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1. Introduction

Finite-dimensional observer-based controllers for PDEs are at-
tractive in applications. Such controllers were designed by the
modal decomposition method and have been extensively stud-
ied since the 1980s (Balas, 1988; Christofides, 2001; Curtain,
1982; Griine & Meurer, 2022; Harkort & Deutscher, 2011), where
efficient bound estimate on the observer and controller dimen-
sions is a challenging problem. In recent paper (Katz & Frid-
man, 2020), the first constructive LMI-based method for finite-
dimensional observer-based control of 1D parabolic PDEs was
suggested, where the observer dimension was found from simple
LMI conditions. The results in Katz and Fridman (2020) were
then extended to input/output delay robustness (Katz & Fridman,
2021, 2022a, 2022b), delayed PDEs (Lhachemi & Shorten, 2023a)
and delay compensation (Katz & Fridman, 2022a; Lhachemi &
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Prieur, 2022, 2023; Lhachemi & Shorten, 2023b). However, the
above results were confined to 1D parabolic PDEs.

In recent years, control of high-dimensional PDEs became an
active research area. Such systems have promising applications in
engineering, water heating, metal rolling, sheet forming, medical
imaging (see e.g. Meurer (2012)) as well as in multi-agents de-
ployment (Qi, Vazquez, & Krstic, 2015). Sampled-data observers
for 2D and ND heat equations with globally Lipschitz nonlineari-
ties have been suggested in Am and Fridman (2014) and Selivanov
and Fridman (2019). Observer-based output-feedback controller
for a linear parabolic ND PDEs was designed in Wang and Wang
(2021). In Kang and Fridman (2021), the sampled-data control
of 2D Kuramoto-Sivashinsky equation was explored. The results
in Am and Fridman (2014), Kang and Fridman (2021), Selivanov
and Fridman (2019) and Wang and Wang (2021) employed spatial
decomposition approach where many sensors/actuators should
be utilized.

The boundary state-feedback stabilization of ND parabolic
PDEs was studied in Barbu (2013) and Munteanu (2019) by
modal decomposition approach and in Meurer (2012) and Liu and
Xie (2020) by backstepping method. Observer-based boundary
control for ND parabolic PDEs under boundary measurement
over cubes and balls was explored in Jadachowski, Meurer, and
Kugi (2015) and Vazquez and Krstic (2016) by the backstepping
method. In Feng, Lang, and Liu (2022) and Meng and Feng (2022),
observer-based control via modal decomposition approach was
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designed for ND parabolic PDEs. Note that the observer designs
in Feng et al. (2022), Jadachowski et al. (2015), Meng and Feng
(2022) and Vazquez and Krstic (2016) are in the from of PDEs.
In Lhachemi, Munteanu, and Prieur (2023), for the first time,
the finite-dimensional observer-based control was studied for 2D
and 3D parabolic PDEs under boundary actuation on an arbitrary
subdomain and in-domain pointwise measurement. It was shown
in Lhachemi et al. (2023) that the closed-loop system is stable
provided the dimension of the controller is large enough. Note
that the results in Feng et al. (2022), Jadachowski et al. (2015),
Lhachemi et al. (2023), Meng and Feng (2022) and Vazquez and
Krstic (2016) are confined to observer-based controller design
of ND delay-free PDEs. For ND parabolic PDEs, efficient finite-
dimensional observer-based design with a quantitative bound
on the observer as well as the input/output delay robustness
remained open challenging problems.

In this paper, we aim to study finite-dimensional observer-
based control of linear heat equation with input/output delays
in £2, an open and connected subset of R%. We consider either
differentiable time-varying input/output delays or sawtooth de-
lays (that correspond to network-based control). Based on modal
decomposition approach, we consider the boundary or non-local
sensing together with non-local actuation, or to Neumann actua-
tion with non-local sensing. The novelty of this paper compared
to existing results can be formulated as follows:

o Compared with Feng et al. (2022), Jadachowski et al. (2015),
Lhachemi et al. (2023), Meng and Feng (2022) and Vazquez
and Krstic (2016) for observer-based design of
high-dimensional parabolic PDEs, we give efficient finite-
dimensional observer-based design and provide LMI condi-
tions for finding observer dimension and upper bounds of
delays. We prove that the LMIs are always feasible for large
enough observer dimension and small enough upper bounds
on delays.

e Differently from Katz and Fridman (2021, 2022a) and Katz
and Fridman (2022b) for 1D parabolic PDEs where Lya-
punov functional combined with classical scalar Halanay’s
inequality (see P. 138 in Fridman (2014)) was suggested,
we construct vector Lyapunov functional combined with re-
cently introduced vector Halanay’s inequality (see Mazenc,
Malisoff, and Krstic (2022)). The latter allows to efficiently
compensate the fast-varying output delay that appears in
the infinite-dimensional part of the closed loop system es-
sentially improving the upper bounds on delays in most of
the numerical examples.

e Compared with spatial decomposition approach suggested
in Am and Fridman (2014), Kang and Fridman (2021), Seli-
vanov and Fridman (2019) and Wang and Wang (2021) for
robust stabilization of ND parabolic PDEs, the modal decom-
position approach in this paper allows for fewer actuators
and sensors (including single boundary actuator or sensor).

Notations and preliminaries: For any bounded domain £2 C R?,
denote by L?(£2) the space of square integrable functions with
inner product (f,g) = [, f(x)g(x)dx and induced norm ||f||f2 =
(f.f). HY(£2) is the Sobolev space of functions f : 2 — R
with a square integrable weak derivative. The norm defined in
HY(R2)is IIf 12, = IfI% + IIVfII%, where Vf = [f,.f,]" and
||Vf||f2 = [,[(f,)* + (f,)*1dx. The Euclidean norm is denoted by

| - |. For P € R™" P > 0 means that P is symmetric and positive
definite. The symmetric elements of a symmetric matrix will be
denoted by x. For 0 < P € R™" and x € R", we write |x|,2, = x"Px.
Denote N by the set of positive integers.

Let £2 C R? be a bounded open connected set. Following Tuc-
snak and Weiss (2009), we assume that either the boundary 9
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is of class C? or £2 is a rectangular domain. Let 352 be split into
two disjoint parts d§2 = I'p U I'y such that I'p and I'y have non-
zero Lebesgue measurement. Here subscripts D and N stand for
Dirichlet and for Neumann boundary conditions respectively. Let

Ap = —Ad, D(A) = (¢l¢ € HA(2)NH(2)},
HM(2)={¢ € H(22)|¢(x) = 0 for x € Ip, (1.1)
g—ﬁ(x) =0 for x € I'y},

9
an
Weiss (2009, Proposition 3.2.12) that the eigenvalues {1,}2, of
A are real and we can repeat each eigenvalue according to its
finite multiplicity to get

where is the normal derivative. It follows from Tucsnak and

M<Ah<--<A=<.., limxr =oc. (1.2)

n—-oo

We denote the corresponding eigenfunctions as {¢,};2,. Let § >
0. From (1.2), it follows that there exists Ny € N such that

—An+q+6 <0, n> N, (1.3)

where g € R is a constant reaction coefficient, Ny is the number
of modes used for the controller design. Throughout the paper, d
will denote the maximum of the geometric multiplicities of A,
n=1,...,No.

Differently from the 1D case where Ay = O(N?), N — oo, for
An, we have the following estimate which will be used for the
asymptotic feasibility of LMIs:

Lemma 1.1 (Strauss, 2007, Sec. 11.6). For eigenvalues (1.2), we have

limpy_ o 24 = I%\' where |2| is the area of £2.

Since A is strictly positive and diagonalizable, we have (see
Proposition 3.4.8 in Tucsnak and Weiss (2009))

D(A?) = {h € L(2)] 02, Aal{h, ¢ > < o).

Following Rlemark 3.4.4 in Tucsnak and Weiss (2009), we can
regard D(.A2 ) as the completion of D(A) with respect to the norm

Iflly = {AfL F) = Ve Aal(f, ¢n)I?, f € D(A). For h € D(A),
we have ||Vh||f = (h, Ah) = ||h||3, which implies

o0
IVRIZ =) xah?. (1.4)
n=1
We have |f|?, < C(2)IVfI?, fln, = 0 for some constant
C(£2) > 0 (see Glitch (2021)), which together with (1.4) implies
the equivalence of || - ||% and |- || ;1 subject to f(x) = 0,x € I'p. We

have D(A%) = {(h € H(2)|h(x) = 0, x € Ip). Finally, density of
D(A)in D(A% ) yields that (1.4) holds for any h v > hagn €
D(A?).

Given a positive integer N and h e [%(£2) satisfying h i
Y i hnpn, where hy, = (h, ¢,), we denote ||h||Z = Y 2. h2.

For ¢ € [?(2) and b = [by,...,bq]" € (I2(£2)), wgzg;r;ote
<b7 ¢> = [<b1! ¢>7 cees (bdv ¢)]T

Lemma 1.2 (Vector Halanay’s Inequality Mazenc et al., 2022). Let
M € R™" be a Metzler and Hurwitz matrix and P € R™" be
a nonnegative matrix. Let t = max{ty, ..., 7y} with t; > 0 and
V=1[Vi,...,Va]T: [—7, 00) = [0, 00)" be C! and

V(t) = MV(t) +P Supse[t—r,t] V(S)»

where supsei,_;  V(s) = col{supseip—q q Vi(S))iLy IF M + P is
Hurwitz, then |V(t)| < De~%¢, t > 0 for some 8o > 0 and D > 0.
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2. Non-local actuation and measurement
2.1. System under consideration and controller design

Consider the following heat equation under delayed nonlocal
actuation:

Ze(x, t) = Az(x, t) + qz(x, t)
+bT(X)u(t — (1)), in 2 x (0, 00),
z(x,t) =0, on Ip x (0, 00),
Z(x,t)=0, on Iy x (0, c0),
z(-,0) = (") € [*(£2),

where u(t) = [u;(t), ..., ug(t)]" is the control input to be de-
signed later, t,(t) is a known input delay which is upper bounded
by twuw b = [by,...,ba]" € (I%(£2))". Assume the following
delayed non-local measurement:

y(t) = (C, Z('7 t— ty(t)))v t— fy(t) = 0»
y(t)=0,t —1,(t) <0, c=[cy, ..., cql" € (L3(£2)),

where 7,(t) is a known measurement delay which is upper
bounded by tu,. The controller construction will follow Katz
and Fridman (2020) for 1D case (where only simple eigenvalues
appear), but the single-input and single-output as in Katz and
Fridman (2020) are not applicable to the 2D case due to the
existence of multiple eigenvalues (the system is uncontrollable
and unobservable). Here we introduce multi-input u(t) and multi-
output (2.2) with b, ¢ satisfying Assumption 1 (see below) to
manage with the controllability and observability.

We treat two classes of input/output delays: continuously
differentiable delays and sawtooth delays that correspond to
network-based control. For the case of continuously differentiable
delays, we assume that 7,(t) and 7y(t) are lower bounded by
tm > 0. This assumption is employed for well-posedness only.
As in Katz and Fridman (2021) and Liu and Fridman (2014), we
assume that there exists a unique t, € [T, min{ty,y, v 4}] sSuch
thatt — t(t) < 0ift < t,andt —7(t) > 0ift > t, for t(t) €
{ru(t), 7y(t)}. For the case of sawtooth delays, 7,(t) and 7,(t) are
induced by two networks: from sensor to controller and from
controller to actuator, respectively (see Section 7.5 in Fridman
(2014)). Henceforth the dependence of 7,(t) and 7,(t) on t will
be suppressed to shorten notations.

We present the solution to (2.1) as

(2.2)

2, 5 3 200, z0(t) = (2(-. ), ). (2.3)
n=1

where {¢,};2, are corresponding eigenfunctions of eigenvalues

(1.2). Differentiating z, in (2.3) and applying Green'’s first identity,
we obtain

2n(t) = (—An + Qza(t) + bru(t — 7). t >0,
zy(0) = (z(+, 0), ¢n), by = (b, ¢) € R™.
Let § > 0 be a desired decay rate and Ny be defined by (1.3). We
construct a N-dimensional (N > Ny) observer of the form

(2.4)

N
2x,t) =) Za(t)pa(x), N > No, (2.5)
n=1
where Z,(t) satisfy
Za(t) = (=An + Q)2a(t) + bTu(t — 7,)
= [(e. 2.t — 1)) —y0)], t >0, (2.6)

fn(o) =0, t<0,

with y(t) in (2.2), observer gains I, € R'™9 1 < n < Ny being
designed later and [, = 0144 for Ny < n <N.
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Introduce the notations

Ay = diag{—2n + q}y2;. A1 = diag(—2n + qH_y 1.

€ = (C, Pn), Co = [€1, ..., Ny ], C1 = [Cngt1s - - -5 CN ], (2.7)
By =[by,..., bNO]T, Bi = [byys1, - -, by]".

We rewrite Ag as:

Ao = diag{A;, ..., Ay},

A; = diag{—2j + 4, ..., —Aj +q} € RY*Y, (2.8)

M # A ff k#j, kj=1,....p.

where ny, ..., n, are positive integers such that ny 4+ --- +n, =
No. Clearly, n; < d,j = 1,...,p and there exists at least one
7€ {1,...,p} such that n, = d. According to the partition of (2.8),

we rewrite By and Cy as

By = [B!,...,B'", B € Rv*9,

Co=I[Ci,....Gl, G eR>M.

Assumption 1. Let rank(B;) = nj and rank(Gj) =n;,j=1,...,p.
Lemma 2.1. Under Assumption 1, the pair (Ao, By) is controllable

and the pair (Ao, Co) is observable.

Proof. The proof is inspired by Lemma 7.2 of Meng and Feng
(2022). Assume that the pair (Ag, Co) is not observable. By the
Hautus test (see Tucsnak and Weiss (2009, Remark 1.5.2)), there
exist 0 # v € RY and j € {1,..., p} such that Agv = A;v, Cov =
0. Without loss of generality, we suppose that v = col{vy, ..., vp},
where v; = [v}l), o v;n’)]T. Then we have Agv — Ajv = col{(Ar —
A)vith_, = 0and Y %_, Cyvi = 0, which implies v, = 0 for k # j
and Gjv; = 0. Since rank(G;) = nj, we have v; = 0. This contradicts
to the fact v # 0. Therefore, pair (Ag, Cp) is observable. The
controllability of (Ag, By) follows similarly.

Under Assumption 1, we can let Ly = col{l, .
and Ky € R&Mo satisfy

Po(Ao — LoCo) + (Ao — LoCo)'P, < —268P,,
Pc(Ao — BoKo) + (Ao — BoKo)"Pe < —26P,

Iy} € RNoxd

(2.9a)
(2.9b)
for 0 < P,, P. € RNo*No We propose a controller of the form

u(t) = —Koz"o(r), 2N =1[21,...,2y,]" (2.10)

For well-posedness of closed-loop system (2.1), (2.6) with con-
trol input (2.10), we consider the state &(t) = col{z(-, t), Z2N(t)},
where ZN(t) = col{Z,(t)}N_,. The closed-loop system can be
presented as

) . [ a0+ filt — )
&) + diag{A, Ap}é(t) = [fz(f — 1)+t — ty)]’

Ay = diag{—AO, —A1}, f1(t) = _hT(')KOQNO(t)’
fo(t) = —BKoz"(t), B = [Bg, B]]", €= [Co, Cy],

f3(t) = —|:

where A is defined in (1.1). We begin with continuously differ-
entiable delays. By using Theorems 6.1.2 and 6.1.5 in Pazy (1983)
together with the step method on intervals [0, t,], [ts, (s + 1)tm],
[(s + D1, (S + 2)Tm], ..., where s € N satisfies st,, < t, <
(s+ 1)ty (see arguments similar to the well-posedness in Section
3 of Katz and Fridman (2021)), we obtain that for any initial value
£(0) = [zo(-), 0]" € D(A) x RN, the closed-loop system (2.11) has
a unique classical solution

& e C([0, 00), [2(£2) x RN)N CY([0, 00)\J, [%(£2) x RN),
£(t) e D(A) xRN, Vvt >0,

(2.11)

L
° }[ci”(t) — (¢, 2(-, )],

ON—Ng)xd

(2.12)
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where | = {t,, (s + D, (S + 2)tm, - - -
sawtooth delays follows similarly.

}. The well-posedness for

2.2. Stability analysis and main results

Let ey(t) = z,(t) — Zu(t), 1 < n < N be the estimation error.
The last term on the right-hand side of (2.6) can be presented as

SN CaZalt — 1) — ¥(t)

= 3N et — 1) — ¢t — 1), (2.13)
£(6) = 3y 41 Cazalt):
From (2.4), (2.6), (2. 13) the error system has the form
én(t) = (—An + qlen(t) — I Z, L ciei(t — 1) (2.14)
—L(t — ry), 1<n<N.
Denote
ZNNo(t) = [Zng4a(t), ..., Zn (0],
eho(t) = [eq(t), ..., eny(t)]", Co = [Co, Ouxnvy ]
eV MNo(t) = [eng+1(t), .., en(OTT,
Xo(t) = col{2(t), e”O(t)} Ko = [Ko, Oaxny I,
(2.15)

Fo— Ao—B()K() LOCO Lo = Ly
0= 0 Ao —LoGo|” 70 T =0 |

Ve (£) = 2No(t) — 2MNo(t — 1), Boz[ Bo ]
0N0><d
vy, (£) = Xo(t) = Xo(t — 7).

We follow Katz and Fridman (2022a) and consider the reduced-
order closed-loop system. First, from (2.14) and [, = 0 for Ny +
1 < n < N, we have é"N(t) = A;eNN(r), t > 0, which is
exponentially decaying (since A; defined in (2.7) is stable due to
(1.3)). It follows

e 7)) = e MmN No(p), (2.16)

By (2.6), (2.10), (2.14), and (2.16), we obtain the reduced-order
closed-loop system

N— NO(

Xo(t) = FoXo(t) + BoKovr, (t) — LoCovy, (t) (2.17a)
+ Log(t — 7)) + LoCreMeNNo(r),
Zn(t) = (=An + @)zu(t) — bl KoXo(t — 7)), n > N, (2.17b)

where ¢(t) is defined in (2.13). Note that ¢(t) does not depend
on zV~No(¢t) which satisfies
AZNNo(t) — By KCoXo(t — ),

and is exponentially decaying provided Xy(t) is exponentially
decaying. Therefore, for stability of (2.1) under the control law
(2.10), it is sufficient to show the stability of the reduced-order
system (2.17). The latter can be considered as a singularly per-
turbed system with the slow sate Xy(t) and the fast infinite-
dimensional state z,(t), n > N.

For exponential [*-stability of the closed-loop system (2.17),
we consider the following vector Lyapunov functional
V() = [Vo(t), V(T Viain(t) = Do yiq Z2 (1),
Vo(t) = Vi(t) + Vy(£) + V() + Ve(t),

2

Vp(t) = [Xo(£)[5,  Ve(t) = pele—Mo(t)[",
V()= [, € Xa(s)I3 ds,
: 2
+ Ty fim,y ff+6 ez‘g(s‘f)|X0(s)|Rydsd9,
Vult) = i, , €V 1KoXo(s)[5, ds

0 _ .2
+ vy '[_TM,u fr[+9 26701 KoXo(s) [z, dsd6,

IN-No(t) = (2.18)

(2.19)
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where 0 < P,S,,R, € R®*2No and 0 < S,, R, € R Here
Vy(t) is used to compensate v, (t), V,(t) is used to compensate
vy, (t), and V,(t) is used to compensate eV ~Mo(t). To compensate
¢ (t—1,) we will use vector Halanay’s inequality and the following
Cauchy-Schwarz inequality:

120 < llellf Xopoyar 2200,

d
el = Yimy lGlIR = Yonnsy leal®.
As explained in Remark 2.1, compared to the classical Halanay’s
inequality, the vector one allows to use smaller § in V, and
V, in the stability analysis essentially improving results in the

numerical examples for comparatively large N.
Differentiation of Vi,(t) along (2.17b) gives

Viailt) = Y2y 1 2= + 0)Z3(0)
— DNt 22a(E)DI KX (t — 1)
Let « > 0. Applying Young's inequality we arrive at
— Y N1 2za(t)DTCoX (t — )
< I — g KTKOX(E — )
+ o g za (). IR = 3L kil
From (2.21) and (2.22), we have

Viail(£) + [2An+1 — 2q — @]Vii(t)
IIbHN

(2.20)

(2.21)

(2.22)

(2.23)
[KCoX(t — T7u)| < BVo(t — )

provnded

2
BN Tico < BP. (2.24)

Let B9 = afB. By Schur complement, we find that (2.24) holds iff

[—P K3 }
_ﬂ < 0.
* !

Let
gy = e My, 0, (t) = eM(t — 1y) — eo(t — ),

gy = e P™Ma, O, (t) = 2MNo(t —7,) — 2Mo(t - ™)

(2.25)

Differentiation of Vy(t) along (2.17a) gives

Vo(t) + 28Vo(t) < XJ(t)[PFo + FIP + 28P1Xo(t)
+2X4 (£)P[BoKove, (t) — LoCovr, (t) + LoL(t — 7))
+2X5(t)PLoCre A1y eN—No(t)

HXo(0)I3, — &y IXo(t) — v, (£) = O, (DI

— &3ty fiqy, Kol)lg,ds
"H’Coxo(f)léu — &y|KoXo(t) — Koy, (t) — Koby, (t )|5u
+T,\2/,,u|’CoXo(t)|iu — EuTmu ftt_,Myu |’C0XO(S)|RudS
+2pe(e" N0 (1)) Ay + 811V Mo (r).
Let G, € R2Mo*2No and G, € RY*¢ satisfy
|:Ry Gy] >0, |:Ru Gu] ~ 0.

* Ry |7 x Ry |~

Applying Jensen’s and Park’s inequalities (see, e.g., Fridman (2014,
Section 3.6.3)), we obtain for &,(t) = col{v,(t), O, (1)}, &u(t) =
CO]{KOUZ,J(t)’ KOQIL,(t)};

R P 2.26
+ 75, Xo(0)Ig, (226)

(2.27)

. R, G
~tuy [ 1Ko(S)],ds < —s;(t)[ ! y}gym,
’ * R c (2.28)

. 2 R
— Ty fttf,Myu [KCoXo(s)Ig,ds < —é}(t)[: R,

]Su(f)-
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Let n(t) = col{Xo(t), £(t — 1), &/(t), &u(t), eNNo(¢)}. Substituting
(2.28) into (2.26), we get for §; > 0,

Vo(t) + 28Vo(t) — 281 Veait(t — 73)

(2.20) .
< V() + 26V(t) — sk 15(t — )P (2.29)
N
<n'(O)Pn(t) <0
provided
P PLoCie A1y
B * 2pe(Aq + oI (2'30)
+ AT[Tl\z/I,yR}’ + TI\Z/I,UIC-(I)-RUICO]A <0,
where
2 P
0 :: 21 eySy |2y eukchsu
o=| " _m’ 0 0o o
* * 2u
20 = PFo + FAP + 28P + (1 — &y)Sy + (1 — eu)K§SuKo.
21 =¢ySy —PLoCo, 22 =PBy +su}C(T)Su,
A =[Ag, LoCre Y], Ag = [Fo, Lo, —LoCo, 0, Bo, 0],
o — —&(S+Ry) —&(5+Gp) Jew.u (2.31)
i " _ 8](51 -I-R]) s , Uj.

We now show the feasibility of (2.30) for large N. Since A1 + 81 <
0 due to (1.3), by Schur complement for p, — o0, we obtain that
the feasibility of (2.30) holds iff

@0 + Aglry Ry + T KGRuKo] Ag < 0. (2.32)
From (2.23) and (2.29), we have
. —26 0
V(t) < 1 V()
0 _2)\-N+1 + 2q + o (2 33)
0 26 0 0 ’
+ 0 o Vit —1)+ 5 0 V(t — 7).
By vector Halanay’s inequality (see Lemma 1.2) we have
[V(t)] <De %t t>0 (2.34)
for some 8y > 0 and D > 0, provided
—26 26, . .
is Hurwitz. (2.35)
B —2Mni1+20+a
By Parseval’s equality, we obtain from (2.34) that
lzC-, OI% + l12(-, £) = 2, )% < De™™", t =0 (2.36)

for some D > 0. Recalling that 8y = a8, we find that (2.35) holds
iff
—2(ANy1—q+8)+a <0,

—20(inp1 — Q)+ LBy« ] -0
* -1 )

(2.37)

For asymptotic feasibility of LMIs (2.25), (2.27), (2.32), and
(2.37) with large N and small 7y, tm,y > 0, let S; = 0, G; = 0 for
i € {y, u}. Taking tyy, Tv,u — 07, it is sufficient to show (2.25),
(2.37) and

PFg + FJP + 26P PLg —PLgcy  PBy
281
* - 0
liclZ < 0. (2.38)
* * —Ry 0
* * * —Ry

Takew = 6 = 1,8, = o = N3, R, = NI, R, = NI Let
0 < P e R?Mox2No be the solution to the Lyapunov equation
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P(Fy + 8I) + (Fy + 81)TP = —I. We have ||P| = O(1), N —
o0. Substituting above values into (2.25), (2.37), (2.38) and using
Schur complement and the fact that Ay = O(N) (see Lemma 1.1),
ILoll = O(1), |Boll = O(1) for N — o0, we obtain the feasibility
of (2.25), (2.37) and (2.38) for large enough N. Fixing such N and
using continuity, we have that (2.25), (2.27), (2.30) and (2.37) are
feasible for small enough 7, v, > 0. Summarizing, we arrive
at:

Theorem 2.1. Consider (2.1) with control law (2.10) and measure-
ment (2.2). For § > 0, let Ny € N satisfy (1.3) and N € N satisfy
N > Ny. Let Assumption 1 hold and Ly, Ko be obtained from (2.9).
Given tyy, tmu > 0 and §; > 0, let there exist 0 < P,S,,R, €
R2Nox2No "0 < S, R, € R4, G, € R¥™Mo*2MNo, G, e R¥ and scalars
o, Bo > O such that LMIs (2.25), (2.27), (2.32) with @q and A given
in (2.31), and (2.37) hold. Then the solution z(x, t) to (2.1) subject to
the control law (2.6), (2.10) and the corresponding observer Z(x, t)
given by (2.5) satisfy (2.36) for some D > 0 and 8, > 0. Moreover,
LMIs (2.25), (2.27), (2.32), and (2.37) are always feasible for large
enough N and small enough ty y, Ty > 0.

Remark 2.1. Multiplying decision variables P, S;, R;, G; (i € {y, u})
in (2.25), (2.27), (2.32) by 8; and changing S, in (2.25) and (2.37)
to f—? we find that the feasibility of LMIs (2.25), (2.27), (2.32),
and (2.37) is independent of §; > 0. The fact also holds true for
Theorems 3.1 and 4.1. This is different from the classical Halanay
inequality (see Remark 2.3) where §; < § should not be small to
compensate ¢ (t—ty). However, compared to the classical Halanay
inequality, the vector one needs constraint (2.24) (i.e., (2.25)
which is usually more difficult to meet for larger No) whose
feasibility requires ||b||,2V or é to be very small. This together with
(2.37) implies that N should be very large.

Remark 2.2. Note that for Ny > 1, it is difficult to find efficient
Ly, Ko from (2.9) (see numerical example in Section 4). Here for
No > 1 we can use the following steps to find more efficient Ly
and Ky:

Step 1: We find Ly from the following inequality:

Po(Ag — LCo) + (Ag — LoC) T Po + 28Po| —Poly
B ‘_ 735 < 0.

el

(2.39)

The additional terms compared to (2.9) are from the compensa-
tion of infinite-tail term of closed-loop system.

Step 2: Based on the Ly obtained from (2.39), we design the
controller gain K; € R¥MNo from the delay-free case (i.e., 7, = 0
and 7, = 0). In this case, the closed-loop system (2.17) becomes
Xo(t) = FoXo(t) + Lo (t) + L£oC1e Mo (t),

Zp(t) = (—An + @)z,(t) — ByKoXo(t), n > N.

We consider vector Lyapunov function

V(t) = [Vo(t), Vea(O]1", (2.40)
A 2 2 _ 2 .

Vo(t) = 12M(t)[5, + [eMo(t)]p, + peleMo(t)]",

where 0 < P,, P, € RNo*No p, > 0 and Vi (t) is defined in (2.19).

By arguments similar to (2.21)-(2.37), we have (2.36) for some
D > 0 provided

@z | PzLoCo PzLg
* [ —PeL
1Ks ApKo < BP, ¢ 2; 0 <0,
* * - 1 1
llcl (2.41)

28+2)\,N+1 —2(]—0{ >0,
8(2AN+1 — 29 —a) — B1 > 0,
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where
@, = P,(Ao — BoKo) + (Ao — BoKo)'P;, + 28P;,
@ = Pe(Ag — LoCo) + (Ag — LoCo)'Pe + 25P.

Let Bo = ap, Q, = P!
find that (2.41) hold iff

and Y, = KyQ,. By Schur complement, we

& | 196 Iy
& 4 3 Pel
* e —re
,30 <0, 0 <0,
* 75
IIbHN * * - 1

- el
@, = A)Q, + QA] — BoY, — Y]B} + 25Q;,

(2.42)
_2()\N+l —-q+ 5) +a <0,

§
—20(N41 - D+ Fho a] <0
* -1

n particular, (2.42) are LMIs that depend on decision variables
< Q;, P, € RNoxNo 'y, ¢ RMNo and scalars «, By > 0. If LMIs
QY.

In
0
(2.42) hold, the controller gain is given by Ko =
Remark 2.3 (Stability Analysis Via Classical Halanay’s Inequality).
Consider Lyapunov functional

V(t) = Vo(t) + Vwai(t) (2.43)

with Vo(t) and Vi(t) in (2.19). To compensate ¢(t — 1), the
following bound is used for 0 < §; < é:

=281 sup  V(0) = —281[Vp(t — 7y) + Vaail(t — 7)1
t—rM’ygegt
(2.44)
(220) T
< =281 Xo(t) — g, (E)]5 — el lZ(t — 7).

By arguments similar to (2.21), (2.26)-(2.29), (2.44), and the

following Young inequality for oy, oy > 0,

— Y a1 22a(E)DCoX (t — )

< a1|[bIIR 1KoXo(t)* + e I} [Kove, (€)1
+ (i + é)ZﬁiNHZﬁ(f),

we have

V(t)+28V(t)—28; sup

t—ZM.ySQSI

(2.45)

V(e)=0 (2.46)

provided (2.27) and the following inequalities hold:

—AN41+q+S 1 1
<0,
* | diag{—2a1, —2ap]

(2.47)
@0 + Aglry Ry + T KGRuKo] Ao < O,

where Ay is defined in (2.31) and

21 eySy|PBg +suIC-0rSu eu)CgSu

* ——=1Ilo o
— 2 0 0
by = llclg ,
* 2y 0

2u

20 = PFy + FJP + 2(8 — 81)P + (1 — £,)K{Suko

+ (1 — &)Sy + a1 [|bl|F K§Ko, (2.48)

Q] = 251P — PﬁoCo + 8y5y,

—281P —ey(Sy +Ry)  —ey(Sy + Gy)
2y = [ * *Sy(SerRy):I’
2, = I:ﬂlz\lb”,zvl—gu(su+Ru) —Su(5u+Cu)i|.

* —eu(Su + Ru)

Then classical Halanay's inequality (see P. 138 in Fridman (2014))
and (2.46) imply (2.36), where o > 0 is the unique solution of
8o =8 — 81e*omy,
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3. Non-local actuation and boundary measurement
Consider system (2.1) with b € (H'(£2))¢, b(x) = 0 for x € I}.
We assume the following delayed boundary measurement:
= [p, €®)z(x, t — 7y)dx, t — 7 >0,
y( )— 0,t— (LP(In)).

Note that (3.1) is actually a weighted averaged boundary mea-
surement with ¢ representing the weighted coefficient. We
present the solution to (2.1) as (2.3) with z, satisfying (2.4). Let
8 > 0, Ny satisfy (1.3) and N > Ny. We construct a N-dimensional
observer of the form (2.5), where Z,(t) (1 < n < N) satisfy

Zalt) = (=hn + Q2a(t) + byu(t)

— LN, et — 1) —y(t)], t >0, (3.2)
Z,(0)=0, t <0, c,-=fr c(x

3.1
ry<0,c=[c1,...,cd]Te (1)

with y(t) in (3.1) and observer gains {I, }n o€ R™, In this
section, all notations are the same as in Section 2 except of ¢,
which are defined in (3.2). Let By and Cy satisfy Assumption 1.
From Lemma 2.1, we let Ly = col{ly,...,Iy,} € RNo*4 satisfy
(2.9a). Define u(t) in (2.10) with Ky € R¥MNo satisfying (2.9b). By
(2.10), (2.13), (2.14), (3.2), and Xy(t) defined in (2.15), we obtain
the closed-loop system (2.17).

Note that we need (2.20) to compensate ¢(t — t,) in (2.17a)
by Halanay inequality. However, differently from the non-local
measurement where ) 7>\ |€,|* < oo, for the boundary mea-
surement with ¢, defined in (3.2), we do not have this property.
Here we assume

00 2
|Cnl
> —-soav=o (3.3)

n=N+1 "

for some oy > 0, where ¢ > 0 is independent of N. For ¢(t)
defined in (2.13), by Cauchy-Schwarz inequality, we have

len|? §moo 2
< D nen+ B D nong1 AnZi (1)
(3.3)

< on Z;“;N+1 AnZa(t).

(3.4)

Remark 3.1. Note that (3.3) holds for rectangular domain 2 =
(0, ay) x (0, ap) with the following boundary

I'=TIpUTly, In={(x1,0), x; €(0,a)}. (3.5)
The eigenvalues and corresponding eigenfunctions of A (see (1.1))
are given by:

_1y2
z[m—zz-i-(k 22)], m, k €N,

4 Ly (3.6)
sin( ™21 ) cos(—% 2).

Amik =T

Omi(X1, %) = J—

We reorder the elgenvalues (3.6) to form a non-decreasing se-
quence (1.2) and denote the corresponding eigenfunctions as
{¢n}r2 ;. Let the corresponding relationship between (1.2) and

d
(3.6) be n ~ (m,k). We have |cr,|2 = lemil® = X,
d
| (%0 )pmi(x1, 0)dlxy > = & 2jz1 G Where cjm = [ ¢(x1) -
:ﬁ sin( ™ m”"‘ )dx; satisfying ”C!”LZ(F ) =y .c ]m Therefore, we
have
00 2
Zn 1 An Zj 1ka lkmk
2a

SZJ IZm 1 JmZk_ (k— 1)22 2 (3-7)
=da Z} 1 ”CJHLZ(O aq) = o,

1 oo 1 oo 1 3
where we use 77 ot = Yl g - Xicime = 2

Z,f; kiz = % (see Dyke (2001, P. 99)). Clearly, o is independent
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of N. From (3.7) it follows

- Z el —0 (38)

Taking into account (3.4), for exponential H'-stability we con-
sider the vector Lyapunov functional (2.19) with Vi (t) therein
replaced by

[e9)

Z lcal?

n=N+1

Vtall Z )\nz (3-9)

n=N+1
Differentiation of Vi, (t) in (3.9) along (2.17b) gives
Viail(t) = Y w41 2(—An + @Anz(t)
= D Nt 2Anzn(t)DT X (t — )
=< Zn:N+] _)\n + q + (X))\.nzﬁ(t)
+ LI Vbl KX (t — w)I?

(3.10)

d (14) —d
for some & > 0, where |[Vb|I§ = >, IVhillR =" D iy X poni

An(bj, ¢n)?. By arguments similar to (2.21)-(2.37) and using (3.4),
(3.10), we obtain

lz(- O71 + ll2(-, 1) = 2,

for some D > 0 and § > O provided LMIs (2.25) (where
[b[|% is changed to [|[Vb|%), (2.27), (2.30) with @, (where |||
is changed to oy) and Ap given in (2.31), and (2.37) hold. The
asymptotic feasibility of above LMIs for large enough N and small
enough 7y y, Ty > 0 can be obtained by arguments similar to
Theorem 2.1. Summarizing, we arrive at:

D% <De ™™, t>0 (3.11)

Theorem 3.1. Consider (2.1) with control law (2.10) where b €
(H'(£2)), b(x) = 0 for x € Iy, measurement (3.1), and zo € D(A).
Given 8,81 > 0, let Ny € N satisfy (1.3) and N € N satisfy N > Np.
Let Assumption 1 and (3.3) hold and Ly, Ky be obtained from (2.9).
Given tyy, tmy > O, let there exist 0 < P,S,, R, € R¥Nox2No,
0 < Sy, Ry € R4, scalars «, By > 0, G, € R¥Nox2No gnd G, € RI*d
such that LMIs (2.25) (where ||b||% is changed to ||Vb]||%), (2.27),
(2.30) with ®y (where ||c||,2\, is changed to on) and Agq given in
(2.31), and (2.37) hold. Then the solution z(x, t) to (2.1) subject to
the control law (2.6), (2.10) and the corresponding observer Z(x, t)
given by (2.5) satisfy (3.11). Moreover, the above LMIs always hold
for large enough N and small enough v y, T,y > 0.

Remark 3.2 (Stability Analysis Via Classical Halanay’s Inequality).
Consider Lyapunov functional (2.43) with Vy(t) in (2.19) and
Veai(t) in (3.9). By arguments similar to (2.21)-(2.37) and using
following bound for 0 < §; < §:

—28; sup  V(0) < —28[Vp(t — 1) + Viail(t — 7)]
t—tM‘ySGS[

(3.4)

< —=2811Xo(t) — v (O — 22[¢(t — )P,

and the following Young inequallty for @y, ay > 0,
= Y a1 2hnza(ODLKCOX(E — T)
< o1 || VDI 1 KoXo(t)* + a2 [ VDIIF [Kove, (61
+ (i + é) Z;“;NJH AnZa(t),
we obtain (3.11) provided (2.27) and (2.47) hold with Aq in (2.31)

and @, £, 2, in (2.48) (where ||b||% and |/c||% are changed to
[ Vb]|%, and oy, respectively).
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4. Boundary actuation and non-local measurement

Consider the delayed Neumann actuation
ze(x, t) = Az(x, t) + qz(x, t), in £2 x (0, 00),
z(x,t) =0, on Ip x (0, c0),
Z(x, ) =b"(xu(t — 7,),
2(x,0) = zo(x), x € 2,

whereb = [by, ..., bg]" € (L2(Iy))* and u(t) = [u(t), . .., ug(t)]"
is the control input to be designed. We consider the delayed non-
local measurement (2.2) with ¢ e (L2(£2))%. We present the solu-
tion to (4.1) as (2.3) and obtain (2.4) with b, = fr Pn(x)dx.

In this section, all notations are the same as in Sectlon 2 except
of b, that are defined above. We construct a N-dimensional
observer of the form (2.5), where N > Ny, Z,(t) satisfy (2.6).
Let By and Cq satisfy Assumption 1. From Lemma 2.1, let Ly =
colfly, ..., Iy} € e RNoxd satisfy (2.9a). Define u(t) in (2.10) with
Koy € RxNo satisfying (2.9b).

For the well-posedness of closed-loop system (4.1) and (2.6),
with control input (2.10), we introduce the change of variables

(4.1)
on I'y x (0, 00),

w(x, t) = z(x, t) — I (X)u(t — 1), (42)
where r(x) = [r1(x), ..., ra(x)]T with rj(x),j =1,...,d being the
solution to the following Laplace equation:
Ari(x) =0, xe £,

(4.3)

B(X) =0, x € Ip, 2L(x) = bj(x), x € I\.

Since b; € L?(I'y), from Feng et al. (2022, Lemma 2.1) we have €
1?(£2). By (4.1), (4.2), and (4.3), we get the equivalent evolution
equation:
w(t) + Aw(t) = qu(t) — r'(Ji(t — 7,)(1 — )

+ar'(u(t —w),  w(0)=z(-,0).
Define the state &(t) = col{w(t),zN(t)}, where ZN(t) =

[2:(6), ..., Zn(D)]". By (2.6), (2.10), and (4.4), we present the
closed-loop system as

(4.4)

qu(t) + f1(t — )
ot — )+ f3(t — Ty) s
ON—Ng)x1
fi(t) = =LolC2N(t) — (€, w(-, 1) + (€, r"(-)Ko2"0(t — 7,))],
filt) = 1)1 — 2)Ko[Ao2™(t) + fa(t — 1)
— BoKoz"o(t — 7,)] — qr'(-)2"(t),
where A, C, and f,(t) are defined in (2.11). By arguments similar
to the well-posedness in Section 2, we obtain that (4.5) has
a unique solution satisfying (2.12). From (4.2), it follows (4.1),
subject to (2.6), (2.10), has a unique classical solution such that
z € C([0, o0), LZ(Q))OC‘((O, 00), [(£2)) and z(-, t) € H*(£2) with
z(x,t) = 0,x € Ip and ;—nz(x, t) = b'(x)u(t — t,), x € Iy, for
t € [0, 00).
With notations (2.15), the closed-loop system has a form:

Xo(t) = FoXo(t) — LoCvy (£) + BKove, (£) + Lot (t — 1),
Za(t) = (=0 + qQ)za(t) — bE’COXO(t —1),n>N.
For non-local actuation case in Section 2, we employ Young's

inequality (2.22) to split the finite- and infinite-dimensional parts,

where Z;”;NH |b,)?> < oo is used. However, for the boundary
actuation with b, defined below (4.1), we do not have such
property. Here we assume

G E(6) + diag(A, Ao)E(t) =

(4.5)

(4.6)

o [by?
> 5

n=N+1

< ov <P, (4.7)
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Table 1
Chosen gains Ly and Kp.
qg=3 No=1 Theorem 2.1 Theorem 3.1 Theorem 4.1
by fi f3 fs
C &1 &3 &1
Lo from (2.9a) 1.6349 2.1837 4.1634
Ko from (2.9b) 1.2696 47.3821 1.6349
q=8.1Ny=3 Theorem 2.1 Theorem 3.1 Theorem 4.1
b1, by fi.fa f3.fa fs. s
€1, C2 81,82 83,84 81,82
8.428 6.036 9.964 58.153 7.108 4.841
Lo from (2.39) —0.295 —0.424 0.161 —0.416 —0.133 —0.525
0.204 0.150 0.927 —0.188 0.709 0.085
§ =0.04 § =0.02 § =0.05
Ko from (2.42) 5.260 0.029 —0.034 11.033 0.026 0 7.886 —0.280 0.385
0 ’ —0.094 0.253 —0.097 0 0 —0.040 —8.444  0.039 0.518

for some py > 0, where p > 0 is independent of N. Then we use
the following Young inequality for & > 0:

— Y nena1 22a(0)bEKCoXo(t — )

by |2
< 23l BB KoXo(t — T)l® 4 Yoy g @hnza(t)
(4.7)
< BKeXo(t — TP + D ope g @AaZ2(L).

(4.8)

Remark 4.1. Note that (4.7) holds for rectangular domain. Con-
sider the rectangular domain introduced in Remark 3.1. Similar

2
to estimates (3.7) and (3.8), we have Y oo, bl o —

An

N by C e

dzn? f);\l] : py With p = a; Zj 1 Ib; ||L2(0 o which is indepen-
ent o

According to (4.8), we consider the following Cauchy-Schwarz
inequality:

leal?
2 <Y S
< Wy h(e),

where ||c||?  is defined in (2.20). Consider the vector Lyapunov
functional (2.19) with Vi (t) therein replaced by (3.9). By argu-
ments similar to (2.23)-(2.37), (3.10), and using (4.8) and (4.9),
we conclude that the solutions to (4.1), (2.6), (2.10) satisfy (3.11)
for some D > 0 and & > 0 provided (2.27), (2.32) with &g, Aq
n (2.31) (where |[c||? is changed to ﬁ”c”ﬁ), and the following
inequalities hold:

T
—P K —2a(An1 — ) + 2 Bo
% bo ’ *

The asymptotic feasibility of above LMIs for large enough N and
small enough 7y, v, > 0 can be obtained by arguments similar
to Theorem 2.1. Summarizing, we have:

> Nap AnZ2(t
D nen+1 AnZy(t) (49)

o

_1] <0. (4.10)

Theorem 4.1. Consider (4.1) with control law (2.10) and delayed
non-local measurement (2.2). Given § > 0, let Ny € N satisfy (1.3)
and N € N satisfy N > Ny. Let Assumption 1 hold and Ly € RNox¢4,
Ko € R¥No pe obtained from (2.9). Given Tm,y, Tmu > 0, let there
exist 0 < P, S,, R, € R?Nox2No 0 < 5, R, € R™, G, € RZNox2No
and G, € R¥4 scalars ., By > 0 such that LMIs (2.27), (2.30) with
@0 and Ag given in (2.31) (where | c||% is changed to ||c||,/An) and
(4.10) hold. Then the solution z(x, t) to (4.1) subject to the control
law (2.6), (2.10) and the corresponding observer Z(x, t) given by
(2.5) satisfy (3.11) for some D > 0 and 6o > 0. Moreover, the
above inequalities always hold for large enough N and small enough
™.y, TM,u > 0.

Remark 4.2 (Stability Analysis Via Classical Halanay’s Inequality).
Consider Lyapunov functional (2.43) with Vy(t) in (2.19) and
Viair(t) in (3.9). By arguments similar to (2.21)-(2.37) and using
following bound for 0 < §; < §:

~26, sup  V(0) < —28:[Vp(t — ) + Viail(t — 7,)]
E*‘Eny§9§f

(4.9)

< —2811Xo(t) — v, (O — TR e (€ — 1),

and the following Young inequality for o1, ; > 0,
— Y N1 2hnza(ODICOX(t — Ty)

(a7 ) 2
< a1on|1KoXo(t)I° + a2 on|Kovy, (1)

+ (2 4 L)Yy AaZ2 (D),

o1 o
we obtain (3.11) provided (2.27) and (2.47) hold with Aq in (2.31)
and @, £, £2, in (2.48) (where ||b||% and |/c||% are changed to
on and |c[|2 /Ay, respectively).

5. Numerical examples

In this section, we consider a rectangular domain £2 = (0, a;)
x (0, ap) with a; = %, a, = 43 and boundary (3.5). We
consider ¢ = 3 which results in an unstable open-loop system
with 1 unstable mode (in this case, N = 1 and d = 1) and
q = 8.1 which results in an unstable open-loop system with 3
unstable modes with A; < A, = A3 (in this case, Np = 3 and
d = 2), respectively. We consider three cases corresponding to
Sections 2-4. For all cases we take Ty, = 7y, = . In each case,
functions b = by, c =¢; ford = 1 and b = [by, b>]", ¢ = [c1, & ]T
for d = 2 are chosen according to Table 1, where

Ji(x) = 20%1(x; — X%)X[Oy%l]x[o,%z](x),

f2(x) = x1(x, X%)X[tn ENEY az](X),

f(0) = (3 — a1x1)(x3 — a2x3),

ax) = (x5 — az) sin(#),

fo) = sin( 2 Mwﬁykﬁﬂ—ﬂma1ﬂmzm
and

81(0) = Xj0.0,1x10.21(%): 82(%) = X% 4,170, (%)

gg(X]) = O~2X[0’”71](X1)9 g4(X]) = O'ZX[DT],alj(X])'

Here x is an indicator function. We see that fi, f5, g1, & € L1(£2),
fs.fa € HY(£2), f5(x) = fa(x) = 0 for x € Iy, and g3, 84,5, fs €
L*(Iy). It can be checked that for each case, Assumption 1 is
satisfied.
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Table 2
Max 1y for feasibility of LMIs (¢ = 3, No = 1): Theorems 2.1, 3.1 and 4.1 (vector Halanay’s inequality) vs. Remarks 2.3, 3.2 and 4.2 (classical scalar Halanay’s
inequality).
N 2 3 4 5 6 7
™ ™ § ™ ) ™ § ™ ) ™
Theorem 2.1 0.35 0.237 0.12 0.292 0.1 0.303 0.07 0.311 0.05 0.318 0.05 0.39
Remark 2.3 1 0.196 1 0.225 1 0.236 0.95 0.247 0.9 0.256 0.8 0.259
Theorem 3.1 - - - - 0.48 0.137 0.45 0.175 0.3 0.248 0.25 0.259
Remark 3.2 - - - - 3 0.033 25 0.041 12 0.107 1.1 0.123
Theorem 4.1 0.18 0.276 0.06 0.312 0.06 0.319 0.03 0.323 0.03 0.328 0.02 0.329
Remark 4.2 0.9 0.222 0.8 0.257 0.6 0.266 0.6 0.275 0.5 0.281 0.4 0.285
Table 3

Max 1y for feasibility of LMIs (¢ = 8.1, Ny = 3): Theorems 2.1,

inequality).

3.1 and 4.1 (Vector Halanay’s inequality) vs. Remarks 2.3, 3.2 and 4.2 (Classical Scalar Halanay’

wn

N 20 25 30 35 40
§ ™ ) ™ ) ™ ) ™ ) ™
Theorem 2.1 0.051 0.0104 0.049 0.0342 0.048 0.0414 0.047 0.0454 0.045 0.0481
Remark 2.3 45 0.0267 4 0.0330 3 0.0357 3 0.0376 2.8 0.0395
N 30 35 40 45 50
b ™ 8 ™ k) ™ 1) ™ 8 ™
Theorem 3.1 0.019 0.0168 0.018 0.0219 0.018 0.0271 0.017 0.0301 0.017 0.0311
Remark 3.2 6 0.0206 6 0.0215 5 0.0230 45 0.0238 4 0.0240
N 7 8 9 10 15
) ™ § ™ § ™ § ™ § ™
Theorem 4.1 - - 0.15 0.0112 0.15 0.0242 0.15 0.0291 0.14 0.0467
Remark 4.2 7 0.0036 6 0.0106 5 0.0136 5 0.0151 25 0.0254
For the case that ¢ = 3 and Ny = 1, the gains Ly and Kj 30 ‘ ‘ ‘ ‘
are found from (2.9) with § = 1 and are given in Table 1. The |2(-,£)|13» - Theorem 2.1
LMIs of Theorems 2.1, 3.1, and 4.1 as well as their counterparts [2(, )l - Theorem 3.1
by classical Halanay’s inequality (Remarks 2.3, 3.2, and 4.2) were B ll2(-, )72 - Theorem 4.1]+
verified, respectively, for N = 2, ..., 8 to obtain maximal values
of oy (8§ = 8; > 0 is chosen optimally) that preserve the
feasibility of LMIs. The results are given in Table 2. From Table 2, 2r 1
it is seen that the vector Halanay inequality always leads to larger
delays than the classical scalar Halanay inequality.
For the case that ¢ = 8.1 and Ny = 3, we found that the Ly ST |
and K, obtained from (2.9) were not efficient for the feasibility
of LMIs of Theorems 2.1, 3.1, 4.1 and Remarks 2.3, 3.2, 4.2 even ol |
for Ty, = vy = 0. We design Ly (6 = 6; = 0.01, N = 20) and
Ko (N = 30) from (2.39) and (2.42) in Remark 2.2 and give the
values in Table 1. The LMIs of Theorems 2.1, 3.1, and 4.1 as well as 5k ]
their counterparts by classical Halanay’s inequality (Remarks 2.3,
3.2, and 4.2) were verified, respectively, for different N to obtain
maximal values of 7,; (§ = §; > 0 is chosen optimally) that 0 ‘ ‘ ‘ | | |
0 0.5 1 15 2 25 3 35 4 45 5

preserve the feasibility of LMIs. The results are given in Table 3.
From Table 3, it is seen that the vector Halanay inequality leads to
larger delays than the classical scalar one for comparatively large
N, whereas for comparatively small N, the classical scalar Halanay
inequality leads to larger delays. This phenomenon corresponds
to Remark 2.1.

For simulation of closed-loop systems studied in Sections 2-4,
we consider the case g = 3, No = 1 and fix N = 5. Consider time-
varying delays 7,(t) = 2[1+ sin® t] and 7,(t) = [1 + cos® t]
(corresponding maximal values of 1) are chosen as 0.311, 0.175,
and 0.323, respectively according to Table 3). We approximate

the solution norm using 150 modes as |z(-, t)||§2 ~ Z:,S:O] z2(t)

and [|Vz(-, t)|7, ~ 3139 3az3(t). Take initial conditions zo(x) =
x1(a1—xq) cos(z”szz). The closed-loop systems (with the tail ODEs

truncated after 150 modes) are simulated using MATLAB. The
simulations are presented in Fig. 1. The numerical simulations
validate the theoretical results. Stability of the closed-loop sys-
tems in simulations was preserved for ty; = 0.48 for Theorem 2.1,
7y = 0.38 for Theorem 3.1, and 1)y = 0.42 for Theorem 4.1,

t

Fig. 1. Evolutions ||z(~,t)\|z2 (Theorem 2.1),
llz(-, ©)lI%, (Theorem 4.1) vs. t.

HVz(',t)Hf2 (Theorem 3.1), and

which may indicate that our approach is somewhat conservative
in this example.

6. Conclusions

We considered the finite-dimensional observer-based control
of 2D linear heat equation with fast-varying input and output de-
lays. To compensate the output delay that appears in the infinite-
dimensional part of the closed-loop system, we suggested a vec-
tor Lyapunov functional combined with vector Halanay’s inequal-
ity. In the numerical examples, the vector Halanay inequality
led to larger delays for larger dimensions of the observer that
preserve the stability than the classical one. Improvements and
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extension of the results to various high-dimensional PDEs may
be topics for future research.
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