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Stability of Systems With Uncertain Delays: A New
“Complete” Lyapunov–Krasovskii Functional

Emilia Fridman

Abstract—Stability of linear systemswith uncertain time-varying delay is
considered in the case, where the nominal value of the delay is constant and
nonzero. Recently a new construction of Lyapunov-Krasovskii functionals
(LKFs) has been introduced: To a nominal LKF, which is appropriate to
the system with nominal delays, terms are added that correspond to the
perturbed system and that vanish when the delay perturbations approach
0. In the present notewe combine a “complete” nominal LKF, the derivative
of which along the trajectories depends on states and their derivatives, with
the additional terms depending on the delay perturbation. The newmethod
is applied to the case of multiple uncertain delays with one nonzero nominal
value. Numerical examples illustrate the efficiency of the method.

Index Terms—Lyapunov–Krasovskii method, stability, time-varying
delay, uncertain delay.

I. INTRODUCTION

It is well-known (see e.g., [4] and [11]) that the choice of an appro-
priate Lyapunov-Krasovskii functional (LKF) is crucial for deriving
stability and bounded real criteria and, as a result, for obtaining a solu-
tion to various control problems. The general (“complete”) form of this
functional that has been used by many authors (see e.g., [1], [7], [17])
leads to a system of partial differential equations. Special (reduced)
forms of LKFs lead to simpler delay-independent and (less conserva-
tive) delay-dependent finite dimensional conditions in terms of Riccati
equations or linear matrix inequalities (LMIs).

During the last decade, a considerable amount of attention has been
paid to stability and control of linear systems with uncertain delays
(either constant or time-varying) lying in the given segment [0; �] (see,
e.g., [2], [4], [11], [12], [15], [16], and the references therein). This
case of delay may be considered as uncertain delay with a zero nom-
inal value and a delay perturbation from [0; �] and (following [3]) it
will be denoted as uncertain “small” delay. Delay-dependent stability
conditions in the case of uncertain ’small’ delay were based in the past
on three main model transformations of the original system (see [4] and
[11]). Recently, a new descriptor model transformation was introduced
[2]. Unlike previous transformations, the descriptor model leads to a
system without additional dynamics, it does not depend on additional
assumptions for stability of the transformed system (as in the case of
neutral type transformation) and it requires bounding of fewer cross-
terms. Moreover, for the first time by Lyapunov–Krasovskii method, it
is applicable to the case of “fast varying” delay, where no constraints
are given on the delay derivative [4].

In the descriptor approach both, the state vector and (different from
the other LKF methods) its derivative, appear in the expression for the
derivative of the LKF along the trajectories of the system. The depen-
dence of the derivative of LKF on the state derivative makes it possible
to treat the delay uncertainty in a less conservative way.

The case of uncertain “nonsmall” time-varying delay, where the
nominal delay value is nonzero and constant appears in different appli-
cations such as internet networks, biological systems [10]. Only a few
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papers have been published on this topic. The stability of linear retarded
type systems with one uncertain ’nonsmall’ delay, where the nominal
value is nonzero and constant, has been studied in [8]. Sufficient sta-
bility conditions there for the case of time-varying delay have been
derived via modification of “complete” LKF which was introduced in
[9] and via the first model transformation. This LKF does not depend
explicitly on the delay perturbation and, as a result, the conditions ob-
tained are conservative and complicated. A different modification of
“complete” LKF for systems with a known differentiable delay � (t)
has been introduced in [13], where stability conditions were given in
terms of the convergence of 1

v
j _�(t)jdt (v > 0). The latter conver-

gence can not be verified in the case of uncertain time-varying delay.
In the recent paper [3] a new construction of the LKF has been intro-

duced: to a nominal LKF, which is appropriate to the nominal system
(with nominal delays), the terms are added which correspond to the
perturbed system and which vanish when the delay perturbations ap-
proach 0. In [3], the descriptor type nominal LKF has been considered
and the conditions obtained can be feasible if they are feasible for the
nominal system. In the case when the latter assumption does not hold
(e.g., when the nondelayed system is not asymptotically stable), the
“complete” nominal LKF (which corresponds to necessary and suffi-
cient conditions for stability) should be considered.

It is the objective of this note to derive sufficient conditions for
stability of the linear system with uncertain delay via a new “com-
plete” nominal LKF. Unlike the existing “complete” LKFs (see, e.g.,
[1], [7]–[9], [13], [14], and [17]), the derivative of the new nominal
LKF along the trajectories of the nominal system depends on the state
and the state derivative which allows a less conservative treatment of
the delay perturbation. The algorithm for stability is given in terms
of linear algebraic operations, definite integral and LMIs. Numerical
examples illustrate the efficiency of the new method.
Notation: Throughout this note, the superscript “T ” stands for ma-

trix transposition,Rn denotes the n-dimensional Euclidean space with
vector norm j � j, Rn�m is the set of all n �m real matrices, and the
notation P > 0, for P 2 Rn�n means that P is symmetric and posi-
tive definite. We also denote xt(�) = x(t+ �) (� 2 [�h� �; 0]) and
kxtk = sup�2[�h��;0] jxt(�)j. The symmetric elements of the sym-
metric matrix will be denoted by �.

II. PROBLEM FORMULATION

Consider the following linear system with uncertain time-varying
delay � (t):

_x(t) =A0x(t) + A1x(t� � (t)); t � t0 (1)

x(t0 + �) =�(�); � 2 [�h� �; 0] (2)

where x(t) 2 Rn is the system state, � is the initial function and h+�

is an upper-bound on the time-delay 0 � � (t) � h + �, t � 0. The
uncertain delay � (t) is supposed to have the following form:

� (t) = h+ �(t) (3)

where h > 0 is a nominal constant value and �(t) is a time-varying
perturbation. We assume that �(t) satisfies the inequality

j�(t)j � � � h (4)

with the known upper bound �, i.e., � (t) 2 [h � �; h+ �].
We assume the following.

A1) Given the constant nominal value of the delay h > 0,
the nominal system

_x(t) = A0x(t) +A1x(t� h) (5)

is asymptotically stable.
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Similarly to delay-dependent methods and following [8] we repre-
sent (1) in the form

_x(t) = A0x(t) + A1x(t� h)

+A1[x(t� h� �(t))� x(t� h)]; t � t0: (6)

As suggested in [3], we consider the following form of LKF:

V = Vn + Va (7)

where Vn is a nominal LKF which corresponds to the nominal system
(5) and Va consists of additional terms and depends on � and Va ! 0
for � ! 0. Therefore, for � ! 0 V ! Vn. The latter will guarantee
that if the conditions for the stability of the nominal system are feasible,
then the stability conditions for the perturbed system will be feasible
for small enough �.

As we have already mentioned, for the stability analysis of systems
with uncertain delay, the descriptor model transformation appeared to
be the less conservative one. By the descriptor approach, the derivative
of the nominal LKF depends on both, x(t) and _x(t). For the nominal
system in the present note we choose the “complete” LKF, the deriva-
tive of which depends on x(t) and _x(t). In Section III-D, we generalize
our results to the case of multiple uncertain delays, where one delay is
nonsmall.

III. MAIN RESULTS

A. A New “Complete” LKF for the Nominal System

Consider the nominal system (5) with the initial condition x(t) =
�(t), t 2 [�h; 0], where � is continuous. We shall find such a LKF

Vn(�) = Vn0(�) + Vn1(�) (8)

that along the trajectories of the nominal system (5) has a form

_Vn0(xt) = � x
T (t)W0x(t) (9a)

_Vn1(xt) = � _xT (t)W1 _x(t); t � 0 (9b)

whereW0 > 0 andW1 > 0 are some constant matrices. The difference
between our “complete” LKF and the one considered in [8] is in the
term Vn1. This term is taken to be zero in [8], but it is exactly this term
that makes it possible to treat the perturbed delay in a less conservative
way.

Remark 3.1: A different “complete” LKF for systems with a
known differentiable delay � (t) has been introduced in [13], where
stability conditions were given in terms of the convergence of
1

v
j _� (t)jdt (v > 0). The latter conditions can not be verified in

the case of “fast-varying” delays, which includes nondifferentiable
delays.

The term Vn0 has been constructed in [9]

Vn0(�) =
1

0

x
T (t; �)W0x(t; �)dt (10)

where x(t; �) is a solution to (5) with x(t) = �(t), t 2 [�h; 0]. This
term has the following form:

Vn0(�) =�
T (0)U0(0)�(0)

+ 2�T (0)
0

�h

U0(�h� �)A1�(�)d�

+
0

�h

0

�h

�
T (�2)A

T

1 U0(�2 � �1)A1�(�1)d�1d�2

(11)

where the matrix function U0(�) is defined for � 2 R (and not only for
� 2 [�h; 0]) as

U0(�) =
1

0

K
T (t)W0K(t+ �)dt: (12)

Here,K(t) is a fundamental matrix associated with the nominal system
(5), i.e., K(t) is an n � n-matrix function satisfying

_K(t) = A0K(t) + A1K(t� h); t � 0 (13)

with the initial condition K(0) = I and K(t) = 0 for t < 0. The
previous definition of U0 for all � 2 R and the resulting symmetry
(U0(�) = UT

0 (��), � � 0) allow to find U0 from the boundary value
problem for ordinary differential equation (see [9] and Section III-C).
The derivation of (11) is based on the well-known representation of
x(t; �) given by (see, e.g., [6])

x(t; �) = K(t)�(0)+
0

�h

K(t� h� �)A1�(�)d�: (14)

Similarly to Vn0, we find Vn1 in the form

Vn1(�) =
1

0

d

dt
x
T (t; �)W1

d

dt
x(t; �)dt: (15)

Note that K(t) is piecewise-continuous with a jump in t = 0, while
_K(t) is piecewise-continuous and has jumps in t = 0 and t = h

_K(t) =

0; if t < 0

A0 expA0t; if t 2 [0; h)

A0 expA0h+ A1; if t = h+.
(16)

Differentiating (14) in t and taking into account that for 0 � t � h

x(t; �) = K(t)�(0)+
t�h

�h

K(t� h� �)A1�(�)d�

and, thus

d

dt
x(t; �) = _K(t)�(0)+

t�h

�h

_K(t� h� �)A1�(�)d�

+ A1�(t� h)

= _K(t)�(0)+
0

�h

_K(t� h� �)A1�(�)d�

+ A1�(t� h); t 2 [0; h]

we obtain (17), as shown at the bottom of the page.

d

dt
x(t; �) =

_K(t)�(0)+
0

�h

_K(t� h� �)A1�(�)d�+A1�(t� h); if t 2 [0; h)

_K(t)�(0)+
0

�h

_K(t� h� �)A1�(�)d�; if t � h
(17)
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Substituting (17) into (15) and denoting

U1(�) =
1

0

_KT (t)W1
_K(t+ �)dt; � 2 R (18)

we find

Vn(�) =Vn0(�) + Vn1(�)

=�
T (0)U(0)�(0)+ 2�T (0)

�
0

�h

U(�h� �)A1�(�)d�

+
0

�h

0

�h

�
T (�2)A

T

1 U(�2 � �1)

�A1�(�1)d�1d�2 + �Vn (19)

where

U(�) =U0(�) + U1(�); � 2 R (20a)

�Vn =
h

0

�
T (t� h)AT

1W1

� A1�(t� h) + 2 _K(t)�(0)

+
0

�h

_K(t� h� �)A1�(�)d� dt: (20b)

Since

_K(t) = K(t)A0 +K(t� h)A1; t 2 R (21)

where for t = 0 and t = h the right-hand derivative is taken, we have

U1(�) =
1

0

A
T

0K
T (t) +A

T

1K
T (t� h)

�W1 [K(t+ �)A0 +K(t+ � � h)A1] dt: (22)

Denote

X(�) =
1

0

K
T (t)W1K(t+ �))d�; � 2 R: (23)

Then

U1(�) =A
T

0X(�)A0 + A
T

1X(� + h)A0

+ A
T

0X(� � h)A1 + A
T

1X(�)A1

� 2R: (24)

Proposition 3.1: Assume A1). Let W0, W1 be symmetric matrices.
Then U1 and U given by (18) and (20a) are well-defined for all � 2 R.
Moreover, U1(�) = UT

1 (��) and U(�) = UT (��) for � � 0.
Proof: From (24) and the fact that X is well-defined it follows

that U1 and thus U are well defined. Similar to U0, X(�) = XT (��)
for all � � 0 [9]. Then, (24) yields for � � 0

U
T

1 (��) =A
T

0X
T (��)A0 +A

T

0X
T (�� + h)A1

+ A
T

1X
T (�� � h)A0 + A

T

1X
T (��)A1

=A
T

0X(�)A0 +A
T

0X(�� h)A1

+ A
T

1X(� + h)A0 + A
T

1X(�)A1 = U1(�)

and UT (��) = U(�). This completes the proof.
Setting t � h = �2 in �Vn and applying (16), we find

�Vn =
0

�h

�
T (�2)A

T

1W1

� A1�(�2) + 2 A0e
A (� +h)

�(0)

+
�

�h

A0e
A (� �� )

A1�(�1)d�1 d�2: (25)

Lemma 3.1: Assume A1. Given n� n matrices W0 > 0, W1 > 0,
LKF (19) with U defined by (20a), (18) and (12) satisfies the following
conditions:

d

dt
V (x(t+ �; �)) = � x

T (t; �)W0x(t; �)

� _xT (t; �)W1 _x(t; �) (26a)

Vn(�) � "j�(0)j2: (26b)

Proof: Substituting (12), (18) into (19) and applying (14), (17)
we finally obtain

Vn(�) =
1

0

x
T (t; �)W0x(t; �)

+
d

dt
x
T (t; �)W1

d

dt
x
T (t; �) dt:

Since for the autonomous system (5) x(s+ t; �) = x(s; x(t+ �; �)),
we have

Vn(x(t+ �; �))

=
1

0

x
T (s+ t; �)W0x(s+ t; �)

+
d

dt
x
T (s+ t; �)W1

d

dt
x(s+ t; �) ds

=
1

t

x
T (�; �)W0x(�; �)

+
d

d�
x
T (�; �)W1

d

d�
x(�; �) d�:

Differentiating in t the latter equation we derive (26a).
Define functional V"(�) = Vn(�) � "�T (0)�(0). Then for small

enough " > 0

V"(x(t+ �; �)) = � x
T (t; �)W0x(t; �)

�
d

dt
x
T (t; �)W1

d

dt
x(t; �)

� 2"xT (t; �)
d

dt
x(t; �)

w"(x(t+ �; �) � 0:

We have

V"(�) =
1

0

w"(x(t+ �; �)dt � 0

and thus Vn(�) � "�T (0)�(0), i.e., (26b) is valid, which completes
the proof.

B. Stability of the System With Uncertain Non-Small Delay

Our LKF for (1) will depend on x and _x. Thus, (see [10, Th. 1.6, p.
337]) the initial functions in (2) are restricted to be absolutely contin-
uous with a square-integrable derivative. We note that uniform (with re-
spect to t0) asymptotic stability of linear retarded type system (1) with
differentiable initial functions implies uniform asymptotic stability of
(1) with a wider class of continuous initial functions. This follows from
the fact that the solutions x(t; t0; �) to (1), (2) with the continuous
functions � become differentiable for t � t0 + h + �, while for t 2
[t0; t0 + h+ �] they satisfy the uniform bound jx(t; t0; �)j � mk�k
with some constant m > 0 [6].
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We represent (6) (with differentiable initial functions) in the equiv-
alent form

_x(t) =A0x(t) + A1x(t� h)� A1

t�h

t�h��(t)

_x(s)ds

t � t0: (27)

Differentiating Vn defined by (19) along the trajectories of (27), we
find similar to [8]

_Vn(xt) = �xT (t)W0x(t)� _xT (t)W1 _x(t) + �(t) (28)

where

�(t) = � 2
t�h

t�h��

_xT (s)AT
1

� U(0)x(t) +
0

�h

Q
T (h+ �)

�A1x(t+ �)d� ds (29a)

Q
T (h+ �) =U

T (h+ �) + e
A (h+�)

A
T
0W1: (29b)

By standard bounding

j�(t)j �

2

i=1

t�h

t�h��(t)

_xT (s)AT
1R

�1
i A1 _x(s)ds

+
t�h

t�h��(t)

x
T (t)U(0)R1U(0)x(t)ds

+
t�h

t�h��(t)

0

�h

x
T (t+ �)AT

1Q(h+ �)

�R2Q
T (h+ �)A1x(t+ �)d�ds

�

2

i=1

t�h+�

t�h��

_xT (s)AT
1R

�1
i A1 _x(s)ds

+ �x
T (t)U(0)R1U(0)x(t)

+ �
0

�h

x
T (t+ �)AT

1 Q(h+ �)

�R2Q
T (h+ �)A1x(t+ �)d�: (30)

We choose

V (xt) =Vn(xt) + Va(xt)

Va(xt) =
�

��

t

t+��h

_xT (s)AT
1 R

�1
1 +R

�1
2 A1 _x(s)dsd�

+ �
0

�h

t

t+�

x
T (s)AT

1Q(h+ �)

�R2Q
T (h+ �)A1x(s)dsd� (31)

where R1 > 0, R2 > 0, and Vn is defined by (19), (20a), (25). By
Lemma 3.1, if the nominal system (5) is asymptotically stable, then for
some " > 0 V (xt) � Vn(xt) � "jx(t)j2. Differentiating V along the
trajectories of (27) and taking into account (28) and (30), we find

_V (xt) � � x
T (t)

� W0 � �U (0)R1U(0)

� �
0

�h

A
T
1Q(� + h)R2Q

T (� + h)A1d� x(t)

� _xT (t) W1 � 2�AT
1 R

�1
1 +R

�1
2 A1 _x(t): (32)

Hence, if the following inequalities hold:

W0 � �U (0)R1U(0)� �A
T
1

h

0

Q(s)R2Q
T (s)dsA1 > 0

(33a)

Q(s) = U(s) +W1A0e
A s (33b)

�W1 2�AT
1 2�AT

1

� �2�R1 0

� � �2�R2

< 0 (33c)

then _V < �cjx(t)j2 and (1) is uniformly asymptotically stable [10].
We have proved the following.
Theorem 3.1: Under A1), the system (1) is uniformly (with respect

to t0) asymptotically stable for all piecewise-continuous delays 0 �
� (t) 2 [h � �; h + �] if there exist n � n matrices W0, W1, R1, R2

that satisfy (33), where U is defined by (12), (18), and (20a).

C. Computation of U and Algorithm for Stability

It was shown in [9] (see also [14] and the references therein) that
X(t) given by (23) satisfies the following differential equation and
boundary value condition:

_X(�) = X(�)A0 +X(�� h)A1; � � 0

W1 +X(0)A0 +A
T
0X(0) +X

T (h)A1 +A
T
1X(h) = 0:

(34)

Denoting Y (�) = XT (�� + h) = X(� � h), � � 0 we represent
(34) in the form of the following boundary value problem for ordinary
differential equations:

_X(�) =X(�)A0 + Y (�)A1 (35a)
_Y (�) = �A

T
1X(�)� A

T
0 Y (�); � � 0 (35b)

�W1 =X(0)A0 + A
T
0X(0) + Y (0)A1 +A

T
1X(h)

(35c)

Y (h) =X(0): (35d)

For computation ofU1(�) we apply Kronecker products of matrices.
We remind that given n �m matrix A with elements aij , 1 � i � n,
1 � j � m and p� q matrix B, their Kronecker product A
B is the
np �mq matrix with the block structure

A
B =

a11B . . . a1mB

. . . . . . . . .

an1B . . . anmB

:

The stack of A is the vector formed by stacking the columns of A into
nm � 1 vector shown in the equation at the bottom of the next page.
The following holds (ABD)S = (DT 
 A)BS .

We represent (35) and (24) in the form
_XS(�)
_Y S(�)

=A
XS(�)

Y S(�)
(36a)

A =
AT
0 
 In AT

1 
 In

�In 
 AT
1 �In 
 AT

0

(36b)

�WS
1

0n �1

=B
XS(0)

Y S(0)
(36c)

B =
AT
0 
 In + In 
AT

0 AT
1 
 In

In 0n �n

+
In 
 AT

1 0n �n

0n �n �In
e
Ah (36d)

and

U
S
1 (�) = Ce

A� XS(0)

Y S(0)
(37a)

C = A
T
0 
 A

T
0 + A

T
1 
 A

T
1 ; A

T
1 
 A

T
0

+ A
T
0 
 A

T
1 [ In 0 ] eAh: (37b)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 5, MAY 2006 889

Note that Y (0) = XT (h). Similarly, we derive

�WS
0

0n �1

= B
US
0 (0)

UT
0 (h)

S US
0 (�) = eA�

US
0 (0)

UT
0 (h)

S : (38)

If B is nonsingular we finally obtain

US(�) = CeA�B�1 �WS
1

0n �1

+ [ I 0 ] eA�B�1 �WS
0

0n �1

� 2 [0; h]: (39)

Remark 3.2: As it was mentioned in [9], the matrix A has sym-
metric with respect to the imaginary axis eigenvalues. In the case that
there exist an eigenvalue with nonzero real part, the matrix B becomes
ill-conditioned for large h and (38) leads to inaccurate results with non-
symmetric U0(0).

If the nominal system is asymptotically stable and the matrix B is
neither singular nor ill-conditioned, then (39) uniquely definesU(0) �
0, since (12) and (18) are well-defined and satisfy (39). Moreover, if the
matrixB is nonsingular and not ill-conditioned, and (38) leads to matrix
U0(0)which is not semipositive definite, then the nominal system is not
asymptotically stable.

Choosing R2 = r2In, where r2 > 0 is a scalar, we obtain the fol-
lowing algorithm for asymptotic stability of (1) provided (5) is asymp-
totically stable.

1) Choosen�n-matricesW0 > 0,W1 > 0 and findU(0) from
(39). Check that U(0) > 0 and, thus, (39) leads to accurate
results.

2) For U(�) given by (39) find

Q =
h

0

Q(�)QT (�)d� Q(�) = U(�) +W1A0e
A �: (40)

3) Given � > 0, verify that there exist n � n-matrix R1 and
scalar r2 that satisfy the following LMIs:

W0 � �U (0)R1U(0)� �r2A
T
1QA1 > 0 (41a)

�W1 2�AT1 2�AT1
� �2�R1 0

� � �2�r2I

< 0: (41b)

D. Extension to the Case of Multiple Delays

In the case of multiple delays in the nominal system, the computa-
tion ofU(�) becomes complicated and may be reduced to the boundary
value problem for ordinary differentiable equation only if these delays
are commensurate. To derive simple stability conditions for linear sys-
tems with multiple uncertain delays we consider the case, where the
nominal system has one delay. Consider the system

_x(t) = Ax(t) + A1x(t� h� �(t)) + A2x(t� �1(t)) (42)

where h > 0, �(t) and �1(t) are piecewise-continuous delays satis-
fying j�(t)j � � � h, 0 � �1(t) � �1. For simplicity only we
consider one small delay �1. The generalization to the finite number of
small delays is straightforward.

We represent (42) in the form

_x(t) =A0x(t) + A1x(t� h)

� A1

t�h

t�h��(t)

_x(s)ds� A2

t

t�� (t)

_x(s)ds

A0 =A+ A2: (43)

DifferentiatingVn defined by (19), (20a), and (25) along the trajectories
of (43), we find

_Vn(xt) = �xT (t)W0x(t)� _xT (t)W1 _x(t) + �(t) + �1(t) (44)

where �(t) is given by (29a) and

�1(t) = �2
t

t�� (t)

_xT (s)AT2

� U(0)x(t) +
0

�h

QT (h+ �)A1x(t+ �)d� ds: (45)

Similar to Theorem 3.1, we obtain the following.
Theorem 3.2: Assume A1). Let U(�), Q(�), � 2 [0; h] and Q be

given by (39) and (40). Then, the system (42) is uniformly asymp-
totically stable for all piecewise-continuous delays j�(t)j � � � h,
0 � �1(t) � �1 if there exist n�n matrices W0, W1, R1, R11 and
scalars r2, r12 that satisfy

W0 � U(0)[�R1 + �1R11]U (0)� [�r2 + �1r12]A
T
1QA1

> 0 (46a)
�W1 2�AT1 2�AT1 �1A

T
2 �1A

T
2

� �2�R1 0 0 0

� � �2�r2I 0 0

� � � ��1R11 0

� � � � ��1r12I

< 0:

(46b)

E. Examples

Example 3.1: Consider the system

_x(t) =
0 1

�2 0
x(t� �1(t))+

0 0

�0:4 0
x(t� 4� �(t)) (47)

which was analyzed in [8] for �1 = 0. The nondelayed system (i.e.,
(47) with �1 = 0, 4 + � = 0) is not asymptotically stable and thus the
simple nominal LKFs are not applicable. For the case of constant delay
the following asymptotic stability interval was found by the frequency
domain analysis [8]: �1 = 0, �0:6209 < �(t) < 0:7963. Verifying
time-domain conditions of [8] for h = 4, W1 = W2 = I , we found
(for the case of constant delay and �1 = 0) the maximum value of
j�j � 0:000001 which guarantees the asymptotic stability of (47).

For h = 4, W0 = W1 = I we obtain from (38)–(40)

U0(0) =
77:5886 �0:5000

�0:5000 32:6290

U(0) =
262:6477 �1

�1 110:2176

Q =105 �
1:8783 �0:0147

�0:0147 0:7982
:

LMIs (41) are feasible and, thus, (47) is asymptotically stable for �1 =
0, j�(t)j � 0:011. By Theorem 3.2, (47) is uniformly asymptotically
stable for 0 � �1(t) � 0:002, j�(t)j � 0:002.
Example 3.2: [8] Consider the system

_x(t) =
0 1

�1 �2
x(t) +

0 0

�1 1
x(t� � ): (48)

For � = h + �(t), where h = 1 and �(t) is a differentiable function
satisfying j�j � �, j _�j � _� < 1 the following values of � and _� for
uniform asymptotic stability of (48) were found in [8]: _� < 0:8 and
� < (1=25600) < 0:00004. By representing conditions of [8] in the

AS [ a11 . . . an1 a12 . . . an2 . . . am1 . . . amn ]
T
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form of LMIs for the same values of W1 = W2 = I we obtained a
larger value of � = 0:00008.

Applying Theorem 3.1 and choosing W0 = W1 = I , we find from
(38)–(40)

U0(0) =
4 1

1 1
U(0) =

7 2

2 3

Q =
42:8234 2:6938

2:6938 0:6103

and for � = 0:12 (41a) and (41b) are feasible. Hence, the system is
asymptotically stable for essentially larger interval [0:88; 1:12] for a
wider class of delays (which may be not differentiable).

By descriptor approach of [3], the resulting interval is wider: � (t) 2
[0:73; 1:27]with� = 0:27. By descriptor approach the system is stable
and thus conditions of [3] can be applied for h � 254. In this example,
the conditions of [8] and of Theorem 3.1 give reliable results till h �
22, while for greater values of h matrix B becomes ill-conditioned and
the resulting U0(0) is not symmetric.

IV. CONCLUSION

A new Lyapunov–Krasovskii technique is developed for stability of
linear system with uncertain time-varying delay in the case when the
nominal value of the delay is constant and nonzero: To a “complete”
nominal LKF, which is appropriate to the system with the nominal
value of the delay, terms are added that correspond to the perturbed
system and that vanish when the delay perturbation approaches 0. The
nominal “complete” LKF is considered, the derivative of which along
the trajectories of the nominal system depends on both, the state and
the state derivative. Given matrices W0 and W1, the stability sufficient
conditions are reduced to linear algebraic operations, definite integral
and to LMIs. The new method is applied to the case of multiple un-
certain delays with one nonsmall delay. Similarly to “complete” LKF
of [8], the new “complete” LKF can be applied in the case where the
nondelayed system is not asymptotically stable, but it leads to simpler
and less conservative conditions. Feasibility of the latter conditions is
guaranteed for small perturbations of the delay.

The conditions derived are conservative since one have to choose
first W0 and W1 in order to verify their feasibility. Less conservative
conditions may be derived by choosing _Vn to be a general negative–def-
inite quadratic form of x(t) and _x(t).
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Descriptor Discretized Lyapunov Functional Method:
Analysis and Design

Emilia Fridman

Abstract—Stability and state-feedback stabilization of linear systems
with uncertain coefficients and uncertain time-varying delays are consid-
ered. The system under consideration may be unstable without delay, but
it becomes asymptotically stable for positive values of the delay. A new
descriptor discretized Lyapunov–Krasovskii functional (LKF) method is
introduced, which combines the application of the complete LKF and the
discretization method of K. Gu with the descriptor model transformation.
For the first time, the new method allows to apply the discretized LKF
method to synthesis problems. Moreover, the analysis of systems with
polytopic time-invariant uncertainties is less restrictive by the new dis-
cretized method. Sufficient conditions for robust stability and stabilization
of uncertain neutral type systems are derived in terms of linear matrix
inequalities (LMIs) via input–output approach to stability. Numerical
examples illustrate the efficiency of the new method.

Index Terms—Linear matrix inequality (LMI), Lyapunov–Krasovskii
functional (LKF), robust stability, stabilization, time-delay.

I. INTRODUCTION

It is well known that the choice of an appropriate Lya-
punov–Krasovskii functional (LKF) is crucial for deriving stability
criteria and for obtaining a solution to various robust control problems
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