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a b s t r a c t

Two recent Lyapunov-based methods have significantly improved the stability analysis of time-delay
systems: the delay-fractioning approach of Gouaisbaut and Peaucelle (2006) for systems with constant
delays and the convex analysis of systems with time-varying delays of Park and Ko (2007). In this paper
we develop a convex optimization approach to stability analysis of linear systems with interval time-
varying delay by using the delay partitioning-based Lyapunov–Krasovskii Functionals (LKFs). Novel LKFs
are introduced with matrices that depend on the time delays. These functionals allow the derivation of
stability conditions that depend on both the upper and lower bounds on delay derivatives.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, much effort has been invested in the
analysis and design of systems with time delays (see e.g. Fridman
& Shaked, 2002; Hale & Lunel, 1993; He, Wang, Lin, & Wu,
2007; Kolmanovskii & Myshkis, 1999; Niculescu, 2001; Richard,
2003). Among the recent advances in this area, two Lyapunov-
based methods should be mentioned that significantly improved
the stability analysis: the convex analysis of systems with time-
varying delays of Park and Ko (2007) and the delay-fractioning
approach of Gouaisbaut and Peaucelle (2006) for systems with
constant delays.
These recent methods inspired the present work, where we

extend the delay partitioning approach to systems with interval
time-varying delay in a convex way.We introduce novel LKFs with
matrices that depend on the time delays. This enables us to derive
LMI conditions that depend not only on the upper, but also on
the lower bound of the delay derivative. The efficiency of the new
stability criteria is demonstrated via numerical examples.

2. Stability of systems with time-varying delay

Consider the system
ẋ(t) = Ax(t)+ A1x(t − τ(t)), (1)
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where τ(t) ∈ [ha, hb], ha ≥ 0 and where A and A1 are constant
matrices. The delay is assumed to be either differentiable with

d1 ≤ τ̇ (t) ≤ d2, (2)

where d1 and d2 are given bounds, or fast-varying (with no
restrictions on the delay derivative). The initial condition is given
by x(t0 + θ) = φ(θ), θ ∈ [−hb, 0], φ ∈ W , whereW is the space
of absolutely continuous functions φ : [−hb, 0] → Rn with the
square integrable derivative and with the norm

‖φ‖2W = |φ(0)|
2
+

∫ 0

−hb
[|φ(s)|2 + |φ̇(s)|2]ds.

2.1. A delay partitioning approach to stability

Wedivide the delay interval [ha, hb] into two segments: [h1, h2]
and [h2, h3], where we denote h1 = ha, h3 = hb and h2 =
(ha + hb)/2. Then, (1) can be represented as

ẋ(t) = Ax(t)+ χ[h1,h2](τ (t))A1x(t − τ(t))

+ [1− χ[h1,h2](τ (t))]A1x(t − τ(t)), (3)

where χ[h1,h2] : R→ {0, 1} is the characteristic function of [h1, h2]

χ[h1,h2](s) =
{
1, if s ∈ [h1, h2]
0, otherwise.

Consider the following Lyapunov functional:

V (t, xt , ẋt) = xT(t)P(τ (t))x(t)+
∫ t−h1

t−τ(t)
xT(s)Qx(s)ds

+

∫ t

t−h1
xT(s)S0x(s)ds+

∫ t−h1

t−h2
ξ T(s)

[
S11 S12
∗ S13

]
ξ(s)ds
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+

2∑
i=0

(hi+1 − hi)
∫
−hi

−hi+1

∫ t

t+θ
ẋT(s)Riẋ(s)dsdθ, (4)

where h0 = 0, ξ(s) = col{x(s), x(s− (h2 − h1))},

Q ≥ 0, Ri > 0, S0 > 0,
[
S11 S12
∗ S13

]
> 0. (5)

We seek P(τ (t)) , P̄(t) of the form

P(τ (t)) = χ[h1,h2](τ (t))
[
τ(t)− h1
h2 − h1

P1 +
h2 − τ(t)
h2 − h1

P2
]

+ [1− χ[h1,h2](τ (t))]
[
τ(t)− h2
h3 − h2

P3 +
h3 − τ(t)
h3 − h2

P1
]
, (6)

i.e.

P(τ (t)) =


τ(t)− h1
h2 − h1

P1 +
h2 − τ(t)
h2 − h1

P2, h1 ≤ τ(t) ≤ h2,

τ (t)− h2
h3 − h2

P3 +
h3 − τ(t)
h3 − h2

P1, h2 < τ(t) ≤ h3,

where Pk > 0, k = 1, 2, 3. Note that the function P̄(t) is
continuous in t , since limτ(t)→h2 P(τ (t)) = P

1.
Following (Hale & Lunel, 1993), we define

V̇ (t, xt , ẋt) = lim sup
s→0+

1
s
[V (t + s, xt+s, ẋt+s)

− V (t, xt , ẋt)]. (7)
We are seeking for conditions guaranteeing that

V̇ ≤ −α|x(t)|2 (8)
for some scalar α > 0. We first consider τ 6= h2. We have

˙̄P(t)|τ 6=h2 = τ̇ (t)
[
χ(P1 − P2)
h2 − h1

+
(1− χ)(P3 − P1)

h3 − h2

]
. (9)

Denoting V0 = xT(t)P(τ (t))x(t), we find

V̇0|τ 6=h2 = x
T(t) ˙̄P(t)x(t)+ 2ẋT(t)

[
χ

[
τ(t)− h1
h2 − h1

P1

+
h2 − τ(t)
h2 − h1

P2
]
+ (1− χ)

×

[
τ(t)− h2
h3 − h2

P3 +
h3 − τ(t)
h3 − h2

P1
]]
x(t). (10)

Moreover,

d
dt

[ 2∑
i=0

(hi+1 − hi)
∫
−hi

−hi+1

∫ t

t+θ
ẋT(s)Riẋ(s)dsdθ

]
= ẋT(t)

[ 2∑
i=0

(hi+1 − hi)2Ri
]
ẋ(t)

−

2∑
i=0

(hi+1 − hi)
∫ t−hi

t−hi+1
ẋT(s)Riẋ(s)ds. (11)

We start with the case of τ ∈ [h1, h2), where χ = 1. Using
the fact that

∫ t−hj
t−hj+1

fj(s)ds =
∫ t−τ(t)
t−hj+1

fj(s)ds +
∫ t−hj
t−τ(t) fj(s)ds,where

fj(s) = ẋT(s)Rjẋ(s), we apply Jensen’s inequality (Gu, Kharitonov, &
Chen, 2003)∫ t−hi

t−hi+1
[(hi+1 − hi)fi(s)]ds ≥

∫ t−hi

t−hi+1
ẋT(s)dsRi

∫ t−hi

t−hi+1
ẋ(s)ds,∫ t−hj

t−τ(t)
[(hj+1 − hj)fj(s)]ds ≥ (τ (t)− hj)(hj+1 − hj)vTj1Rjvj1,∫ t−τ(t)

t−hj+1
[(hj+1 − hj)fj(s)]ds ≥ (hj+1 − τ(t))(hj+1 − hj)vTj2Rjvj2,

where

vj1 =
1

τ(t)− hj

∫ t−hj

t−τ(t)
ẋ(s)ds, vj2 =

1
hj+1 − τ(t)

×

∫ t−τ(t)

t−hj+1
ẋ(s)ds, (12)

and j = 1, i = 0, 2. Here, for τ(t)→ hj, we have

lim
τ(t)→hj

1
τ(t)− hj

∫ t−hj

t−τ(t)
ẋ(s)ds = ẋ(t − hj).

For hj+1 − τ(t) → 0 the vector 1
hj+1−τ(t)

∫ t−τ(t)
t−hj+1

ẋ(s)ds is defined
similarly as ẋ(t − hj+1). We thus find

V̇ |τ<h2 ≤ V̇0|τ<h2 + ẋ
T(t)

[ 2∑
i=0

(hi+1 − hi)2Ri
]
ẋ(t)

+ xT(t)S0x(t)− xT(t − h1)S0x(t − h1)

+

[
x(t − h1)
x(t − h2)

]T [
S11 S12
∗ S13

] [
x(t − h1)
x(t − h2)

]
−

[
x(t − h2)
x(t − h3)

]T [
S11 S12
∗ S13

] [
x(t − h2)
x(t − h3)

]
− [x(t)− x(t − h1)]TR0[x(t)− x(t − h1)]
− [x(t − h2)− x(t − h3)]TR2[x(t − h2)− x(t − h3)]
− (τ (t)− hj)(hj+1 − hj)vTj1Rjvj1

− (hj+1 − τ(t))(hj+1 − hj)vTj2Rjvj2

+ xT(t − h1)Qx(t − h1)

− (1− τ̇ (t))xT(t − τ(t))Qx(t − τ(t)). (13)

where j = 1, i = 0, 2. We insert free-weighting n × n-matrices
T1,W3, Yk1, Zk1(k = 1, 2) by adding the following expressions to
V̇ (t)|τ<h2 :

0 = 2[xT(t)Y T11 + ẋ
T(t)Y T21 + x

T(t − τ(t))T T1 ]
[−x(t − h1)+ x(t − τ(t))+ (τ (t)− h1)v11],

0 = 2[xT(t)ZT11 + ẋ
T(t)ZT21 + x

T(t − h3)W T3 ]
[x(t − h2)+ (h2 − τ(t))v22 − x(t − τ(t))].

(14)

We further use the descriptor method, where the right-hand side
of the expression

0 = 2[xT(t)PT2j + ẋ
T(t)PT3j][Ax(t)+ A1x(t − τ(t))− ẋ(t)], (15)

with some n× n-matrices P2j, P3j is added into the right-hand side
of (13).
Setting ηj(t) = col{x(t), ẋ(t), x(t−h1), x(t−h2), vj1, vj2, x(t−

τ(t)), x(t − h3)},we obtain that along (3)

V̇ |τ<h2 ≤ η
T
1(t)Ψ|τ<h2η1(t) ≤ −α1|x(t)|

2, (16)

for some scalar α1 > 0 if

Ψ|τ<h2 ,



Ω111 +
τ̇ (t)(P1 − P2)
h2 − h1

Ω112 R0 − Y T11 ZT11 (τ (t)− h1)Y T11

∗ Ω122 −Y T21 ZT21 (τ (t)− h1)Y T21
∗ ∗ φ

(1)
3 S12 0

∗ ∗ ∗ φ
(1)
4 0

∗ ∗ ∗ ∗ φ
(1)
5

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
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(h2 − τ(t))ZT11 Ω117 0
(h2 − τ(t))ZT21 Ω127 0

0 −T1 0
0 0 R2 +W3 − S12
0 (τ (t)− h1)T1 0
φ
(1)
6 0 (h2 − τ(t))W3
∗ −(1− τ̇ (t))Q + T1 + T T1 −W3
∗ ∗ −(S13 + R2)


< 0, (17)

where

Ω
j
11 = A

TP2j + PT2jA+ S0 − R0,

Ω112 =

[
τ(t)− h1
h2 − h1

P1 +
h2 − τ(t)
h2 − h1

P2
]
− PT21 + A

TP31,

Ω
j
22 = −P3j − P

T
3j +

2∑
i=0

(hi+1 − hi)2Ri,

Ω
j
17 = Y

T
1j − Z

T
1j + P

T
2jA1,

Ω
j
27 = Y

T
2j − Z

T
2j + P

T
3jA1,

φ
(1)
3 = −(S0 + R0 − S11 − Q ),

φ
(1)
4 = −(S11 + R2 − S13),

φ
(1)
5 = −(h2 − h1)(τ (t)− h1)R1,

φ
(1)
6 = −(h2 − h1)(h2 − τ(t))R1, i, j = 1, 2.

(18)

The latter LMI leads for τ(t) → h1 and for τ(t) → h2 to the
following LMIs:

Ψ1 =



Ω111 +
τ̇ (t)(P1 − P2)
h2 − h1

Ω112 |τ(t)=h1
R0 − Y T11 ZT11

∗ Ω122 −Y T21 ZT21
∗ ∗ φ

(1)
3 S12

∗ ∗ ∗ φ
(1)
4

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

(h2 − h1)ZT11 Ω117 0
(h2 − h1)ZT21 Ω127 0

0 −T1 0
0 0 R2 +W3 − S12

φ
(1)
6 |τ(t)=h1

0 (h2 − h1)W3
∗ −(1− τ̇ (t))Q + T1 + T T1 −W3
∗ ∗ −(S13 + R2)


< 0, (19)

and

Ψ2 =



Ω111 +
τ̇ (t)(P1 − P2)
h2 − h1

Ω112 |τ(t)=h2
R0 − Y T11 ZT11

∗ Ω122 −Y T21 ZT21
∗ ∗ φ

(1)
3 S12

∗ ∗ ∗ φ
(1)
4

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

(h2 − h1)Y T11 Ω117 0
(h2 − h1)Y T21 Ω127 0

0 −T1 0
0 0 R2 +W3 − S12

φ
(1)
5 |τ(t)=h2

(h2 − h1)T1 0
∗ −(1− τ̇ (t))Q + T1 + T T1 −W3
∗ ∗ −(S13 + R2)


< 0. (20)

It is easy to see that Ψ1 results from Ψ|τ<h2,τ=h1 , where we have
deleted the zero row and the zero column. Denoting:

η1i(t) = col{x(t), ẋ(t), x(t − h1), x(t − h2), vji,
x(t − τ(t)), x(t − h3)}, i = 1, 2,

the latter two LMIs imply (16) because

h2 − τ(t)
h2 − h1

ηT12(t)Ψ1η12(t)+
τ(t)− h1
h2 − h1

ηT11(t)Ψ2η11(t)

= ηT1(t)Ψ|τ<h2η1(t) ≤ −α1|x(t)|
2

and Ψ|τ<h2 is thus convex in τ(t) ∈ [h1, h2).
LMI (19) leads for τ̇ (t) = di, i = 1, 2 to the following:

Ψ1i = Ψ1|τ̇ (t)=di < 0, i = 1, 2. (21)

The two LMIs (21) imply (19) because

d2 − τ̇ (t)
d2 − d1

Ψ11 +
τ̇ (t)− d1
d2 − d1

Ψ12 = Ψ1 < 0.

and Ψ1 is thus convex in τ̇ (t) ∈ [d1, d2]. Similarly, we can obtain
that Ψ2 is also convex in τ̇ (t) ∈ [d1, d2].
For τ(t) ∈ (h2, h3], where χ = 0, we apply the above argu-

ments and representations with j = 2 and i = 0, 1. Similarly to
(14), we insert free-weighting n× n-matrices T2,W1, Yk2, Zk2(k =
1, 2) by adding the following expressions to V̇ :

0 = 2[xT(t)Y T12 + ẋ
T(t)Y T22 + x

T(t − τ(t))T T2 + x
T(t − h1)W T1 ]

[−x(t − h2)+ x(t − τ(t))+ (τ (t)− h2)v21],

0 = 2[xT(t)ZT12 + ẋ
T(t)ZT22]

[x(t − h3)+ (h3 − τ(t))v22 − x(t − τ(t))].

Similarly to (15), the expression with j = 2 is added to V̇ . We then
arrive at the following:

V̇ |τ>h2 ≤ η
T
2(t)Ψ|τ>h2η2(t),

where

Ψ|τ>h2 ,



Ω211 +
τ̇ (t)(P3 − P1)
h3 − h2

Ω212 R0 −Y T12 (τ (t)− h2)Y T12

∗ Ω222 0 −Y T22 (τ (t)− h2)Y T22
∗ ∗ φ

(2)
3 R1 −W T1 + S12 (τ (t)− h2)W T1

∗ ∗ ∗ φ
(2)
4 0

∗ ∗ ∗ ∗ φ
(2)
5

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

(h3 − τ(t))ZT12 Ω217 ZT12
(h3 − τ(t))ZT22 Ω227 ZT22

0 W T1 0

0 −T2 −S12
0 (τ (t)− h2)T2 0

φ
(2)
6 0 0

∗ −(1− τ̇ (t))Q + T2 + T T2 0

∗ ∗ −S13


< 0, (22)

and where

Ω212 =

[
τ(t)− h2
h3 − h2

P3 +
h3 − τ(t)
h3 − h2

P1
]
− PT22 + A

TP32,

φ
(2)
3 = −(S0 + R0 + R1 − S11 − Q ),

φ
(2)
4 = −(S11 + R1 − S13),

φ
(2)
5 = −(h3 − h2)(τ (t)− h2)R2,

φ
(2)
6 = −(h3 − h2)(h3 − τ(t))R2.

(23)

We note that Ψ|τ>h2 is convex in τ(t) ∈ (h2, h3] and, thus,
for the feasibility of LMI (22), it is sufficient to verify this LMI for
τ(t) → h2 and for τ(t) → h3. Denote the resulting LMIs by
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Ψ02 < 0 and Ψ03 < 0, respectively, where the zero columns and
rows are deleted from Ψ02 and Ψ03. Clearly Ψ02 and Ψ03 are also
convex in τ̇ (t) ∈ [d1, d2]. Along the system (3), we therefore have

V̇|τ 6=h2 ≤ χ[h1,h2](τ (t))η
T
1(t)Ψ|τ<h2η1(t)

+ [1− χ[h1,h2](τ (t))]η
T
2(t)Ψ|τ>h2η2(t) ≤ −α|x(t)|

2 (24)

for some positive scalar α > 0.
For τ = h2, taking into account the definition (7) of V̇ , we find

V̇|τ=h2 ≤ max{η
T
1(t)Ψ|τ<h2η1(t),

ηT2(t)Ψ|τ>h2η2(t)} ≤ −α|x(t)|
2. (25)

By using Theorem 8.1.6 of (Kolmanovskii & Myshkis, 1999), we
finally obtain the following:

Theorem 1. Let there exist n × n-matrices Q , Ri(i = 0, 1, 2),
S0, S11, S12, S13, satisfying (5), and n × n-matrices Pk > 0, k =
1, 2, 3, W1,W3, P2j, P3j, Y1j, Y2j, Tj, Z1j and Z2j, j = 1, 2 such that
the eight LMIs: (17), for τ(t) → h1 and τ(t) → h2, and (22), for
τ(t) → h2 and τ(t) → h3, where τ̇ (t) = d1, d2, with notations
given in (18) and (23), are feasible. Then (1) is asymptotically stable
for all differentiable delays τ(t) ∈ [h1, h3] with d1 ≤ τ̇ (t) ≤ d2.

For unknown d1, by substituting P = P1 = P2 = P3 and τ̇ (t) = d2
into (17) and (22), we arrive at the following:

Corollary 1. Let there exist n × n-matrices Q , Ri(i = 0, 1, 2),
S0, S11, S12, S13, satisfying (5), and n×n-matrices P > 0,W1,W3, P2j,
P3j, Y1j, Y2j, Tj, Z1j and Z2j, j = 1, 2 such that the four LMIs: (17),
for τ(t) → h1 and τ(t) → h2, and (22), for τ(t) → h2 and
τ(t) → h3, where τ̇ (t) = d2, with notations given in (18) and
(23), are feasible. Then (1) is asymptotically stable for all differentiable
delays τ(t) ∈ [h1, h3] with τ̇ (t) ≤ d2. Moreover, if the above LMIs
are feasible with Q = 0, then (1) is asymptotically stable for all fast-
varying delays in [h1, h3].

2.2. On other possibilities for delay partitioning

If ha is big enough, delay partitioning of [0, ha] can improve the
result. For simplicity we combine delay partitioning of [0, ha]with
a non-partitioned [ha, hb], where ha = h1 and hb = h2. We apply

V (t, xt , ẋt) = xT(t)P(τ (t))x(t)

+

∫ t

t− h12

 x(s)

x
(
s−
h1
2

) T [S01 S02
∗ S03

] x(s)

x
(
s−
h1
2

)  ds
+
h1
2

∫ 0

−
h1
2

∫ t

t+θ
ẋT(s)R0ẋ(s)dsdθ

+

∫ t−h1

t−h2
xT(s)S1x(s)ds+

∫ t−h1

t−τ(t)
xT(s)Qx(s)ds

+ (h2 − h1)
∫
−h1

−h2

∫ t

t+θ
ẋT(s)R1ẋ(s)dsdθ, (26)

where τ(t) ∈ [h1, h2] and where

P(τ (t)) =
τ(t)− h1
h2 − h1

P1 +
h2 − τ(t)
h2 − h1

P2, P1 > 0, P2 > 0, (27)

Q ≥ 0, R0 > 0, R1 > 0, S1 > 0,
[
S01 S02
∗ S03

]
> 0. (28)

We have:
d
dt
[xT(t)P(τ (t))x(t)] = xT(t)

τ̇ (t)(P1 − P2)
h2 − h1

x(t)

+ 2ẋT(t)
[τ(t)− h1
h2 − h1

P1 +
h2 − τ(t)
h2 − h1

P2
]
x(t).

By using arguments of Theorem 1 (without partitioning of
[ha, hb]), we obtain that for some α > 0

V̇ ≤ ηT(t)Φη(t) ≤ −α|x(t)|2, (29)

where η(t) = col{x(t), ẋ(t), x(t − h1), x(t − h2), v1, v2, x(t −
τ(t)), x(t − h1

2 )}, if the LMI

Φ =



Φ11 +
τ̇ (t)(P1 − P2)
h2 − h1

Φ12 −Y T1 ZT1 (τ (t)− h1)Y T1

∗ Φ22 −Y T2 ZT2 (τ (t)− h1)Y T2
∗ ∗ S1 − S03 + Q 0 0
∗ ∗ ∗ −S1 0
∗ ∗ ∗ ∗ Φ5

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

(h2 − τ(t))ZT1 Y T1 − Z
T
1 + P

T
2A1 S02 + R0

(h2 − τ(t))ZT2 Y T2 − Z
T
2 + P

T
3A1 0

0 −T −ST02
0 0 0
0 (τ (t)− h1)T 0
Φ6 0 0
∗ −(1− τ̇ (t))Q + T + T T 0
∗ ∗ S03 − S01 − R0


< 0 (30)

holds, where

Φ11 = ATP2 + PT2A+ S01 − R0,

Φ12 =

[τ(t)− h1
h2 − h1

P1 +
h2 − τ(t)
h2 − h1

P2
]
− PT2 + A

TP3,

Φ22 = −P3 − PT3 +
1
4
h21R0 + (h2 − h1)

2R1,

Φ5 = −(h2 − h1)(τ (t)− h1)R1,
Φ6 = −(h2 − h1)(h2 − τ(t))R1.

(31)

The following result is then obtained.

Theorem 2. Let there exist n×n-matrices Q , R0, S01, S02, S03, R1, S1,
satisfying (28), and n × n-matrices P1 > 0, P2 > 0, P2,
P3T , Y1, Y2, Z1, Z2 such that the four LMIs: (30), for τ(t) → h1 and
τ(t) → h2, where τ̇ (t) = d1, d2, with notations given in (31), are
feasible. Then (1) is asymptotically stable for all differentiable delays
h1 ≤ τ(t) ≤ h2 satisfying d1 ≤ τ̇ (t) ≤ d2.

When d1 is unknown, by setting P = P1 = P2, τ̇ (t) = d2 in (30),
we obtain the following

Corollary 2. Let there exist n×n-matrices Q , R0, S01, S02, S03, R1, S1,
satisfying (28), and n×n-matrices P > 0, P2, P3T , Y1, Y2, Z1, Z2 such
that the two LMIs: (30), for τ(t) → h1 and τ(t) → h2, where
τ̇ (t) = d2, with notations given in (31), are feasible. Then (1) is
asymptotically stable for all differentiable delays h1 ≤ τ(t) ≤ h2
satisfying τ̇ (t) ≤ d2. Moreover, if the above LMIs are feasible with
Q = 0, then (1) is asymptotically stable for all fast-varying delays in
[h1, h2].

Remark 1. The examples below illustrate that for big enough ha
(for big enough hb − ha) the delay partitioning of [0, ha] (of
[ha, hb]) improve the result. Thus, in Example 2, the results by
Corollary 2 are worse for ha ≤ 1 and better for ha ≥ 2 than
the ones by Corollary 1. Partitioning of the above intervals into
n > 2 subintervals may lead to further improvements. In (Jiang
& Han, 2008) another delay partitioning was introduced, which
corresponded to the partitioning into two subintervals of [0, ha]
and of [0, hb]. Example 2 below shows that our approach yields
less conservative results.



Author's personal copy

E. Fridman et al. / Automatica 45 (2009) 2723–2727 2727

Table 1
Example 1: Max. value of hb achieved for ha = 0.

d2 \ d1 0 −0.1 −0.3 −0.5 −0.7 −1 unkn

0.1 Theorem2 5.63 5.57 5.56 5.56 5.56 5.56 5.55
Theorem1 6.39 6.38 6.37 6.37 6.37 6.37 6.28

0.3 Theorem2 2.60 2.50 2.38 2.37 2.37 2.37 2.35
Theorem1 2.69 2.58 2.49 2.47 2.46 2.46 2.41

0.5 Theorem2 1.66 1.57 1.44 1.35 1.31 1.30 1.26
Theorem1 1.79 1.70 1.56 1.48 1.44 1.40 1.27

0.7 Theorem2 1.27 1.22 1.15 1.09 1.06 1.06 1.06
Theorem1 1.56 1.50 1.37 1.29 1.25 1.20 1.12

1 Theorem2 1.22 1.18 1.12 1.07 1.06 1.06 1.06
Theorem1 1.50 1.43 1.31 1.24 1.20 1.18 1.12

Table 2
Example 1: Max. value of hb for ha = 1.

d2\Method He07 Shao09 Corollary 2 Corollary 1

0.3 2.21 2.24 2.42 2.42
unknown 1.51 1.61 1.76 1.79

Table 3
Example 1: Max. value of hb achieved for ha = 1.

d2 \ d1 0 −0.1 −0.3 −0.5

0.3 Theorem 2 2.68 2.57 2.46 2.45
Theorem 1 2.71 2.60 2.50 2.47

1 Theorem 2 1.80 1.77 1.76 1.76
Theorem 1 1.88 1.85 1.82 1.80

2.3. Examples

Example 1. Consider (1) with

A =
[
0 1
−1 −2

]
and A1 =

[
0 0
−1 1

]
.

For ha = 0, choosing d1 and d2 as in Table 1 and applying The-
orems 1 and 2, we find the maximum values of hb for which the
system remains asymptotically stable (see Table 1). For unknown
d1, our results coincide with those of the corresponding Corollar-
ies 1 and 2. The result of Corollary 2 coincides with the one of Park
andKo (2007) (the latter are less conservative than those ofHe et al.
(2007)and Shao (2009)), but the LMIs of Corollary 2 possess a fewer
number of decision variables. It is seen that the value of hb depends
on d1 ≤ 0 and it grows for d1 → 0.
For ha = 1, d1 unknown and d2 = 0.3 or unknown, the results

obtained by various methods in the literature for the admissible
upper-bounds hb, which guarantee the stability of the system (1)
are listed in Table 2. For ha = 1, choosing d1 and d2 and applying
Theorems 1 and 2, we obtain the results given in Table 3.

Example 2. Consider (1) with

A =
[
−2 0
0 −0.9

]
and A1 =

[
−1 0
−1 −1

]
.

For ha = 0 we find, by applying Corollary 2, that the system is
asymptotically stable for all fast-varying delays τ(t) ∈ [0, 1.868],
which coincides with the result of Park and Ko (2007) (the latter
is less conservative than those of He (2007), Jiang and Han (2008)
and Shao (2009)). Corollary 1 leads to a bigger interval τ(t) ∈
[0, 2.118].

Table 4
Example 2: Max. value of hb for different ha .

ha 1 2 3 4 5

Jiang and
Han (2008)

1.804 2.521 3.331 4.188 5.072

Shao (2009) 1.873 2.504 3.259 4.074 –
Corollary 2 2.120 2.724 3.458 4.257 5.097
Corollary 1 2.169 2.646 3.321 4.090 –

Table 5
Example 2: Max. value of hb achieved for d2 = 1.

ha \ d1 0 −0.3 −0.7 −1 unknown

0 Theorem 1 2.204 2.194 2.180 2.171 2.118
1 Theorem 1 2.196 2.189 2.182 2.179 2.169

For ha = 1, 2, 3, 4, 5 and fast-varying delays we obtain, by
applying Corollaries 1 and 2, the maximum values of hb given in
Table 4. These results are favorably compared with the existing
ones.

For d2 = 1, choosing d1 and ha as in Table 5 we apply The-
orems 1 and 2. The results by Theorem 1 are d1-dependent (see
Table 5), where the value of hb grows for d1 → 0. For unknown d1
the results coincide with those of Corollary 1. The results by The-
orem 2 are d1-independent and coincide with the ones by Corol-
lary 2.

3. Conclusions

In this paper new LKFswithmatrices depending on the time de-
lay are introduced. These delay partitioning-based LKFs lead to sta-
bility conditions that depend on both the upper and lower bounds
on the delay derivative. Two examples illustrate the efficiency of the
new method and the improvement that can be achieved by using
the lower bound on the delay derivative.
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