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a b s t r a c t

We present simulation friendly detectability conditions for 2D Navier–Stokes Equation (NSE) with peri-
odic boundary conditions, and describe a generic class of ‘‘detectable’’ observation operators: it includes
pointwise evaluation of NSE’s solution at interpolation nodes, and spatial average measurements. For
‘‘detectable’’ observation operators we design a global infinite-dimensional observer for NSE with
uncertain possibly destabilizing inputs: in our numerical experiments we illustrate H1-sensitivity of
NSE to small perturbations of initial conditions, yet the observer converges for known and uncertain
inputs.

© 2023 Published by Elsevier Ltd.
1. Introduction

Navier–Stokes Equation (NSE)

du⃗
dt

+ (u⃗ · ∇)u⃗ − ν∆u⃗ + ∇p = f⃗ (1.1)

is a basic mathematical model of fluid dynamics: it describes
evolution of fluid’s velocity vector-field u⃗ and scalar pressure
field p as a function of initial and boundary conditions, input f⃗
and coefficient ν > 0. NSE has applications in biology, weather
prediction, energy forecasting to name a few. It also serves as a
mathematical model of turbulence: yet an open problem in 3D,
in 2D NSE is used to study turbulence and, in particular, to reveal
its connection to deterministic chaos (Foias et al., 2001). Indeed,
for certain ν and f⃗ NSE (1.1) has the unique attractor, which is
lobally exponentially stable, e.g. u⃗ = 0 for f⃗ = 0 and any
> 0. However, for small enough ν > 0 and a destabilizing

nput f⃗ , NSE’s attractor could be a multidimensional manifold
e.g. Foias et al. (2001), Ilyin and Titi (2006)), moreover, the
ttractor could also be chaotic, i.e. initially close-by trajectories
ight diverge over time on the attractor. For such destabilizing

nputs classical control problems, e.g. observer design, become
hallenging, as was noted in Vazquez and Krstic (2005), especially
hen attractor’s structure depends on an uncertain input f⃗ .

✩ The material in this paper was partially presented at the 60th IEEE
Conference on Decision and Control, December 13–15, 2021, Austin, Texas, USA.
This paper was recommended for publication in revised form by Associate Editor
Rafael Vazquez under the direction of Editor Miroslav Krstic.
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005-1098/© 2023 Published by Elsevier Ltd.
In this work we generalize the classical notion of detectability
for LTI evolution equations (Bensoussan et al., 2007) to periodic
2D NSE, and introduce detectability conditions: we describe a
generic class of ‘‘detectable’’ observation (output) operators C
verifying the proposed conditions (our 1st contribution). Intu-
itively, ‘‘detectable’’ output Cu⃗ of (1.1) must provide information
about a finite-dimensional subspace where the nonlinear advec-
tion term (u⃗ · ∇)u⃗ is not dominated by the diffusion term −ν∆u⃗
(see also the mechanism of energy cascades (Foias et al., 2001)).
Given such output Cu⃗(t) one can then reconstruct the entire state
u⃗(t) by designing an observer/filter which injects Cu⃗ so that the
reconstruction error in the ‘‘unmeasured’’ infinite-dimensional
orthogonal complement of the range of C will decay thanks to the
stabilizing effect of −ν∆u⃗ akin to the case of detectable LTI sys-
tems. More specifically, by employing direct Lyapunov method,
we design a Luenberger-type observer for NSE (1.1) which, in
fact, is an approximation of minimax filter: we show that u⃗(t),
the solution of (1.1) for an unknown initial condition u⃗(0) = u⃗0,
and for f⃗ = g⃗ + d⃗, g⃗ – a destabilizing known input, d⃗ – an
uncertain bounded input, belongs to H1-ellipsoid, centered at the
state z⃗(t) of the observer, and its radius decays to 0 as t → ∞

independently of u⃗0, provided the uncertain input d⃗ ‘‘perturbs’’ g⃗
less and less frequently as t → ∞, or L2-norm of this perturbation
(in space) decays as t → ∞, a remarkable result for turbulent
systems which are highly sensitive to small perturbations (our
2nd contribution).

Infinite-dimensional observers for NSEs, employing backstep-
ping as a design technique, were proposed in Vazquez and Krstic
(2005) for Poiseuille flows, a benchmark for turbulence estima-
tion, and in He, Hu, and Zhang (2018) for local observer-based
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tabilization of NSEs. Disturbance estimation by means of back-
tepping for linear 1D heat equation was proposed in Feng and
uo (2017).
The proposed class of ‘‘detectable’’ output operators C gen-

eralizes the notions of so-called determining modes, e.g. spatial
averages

∫
Ωj

u⃗dx⃗ of the solution u⃗ over squares Ωj covering the
domain Ω (see e.g. Fridman and Bar Am (2013), Fridman and
Blighovsky (2012), Kang and Fridman (2020)), and determining
nodes, e.g. pointwise evaluation u⃗(x⃗j) at finitely many interpola-
tion nodes x⃗j (see e.g. Azouani, Olson, and Titi (2014)), which are
well-known in NSE’s literature (Foias et al., 2001, p.123,p.131).
Our class contains those cases, and more generally it consists
of all closed linear operators C verifying certain inequalities:
e.g., spatial averages output Cu⃗ =

∑N
j=1

∫
Ωj

u⃗dx⃗ξj, ξj – normalized
indicator of h × h-square Ωj, is detectable if h2, the area of Ωj
is small enough for u⃗ − Cu⃗ to be ‘‘controlled’’ by h∇u⃗ (Poincaré
inequality). These inequalities do not cover boundary-type obser-
vations though (see Vazquez and Krstic (2008), Vazquez, Schuster,
and Krstic (2008)).

We stress that spatial averages outputs are important in real-
world applications: for example, short-term solar energy fore-
casting from a sequence of Cloud Optical Depth (COD) images
relies upon estimating averaged velocities of clouds from COD
images and uses those as measurements in periodic 2D NSE for
cloud velocity prediction (Akhriev et al., 2017); similarly 2D NSE
with averaged velocity measurements obtained from Sea Surface
Temperature (SST) satellite images were used in Herlin et al.
(2012) to predict short-term SST dynamics.

In this work we build upon preliminary results presented in
our conference papers (Kang, Fridman, & Zhuk, 2019; Zayats,
Fridman, & Zhuk, 2021): key differences include detectability con-
ditions and more general case of uncertain inputs. Qualitatively
similar results were obtained in Azouani et al. (2014) where suf-
ficient conditions for convergence of Luenberger observer were
proposed for periodic boundary conditions and known inputs. The
authors make use of Brezis inequality to bound the nonlinear
advection term in the error equation, and derive conditions for
observer’s gain and output (e.g. number and size of squaresΩj for
the case of spatial averages outputs), sufficient for convergence.
An experimental assessment of these conditions was recently
provided in Franz et al. (2022). In contrast, our convergence
analysis relies upon a novel one-parametric inequality relating
L∞ and H2-norms of periodic vector-functions, which for certain
values of the parameter reduces to Agmon and Brezis inequalities,
and S-procedure widely used in Lyapunov stability analysis. As a
result, we get simulation friendly and less conservative detectabil-
ity conditions: e.g. for the case of spatial averages outputs our
estimate of h2, the area of squares Ωj, is at least one order of
magnitude better for small ν > 0, which is of high interest in
the case of turbulent flows, and hence for convergence, observer
requires averaging the velocity u⃗ over larger Ωj (see Remark 3.3)
so less of squares (‘‘sensors’’) is needed, and more importantly,
the averaging over larger Ωj helps reducing the noise hence
improving convergence in practice.

1.1. Mathematical preliminaries

Notation. Let Rn denote Euclidian space of dimension n with
inner product u⃗ · v⃗ =

∑n
i=1 uivi, Rn

+
– non-negative orthant of Rn,

R1
+

= R+, and for k⃗, ℓ⃗ ∈ Rn set k⃗
ℓ⃗

= ( k1
ℓ1
. . . kn

ℓn
)⊤. Let L (H) denote

he space of all closed linear operators C acting in a Hilbert space
with domain D(C) ⊂ H . The following functional spaces are

tandard in NSE’s theory ( (Foias et al., 2001, p.45-p.48)):

• L2p(Ω) – space of Ω-periodic functions u : Ω ⊂ R2
→ R

with period Ω = (− ℓ1
2 ,

ℓ1
2 ) × (− ℓ2

2 ,
ℓ2
2 ) for some ℓ1,2 > 0

and inner product (w, v) =
∫
wvdx dx
Ω 1 2

2

• L2p(Ω)2 – space of Ω-periodic vector-functions u⃗ =
[
u1u2

]
with inner product (u⃗, φ⃗) = (u1, φ1) + (u2, φ2) and norm
∥u⃗∥2

L2
= ∥u1∥

2
L2

+ ∥u1∥
2
L2

• H1
p (Ω) = {u ∈ L2p(Ω) : ∥∇u∥R2 ∈ L2p(Ω)},

H1
p (Ω)2 = {u⃗ =

[
u1u2

]
∈ L2p(Ω)2 : u1,2 ∈ H1

p (Ω)} with norm
∥u⃗∥2

H1 = ∥u⃗∥2
L2

+∥∇u⃗∥2
L2

where ∥∇u⃗∥2
L2

=
∫
Ω

∥∇u⃗∥2
R2dx1dx2,

and ∥∇u⃗∥2
R2 = ∥∇u1∥

2
R2 + ∥∇u2∥

2
R2

• H = {v⃗ ∈ [L2p(Ω)]2 : ∇ · v⃗ = 0} – space of divergence-
free vector-functions v⃗, H̊ = {v⃗ ∈ H :

∫
Ω
v⃗dxdy = 0} –

subspace of H of v⃗ with zero mean components
• V = {v⃗ ∈ [H1

p (Ω)]2 : ∇ · v⃗ = 0} and V̊ = {v⃗ ∈ V :∫
Ω
v⃗dxdy = 0}

• L2(0, T ,H) – space of H-valued functions t ↦→ u(t) ∈

H with finite norm ∥u∥2
L2(0,T ,H)

=
∫ T
0 ∥u(t)∥2

Hdt for T ∈

(0,+∞), e.g. L2(0, T , H̊) – space of v⃗(t, x1, x2) such that∫ T
0

∫
Ω

∥v⃗(t, x1, x2)∥2
R2dx1dx2 < +∞ and v⃗(t, ·) has zero

divergence and zero mean for almost all t ∈ (0, T )
• L∞(0, T ,H) – space of H-valued functions t ↦→ u(t) ∈ H

such that ∥u(t)∥H ≤ C < +∞ for some C > 0 and almost
all t ∈ (0, T ), T ∈ (0,+∞) with finite norm ∥u∥2

L∞ =

∥u∥2
L∞(0,T ,H) = minC {C > 0 : ∥u(t)∥H ≤ C}

.1.1. Bounds for L∞-norms of periodic vector-functions
The following lemma is a key building block used below to

efine detectability and design observer for NSE.

emma 1.1. If u⃗ ∈ H2
p (Ω)2 and1

∫
Ω
u⃗dx1dx2 = 0 then for any

> 0 it holds:

u⃗∥L∞ ≤

log
1
2
(
1 +

4π2γ 2

ℓ1ℓ2

)
∥u⃗∥H1

√
2π

+
∥ℓ⃗∥R2∥∆u⃗∥L2

γ
√
32π3

(1.2)

or γ = ∥u⃗∥
−

1
2

H1 ∥∆u⃗∥
1
2
L2

(1.2) gives 2D Agmon inequality (Foias et al.,
2001, p.100):

∥u⃗∥L∞ ≤ (

√
2π
ℓ1ℓ2

+
∥ℓ⃗∥R2
√
32π3

)∥u⃗∥
1
2
H1∥∆u⃗∥

1
2
L2

(1.3)

or γ = ∥u⃗∥−1
H1 ∥∆u⃗∥L2 (1.2) gives 2D Brezis inequality (Brezis &

Gallouet, 1979):

∥u⃗∥L∞ ≤
( ∥ℓ⃗∥R2
√
32π3

+

log
1
2 (1 +

4π2
∥∆u⃗∥2

L2

ℓ1ℓ2∥u⃗∥2
H1

)
√
2π

)
∥u⃗∥H1 (1.4)

The proof is given in the Appendix.

1.1.2. Navier–Stokes equation: weak formulation and well-posedness
in 2D

The classical NSE in 2D is a system of two PDEs defining
dynamics of the scalar pressure field p(x, y) and the viscous fluid
velocity vector-field u⃗(t, x, y) = [ u1(t,x,y),u2(t,x,y) ] which depends
on the initial condition u⃗(0) = u⃗0 ∈ H, input (e.g. forcing) f⃗ =

[f1, f2] and Boundary Conditions (BC), e.g. periodic BC u1,2(t, x +

ℓ1, y) = u1,2(t, x, y), u1,2(t, x, y + ℓ2) = u1,2(t, x, y). In the vector
form it reads as follows:
du⃗
dt

+ (u⃗ · ∇)u⃗ − ν∆u⃗ + ∇p = f⃗ , ∇ · u⃗ = 0 (1.5)

To eliminate pressure p and obtain an evolution equation just for
u⃗ it is common to use Leray projection (Foias et al., 2001, p.38):

1 This condition is necessary: lemma does not hold for u ≡ const and small
enough ℓ
1,2
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very vector-field u⃗ in R2 admits Helmholtz–Leray decomposi-
ion, u⃗ = ∇p + v⃗ with ∇ · v⃗ = 0 which in turn defines Leray
rojector, Pl(u⃗) = v⃗ – an orthogonal projector onto H̊ (e.g. Foias
t al. (2001, p.36)). Multiplying (1.5) by a test function φ⃗ ∈ V̊
the projection step), and integrating by parts in Ω allows one to
btain Leray’s weak formulation of NSE in 2D:
d
dt

(u⃗, φ⃗) + b(u⃗, u⃗, φ⃗) + ν((u⃗, φ⃗)) = (f⃗ , φ⃗), ∀φ⃗ ∈ V̊ (1.6)

ith initial condition (u⃗(0), φ⃗) = (u⃗0, φ⃗). Here

(u⃗, w⃗, φ⃗) = (u⃗ · ∇w1, φ1) + (u⃗ · ∇w2, φ2),

((u⃗, φ⃗)) = (∇u1,∇φ1) + (∇u2,∇φ2)

n what follows we will be using some properties of the trilinear
orm b and Stokes operator u⃗ ↦→ Au⃗ = −Pl∆u⃗, a self-adjoint
ositive operator with compact inverse, which coincides with ∆u⃗

for periodic BC (see Foias et al. (2001, p.52)): for u⃗ ∈ D(A) and
φ⃗ ∈ V̊

(Au⃗, φ⃗) = ((u⃗, φ⃗)), (Au⃗, u⃗) = ((u⃗, u⃗)) ≥ λ1(u⃗, u⃗) (1.7)

(Au⃗, Au⃗) = (A(A
1
2 )u⃗, (A

1
2 )u⃗) ≥ λ1(Au⃗, u⃗) (1.8)

λ1 = 4π2/max{ℓ1, ℓ2}2 (1.9)

(u⃗, v⃗, φ⃗) = −b(u⃗, φ⃗, v⃗) (1.10)

b(u⃗, v⃗, v⃗) = 0, b(v⃗, v⃗, Av⃗) = 0 (1.11)

Next lemma collects results from (Foias et al., 2001, p.58,
h.7.4, p.99, f.(A.42), p.102, f.(A.66)-(A.67)) on existence, unique-
ess, regularity and input-to-state stability of NSE’s weak (strong)
olution u⃗, and bounds for Au⃗. Classical smoothness of u⃗ requires
urther constraining of f⃗ , u⃗0 (Foias et al., 2001, p.59).

Lemma 1.2. Let u⃗0 ∈ H̊ and f⃗ ∈ L2(0, T̄ , H̊). Then, on [0, T̄ ] there
exist the unique weak solution u⃗ ∈ C(0, T̄ , H̊) of NSE (1.6), and the
components of u⃗ = [u1 u2] verify: ui, (ui)x,y ∈ L2(Ω × (0, T̄ )). If
u⃗0 ∈ V̊ then the weak solution coincides with the strong solution
of (1.6), and
dui

dt
, (ui)x, (ui)y, (ui)xy ∈ L2(Ω × (0, T̄ ))

.e. u⃗ ∈ C(0, T̄ , V̊) ∩ L2(0, T̄ ,D(A)). If in addition f⃗ ∈ L∞(R+, H̊)
then ( ∥f⃗ ∥L∞ = ∥f⃗ ∥L∞(R+,H̊) for short):

∥u⃗(·, t)∥2
L2 ≤

∥f⃗ ∥2
L∞

(νλ1)2
+ e(−λ1ν)(t−s)

∥u⃗(·, s)∥2
L2 (1.12)

∥∇u⃗(·, t)∥2
L2 ≤

∥f⃗ ∥2
L∞

ν2λ1
+ e(−λ1ν)(t−s)

∥∇u⃗(·, s)∥2
L2 (1.13)

1
T̄

∫ T̄+t

t
∥Au⃗∥2

L2ds ≤ θt,T̄ :=
2∥f⃗ ∥2

L∞

T̄ν3λ1
+ (1.14)

+
1
T̄

∫ T̄+t

t

∥f⃗ (s)∥2
L2

ν2
ds +

2e(−λ1ν)t∥∇u⃗0∥
2
L2

T̄ν
(1.15)

2. Problem statement

Generalizing the classical definition of detectability for LTI
systems (Bensoussan et al., 2007) we say that NSE is detectable
w.r.t. output operator C if the distance (in space) between any
two solutions corresponding to different initial conditions and
inputs converges to zero over time, provided so does the distance
between their respective outputs and inputs:

Definition 2.1. For f⃗ , F⃗ ∈ L∞(R+, H̊) let u⃗ and z⃗ solve
d
(u⃗, φ⃗) + b(u⃗, u⃗, φ⃗) + ν((u⃗, φ⃗)) = (f⃗ , φ⃗) , u⃗(0) ∈ V̊ (2.1)
dt
3

d
dt

(z⃗, φ⃗) + b(z⃗, z⃗, φ⃗) + ν((z⃗, φ⃗)) = (F⃗ , φ⃗) , z⃗(0) ∈ V̊ (2.2)

NSE is called detectable in V̊ w.r.t. an linear output operator
C ∈ L (H) if the following conditions

(A) ∃T > 0 : lim sup
t→∞

1
T

∫ t+T

t
∥C(u⃗(·, s) − z⃗(·, s))∥2

L2ds = 0

(B) ∃T > 0 : lim sup
t→∞

1
T

∫ t+T

t
∥f⃗ (·, s) − F⃗ (·, s)∥2

L2ds = 0

imply state convergence in V̊: ∥u⃗(·, t) − z⃗(·, t)∥V̊ →
t→∞

0.

In practice, typical output operators C are either pointwise
evaluations (see Example 2.2), or of projection type, i.e. Cu⃗ is
a projection of u⃗ onto a subspace (see Example 2.1). The fol-
owing definition introduces two classes of output operators C
hich generalize projection type and pointwise evaluation type
bservations:

efinition 2.2. Take C ∈ L (L2) such that V ⊆ D(C) and fix
> 0. C is said to be of class C1(h,Ω) or of class C2(h,Ω) if (2.3)
r (2.4) respectively holds for some CΩ > 0

∀u⃗ ∈ V̊ : ∥u⃗ − Cu⃗∥2
L2 ≤ h2CΩ∥∇u⃗∥2

L2 (2.3)

u⃗ ∈ D(A) : ∥u⃗ − Cu⃗∥2
L2 ≤ h2CΩ∥∆u⃗∥2

L2 (2.4)

xample 2.1. The class C1(h,Ω) generalizes the notion of so-
called determining modes for NSE (e.g. Foias et al. (2001, p.123)).
The case of determining modes corresponds to C ∈ C1(h,Ω) of
inite rank, Cu⃗ represents the projection of u⃗ onto a certain finite-
imensional subspace of H, and in this case C is bounded in H. As

an example, consider the case of spatial averages over a partition
of Ω (e.g. Azouani et al. (2014), Fridman and Blighovsky (2012)):
LetΩ = ∪

N
j=1Ωj,Ωj∩Ωi = ∅ for i ̸= j,Ωj – a rectangle with sides

of length hj
x and hj

y respectively, and let ξj denote the indicator
unction of Ωj. Let

u⃗(x, y) =

N∑
j=1

[ (u1,ξj)
(u2,ξj)

]ξj(x, y)
hj
xh

j
y
, ξj(x, y) = 1, (x, y) ∈ Ωj

Then (2.3) holds for h2
= maxj(max{hj

x, h
j
y})2 and CΩ = (4π2)−1

y Poincaré inequality (1.7).

xample 2.2. The class C2(h,Ω) generalizes notion of so-called
etermining nodes for NSE (see e.g. Foias et al. (2001, p.131)).
he case of determining nodes corresponds to C ∈ C2(h,Ω) of
he form Cu⃗ =

∑n
j=1 u⃗(t, x⃗j)φ⃗j for some grid nodes x⃗j ∈ Ω and

unctions φ⃗j ∈ H1
p (Ω)2. Clearly, C is not bounded in H as it is

efined for u⃗ ∈ H2
p (Ω)2 ∩H, but it is a closed linear operator such

hat D(A) ⊂ D(C). As an example, consider the case of pointwise
valuations over nodes x⃗j of a finite element grid, here φ⃗j are 2D
at basis functions. In this case C verifies (2.4) with constants h
nd CΩ which can be found in Hutson and Pym (1980, Th 12.3.4).

With the above two definitions in mind we are ready to state
oals of the paper:

• detectability: find sufficient conditions for detectability (as
per Definition 2.1) of NSE w.r.t. any output operator C ∈

C1(h,Ω) or C ∈ C2(h,Ω)
• observer design: given output Cu⃗ of (2.1) to construct an

output feedback control F⃗ such that conditions (A) and (B)
hold and so, by detectability, z⃗ converges to u⃗ in V̊ indepen-
dently of u⃗(0) and ∇u⃗(0)
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. Main results

.1. Sufficient conditions for detectability

Recall the classes C1(h,Ω) and C2(h,Ω) of observation opera-
ors C introduced above in Definition 2.2. The following propo-
sition demonstrates existence of a constant h > 0 for each of
1(h,Ω) and C2(h,Ω) such that NSE is detectable (as per Defini-
ion 2.1). However, as is, this proposition is of rather theoretical
alue as to compute h > 0 for numerical simulations one needs to
now certain interpolation constants which are either unknown
r very conservative. The question of how to use this result for
stimating h in numerical simulations will be addressed below.

roposition 1. Recall Definition 2.1: let z⃗, u⃗ solve (2.1)–(2.2) for
f , F⃗ ∈ L∞(R+, H̊). Recall from (Foias et al., 2001, p.100,(A.47)) an
interpolation inequality for ∇u⃗, and define constants C1,2:

u⃗ ∈ D(A) : ∥∇u⃗∥2
L2 ≤ C∇∥u⃗∥L2∥Au⃗∥L2 (3.1)

C2
1 = (1 + λ−1

1 )/(2π ), C2
2 = ∥ℓ⃗∥2

R2/(32π3) (3.2)

Take C ∈ C1(h,Ω). Then NSE is detectable in V̊ if for some 1 < κℓ2
and Γ > 0

h <
λ

1
2
1 ν
( 3ν

4 −
C2
λ1Γ

)
C1C∇C

1
2
Ωκ

1
2 ∥f⃗ ∥L∞(R+,H̊) log

1
2
(
1 +

4π2κ∥f⃗ ∥2
L2
Γ 2

ν2ℓ1ℓ2

) (3.3)

oreover, if C ∈ C2(h,Ω) then NSE is detectable in V̊ if h veri-

ies (3.3) without λ
1
2
1 in the numerator.

The proof is provided in the Appendix.

.2. Observer design

As noted above, condition (3.3) is hard to use in simulations.
elow we build on (3.3) and propose ‘‘simulation friendly’’ con-
itions for h (see C1, C2 of Theorem 3.1): it is demonstrated that

plugging Luenberger-type output feedback F⃗ = g⃗ + LC(u⃗ − z⃗)
into (2.2) ensures output and input convergence (conditions (A)
and (B) of Definition 2.1), and as a result implies state conver-
gence in V̊: ∥u⃗(·, t) − z⃗(·, t)∥V̊ → 0.

Lemma 3.1 (Wellposedness). Let u⃗ solve (2.1). For any g⃗ ∈

L∞(R+, H̊) there is the unique z⃗ ∈ L∞(R+, V̊) ∩ L2(t0, t1,D(A)),
0 ≤ t0 < t1 < +∞ such that
d
dt

(z⃗, φ⃗) + b(z⃗, z⃗, φ⃗) + ν((z⃗, φ⃗)) = (F⃗ , φ⃗) , φ ∈ V̊ (3.4)

⃗ = g⃗ + LC(u⃗ − z⃗) (3.5)

rovided C ∈ C1(h,Ω) and Lh2CΩ ≤ 2ν, or C ∈ C2(h,Ω) and

hC
1
2
Ω ≤ ν.

The proof is given in the Appendix.

Theorem 3.1. Assume that (i) u⃗ solves (2.1) for unknown u⃗(0) ∈ V̊
nd f⃗ , and (ii) f⃗ = g⃗ + d⃗ for a known g⃗ ∈ L∞(R+, H̊), Cg⃗ =

g⃗∥L∞(R+,H̊) and an uncertain input d⃗ from a ball ER = {d⃗ :

d⃗∥L∞(R+,H̊) ≤ R} of radius R > 0. Let z⃗ solve (3.4) for z⃗(0) = 0,
L > 0 and g⃗ as in (ii) above. For ε > 0 define κ = 1 + ε and
unctions of a parameter Γ :

L̂∇ (Γ ) = 2(ν −
∥ℓ⃗∥R2

√
32π3λ1Γ

)/CΩ , ℓ⃗ =
[
ℓ1
ℓ2

]
(3.6)

ˆ
∆(Γ ) =

(κ + κλ−1
1 )

1
2 Cg⃗

√ log
1
2
(
1 +

4π2κ C2
g⃗ Γ

2

2

)
(3.7)
ν 2π ν ℓ1ℓ2

4

Θ(Γ ) = L̂∇ (Γ )/(2L̂∆(Γ )) (3.8)

nd let Γmax > 0 maximize Θ(Γ ). Finally assume that

T > 0 : ΣT (s) = sup
t≥s

1
T

∫ t+T

t
∥d⃗(τ )∥2

L2dτ
s→∞
−−−→ 0 (3.9)

nd take minimal t⋆ > 0 and T1 ≥ T verifying

δ(t⋆) +
2(Cg⃗ + R)2

C2
g⃗ T1νλ1

+
2ν−λ1νt⋆∥∇u⃗0∥

2
L2

T1C2
g⃗

≤ ε

(t⋆) = C−2
g⃗ ΣT1 (t

⋆) + C−1
g⃗ Σ

1
2
T1
(t⋆)

(3.10)

Then, for t ≥ s ≥ t⋆, V (t) = ∥∇(u⃗(t) − z⃗(t))∥2
L2

verifies

V (t) ≤ eωLT1V (s)e(Q (L)−ωL)(t−s)+ωLT1⌊
t−s
T1

⌋

+
T1eT1(ωL−Q (L))

CΩ (1 − β)L̂∇ (Γmax)
ΣT1 (s)

Q (L) = −Lω + L̂∆(Γmax) < 0,

(3.11)

f C, L in (3.4), and β, ω in (3.11) satisfy either C1 or C2:

• (C1) C ∈ C1(h,Ω) verifies (2.3) with h2 < βΘ(Γmax) for some
0 < β < 1, and L = β L̂∇ (Γmax)/h2, ω = 1/2

• (C2) C ∈ C2(h,Ω) verifies (2.4) with h < βC
1
2
Ω θ

−1Θ(Γmax) for
some 0 < β < 1, θ > 1, and L = θ L̂∆(Γmax), ω = 1

The proof is provided in the Appendix.

Remark 3.1. Condition (3.9) is verified if either (i) the average
of L2-energy of the uncertain input d⃗ over time window (t, t + T )
decays to 0, or (ii) the measure of time instants s within a ‘‘win-
dow’’ (t, t+T ), where d⃗(s, ·) is ‘‘active’’, decays to 0 as the window
(t, t + T ) slides to infinity (t → ∞). In other words, the case (ii)
does not require ∥d⃗(s, ·)∥L2 → 0 but requires that the uncertain
input d ‘‘perturbs’’ g⃗ less and less frequently asymptotically.

The rate of decay of ΣT (s) to 0 determines the rate of decay of
V : indeed, (3.11) implies that

sup
t>t̄(s)>s

V (t) ≤ 2
T1eT1(ωL−Q (L))

CΩ (1 − β)L̂∇ (Γmax)
ΣT1 (s)

rovided t̄(s) is large enough for the impact of the 1st term in
.h.s. of (3.11) be negligible compared to the 2nd term. If ΣT (s) =

for s > s⋆ then V (t) → 0 exponentially after t = max{s⋆, t⋆}. In
act, V ≤ V1 = ∥u⃗ − z⃗∥H1(Ω) and by (1.7) V1 ≤ (1 + λ−1

1 )V hence
theorem proposes an approximation of minimax filter in the
following sence: by (3.11) u⃗(t) belongs to H1-ellipsoid, centered
at z⃗(t), and its radius is given by r.h.s. of (3.11).

Remark 3.2. Parameter 0 < β < 1 in C1 and C2 allows to
balance ‘‘the number of sensors’’ (e.g. for outputs in the form of
spatial averages larger h2 means less data as one needs less of
h×h-squares to coverΩ), and the impact of ΣT (s) onto the decay
of V : β close to 1 allows to take h2 close to its maximal value of
Θ(Γmax) = maxΓ>0Θ(Γ ) at the price of amplifying the impact
of the term with ΣT (s) in (3.11) proportionally to 1/(1 − β). If
ΣT (s) = 0 for s > s⋆ one can set β = 1. Parameter θ > 1
is relevant only for outputs of C2(h,Ω)-class, it is independent
of β and allows one to balance convergence speed and amount
of observations: larger θ will imply faster convergence rate at
the price of decreasing h proportionally to 1/θ . Interestingly, L
increases with the decrease of h as per C1 but is independent of
h if the case C2.
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Fig. 1. LogLog-plot of upper-bounds for h2: Θ(Γmax) (blue) vs. T (ν) (red) with
= c1 = (2π )−1 for ν ∈ [10−6, 10−1

].

Remark 3.3. Let us compare our upper bound for h2 obtained
above for C ∈ C1(h,Ω), namely h2 < βΘ(Γmax) to the state-of-
the-art result of Azouani et al. (2014, Prop.2):

h2
≤ νT (ν) = C−1

Ω

(
3νλ1(2c log(2)c

3
2 + 8c log(1+G))G

)−1
, (3.12)

where G =
∥f⃗ ∥L∞(R+,H̊)

λ1ν2
and the constant c comes from Brezis

inequality ∥u⃗∥L∞ ≤ c∥∇u⃗∥L2 (1+log
∥Au⃗∥2

L2

λ1∥∇u⃗∥2
L2
)
1
2 for u⃗ ∈ D(A) (Foias

et al., 2001, p.100, (A.50)). Clearly,

c = sup
u⃗∈D(A):∥∇u⃗∥L2>0

∥u⃗∥L∞∥∇u⃗∥−1
L2

(1 + log
∥Au⃗∥2

L2

λ1∥∇u⃗∥2
L2
)−

1
2

nd so c ≥ c1 for c1 = ∥u⃗1∥L∞∥∇u⃗1∥
−1
L2

(1 + log
∥Au⃗1∥

2
L2

λ1∥∇u⃗1∥
2
L2
)−

1
2 and

u⃗1 ∈ D(A) with components u1 = − cos(2πx) sin(2πy) and u2 =

os(2πy) sin(2πx). It is easy to compute that c1 = (2π )−1. Since
he r.h.s. of (3.12), T (ν) increases if we substitute c with c1, and
so the upper bound on h2 improves, below we compare Θ(Γmax)
vs. T (ν) with c = c1 = (2π )−1 over the interval ν ∈ [10−6, 10−1

].
To match the setting of Azouani et al. (2014) we assume that
ℓ1,2 = 1, ∥f⃗ (s) − g⃗(s)∥R2 = 0 for s > s⋆ so we can use β = 1,
e also take ∥f⃗ ∥L∞(R+,H̊) = Cf⃗ = 1 and κ = 2. We get that

og10
Θ(Γmax)
T (ν) = 1.33 for ν = 10−6 and 0.58 for ν = 10−1 and

LogLog-plot of Θ and T over ν ∈ [10−6, 10−1
] is given in Fig. 1.

Obviously, for small ν our upper bound is at least one order of
magnitude better.

4. Experiments

In what follows we first illustrate sensitivity of NSE with
destabilizing Kolmogorov input to small perturbations of initial
conditions. Then we illustrate convergence of the observer for the
case of known inputs. And finally, we perform a crash-test: we
take observations generated by one numerical method, and use
them in the observer discretized by a different method.

For the crash-test we generate spatial averages outputs by
a numerical solver, referred to as FFT-solver. FFT-solver is a
pseudo-spectral numerical method, which relies upon vorticity–
streamfunction formulation of NSE. It is exactly divergence free
(as required by continuous formulation) and has spectral con-
vergence property in space: its convergence rate in H1 auto-
matically increases with the degree of smoothness of initial
5

Fig. 2. Top panel: H1-relative difference of initially close-by trajectories for
different ν over time. Bottom panel: H1-norm dynamics of solution with the
same initial condition and input for different ν over time.

conditions and inputs. For time discretization we used 2nd order
implicit midpoint with 5 iterations; an open-source implemen-
tation of FFT-solver with different time-stepping is available in
jax-cfd package.2 Then, we discretize the observer by a less
accurate solver, referred to as FEM-solver. FEM-solver is imple-
mented using Finite Element Method (based on Oasis Python
package3 (Mortensen & Valen-Sendstad, 2015)) with 2nd order
triangular elements providing global 1st order convergence rate
in space. It also employs 2nd order Backward Differencing scheme
for time discretization. FEM-solver is not divergence free as it
relies upon iterative minimization of velocity divergence at every
time step. The immense differences between those solvers are
pronounced on finite grids used below and their impact on
observer, discretized by FEM-solver, is described as an unknown
bounded disturbance d⃗.

Experiment setup. We take a shifted domain Ω = [0, ℓ1] ×

[0, ℓ2] with ℓ1 = ℓ2 = 2π , and a destabilizing input is taken to be
g⃗(x, y) = [−5 sin(10y), 0]⊤. The initial velocity u⃗(0) is generated
randomly and taken such that ∥u⃗(0)∥H1 ≈ 9.6. Both solvers do
1000 steps forward in time with timestep ∆t = 0.01. Spatial
resolution varies as detailed below.

Turbulent behavior. Top panel of Fig. 2 illustrates the sensi-
tivity of NSE to small perturbations of the Initial Condition (IC)
measured in H1-norm: red curve shows dynamics of H1-distance
between two trajectories, u⃗ and v⃗ obtained by high-precision FFT-
solver on 256 × 256-grid with ν = 0.01 and the same input g⃗; u⃗
and v⃗ are close by initially, ∥u⃗(0)− v⃗(0)∥H1 < 10−4

∥u⃗(0)∥H1 . If we
repeat the same simulation but for ν = 0.1 NSE becomes stable:
H1-distance between two trajectories decays (blue curve). Bottom
panel of Fig. 2 shows dynamics of H1-norm of two trajectories
with same ICs and input but different ν: for ν = 0.1 H1-norm
levels off, and the flow is laminar (stable) as shown in Fig. 3(a),
in contrast, for ν = 0.01 H1-norm is changing and the flow is
turbulent as shown in Fig. 3(b).

Known input. In this test we show that detectability condi-
tions of Theorem 3.1 are indeed simulation friendly: C is taken to
be spatial averages over squares Ωj covering Ω , and h2 in (2.3) is
the area of the largest Ωj, thus h2 in fact determines the number
of squares (sensors) required for convergence. h2 is found from
C1 (Theorem 3.1): since d⃗ = 0 it follows that we can set R = 0,
β = 1 (as per Remark 3.2). Also ΣT (s) = 0 for any T > 0.

2 https://github.com/google/jax-cfd
3 https://github.com/mikaem/Oasis

https://github.com/google/jax-cfd
https://github.com/mikaem/Oasis
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Fig. 3. Turbulence: velocity snapshots.

ence (3.10) holds for every T1 = T > 0 and ε > 0 such
hat 2/(νλ1) + 2νe−λ1νt⋆∥∇u⃗0∥

2
L2
C−2
g⃗ ≤ εT1 as δ(t⋆) = 0. We set

ε = 0.001 and T1 = 1.01ε × 2/(νλ1) so (3.10) holds for t⋆ such
that 2nd term of the last inequality is less than 0.01×2/(νλ1). We
plug κ = 1 + ε into (3.8) and maximize Θ by using grid search:
we find Γmax = 611. Hence h2

= 0.0029 as per C1, and L = 262.
To get outputs we discretize NSE by FEM-solver with quadratic
triangular elements constructed on a uniform grid of 256 × 256
nodes. Then the outputs are plugged into the observer discretized
by the same FEM-solver. The H1-estimation error is given in
Fig. 4 for 1,10 and 50 pressure corrections, which are used in
FEM-solver to minimize the numerical divergence: 50 corrections
have smallest divergence (red curve). Clearly, reduction of the
numerical divergence implies reduction of H1-estimation error.

Uncertain input. In this test we pick ε, T1 and h, L as above but
use FFT-solver to generate the outputs. The differences between
discrete NSEs obtained by FEM-solver and FFT-solver on finite
grids are significant, and in fact the former can be seen as the
latter but with an additive uncertain input d⃗ which is expected
to get ‘‘smaller’’ for finer grids. And this is exactly what we see
in Fig. 5: due to the presence of the disturbance the observer
converges into a ‘‘zone’’ which shrinks (in H1-norm) when spatial
resolution increases from 256 × 256 to 512 × 512.

. Conclusions

We proposed simulation friendly detectability conditions for

D Navier–Stokes Equation, and designed infinite-dimensional d

6

Fig. 4. H1 rel. est. error (log-scale) over time (1000 timesteps, ∆t = 0.01):
output and observer generated by FEM-solver.

Fig. 5. H1 rel. est. error (log-scale) over time (1000 timesteps, ∆t = 0.01):
output generated by FFT-solver, observer — by FEM-solver.

globally converging Luenberger observer for continuous in time
measurements. Promising research directions include extending
our approach to sampled measurements, and to pointlike mea-
surement where Ωj do not necessarily cover the entire domain

as studied in Selivanov and Fridman (2019) for the case of 2D
eat equation.

ppendix. Proofs

roof of Lemma 1.1. Take u⃗ =
[
u v
]

∈ [H2
p (Ω)]2. By Sobolev

mbedding theorems (see Hutson and Pym (1980, Th.11.3.14))
2(Ω) is continuously embedded into the space of continuous
unctions C(Ω) hence the vector-function u⃗ is continuous. Since u⃗
s also periodic by Weierstrass approximation theorem (Grafakos,
008, Corollary 3.1.11.) u⃗ can be represented as a uniform limit
f its Fourier series:

lim
N→∞

sup
x∈Ω

∥u⃗(x⃗) −

∑
∥k⃗∥R2≤N

[
uk⃗ vk⃗

]2π i k⃗
ℓ⃗
·x⃗
∥R2 = 0 (A.1)

with uk⃗ and vk⃗ being complex conjugates of u
−k⃗ and v

−k⃗ (since

⃗ is real-valued), and uk⃗ = (ℓ1ℓ2)−1
∫
Ω
e1 · u⃗(x⃗)−2π i k⃗

ℓ⃗
·x⃗dx⃗, and vk⃗

efined as u but with e , provided e – canonical basis of R2.
k⃗ 2 1,2
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e have:

u⃗(x⃗)∥R2 ≤∥ u⃗(x⃗) −

∑
∥k⃗∥R2≤N

[
uk⃗ vk⃗

]2π i k⃗
ℓ⃗
·x⃗

∥R2 (A.2)

+

∑
∥k⃗∥R2≤N

(|uk⃗|
2
C + |vk⃗|

2
C)

1
2 |

2π i k⃗
ℓ⃗
·x⃗
|C (A.3)

≤

∑
k⃗∈Z2

(|uk⃗|
2
C + |vk⃗|

2
C)

1
2 (A.4)

o get (A.4) one sends N → ∞, invokes (A.1) and recalls that
2π i k⃗

ℓ⃗
·x⃗
|C = 1 and that u⃗ ∈ L2(Ω)2, as u⃗ is continuous, hence the

eries in (A.4) is converging.
Let us compute ∥u⃗∥2

L2
= ∥u∥2

L2
+ ∥v∥2

L2
, ∥∇u⃗∥2

L2
= ∥∇u∥2

L2
+

∇v∥2
L2
, ∥∆u⃗∥2

L2
= ∥∆u∥2

L2
+ ∥∆v∥2

L2
. Recall Parseval’s identity

u⃗∥2
L2 = ℓ1ℓ2

∑
k⃗∈Z2

(|uk1 |
2
C + |uk2 |

2
C), (A.5)

nd classical relations between the smoothness of a function and
ecay of its Fourier coefficients (see Grafakos (2008, Theorem
.2.9)), and differentiate Fourier series of a function of H2-class
e.g. Grafakos (2008, p.182)) to compute norms of ∇u⃗ and ∆u⃗:

∇u⃗∥2
L2 = 4π2ℓ1ℓ2

∑
∥k⃗∥R2∈Z2

∥
k⃗

ℓ⃗
∥
2
R2 (|uk⃗|

2
C + |vk⃗|

2
C)

∥∆u⃗∥2
L2 = 16π4ℓ1ℓ2

∑
∥k⃗∥R2∈Z2

∥
k⃗

ℓ⃗
∥
4
R2 (|uk⃗|

2
C + |vk⃗|

2
C). (A.6)

ow we split (A.4) into a finite sum and the remainder:

u⃗(x⃗)∥R2 ≤

∑
∥k⃗∥R2≤γ

(
ℓ1ℓ2(1 + 4π2

∥
k⃗
ℓ⃗
∥
2
R2 )(|uk⃗|

2
C + |vk⃗|

2
C)
) 1

2

(ℓ1ℓ2 + 4π2ℓ1ℓ2∥
k⃗
ℓ⃗
∥
2
R2 )

1
2

+

∑
∥k⃗∥R2>γ

4π2√ℓ1ℓ2∥
k⃗
ℓ⃗
∥
2
R2

4π2
√
ℓ1ℓ2∥

k⃗
ℓ⃗
∥
2
R2

(|uk⃗|
2
C + |vk⃗|

2
C)

1
2

nd make use of (A.5)–(A.6) to derive (1.2):

u⃗(x⃗)∥R2 ≤ ∥u⃗∥H1

⎛⎜⎝ ∑
∥k⃗∥R2≤γ

(ℓ1ℓ2 + 4π2ℓ1ℓ2∥
k⃗

ℓ⃗
∥
2
R2 )−1

⎞⎟⎠
1
2

+ ∥∆u⃗∥L2

⎛⎜⎝ ∑
∥k⃗∥R2>γ

(16π4ℓ1ℓ2∥
k⃗

ℓ⃗
∥
4
R2 )−1

⎞⎟⎠
1
2

≤ ∥u⃗∥H1

(∫
x21+x22≤γ

dx1dx2
ℓ1ℓ2 + 4π2ℓ1ℓ2∥

x⃗
ℓ⃗
∥
2
R2

) 1
2

+ ∥∆u⃗∥L2

(∫
x21+x22>γ

dx1dx2
16π4ℓ1ℓ2∥

x⃗
ℓ⃗
∥
4
R2

) 1
2

= ∥u⃗∥H1 I
1
2
1 + ∥∆u⃗∥L2 I

1
2
2 .

By coarea formula:

I1 =

∫ γ

dr
∫

2 2 2

dS
2 x⃗ 2
0 x1+x2=r ℓ1ℓ2 + 4π ℓ1ℓ2∥
ℓ⃗
∥R2

7

To compute the latter line integral along the circle set x1 =

sin(t) and x2 = r cos(t):

I1 =

∫ γ

0

∫ 2π

0

drdt

ℓ1ℓ2 +
4π2

ℓ1ℓ2
(ℓ22r2 sin

2(t) + ℓ21r2 cos2(t))

=

∫ γ

0

dr

(ℓ21 + 4π2r2)
1
2 (ℓ22 + 4π2r2)

1
2

≤

∫ γ

0

2πrdr
4π2r2 + ℓ1ℓ2

= (4π )−1 log(1 +
4γ 2π2

ℓ1ℓ2
)

nalogously we compute I2 =
ℓ21+ℓ22
32γ 2π3 . ■

roof of Proposition 1. Take C ∈ C1(h,Ω) and set e⃗ = u⃗ − z⃗.
ubtracting (2.2) from (2.1) we get ‘‘the error equation’’:

d
dt

(e⃗, φ⃗) + b(e⃗, u⃗, φ⃗) + b(z⃗, e⃗, φ⃗) + ν((e⃗, φ⃗)) = (f⃗ − F⃗ , φ⃗) (*)

ote that by (1.7) ∥∇ e⃗∥2
L2

= ((e⃗, e⃗)) → 0 implies that ∥e⃗∥2
L2

=

e⃗, e⃗) → 0 hence, it is sufficient to demonstrate that 1
T

∫ t+T
t

∥Ce⃗(·, s)∥L2ds → 0 and 1
T

∫ t+T
t ∥f⃗ (·, s) − F⃗ (·, s)∥2

L2
ds → 0 (condi-

ions (A) and (B) of Definition 2.1) imply V = ((e⃗, e⃗)) → 0 if (3.3)
olds. To this end we plug φ⃗ = Ae⃗ into the ‘‘error equation’’
∗) and apply simple transformations: (i) recalling from (1.7) and
1.8) that (e⃗, Ae⃗) = ((e⃗, e⃗)), ((e⃗, Ae⃗)) = (Ae⃗, Ae⃗), and (ii) recalling
rom (1.11) that b(e⃗, e⃗, Ae⃗) = 0 which implies b(z⃗, e⃗, Ae⃗) = b(u⃗ −

, e⃗, Ae⃗) = b(u⃗, e⃗, Ae⃗) so that

(e⃗, u⃗, Ae⃗) + b(z⃗, e⃗, Ae⃗) = b(e⃗, u⃗, Ae⃗) + b(u⃗, e⃗, Ae⃗)
Foias et al. (2001, F.(A.63))

= −b(e⃗, e⃗, Au⃗)

e get:

d
dt

((e⃗, e⃗)) + ν(Ae⃗, Ae⃗) = (f⃗ − F⃗ , Ae⃗) + b(e⃗, e⃗, Au⃗) (A.7)

et us demonstrate that ν(Ae⃗, Ae⃗) ‘‘dominates’’ b(e⃗, e⃗, Au⃗) pro-
ided that condition (A) holds. Indeed

(e⃗, e⃗, Au⃗)
(1.2)
≤ C1 log

1
2
(
1 +

4π2γ 2

ℓ1ℓ2

)
∥∇ e⃗∥2

L2∥Au⃗∥L2

+ C2λ
−1
1 γ−1

∥Au⃗∥L2∥Ae⃗∥
2
L2

Now, by (3.1), (1.8) and (2.3) we get:

∥∇ e⃗∥2
L2 ≤ C∇ (∥Ce⃗∥L2∥Ae⃗∥L2 + hC

1
2
Ωλ

−
1
2

1 ∥Ae⃗∥2
L2 ) (A.8)

Set γ = ∥Au⃗∥L2Γ for some Γ > 0 and define

C̃1
h,Γ (t) = C1C∇ log

1
2
(
1 +

4π2
∥Au⃗∥2

L2
Γ 2

ℓ1ℓ2

)
hC

1
2
Ωλ

−
1
2

1 ∥Au⃗∥L2

+ C2λ
−1
1 Γ −1

C̃Γ (t) = C1C∇ log
1
2
(
1 +

4π2
∥Au⃗∥2

L2
Γ 2

ℓ1ℓ2

)
Using C̃1

h,Γ and C̃Γ and noting that 2∥Ae⃗∥L2∥Au⃗∥L2 ≤ ∥Ae⃗∥2
L2

+

∥Au⃗∥2
L2

we transform the upper bound for b:

b(e⃗, e⃗, Au⃗) ≤ C̃1
h,Γ (t)∥Ae⃗∥

2
L2

+ 0.5C̃Γ (t)∥Ce⃗∥L2 (∥Ae⃗∥
2
L2 + ∥Au⃗∥2

L2 )
(A.9)

By Schwarz inequality:

(f⃗ − F⃗ , Ae⃗) ≤ 1/ν∥f⃗ − F⃗∥
2

+ ν/4(Ae⃗, Ae⃗)
L2
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I
V
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w

T

P
1
t

p

⃗

⃗

p

h

V

L
b
w
L

∀

0
δ
(
b
i

e plug the latter inequality and (A.9) into (A.7) (recall that
= ((e, e))):

˙ + (3ν/4 − C̃1
h,Γ (t))(Ae⃗, Ae⃗) ≤ β(t)

:= ∥f⃗ − F⃗∥
2
L2/ν + 0.5C̃Γ (t)∥Ce⃗∥L2 (∥Ae⃗∥

2
L2 + ∥Au⃗∥2

L2 )

f we set α(t) = (3ν/4 − C̃1
h,Γ (t)) then V verifies the inequality

˙ (t) + α(t)V (t) ≤ β(t). To show that V → 0 we employ
emma 1.1 from Foias et al. (2001, p.125), a generalization of
he classical Gronwall lemma which in our case reads as follows:
f V verifies V̇ (t) + α(t)V (t) ≤ β(t) with the just defined α, β
hen limt→∞ V (t) = 0 provided there exist T > 0 such that
im supt→∞

1
T

∫ t+T
t β(s)ds = 0 and lim inft→∞

1
T

∫ t+T
t α(s)ds > 0.

We claim that conditions (A) and (B) of Definition 2.1 imply the
aforementioned condition for β , and (3.3) imply the required
condition on α. To show the former recall from Foias et al. (2001,
p.101, A.60) that supt>t∆ ∥Au⃗(t)∥L2 < C∆ for some C∆ > 0 which
depends on ∥f ∥L∞(R+,H̊). Similar bound holds for Az⃗ but depends
on ∥F∥L∞(R+,H̊). Hence Ae⃗ = Au⃗ − Az⃗ is bounded for t > t∆ and
so is C̃Γ (t). If conditions (A) and (B) of Definition 2.1 hold then
1
T

∫ t+T
t β(s)ds → 0 as t → ∞. Now, to demonstrate condition on
let us show that (3.3) implies

1
T

∫ t+T

t
C̃1
h,Γ (s)ds < (3ν)/4 (A.10)

Indeed, as it follows from (1.14) and (1.15) for any 1 < κℓ2 there
exist t⋆ > 0 and T > 0 such that
1
T

∫ T+t

t
∥Au⃗∥2

L2ds ≤ θt,T ≤ κ∥f⃗ ∥2
L∞(R+,H̊)ν

−2, t > t⋆

Having this in mind and applying integral Young inequality for
concave function
1
T

∫ t+T

t
log(⋆)ds ≤ log(

1
T

∫ t+T

t
(⋆)ds) (A.11)

e compute:

1
T

∫ t+T

t
C̃1
h,Γ (s)ds ≤ C2λ

−1
1 Γ −1

+ C1C∇hC
1
2
Ωλ

−
1
2

1 θ
1
2
ν,T×

×
( 1
T

∫ t+T

t
log
(
1 +

4π2Γ 2
∥Au⃗(t)∥2

L2

ℓ1ℓ2

)
ds
) 1

2

≤ C2λ
−1
1 Γ −1

+ C1C∇hC
1
2
Ωλ

−
1
2

1 κ
1
2 ∥f⃗ ∥L∞(R+,H̊)/ν×

× log
1
2
(
1 +

4π2κ∥f⃗ ∥2
L∞(R+,H̊)Γ

2

ν2ℓ1ℓ2

)
his demonstrates that (3.3) implies (A.10).
If C ∈ C2(h,Ω) one needs to invoke (2.4) in (A.8), and (1.8) is

not required so λ
−

1
2

1 in the r.h.s. of (A.8) disappears as well as in
the numerator of (3.3). ■

roof of Lemma 3.1. We employ the standard argument (Temam,
995, p.23,§3.3) with a difference in energy bounds due to the
erm LCe⃗ which we outline below. Consider C ∈ C1(h,Ω).
Galerkin projection of (3.4) onto Wm, the span of m eigen-functi-
ons of the Stokes operator A, is obtained by substituting z⃗ with
zm, the projection of z⃗ onto Wm, and restricting test-functions

to φ⃗ ∈ Wm, specifically for φ⃗ = Azm one gets:
d
dt

((zm, zm)) +

ν∥Azm∥
2
L2 = (g⃗+LCe⃗, Azm). Adding and subtracting L(zm, Azm) and

invoking (2.3) after simple manipulations one finds:
d
dt

((zm, zm)) + ν/4(Azm, Azm) ≤ 1/ν∥g⃗ + LCu⃗∥2
L2 (A.12)

rovided Lh2CΩ/2 ≤ ν. Note that (A.12) is similar to the classical
a-priori energy bound for 2D NSE with periodic BC, e.g. Foias
8

et al. (2001, p.102,(A.65)). Then taking m → ∞ and using
the compactness argument (Temam, 1995, p.23,Section 3.3) one
deduces lemma’s statement. The case of C ∈ C2(h,Ω) follows the
same logic. ■

Proof of Theorem 3.1. Note that if L and h verify C1 or C2 then
there is the unique z⃗ ∈ L∞(R+, V̊) ∩ L2(t0, t1,D(A)), 0 ≤ t0 <
t1 < +∞ (Lemma 3.1). Recall that for z⃗ and u⃗ solving (2.1) and
(2.2) with generic F⃗ and f⃗ respectively the dynamics of ((e⃗, e⃗)),
e = u⃗ − z⃗ is governed by (A.7). Now, let u⃗ solve (2.1) with
f = g⃗ + d⃗, and z⃗ solve (3.4), and plug F⃗ = g⃗ + LCe⃗ and f⃗ = g⃗ + d⃗
into (A.7): the resulting equation will determine the dynamics of
V = ∥∇ e⃗∥2

L2
= ((e⃗, e⃗)) defined in theorem’s statement. With this

in mind let us demonstrate that (C1) implies (3.11). To this end
we transform (A.7): for any Λ1,2 > 0 and q2 = 2∥f⃗ − g⃗∥

2
L2

=

2∥d⃗∥2
L2

(f⃗ − F⃗ , Ae⃗) ≤(d⃗ + L(e⃗ − Ce⃗), Ae⃗) − L(e⃗, Ae⃗) (A.13)

+Λ1(h2CΩ∥∇ e⃗∥2
L2 − ∥e⃗ − Ce⃗∥2

L2 ) (A.14)

+Λ2(q2(t) − ∥d⃗∥2
L2 ) (A.15)

where (A.14) is non-negative by (2.3). Recall definition of C1,2
from (3.2), and (1.2): for any 0 < β < 1 we have

b(e⃗, e⃗, Au⃗) ≤ C1 log
1
2
(
1 +

4π2γ 2

ℓ1ℓ2

)
∥∇ e⃗∥2

L2∥Au⃗∥L2 (A.16)

+ (1 + β − β)C2λ
−1
1 γ−1

∥Au⃗∥L2∥Ae⃗∥
2
L2 (A.17)

Set γ = ∥Au⃗∥L2Γ with Γ > C2/(λ1ν), define ψΓ ,ν = ν −

C2/(λ1Γ ), add and subtract βν∥Ae⃗∥2
L2

to the l.h.s. of (A.7), and
substitute (A.13)–(A.17) into r.h.s. of (A.7). Collecting the terms
with Ae⃗, e⃗− Ce⃗ and d⃗, and transforming the resulting expressions
to sums of squares after simple algebra we get:

V̇ ≤ α(t)V +Λ∗

2q
2(t) − ∥(1 − β)

1
2ψ

1
2
Γ ,νAe⃗ −

√
Λ∗

2d⃗∥
2
L2

− ∥β
1
2ψ

1
2
Γ ,νAe⃗ −

√
Λ∗

1(e⃗ − Ce⃗)∥2
L2

rovided Λ∗

1 solves Λ∗

14βψΓ ,ν = L2, Λ∗

2 solves Λ∗

24(1−β)ψΓ ,ν =

1 and

α = −L +Λ∗

1h
2CΩ + Ψ (u⃗,Γ ) (A.18)

Ψ (u⃗,Γ ) = C1∥Au⃗∥L2 log
1
2
(
1 +

4π2Γ 2
∥Au⃗∥2

L2

ℓ1ℓ2

)
(A.19)

Hence, V̇ ≤ α(t)V +Λ∗

2q
2(t) and by classical Gronwall lemma we

ave for t ≥ s:

(t) ≤ V (s)e
∫ t
s α(τ )dτ +Λ∗

2

∫ t

s
q2(τ )e

∫ t
τ α(σ )dσdτ (A.20)

et us shows that 1st and 2nd terms in r.h.s. of (A.20) are bounded
y the 1st and 2nd terms of (3.11) respectively. To bound e

∫ t
s αdτ

e show that if t⋆ and T1 verify (3.10) then for W (L,Γ ) = −L +
2h2/(2β L̂∇ (Γ ))+ L̂∆(Γ ) with L̂∇,∆ defined in (3.6)–(3.7) it holds:

t > t⋆ :
1
T1

∫ t+T1

t
α(s)ds ≤ W (L,Γ ) (A.21)

Indeed, let us take T1 ≥ T such that the 2nd term of (3.10) is small
(e.g. less than ε/2), then note that (3.9) implies lims→∞ΣT1 (s) =

for any T1 ≥ T , hence taking a large enough t⋆ one can make
(t⋆) (1st term of (3.10)) and last term of (3.10) small enough
e.g. less than ε/2) for (3.10) to hold. For these T1 and t⋆ we
ound Ψ (u⃗,Γ ) defined in (A.19): to this end recall Young inequal-
ty (A.11) which together with (1.14) implies for any T1 > 0

1
∫ t+T1

Ψ (u⃗,Γ )ds ≤ C1θ
1
2
t,T log

1
2
(
1 +

4π2θt,T1Γ
2 )

(A.22)

T1 t

1 ℓ1ℓ2
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ith θt,T1 defined in (1.15). Now, we bound θt,T1 : recall definitions
f κ and ER, and plug f⃗ = g⃗ + d⃗ into (1.15). Noting that
f⃗ ∥L∞(R+,H̊) ≤ R + Cg⃗ as d⃗ ∈ ER we find that 1st term in (1.15)
s bounded by the 2nd term of (3.10), and, by Cauchy–Schwarz

nequality, the 2nd term in (1.15) is bounded by
C2
g⃗
ν2

+ δ(t⋆) hence
y (3.10):

t,T1 ≤
(2(Cg⃗ + R)2

C2
g⃗ T1νλ1

+
2ν−λ1νt∥∇u⃗0∥

2
L2

T1C2
g⃗

+ δ
)
×

×
C2
g⃗

ν2
+

C2
g⃗

ν2
≤ κ

C2
g⃗

ν2
, t > t⋆, T1 ≥ T

(A.23)

ubstituting (A.18), (A.22) and (A.23) into l.h.s. of (A.21), not-
ng that Λ∗

1 = L2/(4βψΓ ,ν) and recalling definition of L̂∇ we
obtain (A.21).

Let us show that W (L,Γ ) < 0 provided h and L are chosen
s in (C1). Indeed, W is a quadratic polynomial (in L) with two

istinct real roots L± = (1 ±

√
1 − 4aL̂∆ )/2a, a = h2/(2β L̂∇ (Γ ))

rovided the discriminant of W is positive: 1 − 4aL̂∆ > 0. The
atter implies 0 < L− < L+ and sinceW (0,Γ ) = L̂∆ > 0 it follows
hat W (L,Γ ) < 0 for any L ∈ (L−, L+). Hence, W (L,Γ ) < 0 for
= β L̂∇/h2

= (L+ + L−)/2 ∈ (L−, L+) provided 4aL̂∆ < 1 which
s the case for h2 < (2β L̂∇ (Γ ))/(4L̂∆(Γ )) = βΘ(Γ ) (compare
o (C1)). Specifically, W (L,Γmax) = Q (L) < 0 for Q (L) defined
n (3.11), and ω, L chosen as in (C1), and in fact choosing Γ =

max allows to maximize the upper-bound for h2. Hence, ∀t > t⋆
nd ω = 1/2, L = β L̂∇ (Γmax)/h2:

1
T1

∫ t+T1

t
α(s)ds ≤ Q (L) < 0 (A.24)

Let us now bound e
∫ t
s αdτ . To this end we follow (Foias et al.,

001, p.156, f.(A.4)), namely the argument given after formula
A.3) there: take k = ⌊

t−s
T1

⌋, that is the smallest integer k ≥ 0
such that s + kT1 ≤ t ≤ s + (k + 1)T1, and note that

e
∫ t
s α(τ )dτ = e

∫ s+kT1
s α(τ )dτ e

∫ t
s+kT1

α(τ )dτ

(A.24),(A.18)
≤ eQ (L)T1ke−Lω(t−s−kT1)+

∫ s+(k+1)T1
s+kT1

Ψ (u⃗,Γmax)dτ

≤ eQ (L)T1(k+1)e−T1Q (L)e−Lω(t−s−kT1)+T1 L̂∆(Γmax)

≤ e(Q (L)−ωL)(t−s)+ωLT1⌊
t−s
T1

⌋eωLT1

(A.25)

here to go from 2nd to 3rd line of (A.25) we employed (A.22),
A.23), (3.7), and from 3rd to 4th – eT1(k+1)Q (L)

≤ eQ (L)(t−s) (as
Q (L) < 0 and t − s ≤ (k + 1)T1).

Now, let us bound the 2nd term of (A.20). Again, we follow
the derivation of Foias et al. (2001, p.156, f.(A.5)), namely the
argument given after formula (A.4) there, which is based on
exponential sum formulas:∫ t

s
q2(τ )e

∫ t
τ α(σ )dσdτ ≤ 2T1eT1(ωL−Q (L))ΣT1 (s) (A.26)

Finally, recalling (3.6) and definition of Λ⋆2 we deduce (3.11) from
(A.20), (A.25) and (A.26).

Now, let us demonstrate that (C2) implies (3.11). If C ∈

C2(h,Ω) then (A.14) changes to Λ1(h2CΩ∥Ae⃗∥2
L2

− ∥e⃗ − Ce⃗∥2
L2
)

as it follows from (2.4). Now, as above (see discussion right
after (A.17)), we substitute (A.13), modified (A.14) and (A.15)–
(A.17) into r.h.s. of (A.7), and collect terms with Ae⃗, e⃗− Ce⃗ and d⃗:

V̇ ≤ α′(t)V +Λ⋆2q
2(t) − ∥(1 − β)

1
2ψ

1
2
Γ ,νAe⃗ −

√
Λ∗

2d⃗∥
2
L2

− ∥(βψΓ ,ν −Λ′

1h
2CΩ )

1
2 Ae⃗ −

√
Λ′

1(e⃗ − Ce⃗)∥2
L2
9

provided Λ∗

2 solves Λ∗

24(1 − β)ψΓ ,ν = 1 (as above), and

α′
= −L + Ψ (u⃗,Γ ) (A.27)

nd Λ′

1 solves a quadratic equation 4Λ1(βψΓ ,ν −Λ1h2CΩ ) = L2,
olution of which is given by:

′

1 =

ψΓ ,ν +

√
β2ψ2

Γ ,ν − L2CΩh2

2h2CΩ
(A.28)

provided: ψΓ ,ν > 0, Lh
√
CΩ < βψΓ ,ν (A.29)

imilarly, to demonstrate (3.11) one can repeat all the steps given
fter (A.19): employ GB-lemma to derive analog of (A.20), and
hen bound its terms. Since the last term is the same, the only
ound that remains to be established is the analog of (A.24),
amely that 1

T1

∫ t+T1
t α′(s)ds < Q (L) = −Lω + L̂∆(Γmax) <

0 for L and ω defined in (C2). But the first part of the latter
inequality immediately follows from (A.22) and (A.27), (A.23),
(3.7), and the inequality Q (L) < 0 holds if L = θ L̂∆(Γmax) for
θ > 1 (as suggested in (C2)). To satisfy (A.29) we set Γ = Γmax
nd substitute L = θ L̂∆(Γmax) into (A.29) and get a condition
n h : h <

βψΓ ,ν

θ L̂∆
√
CΩ

= β
√
CΩθ−1Θ(Γ ) as suggested in (C2).

Note that Γmax > C2/(λ1ν) hence ψΓmax,ν > 0 as required
by (A.29). Hence, (3.11) holds for V if L, ω and h are defined as in
(C2). ■
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