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Averaging-based ISS analysis of systems with
rapidly varying periodic delays

Rami Katz, Emilia Fridman, Fellow, IEEE and Frederic Mazenc

Abstract—We study the stability of a linear system with a
periodic delay that is rapidly varying around a nominal value.
We are inspired by previous results on rapidly varying periodic
delays, where the stabilizing effect of the rapidly-varying periodic
delay on the system stability was studied via a trajectory-
based comparison to a suitable comparison (averaged) system
with distributed delays. The stability of the original system
was proved to be asymptotic, provided the delay modulation
was rapid enough, but quantitative bounds on the delay period
which preserve the stability of the original system were not
provided. In this work we aim to provide such quantitative
bounds for the exponential stability of the original system. We
introduce a novel state transformation that explicitly maps the
original system into a perturbed version of the comparison
system. Then, assuming knowledge of an exponential bound
on the norm of the fundamental solution of the comparison
system, and augmenting the state of the original system with
that of the transformed system, we employ a recently developed
trajectory-based inequality to derive constructive conditions on
the delay period and on the exponential decay rate of the original
system. In the case of perturbed linear systems, we prove that the
same delay periods guarantee input-to-state stability (ISS) of the
original system. Numerical examples demonstrate the efficacy of
the proposed approach.

Index Terms—Time-delay systems, stability, averaging.

I. INTRODUCTION

Systems with periodic or almost periodic components are
prevalent in physics and engineering. Among their numerous
uses, one can find vibrational control [1], power systems
[2] and time-delay systems [3]. An important application
stemming from mechanical engineering is the study of the
dynamics of rotating cutting machines [4], [5]. Such dynamical
models are often characterized by a linear time-delay system
with a delay that is rapidly varying around a nominal constant
value. In order to avoid undesirable oscillations and chatter, the
stability region of the steady-state solution of cutting machines
is enlarged by rapidly modulating the rotational speed of the
machine around a nominal value, which correspond to rapidly
varying time-delay.

The technique of averaging, emanating from perturbation
theory, is a widely used analysis tool for studying systems
with periodic components [6], which has been sucessfuly
employed for systems with oscillatory control inputs [7], [8]
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and switched systems [9]–[11]. The central idea in averaging
is that stability of the first-order averaged system guarantees
stability of the original periodic system for small enough
values of the time-scale parameter. However, this often leads to
only qualitative existence results, without yielding an efficient
and explicit bound on the small parameter for which the
stability of the original system is preserved. Recently, the first
efficient quantitative methods for stability by averaging were
suggested. A constructive time-delay approach to periodic
averaging of a system with a single rapid time-scale was
suggested in [12]–[14]. A complimentary delay-free technique,
which employs simpler analysis tools and is well-suited for
handling multi-scale systems was developed in [15], [16].

It is well-known that in some time-delay systems, delay
intervals for the constant and time-varying delays may
have “opposite” effects on stability. This phenomenon is
characterized by stability of the system in the presence of
time-varying delays and instability of the same system in the
case of constant delays (or vice-versa), and is often referred to
as ”quenching” [17]. Motivated by this, the stabilizing effect
of periodic delay that is rapidly varying around a constant
value was studied in [18] for linear systems with constant
coefficients, where the system with the constant nominal delay
may be unstable. The authors of [18] introduced a linear
time-invariant comparison system with a distributed delay,
whose analysis is more tractable than the analysis of the
original system, and whose trajectories are comparable to the
trajectories of the original system in an appropriate sense. The
authors then combine asymptotic averaging with estimation
of the difference between the trajectories of the original
and averaged systems (see Appendix B in [18]) to show
that exponential stability of the comparison system implies
the asymptotic stability of the original system, provided the
delay period is small enough. However, the approach in [18]
does not provide upper bounds on the delay period which
guarantees exponential stability of the original system. This
work builds upon [18] and provides a significant quantitative
extension of the results therein by employing a different
analysis approach that relies on a novel system transformation
and a trajectory-based inequality [20]. Under the assumption
that an exponential bound on the norm of the fundamental
solution of the comparison system is known, we show how
explicit estimates on the delay period which guarantees
stability of the system with a rapidly-varying delay can
be obtained constructively. We first introduce a novel state
transformation that maps the original system into a perturbed
version of the comparison system. Then, augmenting the state
of the original system with that of the transformed system,
we employ a recently developed trajectory-based inequality
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to derive a constructive upper bound on the delay period
under which exponential stability of the original system is
guaranteed. We further provide explicit estimates on the
exponential decay rate of the original system. The availability
of explicit and constructive estimates, which are guaranteed
by our method, then allows to easily extend the proposed
approach to input-to-state stability (ISS) analysis of time-
delay systems with rapid time-varying delays, subject to
essentially bounded disturbances. Numerical examples validate
the presented method and demonstrate its efficacy.
Preliminaries:
The following two lemmas will be used subsequently.

Lemma 1 (Delayed Gronwall-Bellman inequality [19]): Let
t0 ∈ R, t0 < T ≤ ∞ and c ≥ 0. Let a : [t0, T ) → [0,∞) be
locally integrable. Assume r ≥ 0 and τ : [t0, T ) → [0,∞) be
measurable such that

t0 − r ≤ t− τ(t), t ∈ [t0, T ).

If x : [t0 − r,∞) → [0,∞) is Borel measurable and locally
bounded such that

x(t) ≤ c+

∫ t

t0

a(u)x(u− τ(u))du, t ∈ [t0, T ),

then
x(t) ≤ K exp

(∫ t

t0
a(s)ds

)
, t ∈ [t0, T )

where
K := max

(
c, ∥x∥L∞[t0−r,t0]

)
.

Lemma 2 (Trajectory-based inequality [20]): Let T > 0 and
ψ = (ψ1, . . . , ψn)

⊤ : [−T,+∞) → [0,∞)n satisfy

ψ(t) ≤ S

supℓ∈[t−T,t] ψ1(ℓ)
...

supℓ∈[t−T,t] ψn(ℓ)

 , t ≥ 0,

where the inequality is understood componentwise. Assume
that S > 0 (entrywise) is Schur stable and let υ ∈ [1,+∞)n

and χ ∈ (0, 1) be the Perron-Frobenius eigenvector-eigenvalue
pair of S, satisfying Sυ = χυ. Then, componentwise, we have

ψ(t) ≤

 n∑
j=1

sup
ℓ∈[−T,0]

ψj(ℓ)

 e
ln(χ)t

T υ, t ≥ 0.

II. STABILITY OF A LINEAR SYSTEM WITH
RAPIDLY-VARYING PERIODIC DELAYS

A. Problem formulation
We consider the following system with time-varying delay

ẋ(t) = Ax(t) +Bx(t− τ(t)),
x(t) = ϕ(t), t ∈ [−τM , 0]

(1)

where x(t) ∈ Rnx , A,B ∈ Rn×n, τM > 0 and ϕ ∈
C[−τM , 0]. The delay τ(t) ≥ 0 may be rapidly-varying and
with a derivative that is not bounded uniformly in ϵ > 0, and
has the form

τ(t) = τ0 + δf
(
t
ϵ

)
(2)

with ϵ, δ, τ0 > 0, τ0 ≥ δ and f : R → [−1, 1] a T -periodic
function with

∫ T

0
f(s)ds = 0. Our assumption on f guarantees

two things. First, the delay τ(t) is ϵT -periodic, whence ϵ plays
the role of delay frequency. Second, the average value of the
delay τ(t) is exacly the nominal delay τ0, since

1

ϵT

∫ ϵT

0

τ(s)ds− τ0 =
δ

T

∫ T

0

f(v)dv = 0.

We further denote τM := τ0 + δ. Thus, we consider an
interval (or non-small) delay τ(t) ∈ [τ0 − δ, τ0 + δ] that
can be treated by Lyapunov methods or input-output approach
provided (1) with δ = 0 (i.e. with the constant discrete delay
τ0) is exponentially stable [21]. However, it may be that (1)
with δ = 0 is unstable. In this case, the so called ”quenching”
phenomenon may manifest. ”Quenching” happens when the
addition of (rapidly oscillating) time-varying delays to the
nominal constant delay, via δ > 0, leads to stability of (1).
In this case, it is challenging to employ Lyapunov methods in
order to obtain a bound on the delay period which guarantees
stability of (1). Here, we aim to derive stability conditions that
may hold when (1) with δ = 0 is unstable and ”quenching”
occurs. In order to simplify the analysis, this section considers
asymptotic stability of the system (1). ISS of (1) subject
to locally essentially bounded disturbances will be treated
subsequently.

Following [18], we employ the existence of an integrable
function ω : [−1, 1] → [0,∞) satisfying∫ 1

−1
α(s)ω(s)ds = 1

T

∫ T

0
α (−f(s)) ds (3)

for every continuous function α : [−1, 1] → R. In particular,
setting α ≡ 1 ∫ 1

−1

ω(s)ds = 1. (4)

The existence of such a function ω is guaranteed by application
of the Radon-Nikodym theorem (see [18]).

Remark 1: Since α ◦ (−f) is T -periodic, we have that
(3) continues to hold if the right-hand side is replaced by
1
T

∫ t+T

t
α (−f(s)) ds with arbitrary t ∈ R.

Consider the comparison system

ẋ(t) = Ax(t) +
∫ 0

−τM
A1(ξ)x(t+ ξ)dξ,

A1(ξ) :=
1
δBω

(
ξ+τ0
δ

)
1[−τM ,−τ0+δ](ξ)

(5)

where 1I is the indicator function of the set I ⊆ R. Note that
the right-hand side of (5) is well-defined since ξ ∈ [−τ0 −
δ,−τ0 + δ] implies that ξ+τ0

δ ∈ [−1, 1]. Throughout this note
we denote by Φ(t) the fundamental solution of (5), namely
the solution to the matrix system (5) with x(t) replaced by
Φ(t) and initial condition

Φ(t) =

{
0, t < 0

In t = 0
. (6)

Here, In ∈ Rn×n is the identity matrix.
By [18, Theorem 1], exponential stability of the system (5)

implies that the system (1) is asymptotically stable for small
enough ϵ > 0. However, the results of [18] do not provide
an explicit bound on ϵ > 0 which guarantees asymptotic
stability of (1). The aim of this note is to provide explicit
conditions on ϵ > 0, which guarantee the asymptotic stability
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of (1), provided an exponential upper bound on the norm of the
fundamental solution of (5) is available. Since we assume the
same conditions as [18], we have the following assumption:

Assumption 1: There exist known constants σ > 0 and
MΦ ≥ 1 such that the fundamental solution of the comparison
system (5) satisfies

∥Φ(t)∥ ≤MΦe
−σt, t ≥ 0. (7)

To apply our method, we only need to have some constants
on MΦ and σ for which (7) holds. Such constants can be
estimated from a single simulation of the comparison system
(5), which does not involve ϵ. For some cases of the density ω
in (5), MΦ and σ can be upper bounded analytically. However,
to the best of our knowledge, there does not exist a theoretical
result that specifies an explicit relation between MΦ, σ and ω,
in general.

The next assumption is a technical one and aimed at
simplifying the expressions and bounds which will be derived
subsequently. One can replace the upper bound therein by any
fixed constant, while preserving the validity of the results.

Assumption 2: The parameter ϵ > 0 satisfies ϵT ∥B∥ < 2.
Note that since T and ∥B∥ are assumed known, ϵ can always
be chosen such that Assumption 2 holds.

Before proceeding, we give an a priori bound on the growth
of the solution to (1), which will be used below.

Proposition 1: Consider the system (1) and fix β > 0. There
exists an explicit constant Mx(β) ≥ 1 such that

|x(t)| ≤Mx(β) ∥ϕ∥C[−τM ,0] , t ∈ [0, β]. (8)

Proof: Employing variation of constants in (1), we have

|x(t)| ≤
∥∥eAt

∥∥ |x(0)|+ ∫ t

0

∥∥eA(t−s)
∥∥ ∥B∥ |x(s− τ(s)|ds

≤ e∥A∥β |x(0)|+ e∥A∥β ∥B∥
∫ t

0
|x(s− τ(s))|ds,

where t ∈ [0, β]. We can now use Lemma 1 to obtain (8) with

Mx(β) = e(∥A∥+∥B∥e∥A∥β)β .

This completes the proof of the proposition.

B. System transformation

We now introduce a transformation which explicitly relates
the systems (1) and (5). Inspired by [15], we define

G(t) = 1
ϵT B

∫ t+ϵT

t
(t+ ϵT − s)x (t− τ(s)) ds, t ≥ 0.

(9)
Recalling (1), we note that G(t) is differentiable for t ≥ τM .
Differentiating G(t) for t ≥ τM , we have

Ġ(t) = −Bx (t− τ(t)) + 1
ϵT B

∫ t+ϵT

t
x (t− τ(s)) ds

+ 1
ϵT B

∫ t+ϵT

t
(t+ ϵT − s) ẋ(t− τ(s))ds.

(10)

Substituting (1) into the last term on the right-hand side of
(10), we obtain

1
ϵT B

∫ t+ϵT

t
(t+ ϵT − s) ẋ(t− τ(s))ds

= 1
ϵT BA

∫ t+ϵT

t
(t+ ϵT − s)x(t− τ(s))ds

+ 1
ϵT B

2
∫ t+ϵT

t
(t+ ϵT − s)x(t− ρ(t, s)))ds

(11)

where t ≥ τM and

ρ(t, s) := τ(s) + τ(t− τ(s)), τM ≤ t ≤ s ≤ t+ ϵT (12)

satisfies |ρ(t, s)| ≤ 2τM for any τM ≤ t ≤ s ≤ t + ϵT .
Denoting αt(µ) := x(t − τ0 + δµ), where t ≥ τM is fixed.
Recalling (2), we see that the second term on the right hand-
side of (10) can be presented as

1
ϵT B

∫ t+ϵT

t
x (t− τ(s)) ds = 1

TB
∫ t

ϵ+T
t
ϵ

αt(−f(ξ))dξ
= B

∫ 1

−1
αt(ξ)ω(ξ)dξ =

∫ 0

−τM
A1(ξ)x(t+ ξ)dξ.

(13)

Here the second equality follows by application of the identity
(3) and Remark 1.

We are now ready to finally introduce the proposed system
transformation. Recalling (1) and (9), we employ the following
transformation

z(t) = x(t) +G(t), t ≥ 0. (14)

Taking into account (1), (10), (11) and (13), and differentiating
z(t) for t ≥ τM , we obtain

ż(t) = Az(t) +
∫ 0

−τM
A1(µ)z(t+ µ)dµ−AG(t)

+H0(t) +H1(t) +H2(t), t ≥ τM ,
(15)

where for t ≥ τM

H0(t) := −B
∫ t−τ0+δ

t−τ0−δ
1
δω

(
µ−t+τ0

δ

)
G(µ)dµ,

H1(t) :=
1
ϵT BA

∫ t+ϵT

t
(t+ ϵT − s)x(t− τ(s))ds,

H2(t) :=
1
ϵT B

2
∫ t+ϵT

t
(t+ ϵT − s)x(t− ρ(t, s))ds.

(16)

Note that for small ϵ > 0 and x(t) of the order of O(1),
we have G(t) = O(ϵ) in (9), as well as Hi(t) = O(ϵ), i =
0, 1, 2 in (16). Thus, (15) forms an O(ϵ) perturbation of the
comparison (i.e. averaged) system (5).

Differently from the analysis in [18], we will analyze
the coupled systems (1) and (15) (note that the coupling is
manifested through both the transformation (14), and through
the last four terms on the right-hand side of (15)). Subject to
Assumption 1, we employ a recently established trajectory-
based inequality [20], [22], to derive estimates on ϵ > 0 in (2)
for which exponential stability of (1) holds. We conclude this
section with two a priori estimates on G(t) and z(t).

Proposition 2: Let β > 0 and recall the notation Mx(β)
from Proposition 1. Then, the following inequalities hold

|G(t)| ≤Mx(β) ∥ϕ∥C[−τM ,0] , t ∈ [0, β],

|z(t)| ≤ 2Mx(β) ∥ϕ∥C[−τM ,0] , t ∈ [0, β].
(17)

Proof: The first inequality follows from Proposition 1,
Assumption 2 and the following upper bound, as follows

|G(t)| ≤ ϵT∥B∥
2 supµ∈[t−τM ,t] |x(µ)|

≤ ϵT∥B∥Mx(β)
2 ∥ϕ∥C[−τM ,0] , t ∈ [0, β].

As for the second inequality, by (14) and the first line of (17)

|z(t)| ≤ |x(t)|+ |G(t)| ≤ 2Mx(β) ∥ϕ∥C[−τM ,0] , t ∈ [0, β].
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C. Trajectory-based analysis of the (x, z) system

Here we analyze the trajectories of the (x, z) system directly
and employ a recently developed trajectory-based inequality to
infer stability of the system. The next proposition is used in
the application of the trajectory-based inequality of Lemma 2.

Proposition 3: The following upper bounds are satisfied:

|G(t)| ≤ ϵT∥B∥
2 sups∈[t−τM ,t] |x(s)| , t ≥ 0,

|H0(t)| ≤ ϵT∥B∥2

2 sups∈[t−2τM ,t] |x(s)| , t ≥ τM ,

|H1(t)| ≤ ϵT∥A∥∥B∥
2 sups∈[t−τM ,t] |x(s)| , t ≥ τM ,

|H2(t)| ≤ ϵT∥B∥2

2 sups∈[t−2τM ,t] |x(s)| , t ≥ τM .

(18)

Proof: The estimate on |G(t)| , t ≥ 0 follows
immediately from (9) and the fact that

1

ϵT
∥B∥

∫ t+ϵT

t

(t+ ϵT − s) ds =
ϵT ∥B∥

2
.

For H0(t), t ≥ τM , we recall (4) and employ (16) to obtain

|H0(t)| ≤ ∥B∥ supµ∈[t−τM ,t] |G(µ)|
≤ ϵT∥B∥2

2 sups∈[t−2τM ,t] |x(s)| , t ≥ τM

where we used the upper bound on G(t), derived earlier. The
remaining upper bounds on |H1(t)| , t ≥ τM and |H2(t)| , t ≥
τM are proved in a similar manner.

We now recall the transformation (14) and note that it
implies

|x(t)| ≤ |z(t)|+ ϵT∥B∥
2 sups∈[t−τM ,t] |x(s)|

≤
[
ϵT∥B∥

2 1
] [sups∈[t−2τM−τ∗,t] |x(s)|

sups∈[t−2τM−τ∗,t] |z(s)|

]
, t ≥ 2τM + τ∗

(19)
where τ∗ > 0 will be specified later. In order to obtain a similar
estimate on z(t), we first employ (15) and the variation of
constants formula [21, Equation 2.12] to present the solution
of (15) as

z(t+ s) = Φ(t)z(s) +
∫ t

0
Φ(t− µ)F (µ)dµ

+
∫ 0

−τM

(∫ θ+τM
0

Φ(t− ρ)A1(θ − ρ)dρ
)
z(θ + s)dθ,

(20)
where t ≥ 0, s ≥ τM and

F (q) := −AG(q + s) +
∑2

i=0Hi(q + s), q ≥ 0. (21)

Note that here [21, Equation 2.12] was employed as follows.
First, recalling (15), we choose A0 = A, Ai = 0 for all i =
1, . . . ,K and Ad = A1. Second, consider the remaining term
Σ(t) = −AG(t)+H0(t)+H1(t)+H2(t) in (15). Noting that
Σ(t) depends only on x(t), which is continuous, and that the
(x, z) system has a cascade structure in which x(t) flows into
the z-system, we see that Σ(t) can be substituted for f(t) in
[21, Equation 2.12],

Recalling (7), we proceed with upper bounding the terms
on the right-hand side of (20). First, we have

|Φ(t)z(s)|
(7)
≤ MΦe

−σt |z(s)| . (22)

Second, employing Fubini’s theorem, we obtain∣∣∣∫ 0

−τM

(∫ θ+τM
0

Φ(t− ρ)A1(θ − ρ)dρ
)
z(θ + s)dθ

∣∣∣
≤MΦ

∫ 0

−τM

(∫ θ+τM
0

e−σ(t−ρ) ∥A1(θ − ρ)∥dρ
)
dθ

× supq∈[s−τM ,s] |z(q)|
≤MΦ

∫ τM
0

(∫ 0

ρ−τM
e−σ(t−ρ) ∥A1(θ − ρ)∥dθ

)
dρ

× supq∈[s−τM ,s] |z(q)|
=MΦ

∫ τM
0

e−σ(t−ρ)
(∫ −ρ

−τM
∥A1(θ)∥dθ

)
dρ

× supq∈[s−τM ,s] |z(q)|
≤ MΦ∥B∥

σ (eστM − 1) e−σt supq∈[s−τM ,s] |z(q)| .

(23)

Finally, we proceed to upper bound the term in (20), which
involves F , defined in (21). We do this by employing
Proposition 3 and obtain∣∣∣∫ t

0
Φ(t− µ)AG(µ+ s)dµ

∣∣∣
≤MΦ ∥A∥

∫ t

0
e−σ(t−µ) |G(µ+ s)|dµ

(18)
≤ MΦϵT∥A∥∥B∥

2

(∫ t

0
e−σ(t−µ)dµ

)
supq∈[s−τM ,s+t] |x(q)|

= MΦϵT∥A∥∥B∥
2σ (1− e−σt) supq∈[s−τM ,s+t] |x(q)| .

(24)
By similar arguments, the following bounds are also satisfied∣∣∣∫ t

0
Φ(t− µ)H0(µ+ s)dµ

∣∣∣
≤ MΦϵT∥B∥2

2σ (1− e−σt) supq∈[s−2τM ,s+t] |x(q)| ,∣∣∣∫ t

0
Φ(t− µ)H1(µ+ s)dµ

∣∣∣
≤ MΦϵT∥A∥∥B∥

2σ (1− e−σt) supq∈[s−τM ,s+t] |x(q)| ,∣∣∣∫ t

0
Φ(t− µ)H2(µ+ s)dµ

∣∣∣
≤ MΦϵT∥B∥2

2σ (1− e−σt) supq∈[s−2τM ,s+t] |x(q)| .
(25)

By combining (20)-(25) and replacing the variables as t →
t+ s, τ∗ → t and t− τ∗ → s, we have for t ≥ τM + τ∗

|z(t)| ≤MΦe
−στ∗ |z(t− τ∗)|

+MΦ∥B∥
σ (eστM − 1) e−στ∗ supq∈[t−τ∗−τM ,t] |z(q)|

+MΦϵT∥A∥∥B∥
σ (1− e−στ∗) supq∈[t−τ∗−τM ,t] |x(q)|

+MΦϵT∥B∥2

σ (1− e−στ∗) supq∈[t−τ∗−2τM ,t] |x(q)| .
(26)

Denoting

L1(σ, τ∗, τM ) :=MΦe
−στ∗

[
1 + σ−1 ∥B∥ (eστM − 1)

]
,

L2(σ, τ∗) := σ−1MΦT ∥B∥ (∥A∥+ ∥B∥) (1− e−στ∗)
(27)

we conclude that

|z(t)| ≤
[
ϵL2(σ, τ∗) L1(σ, τ∗, τM )

]
×
[
sups∈[t−2τM−τ∗,t] |x(s)|
sups∈[t−2τM−τ∗,t] |z(s)|

]
, t ≥ 2τM + τ∗.

(28)
Overall, from (19) and (28) we have for t ≥ 2τM + τ∗[

|x(t)|
|z(t)|

]
≤ Υ(ϵ, σ, τ∗, τM )

[
sups∈[t−2τM−τ∗,t] |x(s)|
sups∈[t−2τM−τ∗,t] |z(s)|

]
,

Υ(ϵ, σ, τ∗, τM ) :=

[
ϵT∥B∥

2 1
ϵL2(σ, τ∗) L1(σ, τ∗, τM )

]
,

(29)
where the inequality is interpreted coordinatewise. Note that
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aside from ϵ, and τ∗, all parameter in Υ(ϵ, σ, τ∗, τM ) are
assumed to be known. The parameters ϵ, τ∗ in (29) can then
be tuned to guarantee Schur stability of Υ(ϵ, σ, τ∗, τM ). By
[20, Lemma 5], Schur stability of Υ(ϵ, σ, τ∗, τM ) implies that
for t ≥ 2τM + τ∗[
|x(t)|
|z(t)|

]
≤ υe

ln(χ)
2τM+τ∗ (t−2τM−τ∗)

×
[
sups∈[0,2τM+τ∗] |x(s)|+ sups∈[0,2τM+τ∗] |z(s)|

]
(30)

where χ ∈ (0, 1) is the Perron eigenvalue (the real eigenvalue
of largest magnitude) and υ ∈ [1,∞)2 is the corresponding
right Perron eigenvector of the matrix Υ(ϵ, σ, τ∗, τM ) with
positive entries. The following proposition provides a sufficient
condition for Schur stability of Υ(ϵ, σ, τ∗, τM ). For brevity,
we suppress the dependencies of the expressions on their
respective arguments.

Proposition 4: Υ is Schur stable if

φ1 +
√

(1 + φ1)
2 − 4φ2

2 < 1,

φ1 := 1
4 (ϵT ∥B∥)2 + ϵ2L2

2 + L2
1, φ2 := 1

2ϵT ∥B∥L1 − ϵL2.
(31)

Proof: Recall that ∥Υ∥2 = λmax

(
Υ⊤Υ

)
. The

characteristic polynomial of Υ⊤Υ is given by

p(s) = s2 − ∥Υ∥2F s+ (det (Υ))
2
= s2 − (1 + φ1) s+ φ2

2,

where ∥·∥F is the Frobenius norm. It can be verified that the
discriminant of p(s) is positive. Hence,

∥Υ∥2 < 1 ⇔ 1+φ1+
√

(1+φ1)2−4φ2
2

2 < 1,

which is equivalent to (31). Since ∥Υ∥ is an upper bound on
the spectral radius of Υ, the claim of the proposition follows.

Summarizing, we arrive at
Theorem 1: Consider the system (1) with a delay τ(t) of

the form (2) with ϵ, δ > 0, τ0 ≥ δ, τ0 + δ = τM and
f : R → [−1, 1] a T -periodic function with

∫ T

0
f(s)ds = 0.

Consider the comparison (averaged) system (5) with the
integrable kernel ω : [−1, 1] → [0,∞) satisfying (3) for every
continuous function α : [−1, 1] → R. Let Assumption 1 hold
with known constants σ > 0 and MΦ ≥ 1. Let τ∗ > 0
and ϵ∗ > 0 be tuning parameters such that ϵT ∥B∥ < 2
and Υ(ϵ∗, σ, τ∗, τM ), given in (29), is Schur stable. Then,
for all ϵ ∈ (0, ϵ∗], the system (1) is uniformly exponentially
stable, meaning that there exist constants M∗ ≥ 1 and κ > 0,
independent of ϵ ∈ (0, ϵ∗], satisfying

|x(t)| ≤M∗e
−κt ∥ϕ∥C[−τM ,0] , t ≥ 0, ∀ϵ ∈ (0, ϵ∗]. (32)

Moreover, there always exist τ∗ > 0 large enough and ϵ∗ > 0
small enough such that Υ(ϵ∗, σ, τ∗, τM ) is Schur stable.

Proof: For any ϵ ∈ (0, ϵ∗], let χ(ϵ) and υ(ϵ) ∈
[1,∞)2 be the Perron eigenvalue and right eigenvector of
Υ(ϵ, σ, τ∗, τM ), respectively. Consider first Υ(0, σ, τ∗, τM ). A
direct computation of its characteristic polynomial yields

p0(z) = z(z − L1(σ, τ∗, τM )). (33)

Note that both eigenvalues of Υ(0, σ, τ∗, τM ) are simple.

Denote by υ(0) the eigenvector of Υ(0, σ, τ∗, τM )
corresponding to the eigenvalue L1(σ, τ∗, τM ), where
L1(σ, τ∗, τM ) ∈ (0, 1) provided τ∗ is large enough.

Let τ∗, ϵ∗ > 0 be such that Υ(ϵ∗, σ, τ∗, τM ) is Schur
stable. Then, for any 0 < ϵ1 ≤ ϵ2 ≤ ϵ∗, we have
0 < Υ(ϵ1, σ, τ∗, τM ) ≤ Υ(ϵ2, σ, τ∗, τM ), where the inequality
is understood coordinatewise. By [23, Corollary 8.1.19], the
spectral radius of Υ(ϵ, σ, τ∗, τM ) is monotonically decreasing
as ϵ ↘ 0. Hence, Υ(ϵ, σ, τ∗, τM ) is Schur for all 0 < ϵ ≤ ϵ∗.
Furthermore, 0 < χ(ϵ) ≤ χ(ϵ∗) =: q < 1 for all ϵ ∈ (0, ϵ∗].

As the eigenvalue L1(σ, τ∗, τM ) of Υ(0, σ, τ∗, τM ) is
simple, we have [24, Chapter 2]

lim
ϵ→0+

υ(ϵ) = υ(0), lim
ϵ→0+

χ(ϵ) = L1(σ, τ∗, τM ) ∈ (0, q].

(34)
Hence, the function ϵ 7→ ∥υ(ϵ)∥∞ is continuous on [0, ϵ∗],
due to χ(ϵ) being a simple eigenvalue for all ϵ ∈ (0, ϵ∗]
[24, Chapter 2]. Thus, there exists some N ≥ 1 such that
∥υ(ϵ)∥∞ ≤ N for all ϵ ∈ [0, ϵ∗].

Now, let ϵ ∈ (0, ϵ∗]. By (30), we have that for t ≥ 2τm+τ∗

|x(t)| ≤ υ1(ϵ)e
ln(χ(ϵ))
2τM+τ∗ (t−2τM−τ∗)

×
[
sups∈[0,2τM+τ∗] |x(s)|+ sups∈[0,2τM+τ∗] |z(s)|

]
Employing Propositions 1 and 2 with β∗ = 2τM +τ∗, we have

sups∈[0,β∗] |x(s)| ≤Mx(β∗) ∥ϕ∥C[−τm,0] ,

sups∈[0,β∗] |x(s)| ≤ 2Mx(β∗) ∥ϕ∥C[−τm,0] .

Therefore, for t ≥ β∗

|x(t)| ≤ 3Mx(β∗) ∥υ(ϵ)∥∞ e
ln(χ(ϵ))

β∗ (t−β∗) ∥ϕ∥C[−τM ,0]

≤M1(ϵ)e
−κ1(ϵ)t ∥ϕ∥C[−τM ,0]

(35)

with

κ1(ϵ) = − ln(χ(ϵ))
β∗

> 0, M1(ϵ) = 3Mx(β∗)Ne
− ln(χ(ϵ))).

(36)
Furthermore, Proposition 1 implies that (35) also holds on
t ∈ [0, β∗], which yields (32) with M∗ replaced by M1(ϵ) and
κ replaced by κ1(ϵ). To see that, given τ∗ > 0, the constants
M∗ and κ > 0 in (32) can be chosen independently of ϵ ∈
(0, ϵ∗], note that by (34), χ(ϵ) is bounded away from zero for
ϵ ∈ (0, ϵ∗]. Hence, by continuity of the logarithm and (36),
there exist κ > 0 and M∗ ≥ 1 such that κ1(ϵ) ≥ κ > 0 and
M1(ϵ) ≤M∗ for all ϵ ∈ (0, ϵ∗].

Finally, note that there always exist τ∗ > 0 large enough
and ϵ∗ > 0 small enough such that Υ(ϵ∗, σ, τ∗, τM ) is Schur
stable. Indeed, setting ϵ∗ = 0 and considering (27) and (33),
we see that limτ∗→∞ L1(σ, τ∗, τM ) = 0, whence for τ∗ > 0
large enough, Υ(0, σ, τ∗, τM ) is Schur stable. By continuity
of eigenvalues, Υ(ϵ∗, σ, τ∗, τM ) is also Schur stable for small
enough ϵ∗ > 0.

Remark 2: By the proof of Theorem 1, finding τ∗ > 0
which guarantees Schur stability of Υ(0, σ, τ∗, τM ) reduces
to solving MΦ

[
1 + σ−1 ∥B∥ (eστM − 1)

]
< eστ∗ for τ∗ > 0.

Note that this condition only involves the delay bound τM > 0
and the system matrices in (1) and σ,MΦ in Assumption 1.
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D. Implications for input-to-state stability

The results of Theorem 1 can be immediately applied to
ISS analysis of the following system

ẋ(t) = Ax(t) +Bx(t− τ(t)) + d(t),
x(t) = ϕ(t), t ∈ [−τM , 0]

(37)

where d : [0,∞) → Rn is a locally essentially bounded
disturbance.

The study of ISS of systems of the form (37) was not
carried out in [18], where asymptotic stability was achieved.
Indeed, the trajectory-based approach therein only establish
that exponential stability of the comparison system (5) implies
the stability of (1) for small enough ϵ > 0, without estimates
on how small ϵ must be. The lack of explicit estimates on
the solutions of (1) in [18] prohibits one from extending the
stability analysis to an ISS analysis. As the previous section
show, our approach yields explicit estimates on ϵ∗ > 0 such
that for ϵ ∈ (0, ϵ∗], the stability of (1) is guaranteed, as well
as on the corresponding exponential decay rate. Summarizing,

Theorem 2: Consider the system (37) with delay τ(t) of the
form (2) with ϵ, δ > 0, τ0 ≥ δ, τ0 + δ = τM f : R → [−1, 1]

a T -periodic function with
∫ T

0
f(s)ds = 0 and a piecewise

continuous disturbance d : [0,∞) → Rn. Consider the
comparison (averaged) disturbance-free system (5) with the
integrable kernel ω : [−1, 1] → [0,∞) satisfying (3) for every
continuous function α : [−1, 1] → R. Let the assumptions of
Theorem 1 hold. Then, for all ϵ ≤ ϵ∗, the system (37) is ISS.
More precisely, there exist constants M∗ ≥ 1, γD > 0 and
κ > 0, independent of ϵ ∈ (0, ϵ∗], satisfying

|x(t)| ≤M∗e
−κt ∥ϕ∥C[−τM ,0]

+γDD(t), t ≥ 0, ∀ϵ ∈ (0, ϵ∗],
(38)

where D(t) := sups∈[0,t] |d(s)| , t ≥ 0.

Proof: Denote by Ψ(t, ϵ) the fundamental solution of (1).
By Theorem 1, there exist constants M∗ ≥ 1 and κ > 0 such
that for ϵ ∈ (0, ϵ∗], the estimate (32) holds for any solution of
(1) (note that M∗ and κ can be estimated explicitly, as follows
from the proof of Theorem 1. The latter implies

∥Ψ(t, ϵ)∥ ≤M∗e
−κt, t ≥ 0, ϵ ∈ (0, ϵ∗]. (39)

By the variations of constants formula [21, Equation 2.12], the
solution to (37) is given by

x(t) = xh(t) +

∫ t

0

Ψ(t− s, ϵ)d(s)ds,

where xh(t) is the solution to the homogeneous system
corresponding to (37). Therefore, by Theorem 1 we have

|x(t)| ≤ |xh(t)|+
∫ t

0
∥Ψ(t− s, ϵ)∥ |d(s)|ds

≤M∗e
−κt ∥ϕ∥C[−τM ,0] +

M∗
κ D(t), t ≥ 0

which is the desired result with γD = M∗
κ .

Remark 3: For a fixed ϵ ∈ (0, ϵ∗], where ϵ∗ > 0 given
in Theorem 1, one can obtain tighter (non-uniform in ϵ) ISS
estimates than (38), by replacing M∗ and κ therein with M1(ϵ)
and κ1(ϵ), given in (36).

Fig. 1. Rapidly-varying delays 1+ 1
2
fi

(
t
ϵ

)
, i = 1, 2. Here ϵ = 0.0217 for

f1, whereas ϵ = 0.00033 for f2.

III. NUMERICAL EXAMPLES

In this section, we test our approach on the examples
presented in [18], and demonstrate the efficacy of our method
in providing explicit estimates on ϵ∗ > 0 for which the
exponential stability of (1) with ϵ ∈ (0, ϵ∗] is guaranteed.
Recall that this is done by tuning ϵ and τ∗ to obtain Schur
stability of Υ(ϵ, σ, τ∗, τM ) in (29) (see Theorems 1 and (2)).

A. Scalar system

We consider the following scalar equation from [18],

ẋ(t) = −x(t) + bx

(
t− 1− δf

(
t

ϵ

))
(40)

where ϵ > 0 and δ ∈ (0, 1]. The function f will have one of
the following forms

f1(t) =

{
2
π

(
t− π

2

)
, t ∈ [0, π)

2
π

(
3π
2 − t

)
, t ∈ [π, 2π)

⇒ ω1(t) ≡ 1
2 ,

f2(t) = sin(t) ⇒ ω2(t) =
1

π
√
1−t2

.

(41)

The parameters b and δ are free, whereas f1 and f2 are
considered as T = 2π periodic functions on R. The delays
1 + 1

2fi
(
t
ϵ

)
, i = 1, 2 are given in Figure 1.

Consider first the case of f1 in (41). For δ = 0, we employ
[21, Example 2.4] to infer the necessary condition b < 1
for stability of the system (40). Furthermore, the analytic
calculations in [21, Example 2.4] show that for a unit delay,
stability of (40) cannot be achieved for b ≤ −1.78. Next,
consider the case δ = 1

2 and the corresponding comparison
system (5) with f1 in (41). As implied by the results of [18],
the stability region of the comparison system (5) is enlarged
when δ is increased from zero. In particular, the comparison
system (5) is stable for values of b < −1.78. Choosing
b ∈ {−2,−2.5} and δ = 1

2 , we perform simulations of the
system (5) to estimate the norm of the fundamental solutions.
The results are shown in Figure 2, where we obtain ∥Φ(t)∥ ≤
2e−2t, t ≥ 0 for b = −2 and ∥Φ(t)∥ ≤ 2e−0.05t, t ≥ 0
for b = −2.5. For both b = −2 and b = −2.5, the result of
[18] guarantees stability of (40) with f1 of (41) and δ = 1

2 for
sufficiently small ϵ > 0, without providing an explicit estimate
on ϵ > 0 for which stability is preserved. Employing the
bounds on the fundamental solutions in Figure 2 and Theorem
1 , we look for ϵ∗ > 0 and τ∗ > 0 for which Υ(ϵ∗, σ, τ∗, τM ),
given in (29), is Schur stable. Note that here a = −1 and
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Fig. 2. Scalar system - Fundamental solutions of (5) with f1 in (41): b = −2
(left) and b = −2.5 (right).

Fig. 3. Scalar system - Stability of (40) with f1 in (41), b = −2 and
ϵ = 0.0217.

τM = 3
2 . Recall that the conditions of Theorem 1 guarantee

stability of the system (40) with f1 of (41). For b = −2,
the conditions of Theorem 1 are satisfied for ϵ∗ = 0.0227,
which is obtained for τ∗ = 5. For b = −2.5, the conditions of
Theorem 1 are satisfied for ϵ∗ = 0.0011, which is obtained for
τ∗ = 33.5. We fix b = −2 and simulate the system (40) with
ϵ = 0.0227 and initial condition ϕ(t) ≡ 1. The Simulation
is given in Figure 3 and validates our results. Simulation of
(40) with larger values of ϵ show that stability is preserved up
to ϵ∗ = 0.031, illustraiting some conservatism of our results.
Derivation of less conservative estimates on ϵ is left for future
research. Next, following [18], we consider (40) with b = −4,
δ = 1 and f2 in (41). For the comparison system (5) with
b = −4, δ = 1 and f2 of (41), we begin by simulating the
fundamental solution. The results are shown in Figure 4, where
we have ∥Φ(t)∥ ≤ 2e−0.05t, t ≥ 0. We employ Theorem 1 to
obtain ϵ∗ > 0 and τ∗ > 0 for which Υ(ϵ∗, σ, τ∗, τM ), given in
(29), is Schur stable. The conditions of Theorem 1 are satisfied
for ϵ∗ = 0.00033, obtained for τ∗ = 180.8. We then perform
simulations of the system system (40) with ϵ = 0.00033 and

Fig. 4. Scalar system - Fundamental solution of (5) with f2 in (41).

Fig. 5. Scalar system - Stability of (40) with f2 of (41), b = −4 and
ϵ = 0.00033.

Fig. 6. Instability of the second order system with τ0 = 0.06 and δ = 0.
The insets show the oscillations of the solution.

initial condition ϕ(t) ≡ 2. The simulation is given in Figure
5 and validates our results.

B. Second order system

We demonstrate our results on a model stemming from
variable spindle speed cutting machines, which describes one
mode of a mechanical rotational cutting process (see [4], [18]
for further details). Consider the system

ẍ(t) + 2ξωnẋ(t) +ϖ2
nx(t) =

k
m [x(t− τ(t))− x(t)] , (42)

where τ(t) is of the form (2) with τ0 = 0.022, δ = 0.05τ0 and
f(t) = f1(t) given in (41). The system (42) can be presented
as (1) with

A =

[
0 1

−ϖ2
n − k

m
−2ξϖn

]
, B =

[
0 0
k
m

0

]
.

Choosing the parameters ϖn = 795, k = m = 1 and ξ =
0.39585, we have ∥B∥ = 1 and ∥A∥ = 6.3203 ·105. We begin
by considering the system (1) with τ0 = 0.06 and δ = 0, i.e.
with a constant delay, and simulate the system with the initial
condition ϕ(t) = 1, t ∈ [−τ0, 0]. The simulation results are
shown in Figure 6 and show the instability of the system with
the constant discrete delay. Next, we choose δ = 0.01τ0 and
f = f1 of (41) and simulate the fundamental solution of the
comparison system (5). The results are given in Figure 7. In
particular, we see that the comparison system is stable and
the fundamental solution satisfies ∥Φ(t)∥ ≤ 800e−4t, t ≥ 0
(i.e., Mϕ = 800 and σ = 4). This fact implies the asymptotic
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Fig. 7. Second order system - Fundamental solution of (5) with δ = 0.01τ0
and f1 of (41). Exponential uper bound on norm of the fundamental solution.

Fig. 8. Second order system - Stability of (42) with τ0 = 0.06, δ = 0.01τ0
and f1 of (41) and ϵ = 0.00123.

stability of (1) for small enough ϵ > 0, and demonstrates the
”quenching phenomenon” in which the addition of the rapidly
time-varying delay to the constant delay τ0 in (1) improves the
stability of the system. Next, we employ the bounds on the
fundamental solutions in Figure 7 and Theorem 1 to derive
ϵ∗ > 0 and τ∗ > 0 which guarantees stability of (42). The
conditions of Theorem 1 are satisfied for ϵ∗ = 0.00123, which
is obtained for τ∗ = 122.3. Finally, we perform simulation of
(42) with ϵ = 0.00123 and initial condition ϕ(t) ≡ 2, t ∈
[−τM , 0]. The simulation is presented in Figure 8 and validates
our theoretical results.

IV. CONCLUSION

We studied the stability properties of linear systems
with rapidly-varying and periodic delays, which depend
on a small positive parameter ϵ. Building upon [18], we
employed a comparison (averaged) system whose exponential
stability guarantees the asymptotic stability of the original
system, provided the time-scale parameter ϵ is small enough.
Differently from [18], we introduced a novel transformation
which explicitly maps the original system into a perturbed
version of the comparison system. Assuming known bounds
on the fundamental solution of the comparison system,
the introduced transformation allowed to employ a recent
trajectory-based inequality to obtain explicit estimates on the
small parameter which guarantees exponential stability, as
well as on the exponential decay rate, of the original system.
We extended our results to ISS analysis of linear systems
with rapidly-varying and periodic delays, subject to locally
essentially bounded disturbances. Numerical simulations
which demonstrate the efficacy of the proposed method have

been presented. Future research may include the improvement
of the proposed method in order to obtain better estimates
on the small parameter and ISS gains and its extension to
nonlinear systems, as well as its application to constructive
methods for control problems that involve averaging, such as
vibrational control and extremum seeking.
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