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SUMMARY

A linear parameter varying approach is introduced for the design of a constant state-feedback controller
that locally stabilizes linear systems with state time-varying delays and saturating actuators and achieves a
prescribed performance level for all disturbances with uniformly bounded magnitudes. A polytopic
representation is used to describe the saturation behaviour. Delay-dependent sufficient conditions in terms
of linear matrix inequalities (LMIs) are obtained for the existence of such a controller. An estimate is made
of the domain of attraction for the disturbance-free system. The conditions for the stabilizability and H1
performance of the system apply the Lyapunov–Krasovskii functional and the recent descriptor approach
to the control of time-delay systems, whereas the conditions for finding an ellipsoid that bounds the set of
the states (in the Euclidean space) that are reachable from the origin in finite time are obtained via the
Razumikhin approach. The resulting conditions are expressed in terms of linear matrix inequalities, with
some tuning parameters, and they apply a different Lyapunov function to each of the vertex points that
stem from the polytopic description of the saturation in the actuators. Copyright # 2003 John Wiley &
Sons, Ltd.

1. INTRODUCTION

Systems with actuator constraints were extensively studied during the 1960s due to their
intimate connection with optimal control. Concurrently, design approaches, such as the
describing function method, which dealt specifically with nonlinearities such as saturation were
developed. Only very limited research into actuator saturation was carried out during the 1970s
and 1980s with the emphasis being placed mostly on the development of the Linear State Space
approach and its numerous offshoots. This situation changed during the late 1980s and early
1990s (see Reference [1] for an extensive bibliography of the work carried out during this
period), and has continued apace to the present time (see Reference [2] for recent developments).
In terms of stabilizability, current research can be classified as: global, semi-global
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(that guarantees that any given compact set of initial conditions, no matter how large,
can be included in the domain of attraction of the closed-loop system) and local or regional
(that estimates the domain of attraction). The main drawback with the global and the
semi-global stabilizability approach lies in the requirement for the open-loop poles to be
located in the closed left-half plane (see e.g. References [3, 4]). Relaxing these assumptions
has led to investigations into regional stabilization (see e.g. References [5, 6]). The emphasis
in this paper, in terms of stabilization in the face of actuator saturation, is therefore on
regional stabilization. An effort will however be made to enlarge the estimate of the domain of
attraction.

As for linear systems with both bounded controls and state delays, some of the previous
research effort was concentrated on regional or global stabilization via state feedback and used
either matrix measures (see Reference [7]), or the Lyapunov–Razumikhin approach for delayed
systems (see Reference [10]). A Lyapunov–Krasovskii approach (which usually leads to less
conservative results than Razumikhin approach) was developed for regional stabilization, both
in the delay-independent and delay-dependent cases [11–13].

The present paper utilizes the method of References [6] and [13], of transforming a system
with actuator saturation non-linearities into a convex polytope of linear systems. The
stabilization and H1 control of systems with state delay is treated by the Lyapunov–Krasovskii
approach via a descriptor model transformation [17, 18], and results in a new system equivalent
to the original one which allows for the application of fewer bounds and uses the method
introduced by Moon et al. [19] for less conservative bounding of cross terms. When uniformly
bounded disturbances are present, the issue of finding an ellipsoid that bounds the set of
states reachable from the origin in finite time (in Euclidean space) is treated via a
Lyapunov–Razumikhin function, along with an S procedure and an application of the first
order and parameterizing model transformations (see Reference [20]). Note that when
disturbances are present, this seems to be the only approach possible within the Lyapunov
framework.

The paper, divided into four sections, begins by formulating the problem in Section 2.
A sufficient, delay-dependent state-feedback stabilizing design for the disturbance free
situation is presented at the start of Section 3. Both delay-dependent and delay-
independent designs which are optimal in the H1 sense are then postulated (Theorem 2
and Corollary 1, respectively). The problem with this approach, however, is the over-design
due to the quadratic stabilizability inherent in the design procedure (see Reference [16]).
In its place, a procedure, allowing for the assignment of a different Lyapunov function
for each vertex of the polytope is presented, in order to reduce the conservatism of the
former method. Sufficient conditions for H1 performance and stabilization at each of the
vertices of the polytope are formulated in Theorem 3. Two numerical examples are given which
illustrate the effectiveness of the method. The solution procedures are all formulated in terms of
LMIs.

Notation: Throughout the paper the superscript ‘T’ stands for matrix transposition, Rn

denotes the n dimensional Euclidean space with vector norm j � j;Rn�m is the set of all n� m real
matrices, and the notation P > 0; for P 2 Rn�n means that P is symmetric and positive definite.
The space of the continuously differentiable vector functions f over ½�h; 0� is denoted by
C1½�h; 0�: The space of functions in Rq that are square integrable over ½0;1Þ is denoted by
L

q
2½0;1Þ with the norm jj � jjL2 and for a matrix G; Gi denotes the ith row and %ssðGÞ denotes the

largest singular value of G: For any vector u 2 Rm satðui; %uuiÞ ¼ signðuiÞminðui; %uuiÞ; 05 %uui;
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i ¼ 1; . . . ;m: The convex hull of a set X is the minimal convex set containing X: For a group of
points x1; x2; . . . ; xn 2 Rn; the convex hull of these points is: Cofx1; x2; . . . ; xng ¼ f

Pn
i¼1 aixi :Pn

i¼1 ai ¼ 1; ai50g:

2. PROBLEM FORMULATION

We consider the following linear system

’xxðtÞ ¼AxðtÞ þ Ahxðt � tÞ þ B1wðtÞ þ B2uðtÞ

xðyÞ ¼fðyÞ y 2 ½�h; 0� ð1Þ

with the objective vector

zðtÞ ¼ CxðtÞ þ D12uðtÞ ð2Þ

where xðtÞ 2 Rn is the system state vector, wðtÞ 2 L
q
2½0;1Þ is the exogenous disturbance signal,

u 2 Rm is the control input and zðtÞ 2 Rp is the state combination (objective function signal) to
be attenuated. The matrices A; Ah; B1; B2; C and D12 are constant matrices of appropriate
dimensions.

While the time delay t is not known exactly and may be time-varying, it and its corresponding
rate are known to lie within the regions defined by

04t4h ð3aÞ

and

04’ttðtÞ4d51 ð3bÞ

where h and d are given. The theory given below can easily be extended to the case of multiple
state delays.

The input vector u ¼ colfu1; . . . ; umg is subject to the following amplitude constraints:

juiðtÞj4 %uui; 05 %uui; i ¼ 1; . . . ;m ð4Þ

and it is assumed that the disturbance vector w 2 W where

W ¼ fw 2 Rq;wTw4 %ww�1; 05 %wwg ð5Þ

We consider the following state-feedback control law

uðtÞ ¼ KxðtÞ ð6Þ

where K is a constant gain matrix. We now address two related issues, namely stabilizability and
H1 control.

Denoting the state trajectory of (1) with the initial condition x0 ¼ f 2 C1½�h; 0� by xðt;fÞ;
the domain of attraction of the origin of the closed-loop system (1), (6) with w ¼ 0 is then
the set

A ¼ f 2 C1½�h; 0�: lim
t!1

xðt;fÞ ¼ 0

� �
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For stabilizability, we seek conditions for the existence of a gain matrix K which leads to an
asymptotically stable closed-loop for w ¼ 0 and for all t satisfying (3a) and (3b). Having met
these conditions, a simple procedure for finding the gain K shall be presented. Moreover, we
obtain an estimate Xd � A of the domain of attraction, where

Xd ¼ f 2 C1½�h; 0�: max
½�h;0�

jfj4d1;max
½�h;0�

j ’ffj4d2

� �
ð7Þ

and where di > 0; i ¼ 1; 2 are scalars that will be maximized in the sequel.
For H1 control, we seek a gain matrix K in (6) such that, the resulting closed-loop system is

internally stable (i.e. asymptotically stable for w ¼ 0), and for a prescribed scalar g; the
following holds:

J ¼4 jjzjj22 � g2jjwjj2250 8w=0 2 W; x0 ¼ f � 0 ð8Þ

3. STABILIZATION AND CONTROL

3.1. Preliminaries

Applying the control law of (6) the closed-loop system obtained is

’xxðtÞ ¼ AxðtÞ þ Ahxðt � tÞ þ B2 satðKxðtÞ; %uuÞ þ B1wðtÞ; xðyÞ ¼ fðyÞ y 2 ½�h; 0� ð9Þ

with the objective vector

zðtÞ ¼ CxðtÞ þ D12 satðKxðtÞ; %uuÞ ð10Þ

Denoting the ith row of K by ki; we define the polyhedron

LðK; %uuÞ ¼ fx 2 Rn: jkixj4 %uui; i ¼ 1; . . . ;mg

If the control and the disturbance are such that x 2 LðK; %uuÞ; then the system (9) admits the
following linear representation

’xxðtÞ ¼ AxðtÞ þ Ahxðt � tÞ þ B2KxðtÞ þ B1wðtÞ; xðyÞ ¼ fðyÞ y 2 ½�h; 0� ð11Þ

with the objective vector

zðtÞ ¼ CxðtÞ þ D12KxðtÞ ð12Þ

Let U be the set of all diagonal matrices in Rm�m with diagonal elements that are either 1 or 0.
For example, if m ¼ 2; then

U ¼ fD1;D2;D3;D4g ¼
0 0

0 0

" #
;

0 0

0 1

" #
;

1 0

0 0

" #
;

1 0

0 1

" #( )

There are 2m elements Di in U; and for every i ¼ 1; . . . ; 2m D�
i ¼4 Im � Di is also an element

in U:
Our goal is to embed satðKxðtÞ; %uuÞ within a convex hull of a group of linear feedbacks. Given

two gain matrices K;H 2 Rm�n; the matrix set fDiK þ D�
i H ; i ¼ 1; . . . ; 2mg is formed by

choosing some rows of K and the rest from H : The following lemma establishes the desired
result:
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Lemma 1 (Cao et al. [8])
Given K and H in Rm�n: Then

satðKxðtÞ; %uuÞ 2 CofDiKxþ D�
i Hx; i ¼ 1; . . . ; 2mg

for all x 2 Rn that satisfy jhixj4 %uui; i ¼ 1; . . . ;m:

3.2. Transformation of the nonlinear system to a linear system with polytopic type uncertainty

Having transformed the saturation nonlinearity into a convex hull of linear feedbacks, we can
proceed to establish a convex polytope whose vertices consist of the closed loop system matrix
pairs ½Aj Cj�; j ¼ 1; . . . ; 2m to be defined in the sequel (see Lemma 2). Furthermore in order to
reduce the notational complexity, we resort to using %AA and %CC; both of which are an arbitrarily
chosen matrix pair from within the convex polytope. The following stems from Lemma 1.

Lemma 2
Given any convex compact set Sc 2 Rn; assume that there exists H in Rm�n such that jhixj4 %uui
for all xðtÞ 2 Sc: Then for xðtÞ 2 Sc the system (9) and (10) admits the following representation:

’xxðtÞ ¼
X2m
j¼1

ljðtÞAjxðtÞ þ Ahxðt � tÞ þ B1wðtÞ ð13aÞ

zðtÞ ¼
X2m
j¼1

ljðtÞCjxðtÞ ð13bÞ

where

Aj ¼ Aþ B2ðDjK þ D�
j H Þ ð14aÞ

Cj ¼ C þ D12ðDjK þ D�
j H Þ; j ¼ 1; . . . ; 2m ð14bÞ

X2m
j¼1

ljðtÞ ¼ 1; 04ljðtÞ; 805t ð14cÞ

We denote the polytope by

Oa ¼
X2m
j¼1

ljOj for all 04lj41;
X2m
j¼1

lj ¼ 1 ð15Þ

where its vertices are described by

Oj ¼ ½Aj Cj�; j ¼ 1; . . . ; 2m

The problem becomes one of findingSc and a corresponding H such that the state of the system

’xxðtÞ ¼ %AAðtÞxðtÞ þ Ahxðt � tÞ þ B1wðtÞ ð16aÞ

zðtÞ ¼ %CCðtÞxðtÞ ð16bÞ
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is inSc for wðtÞ 2 W; with delay t satisfying (3a) and (3b), jhixj4 %uui; i ¼ 1; . . . ;m and the control
requirements are satisfied for an %AA& %CC residing within Oa:

3.3. Stabilization

Applying the method of References [17] and [18], the system of (16a) may be represented in the
following equivalent descriptor form (for f 2 C1½�h; 0�):

’xxðtÞ ¼ yðtÞ; 0 ¼ �yðtÞ þ ð %AAþ AhÞxðtÞ � Ah

Z t

t�tðtÞ
yðsÞ dsþ B1wðtÞ

xðsÞ ¼ fðsÞ; yðsÞ ¼ ’ffðsÞ; s 2 ½�h; 0� ð17Þ

Application of the Lyapunov–Krasovskii functional of the form:

V ðtÞ ¼ %xxTðtÞE *PP %xxðtÞ þ V2 þ V3 ð18Þ

where

%xxðtÞ ¼ colfxðtÞ; yðtÞg ð19aÞ

E ¼
In 0

0 0

" #
ð19bÞ

*PP ¼
P1 0

P2 P3

" #
ð19cÞ

P1 ¼ PT
1 > 0 ð19dÞ

and

V2 ¼
Z 0

�h

Z t

tþy
yTðsÞR�1yðsÞ ds dy ð19eÞ

V3 ¼
Z t

t�tðtÞ
xTðsÞS�1xðsÞ ds ð19fÞ

and where for a positive scalar b; we choose Sc of Section 3.2 to be an ellipsoid of the form:

XP1;b ¼ fxðtÞ: xTðtÞP1xðtÞ4b�1g ð20Þ

We obtain the following result by adopting the method of References [11, 12, 8] and [21]:

Theorem 1
When wðtÞ � 0; the system (9) with the delay t and its rate _tt satisfying (3a) and (3b) is
asymptotically stable with Xd inside the domain of attraction if, for some positive scalar e; there
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exist 05Q1; S; Q2; Q3; Z1; Z2; Z3; R 2 Rn�n; Y ; G 2 Rm�n and b 2 R1 that satisfy the following
set of inequalities:

Q2 þ QT
2 þ hZ1

P
j hQ2 0 Q1

* �Q3 � QT
3 þ hZ3 hQ3 ðe� 1ÞAhS 0

* * �hR 0 0

* * * �ð1� dÞS 0

* * * * �S

2
666666664

3
777777775
50; j ¼ 1; . . . ; 2m ð21aÞ

R 0 eRAT
h

* Z1 Z2

* * Z3

2
664

3
77550 ð21bÞ

b gi

* %uu2i Q1

" #
50; i ¼ 1; . . . ;m ð22Þ

and

d21½ %ssðQ
�1
1 Þ þ h %ssðS�1Þ� þ

h2

2
d22 %ssðR

�1Þ4b�1 ð23Þ

where P
j
¼ Q3 � QT

2 þ Q1ðAT þ eAT
h Þ þ ðY TDj þ GTD�

j ÞB
T
2 þ hZ2 ð24Þ

and where gi denote the ith row of G: The feedback gain matrix which stabilizes the system is
given by

K ¼ YQ�1
1 ð25Þ

Proof
Conditions are sought to ensure that

’VV50 ð26Þ

for any xðtÞ 2 XP1;b where XP1;b is defined in (20).
The inequalities (22) guarantee that jhixj4 %uui; 8x 2 XP1;b; i ¼ 1; . . . ;m: This results from the

fact that when x 2 XP1;b; the following inequalities

2 %uui5 %uuið1þ bxTP1xÞ52jhixj; i ¼ 1; . . . ;m

imply that jhixj4 %uui; i ¼ 1; . . . ;m: The latter inequality, which can be written as

½1� xT�
%uui hi

* b %uuiP1

" #
1

�x

" #
50; i ¼ 1; . . . ;m

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:885–907

REGIONAL STABILIZATION AND H1 CONTROL 891



is satisfied by (22), where gi ¼
4
hiQ1; i ¼ 1; . . . ;m and Q1 ¼

4
P�1
1 ; and the polytopic system

representation of (16) is thus valid. Similar results have been obtained in Reference [9]. In what
follows, we shall show that (21)–(22) guarantee that ’VV50 and that the bound (inequality (23))
on the initial condition Xd leads to xðtÞ remaining within the ellipsoid defined by (20).

Differentiating (18) with respect to t and using a similar line of reasoning as in Reference [21],
we find that (26) holds if the following inequalities in *PP and *ZZ 2 R2n�2n; *WW 2 Rn�2n and
R 2 Rn�n are feasible:

C � *PPT
0

Ah

" #
� *WWT

* �ð1� dÞS�1

2
664

3
77550 ð27aÞ

R�1 *WW

* *ZZ

" #
50 ð27bÞ

where

C ¼ *PPT
0 I

Aj �I

" #
þ

0 AT
j

I �I

" #
*PPþ

S�1 0

0 hR�1

" #
þ h *ZZ

þ
*WW

0

" #
þ ½ *WWT 0� ð27cÞ

From the requirement that 05P1 (inequality (19d)), and the fact that in (27) �ðP3 þ PT
3 Þ must

be negative definite, it follows that *PP is non-singular. Choosing

*WW ¼ eAT
h ½P2 P3� ð28Þ

we define

*PP�1 ¼ Q ¼
Q1 0

Q2 Q3

" #
; Z ¼

Z1 Z2

ZT
2 Z3

" #
¼ QT *ZZQ ð29aÞ

and

D ¼ diagfQ; Ig ð29bÞ

and then multiply (27a) by DT and D; on the left and on the right, respectively. Finally, applying
Schur’s formula to the quadratic term in Q in the resulting inequality and denoting KQ1 by Y
and HQ1 by G; (21) is obtained, Similarly, (21b) is obtained by multiplying (27b), from the left
and the right, by diagfR;QTg and diagfR;Qg; respectively, and using (28). Since (22) guarantees
the validity of the polytopic system representation of (16), the LMIs (21) and (22) imply that
’VV50:
From ’VV50 it follows that V ðtÞ5V ð0Þ and therefore

xTðtÞP1xðtÞ4V ðtÞ5V ð0Þ

4 max
y2½�h;0�

jfðyÞj2½ %ssðQ�1
1 Þ þ h %ssðS�1Þ� þ max

y2½�h;0�
j ’ffðyÞj2 h2

2
%ssðR�1Þ4b�1: ð30Þ
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Inequality (23) then guarantees that for all initial functions f 2 Xd; the trajectories of xðtÞ
remain within XP1;b; and the polytopic system representation (16) is valid. Thus xðtÞ is a
trajectory of the linear system (16) and ’VV50 along the trajectories of the latter system which
implies that limt!1 xðtÞ ¼ 0: &

3.4. An ellipsoid bound on the set of the states

The situation when w=0 is treated next. Conditions are sought such that the trajectory xðtÞ of
the closed-loop system remains within the ellipsoid XP ;b defined by (20), when the initial
function f is zero. With Razumikhin’s approach to the stability of time-delay systems (see e.g.
Reference [22]), it has been shown in Reference [15] that by defining the function

V ðxÞ ¼ xTPx ð31Þ

it is sufficient that, for some positive scalars l1 and l2
d

dt
V þ l1ðV � b�1Þ þ l2ð %ww� wTwÞ40 ð32Þ

along trajectories satisfying

xTðt þ yÞPxðt þ yÞ4xTðtÞPxðtÞ; 8y 2 ½�h; 0� ð33Þ

in order to guarantee that the trajectory xðtÞ remains within XP ;b: Requiring that

ðl2 þ g3hÞ %wwb� l140 ð34Þ

for some positive scalar g3; conditions were derived in Reference [15] for satisfying inequality
(32) by solving for

d

dt
V þ l1V � l2wTw� hg3 %ww40 ð35Þ

for all xðtÞ satisfying inequality (33). The following result was obtained in Reference [15] via the
first order and the parameterizing model transformations [20]:

Lemma 3 (Fridman and Shaked [15])
Consider the system (16) with a zero initial function f; a given %AA and also 05P 2 Rn�n and
05b 2 R1: The trajectories of xðtÞ remain within the ellipsoid XP ;b of (20) for all wðtÞ 2 W and
delays t satisfying (3a), if, for some positive scalars gk ; k ¼ 0; . . . ; 3; l1 and l2 that satisfy (34),
there exists a W in Rn�n that satisfies the following inequality:

C PB1 PAh � W hW %AA hWAh hWB1

* �l2I 0 0 0 0

* * �g0P 0 0 0

* * * �hg1P 0 0

* * * * �hg2P 0

* * * * * �hg3I

2
666666666664

3
777777777775
40 ð36aÞ

where

C ¼ W þ W T þ P %AAþ %AATP þ ðl1 þ g0 þ hg1 þ hg2ÞP ð36bÞ
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Remark 1
It follows from Equation (36b) that the smaller l1 becomes, the less restrictive is inequality
(36a). One may therefore change inequality (34) into an equality.

The conditions of Lemma 3 have been derived for a given %AA: In order to ensure that xðtÞ 2 XP ;b

for all %AA in Oa and that we exploit the convexity properties of Lemma 2, additional conditions
should be added to (36) which will guarantee that, for any xðtÞ satisfying (20) the system
representation (16) is valid. As in inequalities (22), in order to guarantee that jhixj4 %uui; 8x 2
XP ;b; i ¼ 1; . . . ;m we require the following:

b giP

* %uu2i P

" #
50; i ¼ 1; . . . ;m ð37Þ

The latter inequalities, if satisfied, yield a valid polytopic representation of (16). Applying
Lemma 2 and using the convexity property of %AA in (36), the following is thus obtained:

Lemma 4
Consider the system (9). For given 05P 2 Rn�n; K 2 Rm�n and positive scalars b and %ww; the
trajectories of xðtÞ remain within the ellipsoid XP ;b of (20) for all wðtÞ 2 W; fðyÞ � 0 and delays t
that satisfy (3a) if there exist W 2 Rn�n; H 2 Rm�n and positive scalars gk ; k ¼ 0; . . . ; 3 and l
that satisfy (37) and the following set of inequalities,

C PB1 PAh � W hW ðAþ B2ðDjK þ D�
j H ÞÞ hWAh hWB1

* �lI 0 0 0 0

* * �g0P 0 0 0

* * * �hg1P 0 0

* * * * �hg2P 0

* * * * * �hg3I

2
666666666664

3
777777777775
40; j ¼ 1; . . . ; 2m ð38aÞ

where

C ¼W þ W T þ P ðAþ B2ðDjK þ D�
j H ÞÞ þ ðAþ B2ðDjK þ D�

j H ÞÞTP

þ ððlþ hg3Þ %wwbþ g0 þ hðg1 þ g2ÞÞP : ð38bÞ

Remark 2
In the statement of Lemma 4 it is assumed that both P and K are given. The inequalities
obtained are nevertheless nonlinear due to the products of H by W : These non-linearities can be
resolved if W is chosen a priori in the form of W ¼ PF ; where F is given.

The result of Lemma 4 can be used to determine whether a given state-feedback control law
leads to state trajectories xðtÞ that remain within XP ;b for all wðtÞ 2 W: It cannot readily be
applied in synthesis where the state-feedback gain matrix that achieves the required
boundedness is sought. Therefore, choosing W ¼ ePAh and denoting Q1 ¼ P�1; (38a) can be
multiplied on both sides by diagfQ1; Ig and the following is obtained.
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Lemma 5
Consider the system (9) with the feedback control law (6). Given positive scalars b and %ww; the
trajectories of xðtÞ remain within the ellipsoid XP ;b of (20), for some 05P 2 Rn�n and for all
wðtÞ 2 W; fðyÞ � 0 and delays t that satisfy (3a) if there exist 05Q1 2 Rn�n; Y and G 2 Rm�n

and positive scalars gk ; k ¼ 0; . . . ; 3 and l that satisfy (22) and the following set of inequalities:

C1j B1 ð1� eÞAh ehðAQ1 þ B2ðDjY þ D�
j GÞÞ ehAhQ1 ehB1

* �lI 0 0 0 0

* * �g0Q1 0 0 0

* * * �hg1Q1 0 0

* * * * �hg2Q1 0

* * * * * �hg3I

2
666666666664

3
777777777775

40; j ¼ 1; . . . ; 2m ð39aÞ

where

C1j ¼ ðAþ eAhÞQ1 þ Q1ðAT þ eAT
h Þ þ B2ðDjY þ D�

j GÞ þ ðY TDj þ GTD�
j ÞB

T
2

þ ððlþ hg3Þ %wwbþ g0 þ hðg1 þ g2ÞÞQ1 ð39bÞ

The matrix P is then given by P ¼ Q�1
1 and the feedback gain matrix which leads to xðtÞ 2 XP ;b is

given by K ¼ YQ�1
1 :

3.5. H1 control

The H1 performance is achieved if

d

dt
V þ zTðtÞzðtÞ � g2wTðtÞwðtÞ50

where V is given by (18). Similarly to Theorem 1, we obtain the following.

Lemma 6
The inequality (8) holds for a given K 2 Rm�n if the conditions of Lemma 5 are satisfied and
there exist *PP; of the form of (19), and *ZZ 2 R2n�2n; S; R 2 Rn�n; %WW 2 Rn�2n and H 2 Rm�n that
satisfy the following.

%CCj *PPT
0

B1

" #
*PPT

0

Ah

" #
� %WWT

CT
j

0

" #

* �g2I 0 0

* * �ð1� dÞS�1 0

* * * �1

2
666666664

3
777777775
50; j ¼ 1; . . . ; 2m ð40aÞ

R�1 %WW

*
*ZZ

" #
50 ð40bÞ
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where

%CCj ¼ *PPT
0 I

Aj þ B2ðDjK þ D�
j H Þ �I

" #
þ

0 AT
j þ ðKTDj þ HTD�

j ÞB
T
2

I �I

" #
*PP

þ
S�1 0

0 hR�1

" #
þ ½ %WWT 0 � þ

%WW

0

" #

In order to obtain a tractable set of inequalities that can be used for both, boundedness of the
states and H1 performance synthesis purposes, the following is further assumed:

%WW ¼ ð%ee� 1Þ½P2 P3� ð41Þ

where %ee is a tuning parameter. Next taking Q of (29a), we obtain from Lemma 6 that J50 if the
conditions of Lemma 5 are satisfied and if for some scalar %ee there exist 05Q1; S; Q2; Q3; R; Z1;
Z2; Z3 2 Rn�n; Y and G 2 Rm�n that satisfy (22) and the following inequality:

Q2 þ QT
2 þ hZ1

P
j Q1 hQT

2 Q1CT þ ðY TDj þ GTD�
j ÞD

T
12 0 0

* �Q3 � QT
3 þ hZ3 0 hQT

3 0 B1 ð%ee� 1ÞAhS

* * �S 0 0 0 0

* * * �hR 0 0 0

* * * * �I 0 0

* * * * * �g2Iq 0

* * * * * * �ð1� dÞS

2
666666666666664

3
777777777777775

50 j ¼ 1; . . . ; 2m ð42aÞ

R 0 %eeRAT
h

* Z1 Z2

* * Z3

2
664

3
77550 ð42bÞ

where
P

j is defined in (24) with e replaced by %ee and where Y and G are the same decision
variables that appear in the conditions of Lemma 5. The next result thus follows from Lemma 5
and (42).

Theorem 2
For given positive scalars g and %ww; there exists a state-feedback gain K that internally stabilizes
(9) and leads to (8) for all delays t that satisfy (3), if for some tuning parameters e and %ee there
exist 05Q1; S; Q2; Q3; R 2 Rn�n; Y 2 Rm�n and positive scalars b; gk ; k ¼ 0; 1; . . . ; 3 and l that
satisfy (42), (22) and (39).

If a solution exists, the feedback gain matrix that achieves the required performance is given
by (25).
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The conditions of Theorem 2 depend on the upper-bound of the delay length h: Corresponding
delay-independent conditions that provide a result that is valid for all 05h and ’tt4d are readily
obtained from Theorem 2 by letting e ¼ %ee ¼ 0; R ¼ r�1In; Z ¼ 0 and r; g1; g2; g3 ! 0: The
following result is obtained.

Corollary 1
For given positive scalars g and %ww; there exists a state-feedback gain K which for zero initial
conditions leads to (8) for all wðtÞ 2 W; independently of the delay length and for ’tt4d; if there
exist if for some scalar e there exist 05Q1; S; Q2; Q3; R 2 Rn�n; Y and G 2 Rm�n and positive
scalars b; g0 and l that satisfy (22) and the following set of inequalities:

Q2 þ QT
2

P
j 0 0 Q1 Q1CT þ ðY TDj þ GTD�

j ÞD
T
12

* �Q3 � QT
3 B1 AhS 0 0

* * �g2Iq 0 0 0

* * * �ð1� dÞS 0 0

* * * * �S 0

* * * * * �I

2
666666666664

3
777777777775
50 ð43aÞ

and

AQ1 þ Q1AT þ B2ðDjY þ D�
j GÞ þ ðY TDj þ GTD�

j ÞB
T
2 þ ðl %ooþ g0ÞQ1 B1 AhQ1

* �lI 0

* * �g0Q1

2
664

3
775

40; j ¼ 1; . . . ; 2m ð43bÞ

ðl %wwþ g0Þ40 ð43cÞ

where
P

j is defined in (24), with e replaced by zero.
If a solution exists, the feedback gain matrix that achieves the required performance is given

by (25).

Remark 3
The results of Theorem 2 assume that except for the time-delay, which satisfies (3), the matrices
of the system model of (9) are all known. Treating the scalar parameters in the inequalities of the
theorem as tuning parameters, these inequalities become LMIs that are affine in the system’s
matrices. These LMIs can thus be used to solve the H1 control problem in the case when
uncertainty is encountered in the matrices of the system. Assuming that this uncertainty is of the
polytopic type [16], a solution to the control problem is obtained by solving the inequalities of
Theorem 2 at each vertex of the uncertainly polytope.

3.6. Parameter varying solution

In (42a) the same Q1; Q2 and Q3 appear in all of the 2m inequalities. The solution to all of the
inequalities in Theorem 2, if it exists, will lead to a local quadratic stability condition. The
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requirement for quadratic stability imposes a serious constraint on the solution which will now
be alleviated.

It is readily verified that (42a) is equivalent to

#QQT #AAT
j þ #AAj

#QQþ diagfhZ; 0g QT
I 0

0 hI

" #
0 0

B1 ð%ee� 1ÞAhS

" #

* �
S 0

* hR

" #
0

* * �
g2Iq 0

* ð1� dÞS

" #

2
666666666664

3
777777777775

40; j ¼ 1; . . . ; 2m ð44aÞ

where

#QQ ¼ diagfQ; 1
2
Ipg ð44bÞ

#AAj ¼ #AA0 þ

0

B2

D12

2
664

3
775ðDjK þ D�

j H Þ½In 0� ð44cÞ

#AA0 ¼

0 In 0

Aþ eAh �In 0

C 0 �Ip

2
664

3
775 ð44dÞ

Similarly, (39a) is equivalent to

##AA#AAj
*QQþ *QQ ##AA#AAT

j

In

0

" #
B1 ð1� eÞAh ehAhQ1 ehB1

� �

* �diagflIq; g0Q1; hg2Q1; g3Iqg

2
664

3
77540; j ¼ 1; . . . ; 2m ð45aÞ

where

*QQ ¼ diagfQ1;Q1g ð45bÞ

##AA#AAj ¼
##AA#AA0 þ

I

0

" #
B2ðDjK þ D�

j H Þ½In In� ð45cÞ

##AA#AA0 ¼
Aþ eAh þ f1In ehA

0 �h
2
g1In

" #
ð45dÞ

and

f1 ¼
1
2
ððlþ hg3Þ %wwbþ g0 þ hðg1 þ g2ÞÞ ð45eÞ

The following is applied to (44) and (45).
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Lemma 7
The inequalities (44a) and (45a) are equivalent to the following.

#GGT #AAT
j þ #AAj #GGþ diagfhZ; 0g � #QQT þ #GGT � #AAj #HH QT

I 0

0 hI

" #
0 0

B1 ð%ee� 1ÞAhS

" #

* � #HH � #HHT 0 0

* * �
S 0

* hR

" #
0

* * * �
g2Iq 0

* ð1� dÞS

" #

2
6666666666666664

3
7777777777777775

40 ð46Þ

and

##AA#AAj
*GGþ *GG ##AA#AAT

j � *QQþ *GG� ##AA#AAj *HH
In

0

" #
B1 ð1� eÞAh ehAhQ1 ehB1

� �

* � *HH � *HHT 0

* * �diagflIq; g0Q1; hg2Q1; g3Iqg

2
666664

3
777775

40; j ¼ 1; . . . ; 2m ð47Þ

respectively, where #HH; *HH; #GG and *GG are matrices of appropriate dimensions.

Proof
The proof applies arguments similar to those used in Reference [23] for verifying robust stability
of systems without delay. Denoting the left hand side of (44a) by #WW j; then if there exists a
solution to #WW j50; for a specific j 2 ½0; 2m�; it is readily found, using Schur’s formula, that for
#GG ¼ #QQ and #HH ¼ rI2nþp; where r is a positive scalar, (46) holds for any r that satisfies

r½ #AAðjÞT 0 0 �T½ #AAðjÞT 0 0 �5� 2 #WW j

On the other hand, if (46) possesses a solution one can multiply (46) by G and GT; on the right
and on the left, respectively, where:

G ¼

In 0 0 0

� #AAðjÞT I 0 0

0 0 I 0

0 0 0 I

2
666664

3
777775
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The resulting LMI is then

#WW j

� #QQþ #GGT þ #AAðjÞ #HHT

0

" #

* � #HH � #HHT

2
664

3
77550 ð48Þ

and (44a) clearly follows. Similar arguments are applied to (47) and (45). &

The inequalities of Lemma 7 are now ready to be applied to the uncertain case. In the case where
the matrices of the system are not exactly known, we assume that they belong to
O 2 CofOj; j ¼ 1; . . . ; %NNg; where,

O ¼
X%NN

j¼1

fj %OOj for some 04fj41;
X%NN

j¼1

fj ¼ 1 ð49Þ

where the %NNð %NN > 2mÞ vertices of the polytope are described by

Oj ¼ ½AðjÞ AðjÞ
h BðjÞ

1 CðjÞ Dj �

It is assumed, for simplicity, that the matrices B2 and D12 in (9) and (10) are known.
Defining the structures:

#GGj ¼
G1 0

GðjÞ
2 GðjÞ

3

" #
ð50aÞ

#HHj ¼
a1G1 0

H ðjÞ
2 H ðjÞ

3

" #
ð50bÞ

*GGj ¼
a2G1 0

*GG
ðjÞ
2

*GG
ðjÞ
3

" #
ð50cÞ

*HHj ¼
a3G

ðjÞ
1 0

*HH
ðjÞ
2

*HH
ðjÞ
3

2
4

3
5 ð50dÞ

Qj ¼
QðjÞ

1 0

QðjÞ
2 QðjÞ

3

2
4

3
5 ð50eÞ

for some positive scalars ai; i ¼ 1; 2; 3; we apply Lemma 7 to Theorem 2 and obtain the
following.

Theorem 3
For given positive scalars g and %ww; there exists a state-feedback gain K that internally stabilizes
(9), over the uncertainty polytope O and leads to (8) for all delays t that satisfy (3), if for some
positive tuning parameters e; %ee and ai; i ¼ 1; 2; 3 there exist Qj 2 R2n�2n of the structure (50e),
with 05QðjÞ

1 ; #GGj; #HHj 2 Rð2nþpÞ�ð2nþpÞ of the structure (50a) and (50b), with 05G1; *GGj; *HHj 2
R2n�2n of the structure (50c) and (50d), Zj 2 Rð2nþpÞ�ð2nþpÞ; 05Q1j; Rj 2 Rn�n; j ¼ 1; . . . ; %NN;
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positive scalars l; %ll; b; gi; i ¼ 0; . . . ; 3; S 2 Rn�n and Y ; G 2 Rm�n that satisfy the following for
j ¼ 1; . . . ; %NN:

PðjÞ
1 � #QQT

j þ #GGT
j � #AA

ðjÞ
0

#HHj � a1

0

B2

D12

2
664

3
775ðDjY þ D�

j GÞ½In 0� QT
j

I 0

0 hI

" #
0 0

BðjÞ
1 ð%ee� 1ÞAðjÞ

h S

" #

* � #HHj � #HHj 0 0

* * �
S 0

* hRj

" #
0

* * * �
g2Iq 0

* ð1� dÞS

" #

2
6666666666666666664

3
7777777777777777775

40

ð51aÞ

PðjÞ
1

¼ #GGT
j
#AA
ðjÞT
0 þ #AA

ðjÞ
0

#GGj þ

0

B2

D12

2
664

3
775ðDjY þ D�

j GÞ½In 0� þ
In

0

" #
ðY TDj þ GTD�

j Þ

0

B2

D12

2
664

3
775
T

þ diagfhZj; 0g ð51bÞ

PðjÞ
2 �diagfQ1j;Q1jg þ *GGj �

##AA#AA
ðjÞ
0

*HHj � a2
In

0

" #
B2ðDjY þ D�

j GÞ
In

In

" #T
In

0

" #
BðjÞ
1 ð1� eÞAh ehAhQ1j ehBðjÞ

1

h i

* � *HHj � *HHT
j 0

* * �diagflIq; g0Q1j; hg2Q1j; g3Iqg

2
6666664

3
7777775
40

ð52aÞ

PðjÞ
2

¼ ##AA#AA
ðjÞ
0

*GGj þ *GGj
##AA#AA
ðjÞT
0 þ

In

0

" #
B2ðDjY þ D�

j GÞ½In In� þ
In

In

" #
ðY TDj þ GTD�

j ÞB
T
2 ½In 0� ð52bÞ

b gi

* ~uu2i Q
ðjÞ
1

" #
50 ð53aÞ

and

QðjÞ
1 I

*
%llI

2
4

3
550 ð53bÞ
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where %ll is minimized and where

#AA
ðjÞ
0 ¼

0 In 0

AðjÞ þ eAðjÞ
h �In 0

CðjÞ 0 �Ip

2
6664

3
7775 and ##AA#AA

ðjÞ
0 ¼

AðjÞ þ eAðjÞ
h þ f1In ehAðjÞ

0 �h
2
g1In

" #

The feedback gain matrix which achieves the required performance is given by:

K ¼ Y ðG1Þ
�1 ð54Þ

4. EXAMPLES

4.1. Stabilization

We consider the stabilization example of Reference [8]. The system of (9) was considered there
where

A ¼
0:5 �1

0:5 �0:5

" #
; Ad ¼

0:6 0:4

0 �0:5

" #
; B2 ¼

1

1

" #

and where %uu ¼ 5:
In Reference [8] stabilization via state-feedback was obtained for delays that are less than or

equal to h ¼ 0:35: For t ¼ 0:35 the maximum radius of the stability ball achieved was 0.968.
Applying the theory of Theorem 1 a stabilizing state-feedback controller has been obtained for
all delays that are less than or equal to h ¼ 1:854: For the latter delay, with d ¼ 0; namely
constant delay of t ¼ 1:854 the stabilizing gain was K ¼ �½25:8809 4:9315� with a stability ball
radius of d1 ¼ d2 ¼ 0:091: This result was obtained for e ¼ 0:89 and b ¼ 1: The latter radius
increases significantly when h decreases. For, say, h ¼ 0:35; 1; 1:8 the corresponding radii were
(again d1 ¼ d2Þ 2:852; 1:7442; 0:8032; respectively. The stabilization theory of Theorem 1 results
in state trajectories, for h ¼ 0:35; which begin on the periphery of the inner circle, never leave the
outer ellipse and end up at the origin (see Figure 1).

4.2. H1 control

We consider the example that appeared in References [11] and [8]. The system (1) is described
by:

A ¼
1 1:5

0:3 �2

" #
; Ah ¼

0 �1

0 0

" #
; B2 ¼

10

1

" #
ð55Þ

We assume that h ¼ 1 s; d ¼ 0 and u0 ¼ 15: In Reference [11], quadratically local stabilization
was achieved for all initial conditions in wd (and b ¼ 0 in their paper) with a dmax558:395:

Application of Theorem 1 (in the present paper), resulted in a value of d1 ¼ d2 ¼ dmax ¼
79:43; which was obtained for e ¼ 1 and b ¼ 1: The corresponding state-feedback gain and H
were:

K ¼ �7:913 0:7323
� �

and H ¼ � 0:1534 0:0164
� �
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At this juncture we note the following points:

* The above value of H implies that the input to the actuators may exceed %uu during operation.
* As should be expected, the result is insensitive to the value of b: The task of the latter

parameter is to scale the elements in P :
* The result we obtained for dmax is better than the one obtained by Tarbouriech et al. [11] and

Cao et al. [8] for initial functions with small enough derivatives. Taking for example d2 ¼ 0; a
maximum value of d1 ¼ 97:19 is achieved. The improvement in dmax is partially due to the
delay-dependent criterion used.

* The strength of the descriptor approach lies in its delay-dependent conditions. The theory
developed in Reference [11] is, however, delay-independent. Applying our delay-independent
version of Theorem 1 (letting e ¼ 0 in (21)), values of d1 ¼ d2 ¼ 63:79 were achieved along
with a gain vector of

K ¼ �109½5:223 2:596�

-6 -4 -2 0 2 4 6

-5

-4

-3

-2

-1

0

1

2

3

4

5

x1

x2

Figure 1. Stabilization result: delay ¼ 0:35 s; inner circle radius ¼ d1 ¼ d2 ¼ 2:852;
outer ellipse xTP1x4b�1 ¼ 1:
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Even this delay-independent result compares favourably to the one which appeared in
Reference [11].

* The above numerical results were obtained for d ¼ 0; namely for the situation where the
delay t can reside anywhere in ½0 h� but is time invariant. The fact that our solution was
obtained for e ¼ 1 implies, however, that it holds true for any time varying delay which
satisfies (3a) [21].

The issue of H1 performance was addressed for a %ww ¼ 0:1; and respective B1 C and D
matrices of the form:

B1 ¼ ½0 3�T; C ¼
1 0

0 0

" #
and D12 ¼

0

0:1

" #

With the use of Theorem 2 we obtained a minimum value of g ¼ 0:0714 for b ¼ 0:5; e ¼
0; %ee ¼ 0:2; g0 ¼ g1 ¼ 0:84; g2 ¼ 0:28; g3 ¼ 0:0014; and l ¼ 0:1: The resulting state-feedback
gain was:

K ¼ �½2:0743 0:1266� ð56Þ

and the corresponding eigenvalues of bP1 were 0:0006 and 0:0209:
The following points should be noted.

* With b as a tuning parameter, the minimum achievable g became a monotonously increasing
function of b: For instance, with b ¼ 0:01; a minimum value of g ¼ 0:2687 resulted. A clear
trade-off between the minimum value of g and the size of XP1;b is observed. In the latter case
of b ¼ 0:01 the eigenvalues of bP1 are 0.0002 and 0.0021.

* The state-feedback gain of (56) was applied to the system (1) with the parameters given in
(55). A frequency sweep of bounded sine waves was used for wðtÞ in the Simulink software
package [24]. The values of the ratio between the resulting jjzjj22 and jjwjj22 were recorded and
the maximum ratio was 0:0582: The frequency sweep calculations of the ratio jjzjj22=jjwjj

2
2 (H1

results) are depicted in Figure 2. The latter ratio is clearly less than the g2 achieved ð0:07142Þ:
The difference between the two numbers reflects the overdesign that is entailed in applying
the descriptor model transformation.

* The inequalities of Theorems 2 and 3 are multilinear in the decision variables. In Theorem 2
bilinearity is achieved if b is prescribed. In order to apply LMI based solution methods, the
scalar decision variables should be considered as tuning variables. The tuning of a variable
may be performed manually, especially when the cost function is a convex function of this
variable. When the number of tuning variables is greater than one, the required inequalities
may be solved iteratively or by a relaxation method, that is, for some initially prescribed
values of the tuning variables, the remaining decision variables are obtained by solving the
given set of LMIs. These latter decision variables are then inserted into the set of LMIs which
are once again solved for the tuning variables. This procedure is repeated such that, at each
iteration step, new values of the tuning parameters are found which minimize a cost function,
thus guaranteeing convergence to a local minimum, for instance, minimizing g in Theorem 2.
In Theorem 2, the scalar b was used as a single tuning parameter. The results for the above
example were achieved by applying this latter relaxation method.
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5. CONCLUSIONS

In the present paper, a delay-dependent LMI based sufficient condition has been proposed for
stabilization and H1 control of linear systems with time varying delay. This feat was
accomplished by combining the transformation of a single linear system with m possibly
saturated actuator channels into a set of 2m linear systems embedded within a convex polytope
with the Lyapunov-Krasovskii technique via descriptor model transformation. The merits of the
descriptor model approach lie in the fact that a smaller number of cross terms require bounding,
thus resulting in a reduction of the over-design. The boundedness of the trajectories for systems
with bounded peak inputs has been treated by Razumikhin approach via first order model
transformation.

In both the designs for stabilization and performance satisfaction, a serious source of
over-design arises from the quadratic stabilizability inherent in the design procedure
for polytopic systems. In order to alleviate this problem, a method wherein a different
Lyapunov candidate function is assigned to each vertex of the polytope, was used, thus resulting
in a further reduction of the conservativeness of the design. For the express purpose of
comparing delay-dependent and delay-independent designs, a tuning parameter e was

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

freq [rad/sec]

m
ax

 z
 / 

m
ax

 w
  

Figure 2. Deterministic frequency sweep from 0 to 5 rad=s with 20 random phase values at each frequency.
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introduced which facilitates the switch between delay-dependent ðe=0Þ and delay-independent
designs ðe ¼ 0Þ:

One of the drawbacks of the proposed method is that the domain of attraction depends on the
derivative of the initial function. The proposed method for regional stabilization may thus be
useful in the case of neutral type systems where it is natural to consider initial functions from the
space C1:
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