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a b s t r a c t

In the present paper, sufficient conditions for the exponential stability of linear systems with infinite
distributed delays are presented. Such systems arise in population dynamics, in traffic flow models, in
networked control systems, in PID controller design and in other engineering problems. In the early
Lyapunov-based analysis of systemswith distributed delays (Kolmanovskii &Myshkis, 1999), the delayed
terms were treated as perturbations, where it was assumed that the system without the delayed term
is asymptotically stable. Later, for the case of constant kernels and finite delays, less conservative
conditions were derived under the assumption that the corresponding system with the zero-delay is
stable (Chen & Zheng, 2007). We will generalize these results to the infinite delay case by extending the
corresponding Jensen’s integral inequalities and Lyapunov–Krasovskii constructions. Our main challenge
is the stability conditions for systems with gamma-distributed delays, where the delay is stabilizing, i.e.
the corresponding system with the zero-delay as well as the system without the delayed term are not
asymptotically stable. Here the results are derived by using augmented Lyapunov functionals. Polytopic
uncertainties in the systemmatrices can be easily included in the analysis. Numerical examples illustrate
the efficiency of the method. Thus, for the traffic flow model on the ring, where the delay is stabilizing,
the resulting stability region is close to the theoretical one found in Michiels, Morarescu, and Niculescu
(2009) via the frequency domain analysis.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Systems with infinite distributed delays

ẋ(t) = Ax(t) + Ad

 h

0
K(θ)x(t − θ)dθ, (1)

where h = ∞, x(t) ∈ Rn, A, Ad ∈ Rn×n and K(·) is a scalar, are
present in many scientific disciplines such as population dynamics
and engineering. One of the first studies devoted to population
dynamics using a model with infinite distributed delay is due to
Cushing (1981) (see also Kolmanovskii and Myshkis (1999) and
references therein). Such delays appear in the control systems
under PID controllers (Kolmanovskii & Myshkis, 1999), in the
traffic flow models (Michiels et al., 2009; Morarescu, Niculescu,
& Gu, 2007), in the control over communication networks
(Morarescu et al., 2007) and in themachine tool vibration problem
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(Stepan, 1998). Particularly systemswith distributeddelays,whose
kernel K(·) is a gamma-distribution with a gap, model the
above mentioned applications in the population dynamics and
engineering (Michiels et al., 2009; Morarescu et al., 2007).

Stability and control of systems with the constant kernel K ≡ 1
and finite distributed delays h < ∞ have been extensively studied
in the literature (see e.g. Chen and Zheng (2007), Fridman (2001),
Gu, Kharitonov, and Chen (2003), Kolmanovskii and Myshkis
(1999) and Sun, Liu, and Chen (2009) and the references therein).
In the early results based on the Lyapunov–Krasovskii method
(Kolmanovskii & Myshkis, 1999), the delayed term was treated
as the disturbance, where A was supposed to be Hurwitz. Later a
less restrictive assumption on the stability of the corresponding
system with the zero delay ẋ(t) = (A + Adh)x(t) was used (Chen
& Zheng, 2007). In the case of piecewise-constant kernels and
h < ∞, the discretized Lyapunov functional method is applicable
to systems with distributed stabilizing delays, where neither
A nor A0 are Hurwitz. Simple stability conditions for systems
with stabilizing discrete delays were recently derived by using
augmented Lyapunov functionals and Wirtinger-based integral
inequalities (Seuret & Gouaisbaut, 2013).

The case of finite distributed delay with a variable kernel is less
studied in the literature. For the finite distributed delay with an
exponential kernel we refer to Verriest (1999), where the system
was transformed to an augmented system with a discrete delay.
In Ozbay, Bonnet, and Clairambault (2008) the stability of systems
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with kernels that are finite duration impulse responses of finite
dimensional systemswere reduced to the stability of systemswith
discrete delays. Systems with polynomial kernels were studied in
Gouaisbaut andAriba (2011) by presenting themas interconnected
models and using quadratic separation. For systems, where the
matrix kernel K is a rational function, we refer to Goebel, Munz,
and Allgöwer (2011) and the references therein.

The existing Lyapunov-based results treat the term with the
infinite delay as a disturbance (Kolmanovskii & Myshkis, 1999).
In the frequency domain, necessary and sufficient conditions for
the stability of systemswith gamma-distributed delayswere found
in Michiels et al. (2009) and Morarescu et al. (2007). Special
attention was paid to the case of stabilizing delay, where A = 0
and thematrix of the corresponding zero-delay systemhas the zero
eigenvalue. The latter situation appears e.g. in the traffic flowmodel
on the ring (Michiels et al., 2009; Morarescu et al., 2007).

The objective of the present paper is to derive simple conditions
for the exponential stability of systems with infinite distributed
delays in terms of Linear Matrix Inequalities (LMIs). For general
integrable kernels, we assume the exponential stability of the
corresponding systemwith the zero delay or of the systemwithout
the delayed terms. Here we extend the double and triple integral
terms in Lyapunov–Krasovskii functionals of Chen and Zheng
(2007) and Sun et al. (2009) to the variable kernels and unbounded
delays. For gamma distributions with a gap, we analyze the
challenging effect of stabilizing delay. Note that for the infinite
delay the discretized Lyapunov method of Gu et al. (2003) or
the Wirtinger-based inequality analysis of Seuret and Gouaisbaut
(2013), if applicable, would lead to complicated conditions. Here
the results are derived by using augmented Lyapunov functionals.
Polytopic uncertainties in the system matrices can be easily
included in the analysis. Numerical examples from the literature
illustrate the efficiency of the method. Thus, for the traffic flow
model on the ring, the stability region which is guaranteed by the
presented LMIs almost coincides with the theoretical one found in
Michiels et al. (2009). Some preliminary results will be presented
in Solomon and Fridman (2013).

Notations. The superscript ‘T ’ stands for matrix transposition, Rn

denotes the n-dimensional Euclidean space with the norm | · |, and
Rn×m is the set of all n × m real matrices with the Euclidean norm
| · |. The notation P > 0, for P ∈ Rn×n, means that P is sym-
metric and positive definite, whereas λmin(P) (λmax(P)) denotes
its minimum (maximum) eigenvalue. In symmetric block matri-
ces we use ∗ for terms that are induced by the symmetry. The
space of continuous functions φ : (−∞, 0] → Rn with the norm
∥φ∥C = sups∈(−∞,0] |φ(s)| < ∞ is denoted by C(−∞, 0;Rn). The
space of the continuously differentiable functions φ : (−∞, 0] →

Rn with the norm ∥φ∥C1 = ∥φ∥C + ∥φ̇∥C < ∞ is denoted by
C1(−∞, 0;Rn). Lp(a, b;Rn) (p = 1, 2, . . .) is the Hilbert space of
functions x : (a, b) → Rn with ∥x∥Lp =

 b
a |x(s)|pds < ∞.

2. Preliminaries and problem formulation

A linear system with infinite delay has a form

ẋ(t) = Ax(t) + Ad


∞

0
K(θ)x(t − θ)dθ, (2)

where x(t) ∈ Rn, A, Ad ∈ Rn×n are constant matrices. The scalar
kernel function K is supposed to satisfy the following assumption:
A1. Assume that the kernel K ∈ L1(0, ∞;R) satisfies the inequality

∞

0
|K(θ)|e2δ0θdθ < ∞ (3)

with some δ0 > 0.

Note that e.g. gamma-distributed delays considered below sat-
isfy A1. A solution of (2) is uniquely determined for the uniformly
continuous initial function φ ∈ C(−∞, 0;Rn). This solution con-
tinuously depends on φ (see Kolmanovskii and Myshkis (1999,
Theorem 3.2.3)). System (2) is said to be exponentially stable with
a decay rate δ > 0 if there exists a constant b ≥ 1 such that the fol-
lowing exponential estimate holds for the solution of (2) initialized
with φ ∈ C(−∞, 0;Rn):

|x(t)|2 ≤ be−2δt
∥φ∥

2
∀t ≥ 0, (4)

where ∥φ∥ = ∥φ∥C . The objective of the present paper is to de-
rive sufficient conditions for the exponential stability of (2). For
φ ∈ C1(−∞, 0;Rn)wewill find less restrictive exponential stabil-
ity conditions,where∥φ∥ = ∥φ∥C1 in the exponential boundof (4).

2.1. Applications with gamma-distributed delays

Gamma-distributed delays can be encountered in the problem
of control over communication networks, in the population
dynamics (Morarescu et al., 2007) and in the machine tool
vibration problem (Stepan, 1998). A research area where a
distributed delay appears naturally is the traffic flow dynamics.
The following system which incorporates a general memory effect
represents a configuration of vehicles in a ring (Michiels et al.,
2009):

v̇k(t) = αk


∞

0
f (θ)(vk−1(t − θ) − vk(t − θ)) dθ

k = 1, . . . , n, v0 ≡ vn.

(5)

Here vk(t) is the velocity of vehicle k, n is the number of
vehicles, and αk is the coupling coefficient between the vehicles
k and k − 1. The equilibrium point of the matched speeds is
referred to as a consensus among the agents, where no particular
agent may collide with another. The asymptotic stability of (5)
means that limt→∞ vk(t) = 0, k = 1, . . . , n and, thus, that
limt→∞

n
k=1 vk(t)/n = 0. The latter relation corresponds to the

consensus as defined in Michiels et al. (2009).
Function f in (5) is a gamma distribution with a gap τ , where

the gap corresponds to the minimum reaction time of the humans
with respect to some external stimuli:

f (ξ) =


0 ξ < τ,

(ξ − τ)N−1e−
ξ−τ
T

TN(N − 1)!
ξ ≥ τ .

(6)

Here N ∈ N is a parameter of the distribution. Note that
∞

0 f (ξ) dξ = 1. The corresponding average delay of (6) satisfies
∞

0
ξ f (ξ)dξ = τ + NT .

The distributed delay, whose kernel is a gamma distribution with
a gap, characterizes the human drivers’ behavior in the average.
Denoting x(t) = [v1(t), . . . , vn(t)]T , (5) can be represented as (2),
where K(θ) = f (θ) is piecewise-continuous and where A and Ad
are constant matrices. Alternatively, taking into account that

∞

0
f (θ)x(t − θ)dθ =


∞

τ

f (θ)x(t − θ)dθ

=


∞

0
f (ξ − τ)x(t − ξ − τ)dξ

we arrive at the equivalent representation

ẋ(t) = Ax(t) + Ad


∞

0
Γ (θ)x(t − θ − τ)dθ, (7)

where

Γ (θ) =
θN−1e−

θ
T

TN(N − 1)!
(8)

with a smooth kernel Γ .
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2.2. Problem formulation and useful inequalities

We will first derive the exponential stability conditions for a
general integrable K ∈ L1(0, ∞;R) (see Section 3). Though linear
systems with integrable kernels can always be presented in the
form of (2) wewill derive the stability condition for amore general
system with a gap τ ≥ 0

ẋ(t) = Ax(t) + Ad


∞

0
K(θ)x(t − θ − τ)dθ, (9)

where K is subject to A1. This will allow us further to modify the
results for the case of smooth kernels. Note also that our results
for K ∈ L1(0, ∞;R) will be applicable to the case of finite delay
h < ∞, where K(θ) = 0, θ > h.

Keeping in mind that (9) can be represented in the following
form:

ẋ(t) = A0x(t) + Ad


∞

0
K(θ)[x(t − θ − τ) − x(t)] dθ, (10)

we assume the exponential stability of ẋ(t) = Ax(t) or of (10) with
the zero delay

ẋ(t) = A0x(t), A0 , A + Ad


∞

0
K(θ) dθ. (11)

Note that in many cases a system with a matrix integrable kernel
K(θ) ∈ Rn×n can be presented as a system with multiple delays

ẋ(t) = Ax(t) +

m
i=1

Adi


∞

0
Ki(θ)x(t − θ − τ)dθ (12)

and scalar kernelsKi ∈ L1(0, ∞;R). This presentation is not unique
and m may be greater than n2 (see Example 1). Our results can be
easily extended to this case (as shown in Corollary 1).

For gamma-distributed delays with a gapwewill further derive
LMIs for the case of ‘‘stabilizing delays’’, where A and A0 may be
non-Hurwitz. This is motivated e.g. by the traffic flow model on
the ring (Morarescu et al., 2007), where A = 0 and where the zero
eigenvalue of A0 corresponds to the vehiclesmovingwith the same
velocity.

As in the case of finite delays (Gu et al., 2003), a basic tool for
the Lyapunov-based stability analysis will be integral inequalities.
We will generalize the well-known Jensen’s inequality (Gu et al.,
2003) and its double integral extension of Sun et al. (2009), which
have been considered on the finite intervals of integration, to the
infinite ones:

Lemma 1. Assume A1. Given an n×nmatrix R > 0, a scalar function
α : [0, ∞) → (0, ∞), a scalar τ ≥ 0 and a vector function
φ : [0, ∞) → Rn such that the integrations concerned are well
defined. Then the following inequalities hold:

∞

0
α(θ)|K(θ)|φT (θ)Rφ(θ) dθ

≥ K0
−1


∞

0
φT (θ)K(θ) dθR


∞

0
K(θ)φ(θ) dθ,

K0 =


∞

0
α−1(θ)|K(θ)|dθ,

(13)

and
∞

0

 t

t−θ−τ

α(θ)|K(θ)|φT (s)Rφ(s)ds dθ

≥ K1
−1


∞

0

 t

t−θ−τ

φT (s)K(θ)dsdθR

×


∞

0

 t

t−θ−τ

K(θ)φ(s)dsdθ,

K1 =


∞

0
α−1(θ)|K(θ)|(θ + τ)dθ. (14)

Proof. By Schur complements the following holds
α(θ)|K(θ)|φT (θ)Rφ(θ) φT (θ)K(θ)

∗ R−1
|K(θ)|α−1(θ)


≥ 0 (15)

for θ ∈ [0, ∞]. Integration of (15) from 0 to ∞ yields ∞

0
α(θ)|K(θ)|φT (θ)Rφ(θ)


∞

0
φT (θ)K(θ)

∗ K0R−1

 ≥ 0.

Application of Schur complements to the above matrix inequality
leads to (13). Double integration of
α(θ)|K(θ)|φT (s)Rφ(s) φT (s)K(θ)

∗ R−1
|K(θ)|α−1(θ)


≥ 0

from t − θ − τ to t in s and from 0 to ∞ in θ , where
∞

0

 t

t−θ−τ

|K(θ)|α−1(θ) ds dθ = K1

and application of Schur complements leads to (14).

Remark 1. Lemma1 can be easily extended to thematrix K , where
φTK in (13) and (14) should be changed by φTK T .

3. Stability in the case of integrable kernels

Consider (9), where K ∈ L1(0, ∞;R) is subject to A1. Assume
that A or A0 = A+Ad


∞

0 K(θ) dθ are Hurwitz. For the exponential
stability analysis of (9) with the decay rate δ < δ0 we suggest the
following Lyapunov–Krasovskii functional:

V (t) = VP(t) + VG(t) + VH(t), VP(t) = xT (t)Px(t) (16)

with

VG(t) =


∞

0

 t

t−θ−τ

e−2δ(t−s)
|K(θ)|xT (s)Gx(s) ds dθ,

VH(t) =


∞

0

 θ+τ

0

 t

t−λ

e−2δ(t−s)
|K(θ)|ẋT (s)Hẋ(s)dsdλdθ,

where P,G and H are positive n × n-matrices. The term VG(t)
with δ = 0 extends the classical construction of Kolmanovskii and
Myshkis (1999) to the vector case, where the exponential term is
inserted to achieve the exponential decay rate δ. It ‘‘compensates’’
the delayed term in (9) provided A is Hurwitz. The term VH extends
the triple integrals of Sun et al. (2009) to the case of infinite delay
and it ‘‘compensates’’ the integral term in (10) when A0 is Hurwitz.
The latter term also improves the results when A is Hurwitz.

Since V depends on ẋ, it is defined for differentiable initial
functions. We will derive the conditions that guarantee V̇ (t) +

2δV (t) ≤ 0 along the solutions of (9) with initial functions φ ∈

C1(0, ∞;Rn). Then these solutions would satisfy the following
inequality:

xT (t)Px(t) ≤ V (t) ≤ e−2δtV (0), t ≥ 0, (17)

where for all δ ∈ (0, δ0)

V (0) ≤ λmax(P)|φ(0)|2 + λmax(G)


∞

0
|K(θ)|(θ + τ)dθ∥φ∥C

+ λmax(H)


∞

0
|K(θ)|(θ + τ)2/2dθ∥φ̇∥C . (18)
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Differentiation of V along the trajectories of (9) yields

V̇ (t) + 2δV (t)

= 2xT (t)P

Ax(t) + Ad


∞

0
K(θ)x(t − θ − τ)dθ


+ 2δxT (t)Px(t) +


∞

0
|K(θ)| dθxT (t)Gx(t)

−


∞

0
e−2δ(θ+τ)

|K(θ)|xT (t − θ − τ)Gx(t − θ − τ) dθ

+


∞

0
(θ + τ)|K(θ)| dθ ẋT (t)Hẋ(t)

−


∞

0

 t

t−θ−τ

e−2δ(θ+τ)
|K(θ)|ẋT (s)Hẋ(s) ds dθ.

Denote

K0δ =


∞

0
e2δ(θ+τ)

|K(θ)| dθ, K00 = K0δ|δ=0,

K1δ =


∞

0
e2δ(θ+τ)

|K(θ)|(θ + τ) dθ, K10 = K1δ|δ=0. (19)

Applying further the extended Jensen’s inequalities (13) and (14)
we have

−


∞

0
e−2δ(θ+τ)

|K(θ)|xT (t − θ − τ)Gx(t − θ − τ) dθ

≤ −K−1
0δ


∞

0
K(θ)xT (t − θ − τ)dθG


∞

0
K(θ)x(t − θ − τ)dθ

and

−


∞

0

 t

t−θ−τ

e−2δ(θ+τ)
|K(θ)|ẋT (s)Hẋ(s) ds dθ

≤ −K−1
1δ


∞

0

 t

t−θ−τ

K(θ)ẋT (s)dsdθH

×


∞

0

 t

t−θ−τ

K(θ)ẋ(s)dsdθ.

Choose η(t) = col{x(t),


∞

0 K(θ)x(t − θ − τ) dθ}. Then

V̇ (t) + 2δV (t) ≤ ηT (t)

Φ00 PAd + K−1

1δ K00H
∗ −K−1

0δ G − K−1
1δ H


η(t)

+ K10η
T (t)


AT

AT
d


H

AT

AT
d

T
η(t),

where

Φ00 = PA + ATP + 2δP + K00G − K−1
1δ K 2

00H. (20)

By the Schur complements we find that ifΦ00 PAd + K−1
1δ K00H K10ATH

∗ −K−1
0δ G − K−1

1δ H K10AT
dH

∗ ∗ −K10H

 < 0, (21)

then V̇ (t) + 2δV ≤ 0. We have proved the following:

Proposition 1. Assume A1. Given δ ∈ (0, δ0) (δ = 0), suppose there
exist positive definite matrices P,G,H ∈ Rn×n, such that LMI (21)
with notations given by (19) and (20) is feasible. Then solutions
of (9) initiated by φ ∈ C1(0, ∞;Rn) satisfy the bound (17) and
(18), i.e. (9) is exponentially stable with the decay rate δ (with a small
enough decay rate).

Remark 2. Taking into account Remark 1, the LMI (21) guarantees
the exponential stability of (9) with a matrix kernel K . However,
numerical computation of the constants in (19) for the matrix case
becomes complicated. That iswhy inCorollary 1 belowweconsider
a particular but important case ofmatrix kernels,where the system
can be presented as (12) with scalar kernels Ki.

Remark 3. For the asymptotic stability of (9), assumption A1 is not
necessary. The feasibility of LMI (21) with δ = 0 guarantees the
asymptotic stability of (9) for K ∈ L1(0, ∞;R) such that K10 < ∞.

Remark 4. The effect of the distributed delay is reflected only
as some integral in the stability conditions. Such conditions may
be conservative ignoring more detailed delay distribution. For
the case of gamma-distributed kernels (in Section 4 below) the
derivative of the kernel will be employed to improve the results.

Remark 5. When A is Hurwitz a simpler V of (16) with H = 0 can
be applied leading to the following LMI:
PA + ATP + 2δP + K00G PAd

∗ −K0δ
−1G


< 0. (22)

For all solutions of (9) initiated by φ ∈ C(0, ∞;Rn), the latter LMI
guarantees the exponential bound (17) and (18) with H = 0. It is
easy to see that the feasibility of (22) with δ = 0 yields the delay-
independent stability of

ẋ(t) = Ax(t) ± K00Adx(t − r)

for all r ≥ 0 and implies that

(1) A and A ± K00Ad are Hurwitz (i.e. A0 is Hurwitz for K ≥ 0);
(2) the eigenvalues of A−1K00Ad = A−1


∞

0 |K(s)|dsAd are inside of
the unit circle (Fridman, 2002);

(3) ∥G0.5(sI − A)−1AdG−0.5
∥∞ < 1/K00 (the scaled small gain

condition), where ∥ · ∥∞ denotes the H∞-norm.

For δ = 0, Ad = G = I and a matrix K the LMI (22) is equivalent to
∥(sI − A)−1

∥∞ < 1/K00. The latter stability condition was derived
inOzbay et al. (2008) andVerriest (1995) for the case of finite delay.

Proposition 1 can be easily extended to systems with multiple
delays and scalar kernels:

Corollary 1. Consider (12). Assume that there exists δ0 > 0 such
that


∞

0 |Ki(θ)|e2δ0θdθ < ∞, i = 1, . . . ,m and that A0 = A +m
i=1 Adi


∞

0 Ki(θ)dθ is Hurwitz. Given δ ∈ (0, δ0) (δ = 0), suppose
there exist positive definite matrices P,Gi,Hi ∈ Rn×n that satisfy the
LMI

Φ00 Φ01 · · · Φ0i AT


m
i=1

K i
10Hi



∗ Φ11 · · · 0 AT
d1


m
i=1

K i
10Hi


...

...
. . .

...
...

∗ ∗ ∗ Φmm AT
dm


m
i=1

K i
10Hi



∗ ∗ ∗ ∗ −

m
i=1

K i
10Hi



< 0, (23)
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where

K i
0δ =


∞

0
e2δ(θ+τ)

|Ki(θ)| dθ, K i
00 = K i

0δ|δ=0,

K i
1δ =


∞

0
e2δ(θ+τ)

|Ki(θ)|(θ + τ) dθ, K i
10 = K i

1δ|δ=0,

Φ00 = PA + ATP + 2δP +

m
i=1

[K i
00Gi − (K i

1δ)
−1(K i

00)
2Hi],

Φ0i = PAdi + (K i
1δ)

−1K i
00Hi,

Φii = −(K i
0δ)

−1Gi − (K i
1δ)

−1Hi.

Then (12) is exponentially stable with the decay rate δ (with a small
enough decay rate).

Example 1 (Gouaisbaut & Ariba, 2011). The system with non-
Hurwitz A and with a matrix variable kernel

ẋ(t) = Ax(t) +

 0

−h
K̄(s)x(t + s)ds,

A =


0.2 0.01
0 −2


, K̄(s) =


−1 + 0.3s 0.1

0 −0.1

 (24)

can be presented in the form of (12) with m = 2, τ = 0 and K1 =

K2 = 0 for θ > h in many ways. Note that
 0
−h K̄(s)x(t + s)ds = h

0 K̄(−θ)x(t − θ)dθ . We choose the following two forms:

Ad1 =


−1 0.1
0 −0.1


, Ad2 = −


0.3 0
0 0


,

K1 ≡ 1, K2(θ) = θ, θ ∈ [0, h]
(25)

and

Ad1 =


0 0.1
0 −0.1


, Ad2 = −


1 0
0 0


,

K1 ≡ 1, K2(θ) = 1 + 0.3θ, θ ∈ [0, h].
(26)

Here A0 = A +
2

i=1 Adi


∞

0 Ki(θ)dθ is Hurwitz for h ≥ 0.195.
It was found in Gouaisbaut and Ariba (2011) by using an ana-
lytical method that the system is asymptotically stable for h ∈

[0.195, 1.71]. The LMIs of Corollary 1with 15 scalar variables guar-
antee the exponential stability of (25) for h ∈ [0.207, 1.455] and
of (26) for h ∈ [0.195, 1.442]. Thus, (24) is exponentially stable for
[0.195, 1.455].

The latter result essentially improves the one of Gouaisbaut and
Ariba (2011), where a smaller stability interval h ∈ [0.23, 1] was
found via LMIs with 2221 decision variables. Choosing next h = 1
we find by using LMIs of Corollary 1 with 15 scalar variables that
the maximum achievable decay rate is δmax = 0.433 for (25) and
δmax = 0.593 for (26). Hence, (24) is exponentially stable with the
decay rate 0.593.

Note that (24) has a triangular structure. Thus, it is stable if the
two scalar subsystems

ẋ1(t) = 0.2x1(t) −

 0

−h
(1 − 0.3s)x1(t + s)ds,

ẋ2(t) = −2x2(t) − 0.1
 0

−h
x2(t + s)ds

are stable. In correspondence to (25) and (26), the system for x1 can
bepresented as a systemwith 2delays,whereAd1 = −1 = −K1(θ)
and Ad2 = −0.3, K2(θ) = θ , or as a system with 1 delay, where
Ad = −1 and K(θ) = 1+0.3θ (θ ∈ [0, h]). The LMIs of Corollary 1
with 5 scalar variables and with 3 scalar variables guarantee the
exponential stability of the latter systems for h ∈ [0.207, 1.455]
and for h ∈ [0.195, 1.442] respectively.

Another simple extension of the direct Lyapunov–Krasovskii
method is to input-to-state stability or to L2-gain analysis of the
perturbed systems. Consider

ẋ(t) = Ax(t) + Ad


∞

0
K(θ)x(t − θ − τ)dθ + Bw(t),

z(t) = Cx(t), (27)

where w(t) ∈ Rnw is the disturbance, z(t) ∈ Rnz is the controlled
output, and B and C are constant matrices. System (27) is said to
have a L2-gain less than γ > 0 if

J =


∞

0
[zT (t)z(t) − γ 2wT (t)w(t)]dt < 0 (28)

for all 0 ≠ w ∈ L2(0, ∞; Rnw ) and the zero initial condition. By the
standard arguments, J < 0 if

Φ00 + CTC PAd + K−1
1δ K00H PB K10ATH

∗ −K−1
0δ G − K−1

1δ H 0 K10AT
dH

∗ ∗ −γ 2I K10BTH
∗ ∗ ∗ −K10H

 < 0, (29)

where Φ00 is given by (20).

Example 2 (Goebel et al., 2011). Consider (27), where

A = 0.8, Ad = −41.8, B = 2, C = 1 (30)

and K(θ) = 0 for θ > h, whereas K(θ) =
3+20θ+700θ2

2−20θ+800θ2
for

θ ∈ [0, h]. Here A0 < 0 for h > 0.011659. For h = 0.1 the smallest
L2-gain achieved in Goebel et al. (2011) was 0.76, whereas by using
the LMI (29) a much smaller γmin = 0.3223 is guaranteed.

Consider next (27) and (30) with infinite delay, where a modi-
fied kernel K ∈ L1(0, ∞;R) is given by K(θ) =

3+20θ+700θ2

2−20θ+800θ2
e−10θ

for θ ∈ [0, ∞) and where A0 < 0. By using the LMI (29), we found
γmin = 0.41.

4. Systems with gamma-distributed delays

Consider now (7) and (8). Here neither A nor A0 are supposed
to be Hurwitz. The results will be derived by augmented V . Simple
computation shows that for K(θ) = Γ (θ) the constants in (19)
have the form:

Γ0δ , K0δ|K=Γ =


∞

0
e2δ(θ+τ)Γ (θ)dθ =

e2δτ

(1 − 2δT )N
,

Γ1δ , K1δ|K=Γ =


∞

0
e2δ(θ+τ)Γ (θ)(θ + τ)dθ

=
e2δτ

(1 − 2δT )N


τ +

NT
1 − 2δT


, Γ10 = τ + NT ,

Γ00 = 1.

(31)

Note also that
∞

0
Γ (θ)x(t − θ − τ)dθ =

 t

−∞

Γ (t − s)x(s − τ)ds. (32)

4.1. Gamma-distributed delay with a gap and N = 1

Consider first Γ (θ) = e−
θ
T /T , where

Γ (0) = 1/T , Γ̇ (θ) = −1/T · Γ (θ). (33)

Following Ozbay et al. (2008) and Verriest (1999) and denoting

y(t) =

 t

−∞

Γ (t − s)x(s − τ)ds, (34)
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the system (7) canbe transformed to the following augmented one:

ẋ(t) = Ax(t) + Ady(t), ẏ(t) =
1
T
x(t − τ) −

1
T
y(t). (35)

The stability of (35) implies the stability of (7), but not vice
versa. This is similar to model transformations of systems with
discrete delays (Gu et al., 2003), where the transformed system
has additional dynamics. Thus, in the traffic flow models on the
ring studied in Michiels et al. (2009), where A = 0 and Ad has
a zero eigenvalue, the system matrix of (35) for τ = 0 has the
zero eigenvalue. However, it was shown in Michiels et al. (2009)
that (7) may be asymptotically stable. Note that in this case A and
A0 = A+Ad


∞

0 Γ (θ) dθ are not Hurwitz, implying that the results
of the previous section are not applicable.

We are interested in the latter situation, where

Vaug(t) = [xT (t) yT (t)]

P Q
∗ Z

 
x(t)
y(t)


(36)

subject to
P Q
∗ Z


> 0 (37)

cannot be used for the exponential stability analysis of (35) with
τ = 0.

For the exponential stability analysis of (7) we suggest the
augmented Lyapunov functional:

V (t) = Vaug(t) + VG(t) + VH(t) + VS(t) + VR(t),

VG(t) =


∞

0

 t

t−θ−τ

e−2δ(t−s)Γ (θ)xT (s)Gx(s) ds dθ,

VH(t) =


∞

0

 θ+τ

0

 t

t−λ

e−2δ(t−s)Γ (θ)ẋT (s)Hẋ(s) ds dλ dθ,

VS(t) =

 t

t−τ

e−2δ(t−s)xT (s)Sx(s)ds,

VR(t) =

 0

−τ

 t

t+θ

e−2δ(t−s)ẋT (s)Rẋ(s)dsdθ, (38)

where G > 0,H > 0, R > 0, S > 0.
Denote η(t) = col{x(t), y(t), x(t − τ)}. Differentiating Vaug

along (7) and using (35) we obtain

V̇aug(t) = 2[xT (t) yT (t)]

P Q
∗ Z

 
ẋ(t)
ẏ(t)



= 2ηT (t)


PA PAd −

1
T
Q

1
T
Q

Q TA Q TAd −
1
T
Z

1
T
Z

0 0 0

 η(t).

By applying Jensen’s inequalities (13) and (14) and taking into
account (31) with N = 1 we find further

V̇S(t) + V̇G(t) + 2δ[VS(t) + VG(t)]
≤ xT (t)[S + G]x(t) − e−2δτ xT (t − τ)Sx(t − τ)

− Γ −1
0δ


∞

0
Γ (θ)xT (t − θ − τ)dθG

×


∞

0
Γ (θ)x(t − θ − τ)dθ,

V̇R(t) + V̇H(t) + 2δ[VR(t) + VH(t)]
≤ ẋT (t)[τR + (τ + T )H]ẋ(t)

−
e−2δτ

τ

 t

t−τ

ẋT (s)dsR
 t

t−τ

ẋ(s)ds

− Γ −1
1δ


∞

0

 t

t−θ−τ

Γ (θ)ẋT (s)dsdθH

×


∞

0

 t

t−θ−τ

Γ (θ)ẋ(s)dsdθ.

Hence V̇ (t) + 2δV ≤ 0 if
Ψ11 Ψ12

1
T
Q +

e−2δτ

τ
R AT

[τR + (τ + T )H]

∗ Ψ22
1
T
Z AT

d [τR + (τ + T )H]

∗ ∗ −e−2δτ S −
e−2δτ

τ
R 0

∗ ∗ ∗ −τR − (τ + T )H


< 0, (39)

where

Ψ11 = PA + ATP + 2δP + S + G −
e−2δτ

τ
R − Γ1δ

−1H,

Ψ12 = PAd −
1
T
Q + ATQ + Γ1δ

−1H + 2δQ ,

Ψ22 = Q TAd + AT
dQ −

2
T
Z − Γ −1

0δ G − Γ1δ
−1H + 2δZ . (40)

For the case of τ = 0, we use V (t) = Vaug(t) + VG(t) + VH(t),
where Vaug(t), VH(t) and VG(t) are as in (38), but with τ = 0. The
corresponding LMI has a formΨ11 Ψ12 TATH

∗ Ψ22 TAT
dH

∗ ∗ −TH

 < 0, (41)

where

Ψ11 = PA + ATP + 2δP + G +
1
T

(Q + Q T ) − Γ1δ
−1H,

Ψ12 = PAd −
1
T
Q + ATQ +

1
T
Z + 2δQ + Γ1δ

−1H,

Ψ22 = Q TAd + AT
dQ −

2
T
Z + 2δZ − Γ −1

0δ G − Γ1δ
−1H. (42)

We have proved the following:

Proposition 2. System (7)with gamma-distributed kernel (8), where
N = 1, is exponentially stable with the decay rate δ ∈ (0, 1/T ) if
(i) (for τ > 0) there exist positive definitematrices P, R, S,G,H, Z ∈

Rn×n, and a matrix Q ∈ Rn×n such that LMIs (37) and (39) with
notations given by (31) and (40) are feasible;

(ii) (for τ = 0) there exist positive definite matrices P,G,H, Z ∈

Rn×n, and a matrix Q ∈ Rn×n such that LMIs (37) and (41) with
notations given by (31) and (42) are feasible.

Moreover, if the above LMIs are feasible with δ = 0, then (7) is
exponentially stable with a small enough decay rate.

4.2. Gamma-distributed delay with a gap and N ≥ 2

We have
Γ (0) = 0, Γ̇ (θ) = −1/T · Γ (θ) + g(θ),

g(θ) =
θN−2e−

θ
T

TN(N − 2)!
. (43)

Choose V (t) = Vaug(t) + VG + VH + VE + VF , where Vaug is given
by (36), and VG and VH are defined in (38). Here the last two terms

VE(t) =


∞

0

 t

t−θ−τ

e−2δ(t−s)g(θ)xT (s)Ex(s) ds dθ,

VF (t) =


∞

0

 θ+τ

0

 t

t−λ

e−2δ(t−s)g(θ)ẋT (s)F ẋ(s)dsdλdθ
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with E > 0 and F > 0 are added to ‘‘compensate’’ the integral term t
−∞

g(t − θ)xT (θ − τ)dθ in V̇aug . Similar to (31) we find

G0δ = K0δ|K=g =


∞

0
e2δ(θ+τ)g(θ)dθ

= e2δτ
1

T (1 − 2δT )N−1
,

G1δ = K1δ|K=g = e2δτ
N − 1 +

τ
T (1 − 2δT )

(1 − 2δT )N
,

G00 =
1
T

, G10 = N − 1 +
τ

T
. (44)

By arguments of Proposition 2 we arrive at

Proposition 3. Given δ ∈ (0, 1/T ) (δ = 0), let there exist positive
definite matrices P,G,H, E, F , Z ∈ Rn×n and a matrix Q ∈ Rn×n

such that LMIs (37) and
Ξ11 Ξ12 Q +

G00

G1δ
F AT (G10F + Γ10H)

∗ Ξ22 Z AT
d(G10F + Γ10H)

∗ ∗ −G−1
0δ E − G−1

1δ F 0
∗ ∗ ∗ −G10F − Γ10H

 < 0,

with notations given by (31) and (44) and

Ξ11 = PA + ATP + 2δP +
1
T
E + G −

G2
00

G1δ
F −

1
Γ1δ

H,

Ξ12 = PAd −
1
T
Q + ATQ + 2δQ +

1
Γ1δ

H,

Ξ22 = Q TAd + AT
dQ −

2
T
Z + 2δZ −

1
Γ0δ

G −
1

Γ1δ
H

are feasible. Then (7) is exponentially stablewith the decay rate δ (with
a small enough decay rate).

Remark 6. Note that also for N ≥ 2, systems with gamma-
distributed delay can be transformed to augmented systems with
the discrete delay τ . Denoting the gamma-distributed kernel as
ΓN(θ) and employing the fact that Γ̇N(θ) =

1
T ΓN−1(θ) −

1
T ΓN(θ)

one can arrive at the augmented system with respect to the state
ηN(t) = col{x(t),


∞

0 ΓN(θ)x(t−θ −τ)dθ, . . . ,


∞

0 Γ1(θ)x(t−θ −

τ)dθ}, and can formulate less conservative LMIs via correspond-
ingly augmented V (but on account of computational complexity).
Thus, for N = 2 denote ξ(t) =

 t
−∞

g(t − θ)x(θ − τ)dθ. Then
solutions of (7) satisfy the following system

ẋ(t) = Ax(t) + Ady(t), ẏ(t) = −
1
T
y(t) + ξ(t),

ξ̇ (t) =
1
T 2

x(t − τ) −
1
T

ξ(t)

that can be not asymptotically stable for singular A and Ad. Here V
with Vaug = ηT

2 (t)Pη2(t) leads to the following LMIs:

Λ11 Λ12 Λ13 Λ14 Λ15

∗ Λ22 Λ23
1
T 2

Q3 Λ25

∗ ∗ Λ33
1
T 2

P3 0
∗ ∗ ∗ Λ44 0
∗ ∗ ∗ ∗ Λ55

 < 0,

P =

P1 Q1 Q2
∗ P2 Q3
∗ ∗ P3


> 0

(45)

with notations (31) and (44) for N = 2 and

Λ11 = P1A + ATP1 + S −
e−2δτ

τ
R + 2δP1

+G00E + Γ00G −
G2
00

G1δ
F −

Γ 2
00

Γ1δ
H,

Λ12 = P1Ad + ATQ1 −
1
T
Q1 + 2δQ1 +

Γ00

Γ1δ
H,

Λ13 = ATQ2 + Q1 −
1
T
Q2 +

G00

G1δ
F + 2δQ2,

Λ22 = Q T
1 Ad + AT

dQ1 −
2
T
P2 + 2δP2 −

1
Γ0δ

G −
1

Γ1δ
H,

Λ23 = AT
dQ2 + P2 −

2
T
Q3 + 2δQ3,

Λ33 = −
2
T
P3 + Q3 + Q T

3 −
1
G0δ

E −
1
G1δ

F + 2δP3,

Λ14 =
1
T 2

Q2 +
e−2δτ

τ
R, Λ44 = −e−2δτ


S +

1
τ
R


,

Λ55 = −(τR + Γ10H + G10F),

Λ15 = −ATΛ55, Λ25 = −AT
dΛ55.

Remark 7. LMIs of Propositions 1–3 (of Corollary 1) are affine in
A and Ad (Ad1, . . . , Adm). Therefore, if the matrices reside in the
uncertain polytope, one has to solve the LMIs in the vertices only.

4.3. About finite delays with the exponential kernels

Also for finite delays augmented functionals may treat the case
where both A and A0 are not Hurwitz. Consider (7) with h < ∞

and (for simplicity) with τ = 0:

ẋ(t) = Ax(t) + Ad

 h

0
Γ (θ)x(t − θ)dθ, Γ (θ) =

1
T
e−

θ
T . (46)

It is well-known (Ozbay et al., 2008; Verriest, 1999) that with the
notation

y(t) =

 h

0
Γ (θ)x(t − θ)dθ =

 t

t−h
Γ (t − s)x(s)ds

(46) is transformed to the following augmented system with a
discrete delay:

ẋ(t) = Ax(t) + Ady(t),

ẏ(t) =
1
T

[x(t) − y(t) − e−
h
T x(t − h)].

As for h = ∞, in the case of singular A and A0 the transformed sys-
tem may be not asymptotically stable, whereas (46) is exponen-
tially stable.

Here we suggest to choose V̄ (t) = Vaug(t) + V̄G(t) + V̄H(t) +

V̄R(t) + V̄S(t), where Vaug(t) is given by (36) and

V̄G(t) =

 h

0

 t

t−θ

e−2δ(t−s)Γ (θ)xT (s)Gx(s) ds dθ,

V̄H(t) =

 h

0

 θ

0

 t

t−λ

e−2δ(t−s)Γ (θ)ẋT (s)Hẋ(s) ds dλ dθ,

V̄S(t) =

 t

t−h
e−2δ(t−s)xT (s)Sx(s)ds,

V̄R(t) =

 0

−h

 t

t+θ

e−2δ(t−s)ẋT (s)Rẋ(s)dsdθ (47)
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(a) 4 and 2 cars: N = 1. (b) 2 cars: N = 2.

Fig. 1. Consensus region for the ring configuration.

with positive G,H, R and S. Denote

Γ h
00 =

 h

0
Γ (θ)dθ = 1 − e−

h
T ,

Γ h
0δ =

 h

0
e2δθΓ (θ)dθ =

e(2δ− 1
T )h

− 1
2δT − 1

Γ h
10 =

 h

0
Γ (θ)θdθ = T − (h + T )e−

h
T ,

Γ h
1δ =

 h

0
e2δθΓ (θ)θdθ =

T
(2δT − 1)2

+


h −

T
2δT − 1


e

2δ− 1

T


h

2δT − 1
.

By the above arguments we arrive at

Corollary 2. Given δ > 0 (δ = 0), let there exist positive definite
matrices P, R, S,G,H, Z ∈ Rn×n, and a matrix Q ∈ Rn×n such that
LMIs (37) and

Ψ̄11 Ψ̄12 −Γ (h)Q +
e−2δh

h
R AT

[hR + Γ h
10H]

∗ Ψ̄22 −Γ (h)Z AT
d [hR + Γ h

10H]

∗ ∗ −e−2δhS −
e−2δh

h
R 0

∗ ∗ ∗ −hR − Γ h
10H

 < 0,

where

Ψ̄11 = PA + ATP +
1
T

(Q + Q T )

+ S + 2δP + Γ h
00G −

e−2δh

h
R − Γ h

1δ
−1

Γ h
00

2
H,

Ψ̄12 = PAd −
1
T
Q + ATQ +

1
T
Z + 2δQ + Γ h

1δ
−1

Γ h
00H,

Ψ̄22 = Q TAd + AT
dQ −

2
T
Z + 2δZ − K−1

0δ G − Γ h
1δ

−1
H

are feasible. Then (46) is exponentially stable with the decay rate δ
(with a small enough decay rate).

4.4. Examples: traffic flow models on the ring

(a) We start with the first example in Michiels et al. (2009),
where (5) was studied with n = 4, N = 1 and α1 = α4 = 5,

α2 = α3 = 1. This leads to (7) with x = col{v1, . . . , v4}, A = 0
and

Ad =

−5 0 0 5
1 −1 0 0
0 1 −1 0
0 0 5 −5

 . (48)

Note that here A0 defined by (11) coincideswith Ad and it possesses
the zero eigenvalue, i.e. we have the case of stabilizing delay. Using
Proposition 2 with δ = 0, we construct a curve which defines a
region in the (T , τ ) plane, where consensus is guaranteed. This is
done by creating a grid in the (T , τ ) plane with a resolution of 0.01
in each direction. Fig. 1(a) illustrates the resulting consensus region
(below the dashed purple curve) guaranteed by Proposition 2,
while the solid blue line represents the theoretical bound of
Michiels et al. (2009) obtained in the frequency domain. It is clear
that the two regions almost coincide.

Consider now (46) with a finite delay, where A = 0 and Ad is
given by (48). Also hereA0 is notHurwitz. Application of Corollary 2
leads to a larger stability region than the one for h = ∞. Therefore,
for h < ∞ and for h = ∞, the delay is stabilizing.

(b) Following Morarescu et al. (2007), consider two cars on the
ring with A = 0 and Ad =


−2 2
2 −2


. Also here the delay is stabi-

lizing since A0 = Ad has the zero eigenvalue. Using Propositions 2
and 3 with δ = 0, we construct curves which define regions in the
(T , τ ) plane, where consensus is guaranteed. For N = 1 Fig. 1(a)
illustrates the consensus curve created using Proposition 2 (dashed
red) in comparison with the theoretical bound found in Morarescu
et al. (2007) (solid green). ForN = 2 Fig. 1(b) illustrates the consen-
sus curves created by using Proposition 3 (dashed orange) and the
LMI (45) (dash–dot red) in comparisonwith the theoretical bounds
found inMorarescu et al. (2007) (solid green). Also here our results
for N = 1 are very close to analytical ones, whereas for N = 2 the
results obtained by Proposition 2 are more conservative in com-
parison with the results obtained by (45).

(c) Consider now a modified traffic flow model on the ring

v̇k(t) = −αkvk(t) + αk


∞

0
Γ (θ)vk−1(t − θ − τ) dθ,

k = 1, . . . , n, v0 ≡ vn,

where each driver has an instantaneous access to his state vk(t).
The latter system can be presented as (7) with Hurwitz A and with
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A0 = A+ Ad having a zero eigenvalue. For the case of 2 cars on the
ring we have

A =


−2 0
0 −2


, Ad =


0 2
2 0


. (49)

Note that here the transformed system (35) is not asymptotically
stable for τ = 0. For example, for T = 0.01 and τ = 0 the
eigenvalues of (35) are 0, −4.085, −97.914 and −102. For N = 1
and N = 2, by Proposition 1 the system (7) with matrices (49) is
exponentially stable for (T , τ ) ∈ [0, 1000] × [0, 1000]. The same
stability region is found for N = 1 and N = 2 in the modified
model of 4 cars on the ring. Note that for N = 2 the augmented
Lyapunov functionals slightly improve the results.

5. Conclusions

In the present paper, simple LMI conditions for the exponen-
tial stability of linear systems with infinite distributed delays have
been presented. These systems are motivated by various applica-
tions in biology and engineering. Particularly in the traffic flow
models on the ring, the gamma-distributeddelaywith a gap (which
characterizes the human drivers’ behavior on the average) is sta-
bilizing. The latter means that the corresponding system with the
zero-delay as well as the system without the delayed term are not
asymptotically stable. In the numerical examples, our LMIs are fea-
sible in the case of stabilizing delay leading to the results close to the
theoretical ones (Michiels et al., 2009). Polytopic uncertainties in
the system matrices can be easily included in the analysis. Exten-
sion of the presenteddirect Lyapunovmethod tononlinear systems
as well as different applications may be topics for future research.
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