmax ≈ 0.33.
• Choosing η = ηmax:

2(1 − K1)

 τ1

0
e−(γ1−ηmax)af1(a)da − 1


β1(0) − δ1 + ηmax

= −0.2118 < 0

and
2(1 − K2)

 τ2

0
e−(γ2−ηmax)af2(a)da − 1


β2(0) − δ2 + ηmax

= −0.0015 < 0.

The trajectories x1 and x2 are illustrated in Fig. 1.

2.2. Stability of the PDE model

In this section we will develop the direct Lyapunov method to
the PDE model. Consider first the following Lyapunov functional

V (t) =

n
i=1

εi
[xi(t) + V2i(t)], ε > 0,

V2i(t) =
1
qi

 τi

0
e
 a
0 gi(s)dspi (t, a) da,

i = 1, . . . , n, qi > 0.

(15)

Differentiating xi(t) along (1) and taking into account the
boundary conditions we have

ẋi(t) =


∞

0
(−∂ari(t, a) − (δi + βi (xi(t))) ri (t, a)) da

= −[δi + βi (xi(t))]xi(t) + 2(1 − Ki)

 τi

0
gi(a)pi(t, a)da

+ 2Ki−1

 τi−1

0
gi−1(a)pi−1(t, a)da.

Then τi

0
gi(a)pi(t, a)da

=

 τi

0
gi(a)e−

 a
0 gi(s)dse

 a
0 gi(s)dspi(t, a)da ≤ qif ∗

i V2i(t),

implying
n

i=1

εiẋi(t) ≤ −

n
i=1

εi
[δi + βi (xi(t))]xi(t)

+ 2
n

i=1

εiqi(1 − Ki(1 − ε))f ∗

i V2i(t). (16)

Differentiating V2i(t) along (1) and taking into account the
boundary conditions we obtain

V̇2i(t) =
1
qi

 τi

0
[−∂api(t, a)

− (γi + gi(a))pi(t, a)]e
 a
0 gi(s)dsda

= −γiV2i(t) −
1
qi

 τi

0

d
da


pi(t, a)e

 a
0 gi(s)ds


da

= −γiV2i(t) −
pi(t, a)

qi
e
 a
0 gi(s)ds|

τi
0

≤ −γiV2i(t) +
βi(xi)
qi

xi(t).

Therefore,

V̇ (t) + ηV (t) ≤ −

n
i=1

εi

[δi − η + (1 − 1/qi)βi(xi)]xi(t)

+ [γi − η − 2qi(1 − Ki(1 − ε))f ∗

i ]V2i(t)


≤ 0

if
δi − η + (1 − 1/qi)βi(xi) ≥ 0,
γi − η − 2qi(1 − Ki(1 − ε))f ∗

i ≥ 0.
(17)

Choosing from the second inequality of (17)

qi =
γi − η

2(1 − Ki(1 − ε))f ∗

i

and substituting the latter expression to the first inequality of (17)
we arrive at

δi − η +


1 −

2(1 − Ki(1 − ε))f ∗

i

γi − η


βi(xi) ≥ 0.

For small enough ε the latter inequality is feasible if
2(1 − Ki)f ∗

i

γi − η
− 1


βi(0) < δi − η, η < δi, i = 1, . . . , n. (18)

Note that the exponential stability conditions (18) are sufficient
for the time-delay model-based conditions (13). However, conver-
gence is guaranteed in a different norm defined by a different Lya-
punov functional.

We summarize the result in the following

Proposition 2. Let there exist η ∈ (0,min{δ1, . . . , δn}) such that
the inequalities (18) are satisfied. Then the system (1), (2) is globally
exponentially stable with a decay rate η. Moreover, if the inequalities
are satisfied with η = 0, then the system is globally exponentially
stable with a small enough decay rate.
• Recovering the stability conditions for the time-delay model

via the PDE model:
It is interesting to recover the exponential stability result by
developing the direct Lyapunov approach to the PDE model (1),
(2). Inspired by the construction of (10), consider the following
Lyapunov functional:

V (t) =

n
i=1

εi

xi(t) + 2[1 − Ki(1 − ε)]

 τi

0
gi(a)

×

 t+a

t
e−η(t−s)pi(s, a)dsda


, ε > 0. (19)
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Then

V̇ (t) =

n
i=1

εiẋi(t) +

n
i=1

2εi
[1 − Ki(1 − ε)]

×

 τi

0
eηagi(a)pi(t + a, a)da

−

n
i=1

2εi
[1 − Ki(1 − ε)]

 τi

0
gi(a)pi(t, a)da.

Taking into account (4) and the boundary conditions we have

pi(t + a, a) = pi(t, 0)e−
 a
0 (γi+gi(s))ds = βi(xi(t))xi(t)e−

 a
0 (γi+gi(s))ds.

Therefore, by the arguments of Proposition 1 we arrive at the
following

Proposition 3. Let there exist η > 0 such that the strict inequali-
ties (13) are satisfied. Then the zero solution of the system (1) is glob-
ally exponentially stable with a decay rate η in the sense that for all
t ≥ 0 V (t) ≤ e−ηtV (0), where V is defined by (19). Moreover if
the inequalities (9) are satisfied, then (1) is globally exponentially sta-
ble with a small enough decay rate (meaning that there exists a small
enough η0 > 0 such that for all t ≥ 0 V (t) ≤ e−η0tV (0)).

3. Stability of the model with a fast self-renewal

Consider two cell subpopulations of immature cells with age
a ≥ 0 at time t ≥ 0: proliferating cells denoted by p(t, a)
and quiescent cells denoted by ri(t, a). Furthermore, we model
here cells which do not go in the standard quiescent phase before
self-renewing (the fast dynamics) by r̃i(t, a). The dynamics of the
cell populations are governed by the following system of PDEs:

∂tpi + ∂api = − (γi + gi (a)) pi, 0 < a < τi,
t > 0, i = 1, . . . , n,

∂t ri + ∂ari = − (δi + βi (x(t))) ri a > 0, t > 0,
∂t r̃i + ∂a r̃i = −β̃i


x̃(t)


r̃i, a > 0, t > 0,

(20)

where as in the previous section δi > 0 stands for the death rate
in the resting phase, the re-introduction function from the resting
subpopulation into the proliferative subpopulation is βi, the death
rate in the proliferating phase is γi > 0; the time elapsed in the
proliferating phase is τi > 0; and the division rate of the prolifer-
ating phases is gi(a). Finally, we complete the model by defining

xi(t) =


+∞

0
ri (t, a) da, x̃i(t) =


+∞

0
r̃i (t, a) da

which represent the total populations of resting and fast-self re-
newing cells at the time t , respectively. Boundary conditions asso-
ciated with (20) are given by

pi (t, 0) = βi (xi(t)) xi(t) + β̃

x̃i(t)


x̃i(t)

ri (t, 0) = Li

 τi

0
gi (a) pi (t, a) da

+ 2Ki−1

 τi−1

0
gi−1 (a) pi−1 (t, a) da

r̃i (t, 0) = L̃i

 τi

0
gi (a) pi (t, a) da,

Li := 2σi(1 − Ki), L̃i := 2(1 − σi)(1 − Ki), K0 = 0,

(21)

where Ki and σi are probability rates such that 0 < Ki < 1 and
0 < σi < 1 (i = 1, . . . , n). At the end of the proliferating phase, a
cell gives birth to two daughter cells. Each daughter cell may have
the samematurity as its parents ormay differentiate (may bemore
advanced in the maturation process). The coefficients Ki represent

the proportion of cells that differentiate. The constant 1 − σi rep-
resents the probability of fast self-renewal.

The following assumptions complete the mathematical model
(20), (21):
• The division rate gi is continuous function such that

 τi
0 gi (a) da

= +∞.
• For any fixed t ≥ 0

lim
a→+∞

ri (t, a) = 0, lim
a→+∞

r̃ (t, a) = 0,

lim
a→+∞

r̄ (t, a) = 0.

• The re-introduction terms βi ≥ 0 and β̃i > 0 (for xi < ∞) are
differentiable and decreasing functions.

Note that in the literature the functions βi and β̃i are usually Hill
functions with β̃i(0) ≫ βi(0).

By using themethod of characteristics, the following time-delay
model for the total population densities of resting cells xi and of fast
self-renewing cells x̃i has been derived in [14]:

ẋi(t) = −[δi + βi(xi(t))]xi(t) + Li

 τi

0
e−γiafi(a)[βi(xi(t − a))

× xi(t − a) + β̃i(x̃i(t − a))x̃i(t − a)]da

+ 2Ki−1

 τi−1

0
e−γi−1afi−1(a)[βi−1(xi−1(t − a))

× xi−1(t − a) + β̃i−1(x̃i−1(t − a))x̃i−1(t − a)]da,

˙̃xi(t) = −β̃i(x̃i(t))x̃i(t) + L̃i

 τi

0
e−γiafi(a)[βi(xi(t − a))

× xi(t − a) + β̃i(x̃i(t − a))x̃i(t − a)]da,
t > 0, i = 1, . . . , n,

(22)

where fi(a) = gi(a)e−
 a
0 gi(s)ds is a density function with τi

0 fi(a)da = 1.
By arguments of Section 2 it can be shown that (22) is a positive

system (having nonnegative solutions provided initial functions
are nonnegative). Note that only nonnegative solutions of (22) have
a physical (biological) meaning. As in the previous section, this
property will be exploited to find suitable Lyapunov functionals.

The linearized around the zero time-delay model has the
following form

ẋi(t) = −(δi + βi(0))xi(t) + Li

 τi

0
e−γiafi(a)[βi(0)

× xi(t − a) + β̃i(0)x̃i(t − a)]da

+ 2Ki−1

 τi−1

0
e−γi−1afi−1(a)[βi−1(0)xi−1(t − a)

+ β̃i−1(0)x̃i−1(t − a)]da,

˙̃xi(t) = −β̃i(0)x̃i(t) + L̃i

 τi

0
e−γiafi(a)[βi(0)xi(t − a)

+ β̃i(0)x̃i(t − a)]da
t > 0, i = 1, . . . , n.

(23)

This is a positive linear system that can be presented as (7), where
x = col{x1, x̃1, . . . , xn, x̃n}. Due to ‘‘block-triangular’’ structure of
(23), the condition (ii) of Lemma 1 for this system is equivalent to
the fact that the matrices
H0

i

=

−δi − βi(0)

1 − Li

 τi

0
e−γiafi(a)da


β̃i(0)Li

 τi

0
e−γiafi(a)da

βi(0)L̃i

 τi

0
e−γiafi(a)da −β̃i(0)


1 − L̃i

 τi

0
e−γiafi(a)da


 ,

i = 1, . . . , n. (24)
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are Hurwitz. Since H0
i is Metzler, this matrix is Hurwitz if and only

if there exists a vector 0 < λi ∈ R2 such that λT
i H

0
i < 0. Clearly λi

can be chosen as λi = col{1, λ1
i } with a positive scalar λ1

i leading
to the following inequalities (since β̃i(0) > 0):
(Li + λ1

i L̃i)
 τi

0
e−γiafi(a)da − 1


βi(0) < δi,

(Li + λ1
i L̃i)

 τi

0
e−γiafi(a)da − λ1

i < 0, i = 1, . . . , n.
(25)

Summarizing, we formulate the stability conditions for (23) in
the following

Lemma 2. The linear system (23) is exponentially stable if and only
if there exist scalars λ1

i > 0, i = 1, . . . , n that satisfy the
inequalities (25), or, equivalently, if the Metzler matrices H0

i are
Hurwitz.

Remark 2. Note that if the inequalities (25) are satisfiedwithλ1
i =

1, then the resulting inequalities (25) are equivalent to

2(1 − Ki)

 τi

0
e−γiafi(a)da < 1, i = 1, . . . , n. (26)

It was shown in [14] that the nonlinear time-delay model has a
non-zero (positive) equilibrium point if

1 < 2(1 − Ki)

 τi

0
e−γiafi(a)da <

1
1 − σi

, i = 1, . . . , n (27)

and

β1(0) > δ1
1 − 2(1 − σ1)(1 − K1)

 τ1
0 e−γ1af1(a)da

2(1 − K1)
 τ1
0 e−γ1af1(a)da − 1

.

Summarizing, the inequalities (25) are necessary and sufficient
conditions for the local exponential stability of (22) (see e.g. Propo-
sition 3.17 in [13]). Note that in the case of equality in (25) there
may be local asymptotic stability of the nonlinear system (22).

3.1. Global asymptotic/regional exponential stability of the nonlinear
time-delay model

Our next objective is to show that inequalities (25) are sufficient
for the global asymptotic stability of the zero solution of (22).
We will also derive regional exponential stability conditions (for
positive solutions starting from a bounded region). An extension
of the Lyapunov functional construction (10) to a more general
system (22) (that takes into account conditions (25)) has a form

V (xt , x̃t) =

n
i=1

εi
[xi(t) + λ1

i x̃i(t)

+ (Li + 2εKi + λ1
i L̃i)(V2i(xt) + V3i(x̃t))],

ε > 0, λ1
i > 0,

V2i(xt) =

 τi

0

 t

t−a
e−η(t−a−s)−γiafi(a)βi(xi(s))xi(s)dsda,

V3i(x̃t) =

 τi

0

 t

t−a
e−η(t−a−s)−γiafi(a)β̃i(x̃i(s))x̃i(s)dsda,

i = 1, . . . , n.

(28)

We have along (22)
n

i=1

εiẋi(t) =

n
i=1

εi

−(δi + βi(xi(t)))xi(t)

+ Li

 τi

0
e−γiafi(a)[βi(xi(t − a))xi(t − a)

+ β̃i(x̃i(t − a))x̃i(t − a)]da + 2Ki−1

×

 τi−1

0
e−γi−1afi−1(a)[βi−1(xi−1(t − a))xi−1(t − a)da

+ β̃i−1(x̃i−1(t − a))x̃i−1(t − a)]da


≤

n
i=1

εi

−(δi + βi(xi(t)))xi(t)

+ [Li + 2εKi]

 τi

0
e−γiafi(a)[βi(xi(t − a))xi(t − a)

+ β̃i(x̃i(t − a))x̃i(t − a)]da


and
n

i=1

εiλ1
i
˙̃xi(t) =

n
i=1

εiλ1
i


−β̃i(x̃i(t))x̃i(t)

+ L̃i

 τi

0
e−γiafi(a)[βi(xi(t − a))xi(t − a)

+ β̃i(x̃i(t − a))x̃i(t − a)]da

.

Then differentiating V defined in (28) along (22) and taking into
account that

V̇2i(xt) + ηV2i(xt) =

 τi

0
e−(γi−η)afi(a)daβi(xi(t))xi(t)

−

 τi

0
e−γiafi(a)βi(xi(t − a))xi(t − a)da,

V̇3i(xt) + ηV3i(xt) =

 τi

0
e−(γi−η)afi(a)daβ̃i(x̃i(t))x̃i(t)

−

 τi

0
[e−γiaβ̃i(x̃i(t − a))x̃i(t − a)]da

we obtain

V̇ (xt , x̃t) + ηV (xt , x̃t)

≤

n
i=1

εi

η +


[Li + 2εKi + λ1

i L̃i]

×

 τi

0
e−(γi−η)afi(a)da − 1


βi(xi(t)) − δi


xi(t)

+

n
i=1

εi

λ1
i η +


[Li + 2εKi + λ1

i L̃i]

×

 τi

0
e−(γi−η)afi(a)da − λ1

i


β̃i(x̃i(t))


x̃i(t). (29)

We start with the boundedness of the solutions of (22) (non-
asymptotic stability):

Lemma 3. Let there exist λ1
1 > 0, . . . , λ1

n > 0 such that the
inequalities (25) hold. Then there exists a small enough ε > 0 such
that
(Li + 2εKi + λ1

i L̃i)
 τi

0
e−γiafi(a)da − 1


βi(0) ≤ δi,

(Li + 2εKi + λ1
i L̃i)

 τi

0
e−γiafi(a)da ≤ λ1

i , i = 1, . . . , n.
(30)

Moreover, given ε ∈ (0, 1) that satisfies (30), the following bound
holds for solutions of (22) starting from the initial functions φ ∈
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Cn
τ+

, φ̃ ∈ Cn
τ+

:

n
i=1

[xi(t) + x̃i(t)] ≤ K{∥φ∥C + ∥φ̃∥C } for all t ≥ 0,

K =

max{1, λ1
1, . . . , λ

1
n} + max

i=1,...,n
{τiλ

1
i βi(0), τiλ1

i β̃i(0)}

εn−1 min{1, λ1
1, . . . , λ

1
n}

.

(31)

Proof. The implication (25) ⇒ (30) that holds for small enough
ε > 0 is straightforward.

Under (30), it follows from (29) that V̇ (xt , x̃t)|η=0 ≤ 0, implying

n
i=1

εi
[xi(t) + λ1

i x̃i(t)] ≤ V (xt , x̃t)|η=0 ≤ V (φ, φ̃)|η=0. (32)

Note that βi and β̃i are monotonically decreasing. Then

V2i(φ)|η=0 =

 τi

0

 0

−a
e−γiafi(a)βi(xi(s))xi(s)dsda

≤ τiβi(0) · max
s∈[−τi,0]

|φi(s)| ·

 τi

0
e−γiafi(a)da,

V3i(φ̃)|η=0 =

 τi

0

 0

−a
e−γiafi(a)β̃i(x̃i(s))x̃i(s)dsda

≤ τiβ̃i(0) · max
s∈[−τi,0]

|φ̃i(s)| ·

 τi

0
e−γiafi(a)da.

Therefore, taking into account the second inequality (30), we arrive
at

εn min{1, λ1
1, . . . , λ

1
n} ·

n
i=1

[xi(t) + x̃i(t)]

≤ V (φ, φ̃)|η=0 ≤ ϵ

max{1, λ1

1, . . . , λ
1
n}

+ max
i=1,...,n

{τiλ
1
i βi(0), τiλ1

i β̃i(0)}


∥φ∥C + ∥φ̃∥C


that yields (31). �

Given x̃∗
∈ Rn

+
, denote by

A(x̃∗) = {φ ∈ Cn
τ+

, φ̃ ∈ Cn
τ+

: x̃(t, φ, φ̃) ≤ x̃∗
∀t ≥ 0},

where x̃(t, φ, φ̃) satisfies (22) with the initial conditions x0 =

φ, x̃0 = φ̃.
We are in a position to state our main result on the global

asymptotic stability and on regional exponential stability of the
zero solution of (22):

Theorem 1. (i) Let there exist η ∈ (0,min{δ1, . . . , δn}), λ1
1 >

0, . . . , λ1
n > 0 and x̃∗

1 > 0, . . . , x̃∗
n > 0 such that the following

inequalities are satisfied:
(Li + λ1

i L̃i)
 τi

0
e−(γi−η)afi(a)da − 1


βi(0) < δi − η,

(Li + λ1
i L̃i)

 τi

0
e−(γi−η)afi(a)da − λ1

i


β̃i(x̃∗

i )

< −λ1
i η, i = 1, . . . , n,

(33)

or, equivalently, let the Metzler matrices

Hi

=

−δi − βi(0)[1 − Li

 τi

0
e−(γi−η)afi(a)da] β̃i(0)Li

 τi

0
e−(γi−η)afi(a)da

βi(0)L̃i

 τi

0
e−(γi−η)afi(a)da −β̃i(x̃∗

i )


1 − L̃i

 τi

0
e−(γi−η)afi(a)da




+ diag{η, η}, i = 1, . . . , n (34)

be Hurwitz. Then the zero solution of the system (22) is regionally
exponentially stable with a decay rate η for all initial conditions
(φ, φ̃) ∈ A(x̃∗).

Moreover, if the above conditions hold with x̃∗

1 = · · · = x̃∗
n = 0,

then the zero solution of the system (22) is exponentially stable with a
decay rate η for all small enough initial functions φ ∈ Cn

τ+
, φ̃ ∈ Cn

τ+

(i.e. the system is locally exponentially stable with a decay rate η).
(ii) Let there exist λ1

1 > 0, . . . , λ1
n > 0 such that the

inequalities (25) are satisfied, or, equivalently, let theMetzlermatrices
H0

1 , . . . ,H
0
n given by (24) be Hurwitz. Then the zero solution of (22) is

globally asymptotically stable.

Proof. (i) For each i = 1, . . . , n we have either

[Li + 2εKi + λ1
i L̃i]

 τi

0
e−(γi−η)afi(a)da < 1

or, due to 0 ≤ βi(xi) ≤ βi(0),
[Li + 2εKi + λ1

i L̃i]
 τi

0
e−(γi−η)afi(a)da − 1


βi(xi(t))

≤


[Li + 2εKi + λ1

i L̃i]
 τi

0
e−(γi−η)afi(a)da − 1


βi(0).

Then, under the first inequality (33), for small enough ε Eq. (29)
implies

η +


[Li + 2εKi + λ1

i L̃i]
 τi

0
e−(γi−η)afi(a)da − 1


× βi(xi(t)) − δi < 0. (35)

Under the second inequality (33) we have for small enough
ε > 0

[Li + 2εKi + λ1
i L̃i]

 τi

0
e−(γi−η)afi(a)da − λ1

i < 0.

Then due to

x̃i ≤ x̃∗

i ⇒ β̃i(x̃∗

i ) ≤ β̃i(x̃i)

we obtain under the second inequality (33)

λ1
i η +


[Li + 2εKi + λ1

i L̃i]
 τi

0
e−(γi−η)afi(a)da − λ1

i


× β̃i(x̃i(t)) < 0. (36)

Therefore, the inequalities (29), (35) and (36) imply (11).
(ii) If the inequalities (25) are satisfied, then for all x̃∗

∈ Rn
+

there exists η = η(x̃∗) such that (33) holds. The latter guarantees
due to (i) that for all {φ, φ̃} ∈ A(x̃∗) the corresponding solutions
x(t) and x̃(t) of (22) approach zero as t → ∞. For x̃∗

i → ∞ (i =

1, . . . , n) by employing Lemma 3 we have ∥φ∥C +∥φ̃∥C → ∞ (cf.
the inequality (31)) meaning that A(x̃∗) = {Cn

τ+
, Cn

τ+
}. Therefore,

the zero solution of (22) is globally asymptotically stable. �

Example 2. Choosing fi(a) =
mi

emiτi−1 e
mia, with mi > 0 for all

i ∈ [1, n], the following parameters satisfy (25).
For i = 1: δ1 = 2, σ1 = 0.8, K1 = 0.02, L1 = 2σ1(1 − K1) =

1.5680, L̃1 = 2(1 − σ1)(1 − K1) = 0.3920, m1 = 1, τ1 = 0.9,
γ1 = 0.18, β1(x1) =

1
1+x21

and β̃1(x̃1) =
10

1+1.2x̃31
.

For i = 2: δ2 = 4.2, σ2 = 0.5, K2 = 0.05, L2 = 2σ2(1 − K2) =

0.95, L̃2 = 2(1 − σ2)(1 − K2) = 0.95, m2 = 1, τ2 = 1, γ2 = 0.3,
β2(x2) =

0.7
1+x22

and β̃2(x̃2) =
10

1+x̃22
.

• Choosing λ1
1 = 3:

(L1 + λ1
1L̃1)

 τ1

0
e−γ1af1(a)da − 1


β1(0) = 1.5030 < 2 = δ1
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and

(L1 + λ1
1L̃1)

 τ1

0
e−γ1af1(a)da − λ1

1 = −0.4970 < 0.

• Choosing λ1
2 = 5:

(L2 + λ1
2L̃2)

 τ2

0
e−γ2af2(a)da − 1


β2(0)

= 2.6629 < 4.2 = δ2

and

(L2 + λ1
2L̃2)

 τ2

0
e−γ2af2(a)da − λ1

2 = −0.1959 < 0.

• We can also verify that the positive steady state does not exist:

β1(0) = 0.7 < 1.6309

= δ1
1 − 2(1 − σ1)(1 − K1)

 τ1
0 e−γ1af1(a)da

2(1 − K1)
 τ1
0 e−γ1af1(a)da

.

According to (ii) of Theorem 1, the origin of the nonlinear system
(22) is globally asymptotically stable (see Fig. 2 with trajectories of
the system).

Example 3. Choosing the same functions fi’s as in the previous
examples, we observe that the following parameters satisfy (33)
with x̃∗

= col{3, 3}.
For i = 1: δ1 = 1.5, σ1 = 0.8, K1 = 0.02, L1 = 2σ1(1 − K1) =

1.5680, L̃1 = 2(1 − σ1)(1 − K1) = 0.3920, m1 = 1, τ1 = 0.8,
γ1 = 0.2, β1(x1) =

0.5
1+x31

and β̃1(x̃1) =
10

1+2x̃21
.

For i = 2: δ2 = 2, σ2 = 0.7, K2 = 0.02, L2 = 2σ2(1 − K2) =

1.3720, L̃2 = 2(1 − σ2)(1 − K2) = 0.5880, m2 = 1, τ2 = 0.8,
γ2 = 0.3, β2(x2) =

0.5
1+x32

and β̃2(x̃2) =
10

1+x̃22
.

• Choosing λ1
1 = λ1

2 = 3, we verify that the conditions (33) are
satisfied for η = 0.05:
(L1 + λ1

1L̃1)
 τ1

0
e−(γ1−η)af1(a)da − 1


β1(0)

= 0.7827 < 1.45 = δ1 − η
(L1 + λ1

1L̃1)
 τ1

0
e−(γ1−η)af1(a)da − λ1

1


β̃1(x̃∗

1)

= −0.2288 < −0.15 = −λ1
1η

(L2 + λ1
2L̃2)

 τ2

0
e−(γ2−η)af2(a)da − 1


β2(0)

= 0.9025 < 1.95 = δ2 − η
(L2 + λ1

2L̃2)
 τ2

0
e−(γ2−η)af2(a)da − λ1

2


β̃2(x̃∗

2)

= −0.1951 < −0.15 = −λ1
2η.

According to (i) of Theorem 1 the origin of the system (22) is
regionally exponentially stable with a decay rate η for all initial
conditions {φ, φ̃} ∈ A(x̃∗). Fig. 3 illustrates this example with
the previous parameters and φ1 = 2 × 10−3, (i.e., φ1(s) =

2 × 10−3, ∀s ∈ [−τ1, 0]), φ̃1 = 4 × 10−3, φ2 = 10−3 and
φ̃2 = 3×10−3. One can readily check from Lemma 3 that for these
initial conditions we have {φ, φ̃} ∈ A(x̃∗); Indeed, observe that for
ϵ = 0.1 the inequalities (30) are satisfied
(L1 + 2ϵK1 + λ1

1L̃1)
 τ1

0
e−γ1af1(a)da − 1


β1(0)

= 0.7563 < 1.5 = δ1

(L1 + 2ϵK1 + λ1
1L̃1)

 τ1

0
e−γ1af1(a)da = 2.5127 < 3 = λ1

1
(L2 + 2ϵK2 + λ1

2L̃2)
 τ2

0
e−γ2af2(a)da − 1


β2(0)

= 0.8738 < 2 = δ2

(L2 + 2ϵK2 + λ1
2L̃2)

 τ2

0
e−γ2af2(a)da = 2.7476 < 3 = λ1

2.

Moreover,

K =

max{1, λ1
1, λ

1
2} + max

i=1,2
{τiλ

1
i βi(0), τiλ1

i β̃i(0)}

ε min{1, λ1
1, λ

1
2}

= 270.

3.2. The case of uncertain or time-varying σi in the model

It may be of interest to consider time-varying (uncertain or
known) probability rates in the model (20)–(21)

σim ≤ σi(t) ≤ σiM , i = 1, . . . , n. (37)

By the arguments of [14] the resulting time-delay system is given
by (22). Then Theorem 1 holds, where in (25) and (33)

Li = 2σi(t)(1 − Ki), L̃i = 2(1 − σi(t))(1 − Ki).

Since the linear with respect to decision variables λ1
i inequalities

(25) and (33) are affine in σi, they are feasible for all σi subject to
(37) if they are satisfied for σi = σim and σi = σiM [15]. We arrive
at the following result on global asymptotic stability:

Corollary 1. Let there exist λ1
1 > 0, . . . , λ1

n > 0 such that the
following 4n linear inequalities are satisfied:
(Li + λ1

i L̃i)
 τi

0
e−γiafi(a)da − 1


βi(0)σi=σim < δi,

(Li + λ1
i L̃i)

 τi

0
e−γiafi(a)da − 1


βi(0)|σi=σiM < δi,

(Li + λ1
i L̃i)

 τi

0
e−γiafi(a)da|σi=σim < λ1

i ,

(Li + λ1
i L̃i)

 τi

0
e−γiafi(a)da|σi=σiM < λ1

i ,

i = 1, . . . , n.

(38)

Then the zero solution of the system (22), (37) is globally asymptoti-
cally stable.

Consider now the case, where σim = 0 and σiM = 1, i.e.

0 ≤ σi(t) ≤ 1, i = 1, . . . , n. (39)

Here

(Li + λ1
i L̃i)|σi=0 = 2λ1

i (1 − Ki), (Li + λ1
i L̃i)|σi=1 = 2(1 − Ki).

It is easy to see that the inequalities (38) are feasible with some
λ1
i > 0 if and only if they are feasible with λ1

i = 1, i.e. if the
following holds
2(1 − Ki)

 τi

0
e−γiafi(a)da − 1


βi(0) < δi, i = 1, . . . , n (40)

and

2(1 − Ki)

 τi

0
e−γiafi(a)da < 1, i = 1, . . . , n. (41)

Clearly the inequalities (41) imply (40). Note that the conditions
(41) are βi-independent.
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Fig. 2. Trajectories of the states x and x̃ for the parameters of Example 2.

Fig. 3. Trajectories of the states x and x̃ for the parameters of Example 3.

Corollary 2. If the inequalities (41) are satisfied, then the zero solu-
tion of the system (22), (39) is globally asymptotically stable.

Remark 3. In [14] for n = 1 the following sufficient condition for
the global asymptotic stability of (22) (with a constant given σ1)
was derived

2(1 − K1)f ∗

1 < γ1, f ∗

1 = sup
a∈[0,τ1]

f1(a).

Clearly if the latter inequality holds, then (41) is satisfied. However,
Corollary 2 shows that the stability is guaranteed for all σ1(t)
subject to (39).

Example 4. Let us consider the following parameters:
For i = 1: δ1 = 3.3, K1 = 0.1, m1 = 1, τ1 = 0.8, γ1 = 0.2,

β1(x1) =
0.8

1+x31
and β̃1(x̃1) =

10
1+2x̃21

.

For i = 2: δ2 = 4, K2 = 0.08, m2 = 1, τ2 = 0.8, γ2 = 0.3,
β2(x2) =

1
1+x32

and β̃2(x̃2) =
10

1+x̃22
.

We assume that σi is uncertain for i ∈ {1, 2}. For example

0.5 = σim ≤ σi(t) ≤ σiM = 0.9, for i = 1, 2 (42)

and

σi(t) =
σiM + σim

2
+

σiM − σim

2
cos(t). (43)

The condition (39) is satisfied with λ1
1 = λ1

2 = 5:

•


(L1 + λ1

1L̃1)
 τ1
0 e−γ1af1(a)da − 1


β1(0)|σ1=σ1m

= 3.1501 < 3.3 = δ1
(L1 + λ1

1L̃1)
 τ1
0 e−γ1af1(a)da − 1


β1(0)|σ1=σ1M

= 1.0434 < 3.3 = δ1

(L1 + λ1
1L̃1)

 τ1
0 e−γ1af1(a)da|σ1=σ1m = 4.9376 < 5 = λ1

1

(L1 + λ1
1L̃1)

 τ1
0 e−γ1af1(a)da|σ1=σ1M = 2.3042 < 5 = λ1

1

•


(L2 + λ1

2L̃2)
 τ2
0 e−γ2af2(a)da − 1


β2(0)|σ2=σ2m

= 3.8302 < 4 = δ2
(L2 + λ1

2L̃2)
 τ2
0 e−γ2af2(a)da − 1


β2(0)|σ2=σ2M

= 1.2541 < 4 = δ2
(L2 + λ1

2L̃2)
 τ2
0 e−γ2af2(a)da|σ2=σ2m = 4.8302 < 5 = λ1

2

(L2 + λ1
2L̃2)

 τ2
0 e−γ2af2(a)da|σ2=σ2M = 2.2541 < 5 = λ1

2.

According to Corollary 1 the origin is globally asymptotically stable
(see Fig. 4).

Remark 4. As in the case without fast self-renewal, the Lyapunov
approach can be developed directly for the PDE model (20). We
do not present these results here since the resulting conditions
either recover the results of Theorem 1 (that are necessary and
sufficient for the local exponential stability) or give some sufficient
conditions for the stability.

4. Conclusion

In this paper we have presented global asymptotic stability
analysis of the trivial solution for the multi-stage acute myeloid
leukemia model. The same conditions are necessary for the local
exponential stability. This was done by employing the positivity
of the resulting nonlinear time-delay model via a novel for
multi-stage case construction of linear Lyapunov functionals. In
a simpler model of hematopoiesis (without fast self-renewal) our
conditions guarantee also global exponential stability with a given
decay rate. Moreover, in this simpler case the analysis of the
PDE model is presented via novel Lyapunov functionals for the
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Fig. 4. Trajectories of the states x and x̃ for the parameters of Example 4.

transport equations. Future work will include the stability analysis
of the positive equilibrium points of the acute myeloid leukemia
model.
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