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 A B S T R A C T

For an even power convex or concave function of a scalar variable having a global and unique extremum, 
an algorithm of the extremum seeking is proposed, which does not use any dither excitation signal, hence, 
being asymptotically exact, and it is based on online time derivative estimation of the measured output. Two 
approaches are discussed, first, with utilization of the super-twisting differentiator, and second, where the 
derivative is estimated via the time-delay method. For analysis of the latter, an extension of the invariance 
principle is formulated for functional differential inclusions. The efficiency of the suggested extremum seeking 
algorithms is illustrated through numeric experiments.
1. Introduction

Extremum seeking control and optimization found applications in 
many areas of science and technology (Krstić & Wang, 2000; Scheinker 
& Krstić, 2017; Zhang & Ordóñez, 2012). The basic problem consists 
in determining an extremum of a convex/concave uncertain map by 
controlling its argument and by measuring the respective value of this 
function, with absence of the access to its gradient, which is usually 
numerically reconstructed. To this end, there are perturbation-based 
and model-based approaches to extremum seeking (Dochain, Perrier, 
& Guay, 2011). The former uses dither signals, harmonic or stochastic, 
in order to evaluate the gradient through averaging approaches, while 
the latter is oriented on estimation of the map itself with posterior 
utilization of the gradient directly. After derivation of the estimates 
of the gradient, different nonlinear system dynamics may be used for 
extremum seeking, usually together with the dither signals (Angulo, 
2015; Labar, Garone, Kinnaert, & Ebenbauer, 2019; Nesić, Tan, Manzie, 
Mohammadi, & Moase, 2012; Suttner & Krstić, 2024; Zhang & Ordóñez, 
2007). Often, only convergence to a vicinity of the optimum is guar-
anteed even in the noise-free setting (due to introduction of auxiliary 
perturbations).

Estimation of derivative of a sufficiently smooth signal through its 
noisy measurements in real time is a well-known issue, which has 
many popular and well-established solutions (Cruz-Zavala, Moreno, & 
Fridman, 2011; Holloway & Krstić, 2019; Khalil, 2017; Levant, 1998; 
Lopez-Ramirez, Polyakov, Efimov, & Perruquetti, 2018; Orlov, 2022; 
Perruquetti, Floquet, & Moulay, 2008). Nevertheless, it is still an active 
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area of research. The issue of numeric differentiation of a noisy signal 
can be reformulated as a state estimation problem (Kairuz, Orlov, 
& Aguilar, 2022; Orlov & Kairuz, 2022; Reichhartinger, Efimov, & 
Fridman, 2018).

In this note, pursuing an asymptotically exact search for the opti-
mum, we are going to present our results on a new approach for ex-
tremum seeking, which is not based on dither signal (similarly to Hun-
nekens, Haring, van de Wouw, & Nijmeijer, 2014; Utkin, 1992) or 
model identification, but utilizes time derivative of the output (in order 
to evaluate the gradient of the map, similarly as it has been suggested 
in niga, López-Caamal, Hernández-Escoto, & Alcaraz-González, 2021) 
together with a special nonlinear dynamical optimization algorithm of 
the second order. In the noise-free setting our algorithm achieves the 
exact asymptotic convergence to the optimum. Two methods for online 
derivative estimation are used: the super-twisting differentiator, which 
provides the value of derivative in a finite time for noise-free setting, 
and time-delay approach (in Hunnekens et al., 2014 the delayed values 
of the output have been used to estimate the gradient in the model-
identification framework). The implementable version of the proposed 
algorithm is represented by discontinuous dynamical (time-delay) sys-
tems. Utilization of discontinuous dynamics for extremum seeking has 
been already reported in Korovin and Utkin (1974), Teixeira and Zak 
(1998), Utkin (1992) (sliding mode control), in this note another 
algorithm is proposed, which is not based on a line search method (Nu-
sawardhana & Zak, 2003), and whose performances are evaluated 
using a Lyapunov function (a Lyapunov-Krasovskii functional). The 
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algorithm has only three tuning parameters. The convergence results 
are obtained in weak sense (for some solutions of the discontinuous 
system), however, due to absence of the dither signal the steady-state 
error is avoided.

The proof is grounded on a reformulation of the integral invariance 
principle presented in Byrnes and Martin (1995), which is a weaker 
form of the LaSalle invariance principle (LaSalle, 1960), extended 
in Ryan (1998) to ordinary differential inclusions, with further gener-
alization in Desch, Logemann, Ryan, and Sontag (2001). The LaSalle 
invariance principle for time-delay systems has been obtained in Hale 
(1965).

The paper is organized as follows. The brief preliminaries are given 
in Section 2, where also an extension of LaSalle invariance princi-
ple is formulated for functional differential inclusions (our technical 
contribution). The problem statement is introduced in Section 3. A 
preliminary nonlinear extremum-seeking algorithm of second order 
based on the use of the exact derivative is presented in Section 4, 
clarifying the underlying idea of the proposed approach. Its extension 
(our main contribution), where the derivative is replaced with its 
estimation through the time-delay approach, is developed in Section 5. 
The results of numeric simulation of the designed algorithms with 
inclusion of a measurement noise are shown in Section 6.

Notation

• R+ = {𝑥 ∈ R ∶ 𝑥 ≥ 0}, where R is the set of real numbers, Z is 
the set of integer numbers, Z+ = Z ∩ R+.

• | ⋅ | denotes the absolute value in R or the Euclidean norm on R𝑛.
• 𝐶𝑛

[𝑎,𝑏], −∞ < 𝑎 < 𝑏 < +∞ denotes the Banach space of contin-
uous functions 𝜙 ∶ [𝑎, 𝑏] → R𝑛with the uniform norm ‖𝜙‖ =
sup𝑎≤𝜍≤𝑏 |𝜙(𝜍)|. For a set  ⊂ 𝐶𝑛

[𝑎,𝑏] and 𝜙 ∈ 𝐶𝑛
[𝑎,𝑏] let dist(𝜙,)

denote the distance between 𝜙 and the set .
• cl(⋅) denotes the closure of the argument set.
• Denote 𝐞 = exp(1).

2. Preliminaries

The definitions of standard stability notions used below can be 
found in Khalil (2002).

2.1. Exact super-twisting differentiator

The following result has been proven in Levant (1998) (with nu-
merous extensions obtained later, as for example in Cruz-Zavala et al., 
2011): 

Lemma 1.  Let 𝑦 ∶ R+ → R be a twice continuously differentiable signal 
with sup𝑡≥0 |𝑦̈(𝑡)| < +∞, then there exist 0 < 𝜆1 < 𝜆2 < +∞ and 𝑇 > 0 such 
that

𝑧2(𝑡) = 𝑦̇(𝑡), ∀𝑡 ≥ 𝑇 ,

where 𝑧2(𝑡) is the output of the following system:
𝑧̇1(𝑡) = −𝜆1

√

|𝑧1(𝑡) − 𝑦(𝑡)|sign(𝑧1(𝑡) − 𝑦(𝑡)) + 𝑧2(𝑡),

𝑧̇2(𝑡) = −𝜆2sign(𝑧1(𝑡) − 𝑦(𝑡)), (1)
𝑧1(0) = 𝑧2(0) = 0.

In the same work it has been also shown that if noisy measurements 
𝑦(𝑡) + 𝑣(𝑡) are available, where 𝑣 ∶ R+ → R is a bounded Lebesgue 
measurable perturbation, then the estimation error 𝑧2(𝑡) − 𝑦̇(𝑡) stays 
bounded. There are also many works providing tuning of the gains 
𝜆1 and 𝜆2, with estimation of the settling time 𝑇 , see for exam-
ple (Cruz-Zavala & Moreno, 2016; Mojallizadeh, Brogliato, & Acary, 
2021; Seeber, 2023).
2 
2.2. Stability of functional differential inclusions

Consider a functional differential inclusion of retarded type: 
𝑥̇(𝑡) ∈ 𝐹 (𝑥𝑡), 𝑡 ≥ 0, (2)

where 𝑥(𝑡) ∈  ⊆ R𝑛 and 𝑥𝑡 ∈ X = {𝜙 ∈ 𝐶𝑛
[−𝜏,0] ∶ 𝜙(𝑠) ∈  ,∀𝑠 ∈ [−𝜏, 0]}

is the state function, 𝑥𝑡(𝑠) = 𝑥(𝑡 + 𝑠), −𝜏 ≤ 𝑠 ≤ 0 and 𝜏 > 0 is a finite 
delay,  is open and contains the origin; the map 𝐹 (𝜙) ⊂ R𝑛, 𝜙 ∈ X
is upper semicontinuous taking nonempty, convex and compact values 
on each bounded subset of X, which guarantees that for each 𝑥0 ∈ X
there exists a non-empty set 𝑆(𝑥0) of solutions in forward time for the 
system (2) (Kolmanovskii & Myshkis, 1999). Denote such a solution 
by 𝑥(⋅, 𝑥0) ∈ 𝑆(𝑥0), which is absolutely continuous and defined on 
some time interval [−𝜏, 𝑇𝑥0 ) for 𝑇𝑥0 ∈ R+ ∪ {+∞} (then 𝑥𝑡(𝑥0) ∈ X
or 𝑥(𝑡, 𝑥0) ∈  denote realizations of the solution for given 𝑡), and it 
satisfies (2) for almost all instant of time in [−𝜏, 𝑇𝑥0 ) (we assume that 
the solutions in 𝑆(𝑥0) are all maximal, i.e., they do not have a proper 
right extension that is also a solution of (2)). Let {0} ⊆ 𝐹 (0), then (2) 
admits the zero solution, and denote 𝐵𝛿 = {𝜙 ∈ 𝐶𝑛

[−𝜏,0] ∶ ‖𝜙‖ < 𝛿}. 

Definition 1.  The zero solution of (2) is said to be strongly (weakly) 
stable if for all 𝜖 > 0 there exits 𝛿 > 0 such that 𝑥0 ∈ 𝐵𝛿 ∩ X implies 
that 𝑥(𝑡, 𝑥0) is defined for 𝑡 ≥ 0 and |𝑥(𝑡, 𝑥0)| < 𝜖 for 𝑡 ≥ 0 for all 
(for at least one) 𝑥(⋅, 𝑥0) ∈ 𝑆(𝑥0). If, in addition, there is 𝜌 > 0 such 
that lim𝑡→+∞ |𝑥(𝑡, 𝑥0)| = 0 for all (for at least one) 𝑥(⋅, 𝑥0) ∈ 𝑆(𝑥0) for 
any 𝑥0 ∈ 𝐵𝜌 ∩ X, then the zero solution is said to be strongly (weakly) 
asymptotically stable.

Definition 2.  For all 𝑥0 ∈ X, 𝛺(𝑥0) ⊂ 𝐶𝑛
[−𝜏,0] is the strong (weak) 𝜔-limit 

set of 𝑥0, if any (at least one) 𝑥(⋅, 𝑥0) ∈ 𝑆(𝑥0) is defined for all 𝑡 ≥ 0 and 
there is a sequence 𝑡𝑛 ∈ R+, 𝑛 ∈ Z+ with lim𝑛→+∞ 𝑡𝑛 = +∞ such that 
‖𝑥𝑡𝑛 (𝑥0) − 𝜙‖ → 0 as 𝑛 → +∞ for some 𝜙 ∈ 𝛺(𝑥0) (and 𝛺(𝑥0) is minimal 
such a set).

Definition 3.  A set  ⊂ X is called forward strongly (weakly) invariant 
if for any 𝑥0 ∈ , 𝑥(𝑡, 𝑥0) is defined for 𝑡 ≥ 0 and 𝑥𝑡(𝑥0) ∈  for 𝑡 ≥ 0
for all (for at least one) 𝑥(⋅, 𝑥0) ∈ 𝑆(𝑥0).

The following lemma can be proven repeating the argumentation 
of Hale (1965, Lemma 2): 

Lemma 2.  For all 𝑥0 ∈ X, if any (at least one) 𝑥(⋅, 𝑥0) ∈ 𝑆(𝑥0)
is defined for all 𝑡 ≥ 0 and |𝑥(𝑡, 𝑥0)| < +∞ for 𝑡 ≥ 0, then 𝛺(𝑥0) is 
a nonempty, compact and forward strongly (weakly) invariant set with 
dist(𝑥𝑡(𝑥0), 𝛺(𝑥0)) → 0 as 𝑡 → +∞.

If 𝑉 ∶ X → R+ is a continuous functional, for any 𝜙 ∈ X define

𝐷𝑉 (𝜙)𝐹 (𝜙) = sup
𝑥(⋅,𝜙)∈𝑆(𝜙)

lim sup
ℎ→0+

𝑉 (𝑥ℎ(𝜙)) − 𝑉 (𝜙)
ℎ

,

which is a directional derivative of 𝑉  on solutions of (2) (it allows the 
decay of just continuous 𝑉  on the trajectories of (2) to be evaluated). 
Combining the results of Desch et al. (2001), Ryan (1998) and Theorem 
1 of Hale (1965) we get: 

Theorem 1.  Let 𝑔 ∶ X → R+ be a lower semicontinuous functional. 
If for some 𝑥0 ∈ X any (at least one) 𝑥(⋅, 𝑥0) ∈ 𝑆(𝑥0) is bounded with 
cl(𝑥(R+, 𝑥0)) ⊂  and ∫ +∞

0 𝑔(𝑥𝑡(𝑥0))𝑑𝑡 < +∞, then such 𝑥𝑡(𝑥0) approaches 
for 𝑡 → +∞ the largest forward strongly (weakly) invariant set in 𝛴 = {𝜙 ∈
X ∶ 𝑔(𝜙) = 0}.

Proof.  Boundedness of 𝑥(⋅, 𝑥0) guarantees that this solution is defined 
for all 𝑡 ≥ 0, and by Lemma  2 it implies that 𝛺(𝑥0) is a forward strongly 
(weakly) invariant set, which is nonempty and compact, moreover 
𝛺(𝑥0) ⊂ X. By the properties of 𝐹 , in such a case |𝑥̇(𝑡, 𝑥0)| < +∞ for 
all 𝑡 ≥ 0, then 𝑥(⋅, 𝑥 ) is uniformly continuous, and 𝑔(𝑡) = 𝑔(𝑥 (𝑥 )) is 
0 𝑡 0
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meagre (Desch et al., 2001), then 𝛺(𝑥0) ⊂ 𝛴 by Lemma 9 in Desch 
et al. (2001). Consequently, dist(𝑥𝑡(𝑥0), 𝛺(𝑥0) ∩ 𝛴) → 0 as 𝑡 → +∞, 
and it reaches the largest forward strongly (weakly) invariant subset 
there. □

Theorem 2.  Let 𝑉 ∶ X → R+ be a continuous functional and 
𝐷𝑉 (𝜙)𝐹 (𝜙) ≤ 0 for all 𝜙 ∈ X, and denote  = {𝜙 ∈ X ∶ 𝐷𝑉 (𝜙)𝐹 (𝜙) = 0}. 
If for some 𝑥0 ∈ X any (at least one) 𝑥(⋅, 𝑥0) ∈ 𝑆(𝑥0) is bounded with 
cl(𝑥(R+, 𝑥0)) ⊂  , then such 𝑥𝑡(𝑥0) approaches for 𝑡 → +∞ the largest 
forward strongly (weakly) invariant set in .

Proof.  Again, boundedness of 𝑥(⋅, 𝑥0) by Lemma  2 implies that 𝛺(𝑥0)
is a forward strongly (weakly) invariant set, which is nonempty and 
compact, moreover 𝛺(𝑥0) ⊂ X. Then a continuous functional 𝑉  has a 
limit on this trajectory: 𝑉 (𝑥𝑡(𝑥0)) → 𝓁 as 𝑡 → +∞. Moreover, there 
exist 𝜙 ∈ 𝛺(𝑥0) such that 𝑉 (𝜙) = 𝓁 and 𝐷𝑉 (𝜙)𝐹 (𝜙) = 0. Therefore, 
dist(𝑥𝑡(𝑥0), 𝛺(𝑥0)∩) → 0 as 𝑡 → +∞, and it reaches the largest forward 
strongly (weakly) invariant subset there. □

These results present the extensions of integral and LaSalle invari-
ance principles, respectively, for retarded differential inclusions.

The definitions and results in this subsection are given for time-
delay systems, and they also hold in the context of conventional or-
dinary differential inclusions (Desch et al., 2001; Filippov, 1988; Ryan, 
1998).

3. Problem statement

Let 𝑓 (𝑥) = 𝑏
𝜅 (𝑥 − 𝑥0)𝜅 + 𝑎 be a 1D map of interest with 𝑥, 𝑥0 ∈ R, 

where 𝜅 ≥ 2 is an unknown even integer, the parameters 𝑎 ∈ R and 
𝑏 ∈ R are unknown, the sign of 𝑏 is known (for brevity below we will 
assume that 𝑏 > 0). We will need the following hypotheses: 

Assumption 1.  There are known constants 𝑎0 ≥ 0, 𝑥min > 0 and 
𝑥max > 𝑥min such that 𝑎 + 𝑎0 ≥ 0 and 𝑥min < 𝑥0 < 𝑥max.

We consider here the case of some knowledge about the map 
(i.e., ‘‘grey box’’ model) – the information of the interval for the 
extremum point 𝑥0 and the lower bound on 𝑎.

It is required to design an algorithm generating a continuous signal 
𝑥(𝑡) ∈ R and measure
𝑦(𝑡) = 𝑓 (𝑥(𝑡)),

providing realization of the seeking goal: 
lim

𝑡→+∞
𝑥(𝑡) = 𝑥0. (3)

Such a statement corresponds to the conventional extremum seeking 
problem (Krstić & Wang, 2000; Scheinker & Krstić, 2017; Zhang & 
Ordóñez, 2012).

4. Preliminary derivative-based solution

Assume that 𝑥(𝑡) is a continuously differentiable function of time, 
then

𝑦̇(𝑡) = 𝑓 ′(𝑥(𝑡))𝑥̇(𝑡),

where

𝑓 ′(𝑥) = 𝑏(𝑥 − 𝑥0)𝜅−1

is the gradient of 𝑓 . And clearly, if the signal 𝑓 ′(𝑥(𝑡)) can be computed 
(or the function 𝑓 ′ can be calculated) the extremum seeking problem 
has a simple solution: 𝑥̇(𝑡) = −𝛾𝑓 ′(𝑥(𝑡)) for any 𝛾 > 0. Usually, in 
the extremum seeking literature, additive and/or multiplicative dither 
signals are used to approximate this gradient (Dochain et al., 2011; 
Krstić & Wang, 2000; Scheinker & Krstić, 2017), and practical conver-
gence to 𝑥  is proved via classical averaging or Lie-brackets-based one. 
0

3 
Another approach is based on different line search methods (Korovin 
& Utkin, 1974; Nusawardhana & Zak, 2003; Teixeira & Zak, 1998). In 
this work we are going to propose a new extremum-seeking algorithm, 
which does not use auxiliary perturbations focusing on extraction of 
the information about 𝑓 ′ from 𝑦̇(𝑡) (or its estimates).

Further, assume that 𝑥(𝑡) is twice continuously differentiable, then

𝑦̈(𝑡) = 𝑓 ′′(𝑥(𝑡))𝑥̇2(𝑡) + 𝑓 ′(𝑥(𝑡))𝑥̈(𝑡),

where

𝑓 ′′(𝑥) = 𝑏(𝜅 − 1)(𝑥 − 𝑥0)𝜅−2.

Therefore, under Assumption  1, for bounded by max{|𝑥min|, |𝑥max|}
variable 𝑥(𝑡) with a respectively bounded 𝑥̇(𝑡) and 𝑥̈(𝑡), the signal 𝑦̈(𝑡)
will be bounded, which allows us to apply the super-twisting differ-
entiator (1) in order to exactly estimate 𝑦̇(𝑡) in a finite time. Then 
𝑓 ′(𝑥(𝑡)) = 𝑥̇−1(𝑡)𝑦̇(𝑡), which can be used for solution of the extremum 
seeking problem. For illustration of this idea, consider an optimization 
algorithm:

𝑥̇1(𝑡) = 𝑥2(𝑡), (4)

𝑥̇2(𝑡) =

⎧

⎪

⎨

⎪

⎩

sin( 2𝜋
𝑇

𝑡) if 𝑡 ∈ [0, 𝑇 ],

−𝑎1
𝑧2(𝑡)
𝑥2(𝑡)

− 𝑎2(𝑎0 + 𝑦(𝑡))𝑥2(𝑡) if 𝑡 > 𝑇 ,

𝑥(𝑡) = 𝑥1(𝑡),

𝑥1(0) ∈ (𝑥min, 𝑥max), 𝑥2(0) ∈ R,

where 𝑎1 > 0 and 𝑎2 > 0 are tuning parameters, 𝑧2(𝑡) is the output of (1), 
and 𝑇  comes from Lemma  1 (the system is initially excited for 𝑡 ∈ [0, 𝑇 )
while differentiator is converging). As we can conclude, for a proper 
tuning of the gains 𝜆1 and 𝜆2 all conditions of this lemma are satisfied, 
and 𝑧2(𝑡) = 𝑦̇(𝑡) for all 𝑡 ≥ 𝑇  (in such a case 𝑧2(𝑡)𝑥2(𝑡)

= 𝑓 ′(𝑥1(𝑡)) and 𝑦̈(𝑡) stays 
bounded for 𝑡 ≥ 𝑇  as it is required in Lemma  1). Therefore, introducing 
the seeking error 𝜖1(𝑡) = 𝑥1(𝑡) − 𝑥0 and its velocity 𝜖2(𝑡) = 𝑥2(𝑡) we get 
its dynamics for 𝑡 ≥ 𝑇 :

𝜖̇1(𝑡) = 𝜖2(𝑡), (5)

𝜖̇2(𝑡) = −𝑎1𝑏𝜖𝜅−11 (𝑡) − 𝑎2(𝑎0 + 𝑎 + 𝑏
𝜅
𝜖𝜅1 (𝑡))𝜖2(𝑡),

which has a canonical Liénard form, and it admits a Lyapunov function 
(Aleksandrov, Efimov, & Dashkovskiy, 2023):

𝑉 (𝜖1, 𝜖2) =
(

𝜖2 + 𝑎2 ∫

𝜖1

0
𝑎0 + 𝑎 + 𝑏

𝜅
𝑠𝜅𝑑𝑠

)2
+ 𝜖22

+4𝑎1𝑏∫

𝜖1

0
𝑠𝜅−1𝑑𝑠 (6)

=
(

𝜖2 + 𝑎2

(

(𝑎0 + 𝑎)𝜖1 +
𝑏

𝜅(𝜅 + 1)
𝜖𝜅+11

))2
+ 𝜖22

+
4𝑎1𝑏
𝜅

𝜖𝜅1 ,

which is positive definite and radially unbounded under introduced 
restrictions, and whose time derivative calculated on the solutions of 
(5) takes the form:

𝑉̇ = −2𝑎1𝑎2𝑏
(

(𝑎0 + 𝑎)𝜖𝜅1 + 𝑏
𝜅(𝜅 + 1)

𝜖2𝜅1

)

−2𝑎2
(

𝑎0 + 𝑎 + 𝑏
𝜅
𝜖𝜅1
)

𝜖22

guaranteeing the global asymptotic stability of the origin. Thus, the 
following result has been proven: 

Proposition 1.  Under Assumption  1, for any 𝑇 > 0, 𝑎1 > 0 and 𝑎2 > 0
there exist the gains 0 < 𝜆1 < 𝜆2 such that all state variables 𝑧1(𝑡), 𝑧2(𝑡), 
𝑥1(𝑡), 𝑥2(𝑡) of the system (1) governed by the algorithm (4) stay bounded 
for 𝑡 ≥ 0 and (3) is realized.
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Increasing the values of the gains 𝑎1 and 𝑎2 it is possible to acceler-
ate the convergence in this system.

The proposed extremum seeking algorithm (1), (4) just illustrates 
the main approach of this work, but it is difficult to apply it directly 
since the division in the term 𝑧2(𝑡)

𝑥2(𝑡)
 may produce a discontinuity for 

any numeric or measurement inaccuracy. Introducing the change of 
coordinates: 

𝜉1(𝑡) = 𝑥1(𝑡), 𝜉2(𝑡) = |𝑥2(𝑡)|𝑥2(𝑡), (7)

another system can be used for implementation of (4) for 𝑡 ≥ 𝑇 :

𝜉̇1(𝑡) =
√

|𝜉2(𝑡)|sign(𝜉2(𝑡)), (8)

𝜉̇2(𝑡) =

⎧

⎪

⎨

⎪

⎩

sin ( 2𝜋
𝑇

𝑡) if 𝑡 ∈ [0, 𝑇 ]

−2(𝑎1𝑧2(𝑡)sign(𝜉2(𝑡))
+𝑎2(𝑎0 + 𝑦(𝑡))𝜉2(𝑡)) if 𝑡 > 𝑇 ,

𝑥(𝑡) = 𝜉1(𝑡),

𝜉1(0) ∈ (𝑥min, 𝑥max), 𝜉2(0) ∈ R,

which has a discontinuous right-hand side similarly to (1), and its 
Filippov regularization is upper semicontinuous with nonempty, convex 
and compact values, hence, it admits a nonempty set of solutions for 
any initial conditions. Note this algorithm does not belong to the class 
of heavy ball methods (Ghadimi, Feyzmahdavian, & Johansson, 2015) 
due to the presence of the product 𝑦(𝑡)𝜉2(𝑡) = 𝑓 (𝜉1(𝑡))𝜉2(𝑡). Substituting 
𝑧2(𝑡) = 𝑦̇(𝑡) in the expression above, for 𝑡 ≥ 𝑇  we obtain:

𝜉̇1(𝑡) =
√

|𝜉2(𝑡)|sign(𝜉2(𝑡)),

𝜉̇2(𝑡) = −2
(

𝑎1𝑓
′(𝜉1(𝑡))

√

|𝜉2(𝑡)| + 𝑎2(𝑎0 + 𝑦(𝑡))𝜉2(𝑡)
)

,

then it becomes clear that for 𝑥(𝑡) = 𝜉1(𝑡) the conditions of Lemma  1 
are still valid for 𝑡 ≥ 𝑇 , and that the right-hand side of (8) is a function 
of 𝜉2(𝑡). Consequently, the line 𝜉2 = 0 contains the set of equilibria in 
this system. However, since the square root function is not Lipschitz 
continuous at zero, while 𝑓 ′(𝜉1(𝑡)) ≠ 0 there is always a trajectory that 
leaves this line (i.e., it is easy to verify that a scalar differential equation 
𝜁̇ (𝑡) = 𝛼

√

|𝜁 (𝑡)| with 𝜁 (0) = 0 and 𝛼 ∈ R has a solution 𝜁 (𝑡) = 𝛼|𝛼|
4 𝑡2 for 

𝑡 ≥ 0). Thus, the line 𝜉2 = 0 is composed by weakly invariant steady 
states, and the only strongly invariant one corresponds to 𝜉1 = 𝑥0 due 
to 𝑓 ′(𝑥0) = 0 by construction.

Our main result in this section is as follows: 

Theorem 3.  Under Assumption  1, for any 𝑇 > 0, 𝑎1 > 0 and 𝑎2 > 0
there exist the gains 0 < 𝜆1 < 𝜆2 such that all state variables 𝑧1(𝑡), 𝑧2(𝑡), 
𝜉1(𝑡), 𝜉2(𝑡) of the system (1) with the algorithm (8) stay bounded for 𝑡 ≥ 0
and (3) is realized weakly (i.e., for any initial conditions there is a solution 
verifying this property).

Note that the result is semi-global with respect to the bounds 𝑥min
and 𝑥max introduced in Assumption  1 and the parameters of the map 𝑎, 
𝑏 and 𝜅: for all their values, there are the gains 𝜆1 and 𝜆2.

Proof.  There exist 0 < 𝜆1 < 𝜆2 such that all conditions of Lemma  1 
are verified for given 𝑇  and 𝑡 ≤ 𝑇 , then 𝑧2(𝑡) = 𝑦̇(𝑡) for 𝑡 ≥ 𝑇  as desired 
provided that the variables 𝜉1(𝑡), 𝜉2(𝑡) are bounded for 𝑡 ≥ 𝑇 . Indeed, 
in such a case these gains 𝜆1 and 𝜆2 can be further selected to ensure 
that Lemma  1 holds for 𝑡 ≥ 𝑇 . To prove boundedness and convergence 
of the state in (8), define the seeking error 𝜀1(𝑡) = 𝜉1(𝑡) − 𝑥0 and denote 
the signed square of its velocity by 𝜀2(𝑡) = 𝜉2(𝑡), which for 𝑡 ≥ 𝑇  obey 
the differential equations:

𝜀̇1(𝑡) =
√

|𝜀2(𝑡)|sign(𝜀2(𝑡)),

𝜀̇2(𝑡) = −2(𝑎1𝑏𝜀𝜅−11 (𝑡)
√

|𝜀2(𝑡)| + 𝑎2(𝑎0 + 𝑎

+ 𝑏
𝜅
𝜀𝜅1 (𝑡))𝜀2(𝑡)),
4 
and consider the same Lyapunov function (6) rewritten for these coor-
dinates:

𝑉 (𝜀1, 𝜀2) = |𝜀2| +
4𝑎1𝑏
𝜅

𝜀𝜅1

+
(

√

|𝜀2|sign(𝜀2) + 𝑎2

(

(𝑎0 + 𝑎)𝜀1 +
𝑏

𝜅(𝜅 + 1)
𝜀𝜅+11

))2
.

Note that the dynamics of 𝜀1(𝑡) and 𝜀2(𝑡) are described by continuous 
differential equations, which are not locally Lipschitz continuous on 
the set 𝜀2 = 0, while the Lyapunov function 𝑉  is not continuously 
differentiable for 𝜀2 = 0. However, as it has been discussed above, 
away the origin, for any point with 𝜀1 ≠ 0 and 𝜀2 = 0 always there 
is a solution that immediately exits the set 𝜀2 = 0, so outside the origin 
the time derivative of 𝑉 (𝜀1(𝑡), 𝜀2(𝑡)) should be well defined for almost 
all 𝑡 ≥ 0 and it takes the form for 𝜀2 ≠ 0:

𝑉̇ = −2𝑎1𝑎2𝑏
(

(𝑎0 + 𝑎)𝜀𝜅1 + 𝑏
𝜅(𝜅 + 1)

𝜀2𝜅1

)

−2𝑎2(𝑎0 + 𝑎 + 𝑏
𝜅
𝜀𝜅1 )|𝜀2|

that is as before. Therefore, for any initial conditions there is a solution 
such that away the origin 𝑉 (𝜀1(𝑡), 𝜀2(𝑡)) is strictly decaying for almost 
all 𝑡 ≥ 0, hence the origin is weakly attracting. □

The system (1), (8) has well-defined solutions, and according to this 
theorem it solves the extremum seeking problem.

5. Delay-based derivative estimation

In this section the main contribution of the paper is given.
To this end, note that synthesis of a numerical scheme that dis-

cretizes (1) with preservation of the property 𝑧2(𝑡) = 𝑦̇(𝑡) for 𝑡 ≥ 𝑇
is a complicated issue (Acary & Brogliato, 2010; Polyakov, Efimov, 
& Brogliato, 2019) (discretization is required for implementation of 
the algorithm on any digital device). Moreover, presence of numerical 
or measurement noises does not allow the derivative to be calculated 
exactly in (1), as well as in any other differentiator. Thus, it is more 
convenient for applications to replace an exact differentiator by another 
method, which is approximating the derivative with a known error, and 
analyse how such a modification influences the suggested extremum 
seeking approach.

In this paper the time-delay framework is used for derivative ap-
proximation (Fridman & Shaikhet, 2017; Selivanov & Fridman, 2018): 
the expression

𝑦̇(𝑡) =
𝑦(𝑡) − 𝑦(𝑡 − 𝜏) + 𝑅̇(𝑡)

𝜏
, 𝑡 ≥ 0

is satisfied for any delay 𝜏 > 0, where

𝑅(𝑡) = ∫

𝑡

𝑡−𝜏
(𝑠 − 𝑡 + 𝜏)𝑦̇(𝑠)𝑑𝑠.

Consequently, the system (1), (4) can be replaced with
𝑥̇1(𝑡) = 𝑥2(𝑡), (9)

𝑥̇2(𝑡) = −𝑎1
𝑦(𝑡) − 𝑦(𝑡 − 𝜏)

𝜏𝑥2(𝑡)
− 𝑎2(𝑎0 + 𝑦(𝑡))𝑥2(𝑡),

𝑥(𝑡) = 𝑥1(𝑡),

𝑥1(𝑠) = 𝑥min, 𝑥2(𝑠) = const > 0, ∀𝑠 ∈ [−𝜏, 0],

where 𝑎1 > 0 and 𝑎2 > 0 are the same tuning parameters and 𝜏 >
0 is any delay, and the output of the differentiator (1) is replaced 
with the simplest derivative estimate 𝑦(𝑡)−𝑦(𝑡−𝜏)𝜏 , then the state of this 
system belongs to 𝐶2

[−𝜏,0]. Using the change of coordinates (7) we get 
an implementable version of the optimization algorithm (9):
𝜉̇1(𝑡) =

√

|𝜉2(𝑡)|sign(𝜉2(𝑡)), (10)

𝜉̇2(𝑡) = −2(𝑎1
𝑦(𝑡) − 𝑦(𝑡 − 𝜏)

𝜏
sign(𝜉2(𝑡))

+ 𝑎 (𝑎 + 𝑦(𝑡))𝜉 (𝑡)),
2 0 2
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𝑥(𝑡) = 𝜉1(𝑡).

The dynamics of 𝜉2(𝑡) can be rewritten as follows:
𝜉̇2(𝑡) = −2(𝑎1𝑓 ′(𝜉1(𝑡))

√

|𝜉2(𝑡)| + 𝑎2(𝑎0 + 𝑎

+𝑓 (𝜉1(𝑡)))𝜉2(𝑡) −
𝑎1
𝜏
𝑅̇(𝑡)sign(𝜉2(𝑡))),

then introducing the seeking error 𝜀1(𝑡) = 𝜉1(𝑡) − 𝑥0 and denoting the 
signed square of its velocity by 𝜀2(𝑡) = 𝜉2(𝑡), we obtain an equivalent 
representation of (10):
𝜀̇1(𝑡) =

√

|𝜀2(𝑡)|sign(𝜀2(𝑡)), (11)

𝜀̇2(𝑡) = −2(𝑎1𝑏𝜀𝜅−11 (𝑡)
√

|𝜀2(𝑡)| + 𝑎2(𝑎0 + 𝑎 + 𝑏
𝜅
𝜀𝜅1 (𝑡))𝜀2(𝑡)

−
𝑎1
𝜏
𝑅̇(𝑡)sign(𝜀2(𝑡))),

where with respect to the error dynamics studied in the previous 
section we have an additional perturbation term 2 𝑎1

𝜏 𝑅̇(𝑡)sign(𝜀2(𝑡)) that 
is originated from the derivative estimation by the delayed measure-
ments, and

𝑅̇(𝑡) = 𝜏𝑏𝜀𝜅−11 (𝑡)
√

|𝜀2(𝑡)|sign(𝜀2(𝑡)) +
𝑏
𝜅
(𝜀𝜅1 (𝑡 − 𝜏) − 𝜀𝜅1 (𝑡)).

We need now to establish the conditions of boundedness and conver-
gence of a trajectory of (11) to the origin (that implies realization of 
(3) in (10)).

Again, the right-hand side of (11) is multiplied by 𝜀2(𝑡) (or its sign), 
hence the set 𝜀2 = 0 contains the equilibria of the system. However, it is 
important to recall that the perturbation term 𝑅̇(𝑡) includes the delayed 
variables, then the Filippov’s convex embedding of (11) is a functional 
differential inclusion as (2). Moreover, the presence of sign(𝜀2(𝑡)) and 
multiplication of other items by 𝜀2(𝑡) in different powers implies that 
the set 𝜀2 = 0 can be reached only if 𝑅̇(𝑡) ≤ 0, which follows by 
𝜀𝜅1 (𝑡 − 𝜏) − 𝜀𝜅1 (𝑡) ≤ 0. As a consequence, once a trajectory of (11) enters 
the set 𝜀2 = 0, it stays there during a time interval less or equal to 𝜏 (in 
such a case 𝜀̇1(𝑡) = 0 and at least after the delay period 𝜏 the equality 
𝜀𝜅1 (𝑡 − 𝜏) = 𝜀𝜅1 (𝑡) should be verified), next 𝑅̇(𝑡) = 0 and for 𝜀1(𝑡) ≠ 0 the 
term −2𝑎1𝑏𝜀𝜅−11 (𝑡)

√

|𝜀2(𝑡)| guarantees existence of a trajectory leaving 
the set 𝜀2 = 0 as in the previous section. So, the only difference with 
the case of the system (1), (8) is that trajectories of (11) for 𝜀1 ≠ 0
leave the set 𝜀2 = 0 not obligatory immediately, and may stay in this 
set a time interval of the maximal length 𝜏 > 0. Therefore, zero is the 
strongly invariant steady-state solution of (11), all other equilibria in 
the set 𝜀1 ≠ 0, 𝜀2 = 0 are weak (there is a trajectory that quits these 
points).

Unfortunately, the Lyapunov function (6) cannot be incorporated 
in the analysis of the error dynamics (11) with 𝑅̇(𝑡) ≠ 0, i.e., such a 
Lyapunov function is not an input-to-state stable one for this system. 
Therefore, to analyse stability properties of (11), since it is a time-delay 
system, a locally Lipschitz continuous Lyapunov-Krasovskii functional 
is proposed:

𝑈 (𝜀1𝑡, 𝜀2𝑡) = 𝑊1(𝜀1(𝑡), 𝜀2(𝑡)) + 𝑞𝑊2(𝜀1𝑡, 𝜀2𝑡) −
𝑎1
𝜏
𝑅(𝑡),

where

𝑊1(𝜀1, 𝜀2) =
𝑎1𝑏
𝜅

𝜀𝜅1 + 1
2
|𝜀2|,

𝑊2(𝜀1𝑡, 𝜀2𝑡) = ∫

𝑡

𝑡−𝜏
𝐞𝜔(𝑠−𝑡)(𝑠 − 𝑡 + 𝜏)2𝑦̇2(𝑠)𝑑𝑠,

𝑞 > 0 and 𝜔 > 0 are tuning parameters. Note that 𝑞𝐞−𝜔𝜏𝜁2 − 𝑎1
𝜏 𝜁 ≥

−
(

𝑎1
2𝜏

)2 𝐞𝜔𝜏
𝑞  for any 𝜁 ∈ R, then

𝑈 (𝜀1𝑡, 𝜀2𝑡) ≥ 𝑊1(𝜀1(0), 𝜀2(0))

+∫

𝑡

𝑡−𝜏
𝑞𝐞−𝜔𝜏 (𝑠 − 𝑡 + 𝜏)2𝑦̇2(𝑠) −

𝑎1
𝜏
(𝑠 − 𝑡 + 𝜏)𝑦̇(𝑠)𝑑𝑠

≥ 𝑊1(𝜀1(0), 𝜀2(0)) −
(𝑎1
2

)2 𝐞𝜔𝜏
𝜏𝑞
5 
and 𝑈 has a constant lower limit since 𝑊1(𝜀1, 𝜀2) ≥ 0 for any (𝜀1, 𝜀2) ∈
R2. Next, for brevity denote 𝑈 (𝑡) = 𝑈 (𝜀1𝑡, 𝜀2𝑡), 𝑊1(𝑡) = 𝑊1(𝜀1(𝑡), 𝜀2(𝑡))
and 𝑊2(𝑡) = 𝑊2(𝜀1𝑡, 𝜀2𝑡), direct computations show (note that 𝑊1(𝜀1(𝑡),
𝜀2(𝑡)) = 𝑐𝑜𝑛𝑠𝑡 while the trajectory is on the set 𝜀2(𝑡) = 0):

𝑊̇1(𝑡) = −𝑎2(𝑎0 + 𝑎 + 𝑏
𝜅
𝜀𝜅1 (𝑡))|𝜀2(𝑡)|

+
𝑎1
𝜏
𝑅̇(𝑡)sign2(𝜀2(𝑡)),

𝑊̇2(𝑡) = −𝜔𝑊2(𝑡) − 2∫

𝑡

𝑡−𝜏
𝐞𝜔(𝑠−𝑡)(𝑠 − 𝑡 + 𝜏)𝑦̇2(𝑠)𝑑𝑠

+𝜏2𝑦̇2(𝑡)

≤ −𝜔𝑊2(𝑡) − 2 𝐞
−𝜔𝜏

𝜏2
𝑅2(𝑡) + 𝜏2𝑦̇2(𝑡),

where on the last step Jensen’s inequality was used. Therefore, since 
𝑦̇(𝑡) = 𝑏𝜀𝜅−11 (𝑡)

√

|𝜀2(𝑡)|sign(𝜀2(𝑡)) we have the following estimate:

𝑈̇ (𝑡) ≤ −𝑎2(𝑎0 + 𝑎 + 𝑏
𝜅
𝜀𝜅1 (𝑡))|𝜀2(𝑡)|

+
𝑎1
𝜏
𝑅̇(𝑡)

(

sign2(𝜀2(𝑡)) − 1
)

−𝑞𝜔𝑊2(𝑡) − 2𝑞 𝐞
−𝜔𝜏

𝜏2
𝑅2(𝑡) + 𝑞𝜏2𝑏2𝜀2𝜅−21 (𝑡)|𝜀2(𝑡)|.

Consider the set  = {(𝜀1, 𝜀2) ∈ R2 ∶ 𝜀𝜅−21 ≤ 1
𝜏2

𝑎2
𝜅𝑞𝑏 } and the related 

functional extension
X = {(𝜙1, 𝜙2) ∈ 𝐶2

[−𝜏,0] ∶ (12)

𝜙𝜅−2
1 (𝑠) ≤ 1

𝜏2
𝑎2
𝜅𝑞𝑏

, 𝑠 ∈ [−𝜏, 0]},

which is nonempty for any 𝜅 ≥ 2 if 𝑎2 > 𝑞𝜏2𝜅𝑏 (this constraint 
can be always satisfied for any 𝑎2 and 𝜏 by the choice of 𝑞), then 
−𝑎2

𝑏
𝜅 𝜀

𝜅
1 (𝑡)|𝜀2(𝑡)| + 𝑞𝜏2𝑏2𝜀2𝜅−21 (𝑡)|𝜀2(𝑡)| ≤ 0 for (𝜀1𝑡, 𝜀2𝑡) ∈ X, hence,

𝑈̇ (𝑡) ≤ −𝑎2(𝑎0 + 𝑎)|𝜀2(𝑡)| +
𝑎1
𝜏
𝑅̇(𝑡)

(

sign2(𝜀2(𝑡)) − 1
)

−𝑞𝜔𝑊2(𝑡) − 2𝑞 𝐞
−𝜔𝜏

𝜏2
𝑅2(𝑡)

and 𝑈̇ (𝑡) < 0 for 𝜀2(𝑡) ≠ 0 into the set X.
As it has been explained above, any non-zero trajectory of (11) 

may stay at the set 𝜀2 = 0 on a time interval, which we define by 
[𝑡1𝑘, 𝑡2𝑘) ⊆ R+ for 𝑘 ∈ Z+: 

𝜀2(𝑡) = 0 ∀𝑡 ∈ [𝑡1𝑘, 𝑡2𝑘), (13)

with the length 𝑡2𝑘−𝑡1𝑘 less or equal than 𝜏 while 𝑅̇(𝑡) < 0 (and it leaves 
this set once 𝑅̇(𝑡2𝑘) = 0), then

𝑈̇ (𝑡) ≤ −𝑞𝜔𝑊2(𝑡) − 2𝑞 𝐞
−𝜔𝜏

𝜏2
𝑅2(𝑡) −

𝑎1
𝜏
𝑅̇(𝑡),

where the right-hand side may be sign indefinite. Note that, while a 
trajectory belongs to the set 𝜀2 = 0, the function 𝑊1(𝑡) is constant for 
𝑡 ∈ [𝑡1𝑘, 𝑡2𝑘) and in 𝑈 (𝑡) only the value of the term 𝑞𝑊2(𝜀1𝑡, 𝜀2𝑡) −

𝑎1
𝜏 𝑅(𝑡)

is varying. Hence, let us require that this discrepancy be smaller at the 
instant 𝑡2𝑘 of leaving the set 𝜀2 = 0 than at the instant of entrance 𝑡1𝑘: 
this condition can be formulated as occurrence of (𝜀1𝑡1𝑘 , 𝜀2𝑡1𝑘 ) into the 
set

X̃ = {(𝜀1𝑡, 𝜀2𝑡) ∈ X ∶ ∫

𝑡

𝑡−𝜏′(𝜀1𝑡)
𝐞𝜔(𝑠−𝑡)(𝑠 − 𝑡 + 𝜏)2

×𝑏𝜀2𝜅−21 (𝑠)|𝜀2(𝑠)|𝑑𝑠 (14)

≥ ∫

𝑡

𝑡−𝜏′(𝜀1𝑡)
(𝑠 − 𝑡 + 𝜏)𝜀𝜅−11 (𝑠)

√

|𝜀2(𝑠)|sign(𝜀2(𝑠))𝑑𝑠,

𝜀2(0) = 0},

where

𝜏′(𝜙) =

{

−min𝜙 if 𝜙 ≠ ∅
𝜏 otherwise,

𝜙 = {𝑠 ∈ [−𝜏, 0] ∶ |𝜙(𝑠)| = |𝜙(0)|},
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Fig. 1.  The results of simulation without noise, ℎ = 0.001.

then 𝑈 (𝑡2𝑘) ≤ 𝑈 (𝑡1𝑘) and 𝑈 does not grow after the stay on the set 
𝜀2 = 0. In other words, the set of equilibria 𝜀2 = 0, 𝜀1 ≠ 0 is weakly 
invariant, and the trajectory is just constant there for 𝑡 ∈ [𝑡1𝑘, 𝑡2𝑘), 
despite that 𝑈̇ (𝑡) may be sign-varying on this time interval, for non-
increasing of 𝑈 (𝑡) it is enough to provide the property 𝑈 (𝑡2𝑘) ≤ 𝑈 (𝑡1𝑘), 
which follows from (𝜀1𝑡1𝑘 , 𝜀2𝑡1𝑘 ) ∈ X̃. Assume that (𝜀1𝑡, 𝜀2𝑡) ∈ X for all 
𝑡 ≥ 0 and (𝜀1𝑡1𝑘 , 𝜀2𝑡1𝑘 ) ∈ X̃ for all 𝑘 ∈ Z+, then 𝑈 (𝑡) ≤ 𝑈 (0) for all 𝑡 ≥ 0, 
hence, 

𝑊1(𝜀1(𝑡), 𝜀2(𝑡)) ≤ 𝑈 (0) +
(𝑎1
2

)2 𝐞𝜔𝜏
𝜏𝑞

, ∀𝑡 ≥ 0 (15)

and the trajectory is bounded. Next, recalling the argumentation of 
Theorems  1 or 2, since 𝑈 (𝑡) has lower and upper limits, the trajectory 
has to converge to a forward invariant subset belonging to the set 
𝜀2 = 0, where there is the only strongly invariant equilibrium at the 
origin.

The following result has been proven, which establishes that for 
suitable initial conditions, the algorithm (10) finds the extremum: 

Theorem 4.  Under Assumption  1, consider the estimation error system 
(11). For any 𝜏 > 0, 𝑎1 > 0 and 𝑎2 > 0, if (𝜀1𝑡, 𝜀2𝑡) ∈ X for all 𝑡 ≥ 0 and 
(𝜀1𝑡1𝑘 , 𝜀2𝑡1𝑘 ) ∈ X̃ for all 𝑘 ∈ Z+, where 𝑡1𝑘 is defined in (13), X and X̃ are 
given by (12) and (14), respectively, then (3) is realized weakly.

Note that due to (15), if the initial error (𝜀10, 𝜀20) is sufficiently small 
and the parameters 𝑎  and 𝑞 are also chosen sufficiently small, then it 
1

6 
Fig. 2.  The results of simulation with noise, ℎ = 0.001.

is ensured that (𝜀1𝑡, 𝜀2𝑡) ∈ X for all 𝑡 ≥ 0. Moreover, by construction, 
from (9), we have (𝜀1𝑡10 , 𝜀2𝑡10 ) ∈ X̃.

Let us illustrate the efficiency of this scheme in simulations.

6. Simulations

For simulations, let us take
𝑎 = −1, 𝑏 = 1, 𝜅 = 2, 𝑥0 = 10,

then Assumption  1 is satisfied for
𝑎0 = 5, 𝑥min = 1, 𝑥max = 20.

For the algorithm (1), (8) take
𝜆1 = 10, 𝜆2 = 30, 𝑎1 = 5, 𝑎2 = 0.5,

then simulations show that 𝑇 = 2 is a reasonable choice. For (10) select 
(arbitrary values):
𝑎1 = 15, 𝑎2 = 0.25, 𝜏 = 0.05.

The results of simulation of 𝑥(𝑡) for the algorithms (1), (8) and (10) are 
shown in Fig.  1 for the noise-free setting, and in Fig.  2 with a uniformly 
distributed in the interval [−0.1, 0.1] measurement noise 𝑣(𝑡) in 𝑦(𝑡). 
For simulation, different initial conditions were selected for 𝜉1(0), the 
explicit Euler method was used with the discretization step ℎ = 0.001, 
and 𝜉2(0) = 0.1. As we can conclude from these results, the signal 𝑥(𝑡)
converges to the extremum value 𝑥0 in the absence of noise, and for 
the noisy experiments, a vicinity of the extremum is reached.
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7. Conclusion

A new extremum-seeking approach is presented, which is based 
on time derivative of the measured optimized function signal, and 
which is capable to provide an asymptotic convergence to the ex-
tremum. For time derivative estimation, two methods are tested: the 
exact super-twisting differentiator and the time-delay framework. The 
stability and convergence analyses are based on Lyapunov function and 
Lyapunov-Krasovskii functional. Since the implementable versions of 
the algorithm are described by differential inclusions, for the time-delay 
case, extensions of invariance principle are formulated. Our numeric 
experiments demonstrate a nice robustness of the presented approach 
to the measurement noises, but a rigorous proof of this property is left 
for future research. Other possible challenging extensions deal with 
development of tuning rules and consideration of multidimensional 
maps.
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