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Time-dependent Lyapunov functionals appeared to be very efficient for sampled-data systems. Recently,
new Lyapunov functionals were constructed for sampled-data control in the presence of a constant input
delay. The construction of these functionals was based on Wirtinger’s inequality leading to simplified
and efficient stability conditions in terms of linear matrix inequalities . In this article, we extend the latter
results to the discrete-time sampled-data systems. We show that the proposed approach is less conservative
on some examples with a lower number of decision variables.
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1. Introduction

Sampled-data systems have been studied extensively over the past decades (see e.g. Chen & Francis,
1995; Fridman et al., 2004; Mirkin, 2007; Naghshtabrizi et al., 2008; Fujioka, 2009 and the references
therein). Modeling of continuous-time systems with digital control in the form of continuous-time
systems with time-varying delay (Mikheev et al., 1988) and the extension of Krasovskii method to
systems with fast varying delays (without any constraints on the delay derivative as in Fridman &
Shaked (2003) and to discontinuous delays (Fridman et al., 2004) have allowed the development of the
time-delay approach to sampled-data and to network-based control (see Section 7 of Fridman, 2014 for
details).

Till Fridman (2010), the conventional time-independent Lyapunov functionals V(xt , ẋt) for systems
with fast-varying delays were applied to sampled-data systems (Fridman et al., 2004). These functionals
did not take advantage of the sawtooth evolution of the delays induced by sampled-and-hold. The
latter drawback was removed in Fridman (2010) and Seuret (2012), where time-dependent Lyapunov
functionals (inspired by Naghshtabrizi et al., 2008) were constructed for sampled-data systems. A
different time-dependent Lyapunov functional was suggested in Liu & Fridman (2012) which is based
on Wirtinger’s inequality (see for instance Kammler, 2007, Liu et al., 2010):

Let z(t) : (a, b) → R
n be absolutely continuous with ż ∈ L2[a, b] and z(a) = 0. Then for any n × n

matrix W > 0 Wirtinger’s inequality holds:

∫ b

a
żT (ξ)Wż(ξ)dξ ≥ π 2

4(b − a)2

∫ b

a
zT (ξ)Wz(ξ)dξ .
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The Wirtinger-based linear matrix inequality (LMI) is a single LMI with fewer decision variables than the
LMIs of Fridman (2010) and Seuret (2012). More important, differently from the Lyapunov functionals
of Fridman (2010) and Seuret (2012), the extension of the Wirtinger-based Lyapunov functionals to a
more general sampled-data system in the presence of a constant input/output delay leads to efficient
stability conditions (see e.g. Liu & Fridman, 2012).

In this article, we aim at extending the results of Liu & Fridman (2012) to discrete-time sampled-data
systems. Unlike the continuous-time case, the discrete-time formulation has surprisingly attracted only
few attention in the literature even if the formulation represents an efficient way to model the dynamics
of discrete-time systems subject to control packet losses. The problem of packet losses indeed appears
in many applications of networked control systems (see for instance Hespanha et al., 2007, Zampieri,
2008. As in the continuous-time case, the Wirtinger-based Lyapunov functionals essentially reduce the
numerical complexity of the resulting LMIs leading in some examples to less restrictive conditions.
Similarly to the continuous-time case, discrete-time sampled-data can be seen as a discrete-time system
subject to a particular time-varying delay, for which there exist many stability conditions (see e.g. Gao
& Chen, 2007, Shao & Han, 2011, Liu & Zhang, 2012). However, such approaches do not account
accurately the particularities of the sawtooth delay.

In the continuous-time case, the analysis of this class of functionals is made possible by considering
that the functionals do not grow at the sampling instants. A translation of such analysis in the discrete-time
framework is not easy and requires a dedicated analysis.

The article is organized as follows. Section 2 describes the problem formulation. Section 3 shows
some preliminary summation inequalities including a Wirtinger’s and Jensen’s inequality as well as a
recent summation inequality that includes the Jensen’s inequality as a consequence. This last inequality
is the counter part of the Wirtinger-based inequality provided in Seuret & Gouaisbaut (2013). Section 4
presents the main results on the stability analysis of discrete-time sampled-data systems. Section 6 shows
the efficiency of the proposed method on some examples. Finally Section 7 draws some conclusions.

Notations: Throughout the article, Z (N) denotes the set of (positive) integers, R
n the n-dimensional

Euclidean space with vector norm | · |, R
n×m the set of all n × m real matrices. For any symmetric matrix

P ∈ R
n×n, the notation P > 0 (or P < 0) means that P is positive (or negative) definite. The set S

+
n refers

to the set of symmetric positive definite matrices. For any matrices A, B in R
n×n, the notation diag(A, B)

denotes the block diagonal matrix
[

A 0∗ B

]
. For any square matrix, He(A) stands for A + AT . Along the

paper, for any real number a < b, the notation [a, b]Z denotes [a, b] ∩ Z. The same notations will also
hold for open intervals.

2. Problem formulation

Consider a linear discrete-time time-delay system of the form:

{
x(t + 1) = Ax(t)+ Adx(tk − h) ∀k ∈ [ki, ki+1)Z

x(θ) = x0(θ) ∀θ ∈ [−h, 0], (2.1)

where x(t) ∈ R
n is the state vector, x0 is the initial condition and A, Ad ∈ R

n×n are constant matrices.
The delay h ∈ N is assumed to be constant and known and the sequence of integers {tk}k∈N ⊂ N satisfies
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∀k ∈ N tk+1 − tk ∈ [1, Tmax]Z,

limk→+∞ tk = +∞.
(2.2)

Following the principles of the input delay approach for discrete-time systems, we can define an input
delay function τ given by

τ(t) = t − tk , ∀t ∈ [tk , tk+1)Z,

τ(t + 1) =
{
τ(t)+ 1 if t < tk+1

0 if t = tk+1.

(2.3)

The system (2.1) can then be rewritten as a discrete-time system subject to a time-varying delay.
The delay function can be seen as the discrete-time version of the sawtooth delay function considered
in Fridman et al. (2004) for continuous-time sampled-data systems.

{
x(t + 1) = Ax(t)+ Adx(t − h − τ(t)) ∀t ∈ [tk , tk+1)Z

x(θ) = x0(θ), ∀θ ∈ [−h, 0]Z,
(2.4)

where the delay h is constant and where the sampling delay τ(t) is given in (2.3). In this article, we aim
at providing stability conditions for this peculiar class of systems using a method based on discontinuous
Lyapunov functionals. This article can be seen as the discrete-time counterpart of the recent article (Liu
& Fridman, 2012). To this end, we will provide a stability analysis of such class of systems, where
novel Wirtinger-based terms are added to ‘nominal’ Lyapunov functionals for the stability analysis of
the discrete-time systems with the constant delay h.

3. Preliminaries on summation inequalities

3.1. Discrete-time Wirtinger inequality

Wirtinger inequalities are integral inequalities issued from the Fourier analysis. The continuous-time
versions of this inequality have already shown their potential for the stability analysis of partial differ-
ential equation (Fridman & Orlov, 2009), sampled-data systems (Liu & Fridman, 2012) or time-delay
systems (Seuret & Gouaisbaut, 2013). In this article, we aim at showing that this class of inequalities
also serves for the stability analysis of discrete-time systems. Indeed a discrete-time version of these
inequalities have been extended to the discrete-time framework. It is stated in the following lemma taken
from Ky Fan et al. (1955).

Lemma 3.1 For a given N ∈ N≥0, consider a sequence of N real scalars x0, x1, . . . , xN such that x0 = 0.
Then, the following inequality holds

N−1∑
i=0

(xi − xi+1)
2 ≥ λ2

N

N−1∑
i=0

x2
i , (3.1)

where λN = 2sin (π/(2(2N + 1))).
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A straightforward corollary of this lemma is provided for n-dimensional sequences z and is stated
below.

Corollary 3.1 For a given N ∈ N≥0, consider a sequence of N real n-dimensional vectors z0, z2, . . . , zN

such that z0 = 0. Then, the following inequality holds, for any symmetric positive definite matrix W ∈ S
n
+.

N−1∑
i=0

(zi − zi+1)
T W(zi − zi+1) ≥ λ2

N

N−1∑
i=0

zT
i Wzi, (3.2)

where λN = 2sin (π/(2(2N + 1))).

Proof. Since W > 0, there exists an orthogonal matrix U = [
UT

1 UT
2 . . . UT

n

]T
and a positive

definite diagonal matrix Δ = diag(Δ1,Δ2, ...Δn) such that W = UTΔU. It holds

λ2
N

N−1∑
i=0

zT
i Wzi = λ2

N

N−1∑
i=0

n∑
j=1

(Ujzi)
TΔj(Ujzi)

=
n∑

j=1

Δjλ
2
N

N−1∑
i=0

(Ujzi)
2. (3.3)

Following the same procedure, we also have

N−1∑
i=0

(zi − zi+1)
T W(zi − zi+1) =

n∑
j=1

Δj

N−1∑
i=0

(Uj(zi − zi+1))
2. (3.4)

Since the vector z0 = 0, the scalar Ujz0 is zero for all j = 1, . . . , n. Hence the Wirtinger inequality
in Lemma 3.1 ensures that

N−1∑
i=0

(Uj(zi − zi+1))
2 ≥ λ2

N

N−1∑
i=0

(Ujzi)
2, j = 1, . . . , n.

Finally computing the sum over j = 1, . . . , n of the previous inequality weighted by Δj leads to

n∑
j=1

Δj

N−1∑
i=0

(Uj(zi − zi+1))
2 ≥

n∑
j=1

Δjλ
2
N

N−1∑
i=0

(Ujzi)
2

which is equivalent to (3.2) thanks to (3.3) and (3.4). �

3.2. Summation inequalities

In this section, two summation inequalities are recalled. The first one is the Jensen inequality and is
stated here.
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Lemma 3.2 For a given symmetric positive definite matrix Z ∈ S
n
+, any sequence of discrete-time

variable x in [−h, 0]Z → R
n, where h ≥ 1, the following inequality holds:

0∑
i=−h+1

yT (i)Zy(i) ≥ 1

h
ΘT

0 ZΘ0, (3.5)

where y(i) = x(i)− x(i − 1) and Θ0 = x(0)− x(−h).

The second lemma is a recent inequality proposed in Seuret et al. (2015) that extends the Wirtinger-
based integral inequality (see Seuret & Gouaisbaut, 2013) to the discrete-time case.

Lemma 3.3 For a given symmetric positive definite matrix Z ∈ S
n
+, any sequence of discrete-time

variable x in [−h, 0]Z → R
n, where h ≥ 1, the inequality

0∑
i=−h+1

yT (i)Zy(i) ≥ 1

h

[
Θ0

Θ1

]T
⎡
⎣ Z 0

0 3

(
h + 1

h − 1

)
Z

⎤
⎦ [

Θ0

Θ1

]
(3.6)

holds where

y(i) = x(i)− x(i − 1),

Θ0 = x(0)− x(−h),

Θ1 = x(0)+ x(−h)− 2

h + 1

0∑
i=−h

x(i).

Proof. The proof is provided in Seuret et al. (2015) and is therefore omitted. �

Remark 3.1 The inequality provided in Lemma 3.3 implies

0∑
i=−h+1

yT (i)Zy(i) ≥ 1
hΘ

T
0 ZΘ0,

which is exactly the Jensen summation inequality. Therefore, Lemma 3.3 is less conservative than the
celebrated Jensen inequality since a positive quantity is added in the right-hand side of the inequalities.

4. Stability analysis

4.1. Wirtinger-based functional

In this section, we aim at proposing a new functional to deal with the discrete-time sampled-data system
(2.4) by an appropriate use of the discrete time Wirtinger inequality resumed in Lemma 3.1. This
contribution is proposed in the following lemma.
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Lemma 4.1 Consider the following Lyapunov functional, for a given matrix W ∈ S
n
+, a given k ∈ N

and for all t ∈ [tk , tk+1)Z

VW (xt) =
t−1∑

i=tk−h

yT (i)Wy(i)− λ2
Tσ(t, xt), (4.1)

where

y(i) = x(i + 1)− x(i) ∀i ∈ N

λT = 2sin

(
π

2(2Tmax + 1)

)

σ(t, xt) =

⎧⎪⎨
⎪⎩

t−1∑
i=tk

ν(i)Wν(i) t ∈ [tk + 1, tk+1 − 1]

0 t = tk ,

ν(i) = x(i − h)− x(tk − h), i ∈ [tk , tk+1 − 1]. (4.2)

Then, the forward difference of the functional VW satisfies the inequality

ΔVW (xt) ≤ (x(t + 1)− x(t))T W(x(t + 1)− x(t))− λ2
Tν

T (t)Wν(t) (4.3)

holds, for all t ∈ [tk , tk+1)Z, and for any sampling satisfying (2.2).

Proof. For a given k ∈ N, consider first t ∈ [tk , tk+1 − 2]Z. Then the computation of ΔVW

straightforwardly leads, for all t ∈ [tk , tk+1 − 2]Z, to

ΔVW (xt) =
t∑

i=tk−h

yT (i)Wy(i)−
t−1∑

i=tk−h

yT (i)Wy(i)− λ2
T (σ (t + 1, xt+1)− σ(t, xt))

= yT (t)Wy(t)− λ2
T (σ (t + 1, xt+1)− σ(t, xt)). (4.4)

From the definition of σ(t, xt), it is easy to see that, if t �= tk , we have

σ(t + 1, xt+1)− σ(t, xt) =
tk∑

i=tk

ν(i)Wν(i)− 0 = νT (t)Wν(t)

and if t = tk

σ(tk + 1, xtk+1)− σ(tk , xtk ) =
t∑

i=tk

ν(i)Wν(i)−
t−1∑
i=tk

ν(i)Wν(i) = νT (tk)Wν(tk).
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This ensures that, for all t ∈ [tk , tk+1 − 2]Z, the following equality holds

ΔVW (xt) = (x(t + 1)− x(t))T W(x(t + 1)− x(t))− λ2
Tν

T (t)Wν(t). (4.5)

Consider now the remaining case t = tk+1 − 1. The computation of ΔVW leads to

ΔVW (xt) =
tk+1−1∑

i=tk+1−h

yT (i)Wy(i)−
tk+1−2∑
i=tk−h

yT (i)Wy(i)− λ2
T

⎛
⎝0 −

tk+1−h−2∑
i=tk−h

νT (i)Wν(i)

⎞
⎠

= yT (t)Wy(t)− λ2
Tν

T (t)Wν(t)− ψ ,

where

ψ =
tk+1−h−1∑

i=tk−h

yT (i)Wy(i)− λ2
T

tk+1−h−1∑
i=tk−h

νT (i)Wν(i).

By noting that

ν(tk) = 0, ∀k ∈ N

ν(i + 1)− ν(i) = y(i) ∀i ∈ [tk , tk+1)Z,

tk+1 − tk ≤ Tmax ∀k ∈ N,

the assumptions of the Wirtinger inequality in Corollary 3.1 are satisfied, which guarantees that ψ ≥ 0.
It thus holds that, for t = tk+1 − 1

ΔVW (xt) ≤ (x(t + 1)− x(t))T W(x(t + 1)− x(t))− λ2
Tν

T (t)Wν(t). (4.6)

Then, combining (4.4) and (4.6) proves the result. �

Note that inequality (4.6) is actually an equality when t �= tk+1 − 1 and is an inequality only when
t = tk+1 −1. The computation of this inequality only relies on the computation of the forward increment
of functional VW and the use of the Wirtinger inequality.

The objective in the remainder of this article is to include this functional in the stability analysis of
discrete sampled-data systems. Next, we will propose two stability theorems which rely on the use of
the Jensen inequality and on Lemma 3.3.

4.2. Jensen-based theorem

The following theorem holds

Theorem 4.1 For given h and Tmax in N, assume that there exist n × n matrices P, Q, Z and W ∈ S
n
+

such that the LMI condition

Π(Tmax, h) < 0 (4.7)
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holds where

Π(Tmax, h) =
⎡
⎣ Q 0 0

∗ −Q 0
∗ ∗ −λ2

T W

⎤
⎦ + MT

1 PM1 − MT
2 PM2 + MT

0 (W + h2Z)M0 − MT
3 ZM3,

M0 = [
A − I Ad −Ad

]
, M1 = [

A Ad −Ad

]
,

M2 = [
I 0 0

]
, M3 = [

I −I 0
]

,

λT = 2sin

(
π

2(2Tmax + 1)

)
. (4.8)

Then system (2.4) is asymptotically stable for the constant delay h and any aperiodic sampling
satisfying (2.2).

Proof. Consider the functional

V(xt) = V1(xt)+ VW (xt)

where the functional VW have been defined previously. The fucntional V1 is built to assess stability of the
delayed term A1x(t − h) which appears in equation (2.4). Indeed a classical functional for discrete-time
delay system is given by

V1(xt) = xT (t)Px(t)+
t−1∑

i=t−h

xT (i)Qx(i)+ h
0∑

i=−h+1

t−1∑
j=t+i−1

yT ( j)Zy( j), (4.9)

where y(i) = x(i + 1) − x(i). Define the increment of the Lyapunov–Krasovskii functional as follows
ΔV(xt) = V(xt+1)− V(xt). From Lemma 4.1, we show that

ΔV(xt) = xT (t + 1)Px(t + 1)− xT (t)Px(t)+ xT (t)Qx(t)− xT (t − h)Qx(t − h)

+ h2(x(t + 1)− x(t))T Z(x(t + 1)− x(t))+ (x(t + 1)− x(t))T W(x(t + 1)− x(t))

− λ2
Tν

T (t)Wν(t)− h
t−1∑

j=t−h

yT ( j)Zy( j).

Applying Jensen’s inequality to the summation term ensures that

ΔV(xt) ≤ xT (t + 1)Px(t + 1)− xT (t)Px(t)+ xT (t)Qx(t)− xT (t − h)Qx(t − h)

+ h2(x(t + 1)− x(t))T Z(x(t + 1)− x(t))− (x(t)− x(t − h))T Z(x(t)− x(t − h))

+ (x(t + 1)− x(t))T W(x(t + 1)− x(t))− λ2
Tν

T (t)Wν(t).



DISCRETE-TIME WIRTINGER-LIKE L-K FUNCTIONALS 9

It follows from the previous calculations that

ΔV(xt) ≤
⎡
⎣ x(t)

x(t − h)
ν(t)

⎤
⎦

T

Π(Tmax, h)

⎡
⎣ x(t)

x(t − h)
ν(t)

⎤
⎦.

Then asymptotic stability results from the condition Π(T , h) < 0, which concludes the proof. �

4.3. Improved stability Theorem

As it was noticed in Seuret et al. (2015), the conservatism induces by the Jensen inequality can be
notably reduced by considering the refined summation inequality provided in Lemma 3.3. The resulting
analysis leads to the following theorem.

Theorem 4.2 For given h and Tmax in N, assume that there exist a 2n × 2n matrix P > 0 and n × n
matrices Q > 0, Z > 0 and W > 0 such that the LMI condition

Φ(Tmax, h) < 0 (4.10)

holds where

Φ(Tmax, h) =

⎡
⎢⎢⎣

Q 0 0 0
0 −Q 0 0
0 0 0 0
0 0 0 −λ2

T W

⎤
⎥⎥⎦ + NT

1 PN1 − NT
2 PN2 + NT

0 (W + h2Z)N0 − NT
3 Z̃N3

N0 = [
A − I Ad 0 −Ad

]
N1 =

[
A Ad 0 −Ad

0 −I (h + 1)I 0

]

N2 =
[

I 0 0 0
−I 0 (h + 1)I 0

]

N3 =
[

I −I 0 0
I I −2I 0

]

Z̃ =
[

Z 0
0 3 h+1

h−1 Z

]

λT = 2sin

(
π

2(2Tmax + 1)

)
. (4.11)

Then system (2.4) is asymptotically stable for the constant delay h and any aperiodic sampling
satisfying (2.2).

Proof. Consider the functional

V(xt) = V2(xt)+ VW (xt),



10 A. SEURET AND E. FRIDMAN

where we use the same definition for the functional VW as in Theorem 4.1. In order to fully take advantages
of the summation inequality provided in Lemma 3.3, we select the following functional V2 given by

V2(xt) =
⎡
⎢⎣

x(t)
t−1∑

i=t−h

x(i)

⎤
⎥⎦

T

P

⎡
⎢⎣

x(t)
t−1∑

i=t−h

x(i)

⎤
⎥⎦ +

t−1∑
i=t−h

xT (i)Qx(i)

+ h
0∑

i=−h+1

t−1∑
j=t+i−1

yT ( j )Zy( j), (4.12)

where y(i) = x(i + 1)− x(i). This functional has been build according to the method provided in Seuret
et al. (2015). The forward difference of the Lyapunov–Krasovskii functional yields

ΔV(xt) =
⎡
⎢⎣

x(t + 1)
t∑

i=t−h+1

x(i)

⎤
⎥⎦

T

P

⎡
⎢⎣

x(t + 1)
t∑

i=t−h+1

x(i)

⎤
⎥⎦ −

⎡
⎢⎣

x(t)
t−1∑

i=t−h

x(i)

⎤
⎥⎦

T

P

⎡
⎢⎣

x(t)
t−1∑

i=t−h

x(i)

⎤
⎥⎦

+ xT (t)Qx(t)− xT (t − h)Qx(t − h)+ h2(x(t + 1)− x(t))T Z(x(t + 1)− x(t))

− h
t−1∑

j=t−h

yT ( j)Zy( j).

Define the ξ(t) = 1
h+1

t∑
i=t−h

x(i) and applying the summation provided in Lemma 3.3 to the last term

ensures that

ΔV(xt) ≤
[

x(t + 1)
(h + 1)ξ(t)− x(t − h)

]T

P

[
x(t + 1)

(h + 1)ξ(t)− x(t)

]

−
[

x(t)
(h + 1)ξ(t)− x(t)

]T

P

[
x(t)

(h + 1)ξ(t)− x(t)

]

+ h2 (x(t + 1)− x(t))T Z (x(t + 1)− x(t))− (x(t)− x(t − h))T Z (x(t)− x(t − h))

− 3

(
h + 1

h − 1

)
(x(t)+ x(t − h)− 2ξ(t))T Z (x(t)+ x(t − h)− 2ξ(t)) .

It follows from the previous calculations that

ΔV(xt) ≤

⎡
⎢⎢⎣

x(t)
x(t − h)
ξ(t)
ν(t)

⎤
⎥⎥⎦

T

Φ(Tmax, h)

⎡
⎢⎢⎣

x(t)
x(t − h)
ξ(t)
ν(t)

⎤
⎥⎥⎦.

Then asymptotic stability results from the condition Φ(Tmax, h) < 0, which concludes the proof. �



DISCRETE-TIME WIRTINGER-LIKE L-K FUNCTIONALS 11

Remark 4.1 In the previous developments, we only focussed on the case of discrete-time delay systems
with a single delay and a single sampling. However, the methodology can be extended to the case
of multiple delays and multiple sampling by introducing additional functional terms. For the sake of
consistency, this problem is not addressed in this article.

4.4. Comparison with approaches from the literature

In this article, we consider functionals of the form

V(xt) = V1(xt)+ VW (xt),

where the functional V1 (or V2) aims at assessing the stability of system (2.1) without sampling and
where the functional VW (xt) aims at ensuring the robustness with respect to the sampling. In Seuret et al.
(2015), the functional can also be split into two parts where the first one is again the same V1 (or V2) but
the second part is related to the time-varying delay case. Therefore the conditions provided in Seuret
et al. (2015) only address the stability of the system driven by

x(t + 1) = Ax(t)+ Adx(t − h(k)),

where the delay h(k) can take any values between h and h+T , without respecting the constraint imposed
in this article on the sawtooth form of the delay. Therefore, the conditions provided in this article and
the one provided in Seuret et al. (2015) does not treat the same problem. However, it is correct to say
that the conditions of Seuret et al. (2015) guarantee stability of the sampled-data system (2.1) but also
to a larger class of delay systems.

The idea of this article is to propose a dedicated construction of the functional to cope with the
stability analysis of sampled and delayed closed-loop system driven by (2.1).

4.5. Example 1

Consider the continuous time sampled-data system linear driven for all t ∈ [kT0, (k + 1)T0)Z by

ẋ(t) = Acx(t)+ BcdKx((k − h)T0), (4.13)

where t represents the continuous time and where

Ac =
[

0 1
0 −0.1

]
, Bcd =

[
0 0

−0.375 −1.15

]
, K = [−0.375 −1.15

]
and T0 is the discretization period, h is the delay and k is a positive integer. The associated discretized
system is given by discrete-time systems with delay given in (2.4) with the matrices

A = eAcT0 , Ad =
∫ T0

0
eAc(T0−s)dsBcdK .

The stability conditions provided in this article and from the literature are tested on this system for
several values of the discretization period T0 = 0.1 and T0 = 0.01. The results and a comparison with
existing results from the literature are presented in Tables 2 and 3.
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Table 1 Complexity of the LMI conditions
tested in the example

Theorems Complexity

Liu & Zhang (2012) (3.5n2 + 2.5n)× 4n
Seuret et al. (2015) (10n2 + 3.5n)× 12n
Theorem 4.1 (2n2 + 2n)× 3n
Theorem 4.2 (3.5n2 + 2.5n)× 4n

Table 2 Results derived from various theorems showing the
maximal admissible constant delay h for several values of the
sampling period for system with T0 = 0.1

Tmax 1 2 3 4 5 6 7 8 9 10 11

Liu & Zhang (2012) 9 8 7 6 5 4 3 2 1 - -
Seuret et al. (2015) 9 8 7 6 5 4 3 2 1 - -
Theorem 4.1 9 8 7 6 5 4 4 3 2 1 1
Theorem 4.2 9 8 7 6 6 5 4 3 2 1 1

Table 3 Results derived from various theorems showing the maxi-
mal admissible constant delay h for several values of the sampling
period for system with T0 = 0.01

Tmax 5 10 25 50 75 100 125 133

Liu & Zhang (2012) 101 96 81 56 31 4 — —
Seuret et al. (2015) 109 103 86 58 33 7 — —
Theorem 4.1 102 98 85 65 45 25 7 1
Theorem 4.2 110 106 91 69 47 26 7 1

The stability conditions from Liu & Zhang (2012) and Seuret et al. (2015) address the problem of
stability analysis of discrete-time systems subject to an unknown time-varying delay but which belongs
to the interval [h, h+T ]. To the best of our knowledge, these results are the most efficient conditions for
the stability analysis of discrete systems with interval time-varying delays The sawtooth delay addressed
in this article is only a particular case of this more general class of time-varying delays.

Table 1 compares the complexity of Theorem 4.1 and 4.2 to theorems taken from Liu & Zhang
(2012) and Seuret et al. (2015). Tables 2 and 3 show that our theorems essentially reduce the complexity
of the conditions provided in Liu & Zhang (2012) and Seuret et al. (2015) leading to less conservative
results.

Finally, Fig. 1 depicts the solutions of system (4.13) taken with a sampling period of the continuous
time systems T0 = 0.1 and the input delay h = 6. From Table 2, the maximal length between two
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Fig. 1. Example 1. Simulation results representing the state x (top), the timer τ = t − tk (middle), and the control inputs
u = Kx(tk − h) (bottom), of System (4.13) with T0 = 0.1 with h = 5, Tmax = 6 and aperiodic (a) and periodic (b) samplings.

successive control updatetk+1 − tk is upper bounded by 6. Figure 1 shows two simulations of a periodic
and an aperiodic implementation of the control input u = Kx(tk−h)where it can be seen that the solutions
of the systems remain stable in both cases. It is also worth noting that the system remains stable with
the periodic implementation up to T = 12, which means that the stability conditions resulting from the
functional term related to the Wirtinger inequality are still conservative even if they already improve
the condition issued from the time-varying delay case, which, again, allows assessing stability of the
system with a larger class of delay functions than sawtooth delays.

5. Model reduction and predictor control

5.1. Definitions

Consider the linear discrete-time system driven by

{
x(t + 1) = Ax(t)+ Bu(tk − h) ∀t ∈ [tk , tk+1) ∩ N

x(θ) = x0(θ) ∀θ ∈ [−h, 0], (5.1)

where x(t) ∈ R
n is the state vector, x0 is the initial condition and A, Ad ∈ R

n×n are constant matrices.
with the initial condition x0. The prediction-based approach consists in considering the following control
law

u(t) = Kx̄(t + h)

x̄(t + h) = Ahx(t)+
h−1∑
i=0

Ah−i−1Bu(t − h + i). (5.2)
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In this formulation, the vector x̄ is the h−step ahead state prediction.

Lemma 5.1 The closed-looped system (5.1) with the control scheme (5.2) can be expressed as

z(t + 1) = (A + BK)z(t)− AhBK[z(t − h)− z(tk − h)]. (5.3)

Proof. Define the new state z(t) = x̄(t + h), where x̄ is given in (5.2). It holds

z(t + 1) = Ah(Ax(t)+ Bu(tk − h))+
h−1∑
i=0

Ah−i−1Bu(t + 1 − h + i)

= Ah(Ax(t)+ Bu(tk − h))+ A
h−1∑
i=0

Ah−i−1Bu(t − h + i)+ Bu(t)− AhBu(t − h)

= A[Ahx(t)+
h−1∑
i=0

Ah−i−1Bu(t − h + i)] + Bu(t)+ AhBu(tk − h))− AhBu(t − h)

= Az(t)+ Bu(t)+ AhB[u(tk − h))− u(t − h)].

Finally, reinjecting the definition of u = Kz in the previous equation leads to the result. �

5.2. Stability conditions

The following theorem holds

Theorem 5.1 For a given controller gain K and a given delay h, assume that there exists two n × n
matrices P > 0 and W > 0 such that the LMI condition⎡

⎢⎢⎣
−P 0 (A + BK − I)T W (A + BK)T P
∗ −λ2

T W −(AhBK)T W −(AhBK)T P
∗ ∗ −W 0
∗ ∗ ∗ −P

⎤
⎥⎥⎦ < 0 (5.4)

holds where λT = 2sin
(

π

2(2T+1)

)
.

Proof. Consider the functional

Vt(xt) = xT (t)Px(t)+ VW (xt),

where the functionals V and VW have been defined previously. It follows from the previous calculations
that

ΔVt(xt) ≤
[

x(t)
ν(t)

]T

Ψ2

[
x(t)
ν(t)

]
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Table 4 Evolution of the maximal admissible sampling period T for several values of the
input delay h

T 1 2 3 4 5 6 7 8 9 10 Number of decision variables

Theorem 5.1 3 7 10 13 15 16 17 19 20 21 3.5n2 + 2.5n

where

Ψ2 =
[ −P 0

∗ −λ2
T W

]
+

[
(A + BK)T − I

−(AhBK)T

]
W

[
(A + BK)T − I

−(AhBK)T

]T

+
[
(A + BK)T

−(AhBK)T

]
P

[
(A + BK)T

−(AhBK)T

]T

. (5.5)

Then asymptotic stability results from the condition Ψ2 < 0, which is equivalent to (5.4) by
application of the Schur complement.

�

5.3. Example 2

Consider the linear discrete-time systems with delay given in (2.4) with the matrices taken from Gao
et al. (2004)

A =
[

0.8 0
0.05 0.9

]
, Ad =

[ −0.1 0
−0.2 −0.1

]
.

The results are presented in Table 4. One can see from this example that the robustness of the predictor
control is reinforced for large delays. This means that the more the delay, the more the maximal allowable
sampling period is obtained. A possible interpretation for such behavior is that the matrix A0 is Schur
stable. Therefore the matrix Ah

0 in the LMI conditions becomes smaller when the delay increases so
that the contribution of λT becomes sufficiently great to ensure robustness with respect to the sampling
period.

A counter part of this numerical results is that the performances of the closed loop systems may be
affected. This means that increasing the delay T for large values of h would lead to power performances.
In order to measure the performance degradation, one may look at L2 performance criteria or exponential
stability criteria with guaranteed decay rate. For the latter solution, one would need to lightly modify
the Wirtinger-based functional to account for exponential stability. This can be achieved following the
idea developed for the continuous-time case in Lemma 1 of Selivanov & Fridman (2016).

6. Conclusions

This article addresses the stability analysis of discrete time sampled-data systems. The approach devel-
oped in this article can be interpreted as the counterpart of the recent result on continuous-time systems
from Liu & Fridman (2012). Two stability theorems have been provided and are tested on a simple
example showing the efficiency of the method.
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