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Abstract

The problem of �nding bounds on the H∞-norm of systems with a �nite number of point delays and distributed delay
is considered. Su�cient conditions for the system to possess an H∞-norm which is less or equal to a prescribed bound are
obtained in terms of Riccati partial di�erential equations (RPDE’s). We show that the existence of a solution to the RPDE’s
is equivalent to the existence of a stable manifold of the associated Hamiltonian system. For small delays the existence of
the stable manifold is equivalent to the existence of a stable manifold of the ordinary di�erential equations that govern the

ow on the slow manifold of the Hamiltonian system. This leads to an algebraic, �nite-dimensional, criterion for systems
with small delays. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Problem formulation

Throughout this paper we denote by | · | the
Euclidean norm of a vector or the appropriate norm
of a matrix. Let L2[0;∞) be the space of the square
integrable functions with the norm ‖ · ‖L2 and let
C[a; b] be the space of the continuous functions on
[a; b] with the norm ‖ · ‖c.
Consider the system

ẋ(t)=L(xt(·)) + Bw(t); (1.1a)

z(t)=Cx(t); (1.1b)

where x(t)∈Rn is the state vector, xt = x(t + �);
�∈ [−h; 0]; w(t)∈Rk is the disturbance, z(t)∈Rp

is the observation, B and C are matrices of the ap-
propriate dimensions. The Rn-valued function L(·)
which carries Rn-valued functions on [−h; 0] into Rn
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is de�ned as follows:

L(�(·)) =
k∑

i=0

Ai�(−hi) +
∫ 0

−h
A01(s)�(s) ds ;

(1.2)

where −h=−hk¡−hk−1¡ · · ·¡−h1¡−h0 = 0; A0;
A1; : : : ; Ak are constant matrices, A01 is a square inte-
grable matrix function. Given 
¿0, and assuming that
w∈L2[0;∞) we consider the following performance
index

J = ‖z‖2L2 − 
2‖w‖2L2 : (1.3)

We assume that

A1. The system (1.1) is internally stable.

The problem is to �nd conditions which will en-
sure that J60 for all w∈L2[0;∞) and for the zero
initial conditions x(�)= 0; �60. This means that the
H∞ norm of Eqs. (1.1a) and (1.1b) which is de�ned
by the supremum over w∈L2[0;∞) of the ratio
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between ‖z‖L2 and ‖w‖L2 is not greater than 
. Such
a problem arises e.g. when a controller u(t)=Kx(t)
+
∫ 0
−h Q(s)x(t + s) ds (see e.g. [8]) is seen for the

following system with point delays

ẋ(t)=L(xt(·)) + B1w(t) + B2u(t);

where it is required that the H∞-norm level of the
transference Tzw from w to the controlled output z,
given by (1:1b), will not be greater than 
. Such
conditions have been obtained in terms of Riccati op-
erator equations in [5]. In [7] the delay-independent
conditions have been derived, while in [10] both
delay-dependent and delay-independent conditions
have been introduced in terms of linear matrix in-
equalities. In [13] and [6] such conditions have been
obtained for systems with delay in the input only.
In the present paper, we derive su�cient conditions

in terms of RPDE’s that are similar to those obtained
in [14] where the LQ optimal control problem has
been studied. Similar conditions in terms of inequali-
ties have been obtained in [3] for the case of one point
delay. We show that the solvability of the RPDE’s is
equivalent to the existence of a special stable manifold
of the associated Hamiltonian system. This fact is a
time-delay counterpart of the analogous result of [1].
Finally, we prove that for small delays the existence
of the special stable manifold is equivalent to the ex-
istence of a stable manifold of the ordinary di�erential
equations that govern the 
ow on the slow manifold
of the Hamiltonian system. For systems with small de-
lays we obtain a �nite dimensional criterion in terms of
matrix transcendental equations. We present a numer-
ical example showing the e�ciency of our method.

2. Main results

Let S = 
−2BB′, where prime denotes the transpose
of the matrix. Consider the following RPDE’s with
respect to the n× n-matrices P;Q(�) and R(�; s):

A′
0P + PA0 +

k∑
i=1

A′
iQ

′(−hi)

+
k∑

i=1

Q(−hi)Ai + PSP + C′C

+
∫ 0

−h
Q(�)A01(�) d�+

∫ 0

−h
A′
01(�)Q

′(�) d�=0;

(2.1a)

Q̇(�) =−(A′
0 + PS)Q(�)−

k∑
i=1

A′
iR(−hi; �)

−
∫ 0

−h
A′
01(s)R(s; �) ds; (2.1b)

@
@�

R(�; s) +
@
@s

R(�; s)=−Q′(�)SQ(s); (2.1c)

P=Q′(0); (2.1d)

Q(�)=R(0; �): (2.1e)

A solution of Eqs. (2.1a)–(2.1e) is a triple of n× n-
matrices {P;Q(�); R(�; s)} �∈ [−h; 0]; s∈ [−h; 0],
where Q(�) and R(�; s) are continuous and piecewise
continuously di�erentiable functions of their argu-
ments, satisfying Eqs. (2.1a)–(2.1e) for almost every
� and s.
Consider the associated Hamiltonian system:

ẋ(t)=L(xt(·)) + Sy(t); (2.2a)

ẏ(t)=−C′Cx(t)− L′(yt(·)); (2.2b)

where yt =y(t + �); �∈ [0; h] and for  : [0; h]→ Rn

L′( (·))=
k∑

i=0

A′
i (hi) +

∫ 0

−h
A′
01(s) (−s) ds:

Notice that Eq. (2.2b) depends on the future val-
ues of the adjoint vector y (similar to the case
of the state delay LQ problem [7]). A solu-
tion of Eqs. (2.2a) and (2.2b) on the segment
[0; T ] (T¿0) is a pair of continuous functions
x : [−h; T ] → Rn and y : [0; T + h] → Rn, that is
Lipschitz continuous and satis�es Eqs. (2.2a) and
(2.2b) on [0; T ]. Denote by

F�(�) =
k∑

i=1

Ai�(−hi − �)�i(�)

+
∫ �

−h
A01(p)�(p− �) dp; (2.3)

where �∈L2[−h; 0] and �i is the indicator function
for the set [−hi; 0], i.e. �i(�)= 1 if �∈ [−hi; 0] and
�i(�)= 0 otherwise. We look for an invariant manifold
of Eqs. (2.2a) and (2.2b) of the form

y(t − �) = Q′(�)x(t) +
∫ 0

−h
R(�; �)Fxt(�) d�;

� ∈ [−h; 0]: (2.4a)
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Setting �=0 in Eq. (2.4a) we get from Eqs. (2.1d)
and (2.1e)

y(t)=Px(t) +
∫ 0

−h
Q(�)Fxt(�) d�: (2.4b)

The 
ow on this manifold is governed by the time-
delay equation that results from substituting Eq. (2.4b)
in Eq. (2.2a)

ẋ(t) = L(xt(·)) + SPx(t) + S
∫ 0

−h
Q(�)Fxt(�) d�:

(2.5)

Our results are stated in the following three theo-
rems. The proofs of these theorems are given in the
appendix. The su�cient conditions for the H∞-norm
of Eqs. (1.1a) and (1.1b) to be less than or equal to 

are:

Theorem 1. Assume thatA1 is valid. Let Eqs. (2.1a)–
(2.1e) have a solution such that (2.5) is asymptot-
ically stable. Then, J60 for all w∈L2[0;∞) and
P¿0.

We show next that the solvability of the RPDE’s
(2.1a–e) is equivalent to the existence of the invariant
manifold of Eq. (2.4a) to the Hamiltonian system of
Eqs. (2.2a) and (2.2b).

Theorem 2. The system of Eqs. (2.1a)–(2.1e) has
a solution i� the Hamiltonian system (2:2) has an
invariant manifold of the form (2:4a) such that Eq.
(2.4b) holds, where Q(�) and R(�; s) are piecewise-
continuously di�erentiable functions.

For systems with small time-delay the existence of
the stable manifold (i.e. of the invariant manifold with
asymptotically stable 
ow) of the Hamiltonian system
is equivalent to the existence of a stable manifold of
the ordinary di�erential equations that govern the 
ow
on the slow manifold of the Hamiltonian system. Note
that Eq. (2.5) is a usual time-delay system (that does
not depend on future values of x) and the notion of
asymptotic stability for such systems is well known
(see e.g. [8]). We derive the following algebraic delay-
dependent criterion:

Theorem 3. Consider the following nonlinear alge-
braic system:

Z = SY +
k∑

i=0

Ai e−Zhi +
∫ 0

−h
A01(s) eZs ds; (2.6a)

YZ + C′C +
k∑

i=0

A′
iY e

Zhi +
∫ 0

−h
A′
01(s)Y e

−Zs ds=0;

(2.6b)

where Z and Y are n× n-matrices. There exists h1¿0
such that for all h∈ (0; h1)
(i) Eqs. (2.1a)–(2.1e) has a solution and Eq. (2.5)

is asymptotically stable i� Eqs. (2.6a) and (2.6b)
has a solution such that the matrix Z is Hurwitz;

(ii) the system (1:1) has an H∞-norm less than or
equal to 
 if the system of Eqs. (2.6a) and (2.6b)
has a solution such that the matrix Z is Hurwitz.

System (2:6) is linear in Y and transcendental in Z .
Note that transcendental equations criteria are known
for the stability analysis of time-delay systems (see
e.g. [8]) and for solvability of H∞ operator Riccati
equations in the case of the systems with delay in the
input only [6]. Setting h=0 in Eqs. (1.1a), (1.1b),
(2.6a) and (2.6b) we get

ẋ(t)=

(
k∑

i=0

Ai

)
x(t) + Bw(t); (2.7a)

Z = SY +
k∑

i=0

Ai; (2.7b)

Y

(
k∑

i=0

Ai + SY

)
+ C′C +

k∑
i=0

A′
iY =0: (2.7c)

We see that Eq. (2.7c) is the usual Riccati algebraic
equation (RAE) (see e.g. [1]) corresponding to the
system of Eqs. (2.7a) and (1.1b) without delay. If the
RAE (2:7c) has a solution with Hurwitz Z , then by
the implicit function theorem, Eqs. (2.6a) and (2.6b)
has a solution with Hurwitz Z for all small enough h.
If
∑k

i=0 Ai is Hurwitz then A1 is valid for all small
enough h (see e.g. [4]). Thus, we get

Corollary 1. If
∑k

i=0 Ai is Hurwitz and RAE (2:7c)
has a stabilizing solution, then for all small enough
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Table 1

h 0.1 0.2 0.3 0.4 0.5 0.6


0 0.455 0.417 0.385 0.358 0.3334 0.313

∗ 0.4545 0.4167 0.3846 0.3571 0.3333 0.3125

h¿0 Eqs: (1.1a) and (1.1b) has H∞-norm less than
or equal to 
.

Example 1. Consider the system

ẋ(t) =−0:7x(t)− 0:3x(t − h)

−
∫ 0

−h
x(t + �) d�+ 0:5w(t); z(t)= x(t):

For values of h given in Table 1 we verify that the sys-
tem is internally stable. Applying Theorem 3 we solve
Eqs. (2.6a) and (2.6b) (by using FSOLVE function
of Matlab) and obtain the minimum achievable values

0 of 
 ( see Table 1). The initial approximation to

, Y and Z in the case of h=0:1 is obtained by solv-
ing Eqs. (2.6a) and (2.6b) for h=0, namely by solv-
ing Eqs. (2.7c) and (2.7b). Once this initial approx-
imation is found Eqs. (2.6a) and (2.6b) is solved by
FSOLVE and a solution for h=0:1 is obtained. If the
resulting Z¡0 ( Z¿0), then we decrease (increase) 

and solve Eqs. (2.6a) and (2.6b), using for the initial
approximation the values of Z and Y that have been
obtained. Increasing h we use 
, Z and Y for the previ-
ous h. Thus, for h=0:5 choosing 
=0:3334 we found
Z =−0:0507¡0 and Y =0:6507 and hence the con-
ditions of Theorem 3 hold. Decreasing 
 and choos-
ing 
=0:3332 we get Z =3× 10−8 and Y =0:6661.
Since for 
=0:3332 Z¿0, we take 
0 = 0:3334.
To compare the obtained values of 
0 with the ac-

tual H∞-norm of the system, we have found the peak
values 
∗ (see Table 1) of the frequency response
of the transfer function Tzw(s)= 0:5s[s2 + 0:7s +
0:3s exp(−hs) + 1 − exp(−hs)]−1. We see that 
0 is
close to 
∗.
Applying now Corollary 1 we put h=0 in Eqs.

(2.6a) and (2.6b) and get 
0 = 0:5. As it is evident
from Table 1, this value is not valid even for h=0:1.
For h¿0 the delay-dependent criterion of Theorem 3
should be used. Note that the delay-independent crite-
ria of [7, 10], which are valid for all h, cannot be used
for 
 close to 
∗, since 
∗ depends on h.

Appendix

Theorem 1 is proved similarly to Lemma 1 of [3]
by choosing

V (xt) = x(t)′Px(t) + 2x′(t)
∫ 0

−h
Q(�)Fxt(�) d�

+
∫ 0

−h

∫ 0

−h
F ′xt(s)R(s; �)Fxt(�) ds d�: (A.1)

Proof of Theorem 2 (Su�ciency). Let the system
(2:2) possess the invariant manifold of Eqs. (2.4a)
and (2.4b). We shall show that P;Q(�) and R(�; s)
satisfy Eqs. (2.1a)–(2.1e). We di�erentiate both sides
of Eq. (2.4a) with respect to � and t. Since @=@�[y(t−
�)]=−@=@t[y(t − �)], we have due to Eq. (2.5)

Q̇′(�)x(t) +
∫ 0

−h

@
@�

R(�; �)x(t + �) d�

= −Q′(�)
[
L(xt(·)) + SPx(t)

+ S
∫ 0

−h
Q(�)Fxt(�) d�

]

−
∫ 0

−h
R(�; �)

d
dt

Fxt(�) d�: (A.2)

Integrating by parts in the right-hand side (RHS) of
Eq. (A.2)

∫ 0

−h
R(�; �)

d
dt

Fxt(�) d�

= −
∫ 0

−h
R(�; �)

{
d
d�
[Fxt(�)]− A01(�)x(t)

}
d�

= −R(�; 0)[L(xt(·))− A0x(t)]

+
k∑

i=1

R(�;−hi)Aix(t)

+
∫ 0

−h

@
@�

R(�; �)Fxt(�) d�

+
∫ 0

−h
R(�; �)A01(�) d� x(t);

and equating terms containing x(t) and Fxt , we get
Eqs. (2.1c) and (2.1e) and the transpose of Eq. (2.1b)
(since R(�; �)=R′(�; �)). The relation (2:1d) follows
from Eq. (2.4b).
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To derive Eq. (2.1a) we di�erentiate (2:4b) with
respect to t. Using Eqs. (2.2a), (2.2b) (2.3), (2.1d),
(2.1e) and (2.4a) we then �nd

P

{
L(xt(·)) + S

[
Px(t) +

∫ 0

−h
Q(�)Fxt(�) d�

]}

+
∫ 0

−h
Q(�)

d
dt

Fxt(�) d�

= − C′Cx(t)

−
k∑

i=0

A′
i

[
Q′(−hi)x(t)+

∫ 0

−h
R(−hi; �)Fxt(�) d�

]

−
∫ 0

−h
A′
01(s)

[
Q′(s)x(t)+

∫ 0

−h
R(s; �)Fxt(�)d�

]
ds:

(A.3)

Integrating by parts in Eq. (A.3) and equating terms
containing x(t) we obtain Eq. (2.1a).
(Necessity). Let P;Q(�); R(�; s) satisfy Eqs. (2.1a)–
(2.1e) and x(t) satisfy Eq. (2.5). We have to prove
that yt of Eqs. (2.4a) and (2.4b) satis�es Eq. (2.2b).
We di�erentiate Eq. (2.4b) with respect to t and obtain
that ẏ is equal to the LHS of Eq. (A.3). Integrating
by parts and applying Eq. (2.1d) we �nd

ẏ(t) =

[
PSP + PA0 +

2∑
i=1

Q(−hi)Ai

+
∫ 0

−h
Q(�)A01(�) d�

]
x(t)

+
∫ 0

−h
[Q̇(�) + PSQ(�)]Fxt(�) d�:

The RHS of the latter equation resulting from Eqs.
(2.1a) and (2.1b) is equal to the RHS of Eq. (A.3).
The latter implies Eq. (2.2b) for yt that is given by
Eq. (2.4a).

Proof of Theorem 3. Our proof consists of two steps.
The �rst one is a modi�cation of results of [2], where
a more general nonlinear system of neutral type is
considered. The main results here are formulated in
Propositions 1 and 2.
Step 1: Slow–fast decomposition of Eqs. (2.2a)

and (2.2b). For small h Eqs. (2.2a) and (2.2b)
is a singularly perturbed system (see e.g. [9]).
We shall decompose Eqs. (2.2a) and (2.2b) into
a purely slow ordinary di�erential equation and a
purely fast integral equation. We apply the invariant

manifolds approach of [11]. For ordinary singularly
perturbed systems such a decomposition can also
be obtained by Chang’s transformation (see e.g.
[12]). Let T (t) :C[−h; 0] → C[−h; 0], t¿0 and
S(s) :C[0; h] → C[0; h]; s60 be semigroups of shift
operators, corresponding to the equation ẋ(t)= 0
de�ned by

T (t)�(�)=

{
�(t + �) if t + �¡0;

�(0) if t + �¿0;

S(s) (�)=

{
 (s+ �); if s+ �¿0;

 (0); if s+ �60:

Applying the variation of constants formula [4] on
Eqs. (2.2a) and (2.2b), we obtain that for all t2¿0
and t ∈ [0; t2] Eqs. (2.2a) and (2.2b) is equivalent to
the following integro-di�erential system:

xt = T (t)x0 +
∫ t

0
T (t − s)X0[L(xs(·)) + Sy(s)] ds;

(A.4a)

yt = S(t2 − t)yt2

+
∫ t

t2
S(t − s)Y0[−C′Cx(s)− L′(ys(·))] ds;

(A.4b)

where xt = x(t + �); yt =y(t + �); � ∈ [−h; 0]; �∈
[0; h], X0(�)=Y0(−�)= 0; �∈ [−h; 0); and X0(0)=
Y0(0)= I . For small enough h Eqs. (2.2a) and (2.2b)
has a slow manifold [2]

xt(�)= x(t) + H1(�)
(

x(t)
y(t)

)
;

yt(�)=y(t) + H2(�)
(

x(t)
y(t)

)
;

(A.5)

where �∈ [−h; 0]; �∈ [0; h]. The n× 2n-matrices H1
and H2 satisfy(
(I − X0; O) + H1
(0; I − Y0) + H2

)[(
LI S

−C′C −(LI)′
)

+
(

L(H1(·))
−L′(H2(·))

)]
=
(
AH1
BH2

)
; (A.6a)

H1(0)=H2(0)= 0: (A.6b)
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where LI =
∑k

i=0 Ai +
∫ 0
−h A0i(s) ds and

A�(�) =

{
�̇(�) if �¡0;

0 if �=0;

B (�) =

{
 ̇ (�) if �¿0;

0 if �=0:

Note that Eqs. (A.6a) and (A.6b) can be derived by
substitution of Eq. (A.5) into Eqs. (A.4a) and (A.4b)
and di�erentiation on t. The 
ow on this manifold is
governed by(

u̇(t)
v̇(t)

)
=
[(

L(H1(·))
−L′(H2(·))

)
+
(

LI S
−C′C −(LI)′

)]

×
(

u(t)
v(t)

)
: (A.7)

Changing variables in Eqs. (A.4a) and (A.4b)

zt = xt − x(t)− H1

(
x(t)
y(t)

)
;

qt =yt − y(t)− H2

(
x(t)
y(t)

) (A.8)

and using the following formulas of [2]

T (t)
[
x0 + H1

(
x0
y0

)]
− x(t)− H1

(
x(t)
y(t)

)

=
∫ t

0
T (t − s)AH1

(
x(s)
y(s)

)
ds

−
∫ t

0
T (t − s)

[
ẋ(s) + H1

(
ẋ(s)
ẏ(s)

)]
ds; (A.9)

S(t2 − t)
[
y0 + H2

(
x0
y0

)]
− y(t)− H2

(
x(t)
y(t)

)

=
∫ t

t2
S(t − s)BH2

(
x(s)
y(s)

)

−S(t − s)
[
ẏ(s) + H2

(
ẋ(s)
ẏ(s)

)]
ds; (A.10)

we obtain the system(
ẋ(t)
ẏ(t)

)
=
[(

L(H1(·))
−L′(H2(·))

)
+
(

LI S
−C′C −(LI)′

)]

×
(

x(t)
y(t)

)
+
(

L(zt(·))
−L′(qt(·))

)
; (A.11a)

zt = T (t)z0 −
∫ t

0
T (t − s)[H1 + (I − X0; 0)]

×
(

L(zs(·))
−L′(qs(·))

)
ds; (A.11b)

qt = S(t2 − t)qt2 −
∫ t

t2
S(t − s)[H2 + (0; I − Y0)]

×
(

L(zs(·))
−L′(qs(·))

)
ds: (A.11c)

Note that zt(0)= qt(0)= 0. Moreover, for all
z ∈C[−h; 0]; z(0)= 0 and q∈C[0; h]; q(0)= 0 we
have T (t)z=0 for t¿h and S(t)q=0 for t¡ − h.
Therefore for all small enough h

‖T (t)z‖c6Ke−t=h‖z‖c; t¿0;

‖S(t)q‖c6Ket=h‖q‖c; t¡0; K¿1:

Then, for small h, Eqs. (A.11a)–(A.11c) has the stable
manifold [2]

x(t)=G1zt ; y(t)=G2zt ; qt =G3zt : (A.12)

The 
ow on this manifold is governed by the equation
that follows from Eqs. (A.11b) and (A.12)

zt = T (t)z0 −
∫ t

0
T (t − s)[H1 + (I − X0; 0)]

×
(

L(zs(·))
−L′G3(·)zs

)
ds: (A.13)

The linear bounded operators Gi :Rn →C[−h; 0];
i=1; 2 and G3 :C[−h; 0]→C[0; h] satisfy the fol-
lowing equations for all continuously di�erentiable
z ∈C[−h; 0]; z(0)= 0 [2]:(

G1
G2

){
Az−[H1+(I − X0; 0)]

(
L(z(·))

−L′(G3(·)z)
)}

=
(

L(H1(·))
−L′(H2(·))

)(
G1z
G2z

)

+
(

LI · G1z + Lz(·) + SG2z
−(LI)′G2z − L′G3(·)z − C′CG1z

)
;

(A.14a)
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G3

{
Az − [H1 + (I − X0; 0)]

(
L(z(·))

−L′(G3(·)z)
)}

= BG3z − (H2 + (0; I − Y0))
(

L(z(·))
−L′(G3(·)z)

)
:

(A.14b)

Eqs. (A.14a) and (A.14b) result from substitution of
Eq. (A.12) into Eqs. (A.11a)–(A.11c) and di�erenti-
ation on t.

Proposition 1. For all small enough h the operators
G1; G2 and G3 can be represented in the form of

Giz=
∫ 0

−h
gi(�)Fz(�) d�; i=1; 2;

G3(�)z=
∫ 0

−h
g3(�; �)Fz(�) d�; �∈ [0; h];

(A.15)

where g1; g2 and g3 are continuous and piecewise con-
tinuously di�erentiable functions of their arguments.

Proof. We start with G3. Substituting Eq. (A.15) into
Eq. (A.14b), further integrating by parts and equating
terms containing Fz(�) and L(z(·)) we get
@
@�

g3(�; �)− @
@�

g3(�; �)

=

[∫ 0

−h
g3(�; s)FH12(s) ds− H22(�)− I

]

×L′(g3(·; �)); (A.16a)

g3(�; 0)= −
∫ 0

−h
g3(�; s)F[H11(s) + I ] ds+ H21(�);

(A.16b)

g3(0; �)= 0: (A.16c)

where Hi=col{Hi1; Hi2}; i=1; 2. Note that Eq.
(A.16c) follows from qt(0)= 0. Applying the char-
acteristics method on Eqs. (A.16a)–(A.16c) we get
the following equivalent to Eqs. (A.16a)–(A.16c)
integral equations:

g3(�; �)

=



∫ �
0f(s;−s+ �+ �) ds; if �6− �;

g3(�+ �; 0)
+
∫ −�
0 f(s+ �+ �;−s) ds; if �¿− �;

(A.17a)

f(�; �) =

[∫ 0

−h
g3(�; s)FH12(s) ds− H22(�)− I

]

×L′(g3(·; �)): (A.17b)

Substituting Eqs. (A.16b) and (A.17b) into
Eq. (A.17a), and applying the contraction principle
argument to the resulting equation, one can show
that for small enough h this equation has a unique
continuous solution g3(�; �); �∈ [0; h]; �∈ [−h; 0].
This solution is continuously di�erentiable function
for � 6=−�. Really, di�erentiating Eqs. (A.17a) and
(A.17b) on � and �, we get a system of integral equa-
tions, which, for small h, possesses a unique solution
by contraction principle argument. Thus, the second
of Eq. (A.15) is proved.
The existence of g1 and g2 can be proved similarly

to the existence of g3.

Applying another change of variables

u(t)= x(t)− G1zt ;

v(t)=y(t)− G2zt ; rt = qt − G3zt
(A.18)

we obtain(
u̇(t)
v̇(t)

)
=
[(

L(H1(·))
−L′(H2(·))

)
+
(

LI S
−C′C −(LI)′

)]

×
(

u(t)
v(t)

)
−
[
I +

(
G1
G2

)
H12

]
L′(rt(·));

(A.19a)

zt = T (t)z0 −
∫ t

0
T (t − s)[H1 + (I − X0; 0)]

×
(

L(zs(·))
−L′(G3(·)zs + rs(·))

)
ds; (A.19b)
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rt = S(t2 − t)rt2

+
∫ t

t2
S(t − s)[H22+ I−Y0 − G3H12]L′(rs(·)) ds:

(A.19c)

Solutions of Eq. (A.19c) exponentially decay as
t→−∞ [2]. Hence all the stable solutions of Eqs.
(A.19a)–(A.19c) correspond to rt ≡ 0, and Eqs.
(A.18) and (A.8) yield(

xt(�)
yt(�)

)
=
[
I2n +

(
H1(�)
H2(�)

)](
u(t) + G1zt
v(t) + G2zt

)

+
(

zt(�)
G3(�)zt

)
: (A.20)

We thus proved the following

Proposition 2. For all small enough values of h the
stable solutions of Eqs. (2.2a) and (2.2b) can be rep-
resented in the form (A:20), where u; v and z satisfy
Eqs. (A.7) and (A.13).

Step 2: Existence of a stable manifold of Eqs.
(2.2a) and (2.2b). We are looking for a stable mani-
fold v=Yu of Eq. (A.7). Denoting(
U (�)
V (�)

)
=
[
I2n +

(
H1(�)
H2(�)

)](
I
Y

)
: (A.21)

We di�erentiate the relation v(t)=Yu(t) with respect
to t and apply Eq. (A.7), where v=Yu. We obtain

Y [L(U (·)) + SY ] =−L′(V (·))− C′C: (A.22)

Di�erentiating Eq. (A.21) on � and �, and applying
Eq. (A.6a) multiplied by col{I; Y} and Eq. (A.22), we
have

U̇ (�)=U (�)[L(U (·)) + SY ]; �¡0; (A.23a)

V̇ (�)=V (�)[L(U (·)) + SY ]; �¿0: (A.23b)

Solving Eqs. (A.23a) and (A.23b) with the initial con-
ditions U (0)= I; V (0)=Y , which follow from Eqs.
(A.21) and (A.6b), we �nd

U (�)= eZ�; (A.24a)

V (�)=Y eZ�; (A.24b)

Z =L(U (·)) + SY: (A.24c)

Then Eq. (2.6a) follows from Eqs. (A.24c) and
(A.24a), while Eq. (2.6b) follows from Eqs. (A.22)
and (A.24b).

Conversely, if Y and Z satisfy Eqs. (2.6a) and
(2.6b) then Eqs. (A.24c) and (A.22) hold, where U
and V are given by Eqs. (A.24a) and (A.24b) and thus
satisfy Eqs. (A.23a) and (A.23b). Then Eq. (A.21) fol-
lows from Eqs. (A.6a), (A.22), (A.23a) and (A.23b).
Hence, Eq. (A.22) means that v=Yu is an invariant
manifold of Eq. (A.7).

Proposition 3. For all small enough values of h the
following statements are equivalent:
(A) The algebraic system (2:6) has a solution such

that the matrix Z is stable;
(B) Eq. (A.7) has a stable manifold v=Yu with a


ow governed by u̇=Zu;
(C) The system (2:2) has a stable manifold of Eq.

(2.4a).

Proof. (A)⇔ (B) was proved just before
Proposition 3. We shall prove that (B)⇒ (C). Sub-
stitute Eq. (A.20), where v=Yu, and Eq. (A.21) into
Eq. (2.4a)

∫ 0

−h
R(�; �)F

{
U (�)u+ [(I; O) + H1(�)]

(
G1z
G2z

)

+z(�)
}
d�+ Q′(�)[u+ G1z]

= V (−�)u+ [(O; I) + H2(�)]
(

G1z
G2z

)
+G3(−�)z: (A.25)

We will prove that there exist Q(�) and R(�; s) such
that they satisfy Eq. (2.4a). We equate in Eq. (A.25)
terms containing Fz and u and obtain the following
two coupled equations:{∫ 0

−h
R(�; �)F[(I; 0) + H1(�)] d�−(0; I)−H2(�)

}

×
(

g1(s)
g2(s)

)
+ Q′(�)g1(s) + R(�; s)

= g3(−�; s); (A.26a)

∫ 0

−h
R(�; �)FU (�) d�+ Q′(�)=V (−�): (A.26b)

For small h Eqs. (A.26a) and (A.26b) has a unique
solution Q(�); R(�; s) continuous on its arguments.
Hence, Q(�) and R(�; s) satisfy Eq. (2.4a).
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To prove (C)⇒ (B) we suppose that there exist
Q(�); R(�; s) such that Eq. (2.4a) holds. Substituting
the RHS of Eq. (A.20) into Eq. (2.4a), we obtain an
equation that can be solved with respect to v for small
h. This solution v=Yu+Xz de�nes the stable manifold
of Eq. (A.7). Moreover, X =0 since Eqs. (A.7) and
(A.13) are decoupled.

Theorem 3 follows from Theorem 2, Proposition 3
and Theorem 1.
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