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a b s t r a c t

Recently, a constructive method was suggested for finite-dimensional observer-based control of 1D
linear heat equation, which is robust to input/output delays. In this paper, we aim to extend this
method to the 2D case with general time-varying input/output delays or sawtooth delays (that
correspond to network-based control). We use the modal decomposition approach and consider
boundary or non-local sensing together with non-local actuation, or Neumann actuation with non-local
sensing. To compensate the output delay that appears in the infinite-dimensional part of the closed-
loop system, for the first time for delayed PDEs we suggest a vector Lyapunov functional combined with
the recently introduced vector Halanay inequality. We provide linear matrix inequality (LMI) conditions
for finding the observer dimension and upper bounds on delays that preserve the exponential stability.
We prove that the LMIs are always feasible for large enough observer dimension and small enough
upper bounds on delays. A numerical example demonstrates the efficiency of our method and shows
that the employment of vector Halanay’s inequality allows for larger delays than the classical scalar
Halanay inequality for comparatively large observer dimension.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

Finite-dimensional observer-based controllers for PDEs are at-
ractive in applications. Such controllers were designed by the
odal decomposition method and have been extensively stud-

ed since the 1980s (Balas, 1988; Christofides, 2001; Curtain,
982; Grüne & Meurer, 2022; Harkort & Deutscher, 2011), where
fficient bound estimate on the observer and controller dimen-
ions is a challenging problem. In recent paper (Katz & Frid-
an, 2020), the first constructive LMI-based method for finite-
imensional observer-based control of 1D parabolic PDEs was
uggested, where the observer dimension was found from simple
MI conditions. The results in Katz and Fridman (2020) were
hen extended to input/output delay robustness (Katz & Fridman,
021, 2022a, 2022b), delayed PDEs (Lhachemi & Shorten, 2023a)
nd delay compensation (Katz & Fridman, 2022a; Lhachemi &
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Prieur, 2022, 2023; Lhachemi & Shorten, 2023b). However, the
above results were confined to 1D parabolic PDEs.

In recent years, control of high-dimensional PDEs became an
active research area. Such systems have promising applications in
engineering, water heating, metal rolling, sheet forming, medical
imaging (see e.g. Meurer (2012)) as well as in multi-agents de-
ployment (Qi, Vazquez, & Krstic, 2015). Sampled-data observers
for 2D and ND heat equations with globally Lipschitz nonlineari-
ties have been suggested in Am and Fridman (2014) and Selivanov
and Fridman (2019). Observer-based output-feedback controller
for a linear parabolic ND PDEs was designed in Wang and Wang
(2021). In Kang and Fridman (2021), the sampled-data control
of 2D Kuramoto–Sivashinsky equation was explored. The results
in Am and Fridman (2014), Kang and Fridman (2021), Selivanov
and Fridman (2019) andWang andWang (2021) employed spatial
decomposition approach where many sensors/actuators should
be utilized.

The boundary state-feedback stabilization of ND parabolic
PDEs was studied in Barbu (2013) and Munteanu (2019) by
modal decomposition approach and in Meurer (2012) and Liu and
Xie (2020) by backstepping method. Observer-based boundary
control for ND parabolic PDEs under boundary measurement
over cubes and balls was explored in Jadachowski, Meurer, and
Kugi (2015) and Vazquez and Krstic (2016) by the backstepping
method. In Feng, Lang, and Liu (2022) and Meng and Feng (2022),
observer-based control via modal decomposition approach was
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esigned for ND parabolic PDEs. Note that the observer designs
in Feng et al. (2022), Jadachowski et al. (2015), Meng and Feng
(2022) and Vazquez and Krstic (2016) are in the from of PDEs.
In Lhachemi, Munteanu, and Prieur (2023), for the first time,
the finite-dimensional observer-based control was studied for 2D
and 3D parabolic PDEs under boundary actuation on an arbitrary
subdomain and in-domain pointwise measurement. It was shown
in Lhachemi et al. (2023) that the closed-loop system is stable
provided the dimension of the controller is large enough. Note
that the results in Feng et al. (2022), Jadachowski et al. (2015),
Lhachemi et al. (2023), Meng and Feng (2022) and Vazquez and
Krstic (2016) are confined to observer-based controller design
of ND delay-free PDEs. For ND parabolic PDEs, efficient finite-
imensional observer-based design with a quantitative bound
n the observer as well as the input/output delay robustness
emained open challenging problems.

In this paper, we aim to study finite-dimensional observer-
ased control of linear heat equation with input/output delays
n Ω , an open and connected subset of R2. We consider either
ifferentiable time-varying input/output delays or sawtooth de-
ays (that correspond to network-based control). Based on modal
ecomposition approach, we consider the boundary or non-local
ensing together with non-local actuation, or to Neumann actua-
ion with non-local sensing. The novelty of this paper compared
o existing results can be formulated as follows:

• Compared with Feng et al. (2022), Jadachowski et al. (2015),
Lhachemi et al. (2023), Meng and Feng (2022) and Vazquez
and Krstic (2016) for observer-based design of
high-dimensional parabolic PDEs, we give efficient finite-
dimensional observer-based design and provide LMI condi-
tions for finding observer dimension and upper bounds of
delays. We prove that the LMIs are always feasible for large
enough observer dimension and small enough upper bounds
on delays.

• Differently from Katz and Fridman (2021, 2022a) and Katz
and Fridman (2022b) for 1D parabolic PDEs where Lya-
punov functional combined with classical scalar Halanay’s
inequality (see P. 138 in Fridman (2014)) was suggested,
we construct vector Lyapunov functional combined with re-
cently introduced vector Halanay’s inequality (see Mazenc,
Malisoff, and Krstic (2022)). The latter allows to efficiently
compensate the fast-varying output delay that appears in
the infinite-dimensional part of the closed loop system es-
sentially improving the upper bounds on delays in most of
the numerical examples.

• Compared with spatial decomposition approach suggested
in Am and Fridman (2014), Kang and Fridman (2021), Seli-
vanov and Fridman (2019) and Wang and Wang (2021) for
robust stabilization of ND parabolic PDEs, the modal decom-
position approach in this paper allows for fewer actuators
and sensors (including single boundary actuator or sensor).

Notations and preliminaries: For any bounded domain Ω ⊂ R2,
enote by L2(Ω) the space of square integrable functions with

inner product ⟨f , g⟩ =
∫

Ω
f (x)g(x)dx and induced norm ∥f ∥2

L2
=

f , f ⟩. H1(Ω) is the Sobolev space of functions f : Ω −→ R
ith a square integrable weak derivative. The norm defined in
1(Ω) is ∥f ∥2

H1 = ∥f ∥2
L2

+ ∥∇f ∥2
L2
, where ∇f = [fx1 , fx2 ]

T and
∇f ∥2

L2
=

∫
Ω

[(fx1 )
2
+ (fx2 )

2
]dx. The Euclidean norm is denoted by

· |. For P ∈ Rn×n, P > 0 means that P is symmetric and positive
efinite. The symmetric elements of a symmetric matrix will be
enoted by ∗. For 0 < P ∈ Rn×n and x ∈ Rn, we write |x|2P = xTPx.
enote N by the set of positive integers.
Let Ω ⊂ R2 be a bounded open connected set. Following Tuc-

nak and Weiss (2009), we assume that either the boundary ∂Ω
 H

2

s of class C2 or Ω is a rectangular domain. Let ∂Ω be split into
wo disjoint parts ∂Ω = ΓD ∪ ΓN such that ΓD and ΓN have non-
ero Lebesgue measurement. Here subscripts D and N stand for
irichlet and for Neumann boundary conditions respectively. Let

φ = −∆φ, D(A) = {φ|φ ∈ H2(Ω) ∩ H1
Γ (Ω)},

H1
Γ (Ω) = {φ ∈ H1(Ω)|φ(x) = 0 for x ∈ ΓD,

∂φ

∂n (x) = 0 for x ∈ ΓN},

(1.1)

here ∂
∂n is the normal derivative. It follows from Tucsnak and

Weiss (2009, Proposition 3.2.12) that the eigenvalues {λn}
∞

n=1 of
A are real and we can repeat each eigenvalue according to its
finite multiplicity to get

λ1 < λ2 ≤ · · · ≤ λn ≤ . . . , lim
n→∞

λn = ∞. (1.2)

e denote the corresponding eigenfunctions as {φn}
∞

n=1. Let δ >

. From (1.2), it follows that there exists N0 ∈ N such that

− λn + q + δ < 0, n > N0, (1.3)

here q ∈ R is a constant reaction coefficient, N0 is the number
f modes used for the controller design. Throughout the paper, d
ill denote the maximum of the geometric multiplicities of λn,
= 1, . . . ,N0.
Differently from the 1D case where λN = O(N2), N → ∞, for

N , we have the following estimate which will be used for the
symptotic feasibility of LMIs:

emma 1.1 (Strauss, 2007, Sec. 11.6). For eigenvalues (1.2), we have
imN→∞

λN
N =

4π
|Ω|

, where |Ω| is the area of Ω .

Since A is strictly positive and diagonalizable, we have (see
Proposition 3.4.8 in Tucsnak and Weiss (2009))

D(A
1
2 ) = {h ∈ L2(Ω)|

∑
∞

n=1 λn|⟨h, φn⟩|
2 < ∞}.

ollowing Remark 3.4.4 in Tucsnak and Weiss (2009), we can
egard D(A

1
2 ) as the completion of D(A) with respect to the norm

∥f ∥ 1
2

=
√

⟨Af , f ⟩ =

√∑
∞

n=1 λn|⟨f , φn⟩|
2, f ∈ D(A). For h ∈ D(A),

e have ∥∇h∥2
L2

= ⟨h,Ah⟩ = ∥h∥2
1
2
, which implies

∥∇h∥2
L2 =

∞∑
n=1

λnh2
n. (1.4)

e have ∥f ∥2
L2

≤ C(Ω)∥∇f ∥2
L2
, f |ΓD = 0 for some constant

(Ω) > 0 (see Glitch (2021)), which together with (1.4) implies
he equivalence of ∥·∥ 1

2
and ∥·∥H1 subject to f (x) = 0, x ∈ ΓD. We

have D(A
1
2 ) = {h ∈ H1(Ω)|h(x) = 0, x ∈ ΓD}. Finally, density of

D(A) in D(A
1
2 ) yields that (1.4) holds for any h

L2(Ω)
=

∑
∞

n=1 hnφn ∈

D(A
1
2 ).

Given a positive integer N and h ∈ L2(Ω) satisfying h L2
=

∞

n=1 hnφn, where hn = ⟨h, φn⟩, we denote ∥h∥2
N =

∑
∞

n=N+1 h
2
n.

or φ ∈ L2(Ω) and b = [b1, . . . , bd]T ∈ (L2(Ω))d, we denote
b, φ⟩ = [⟨b1, φ⟩, . . . , ⟨bd, φ⟩]

T.

emma 1.2 (Vector Halanay’s Inequality Mazenc et al., 2022). Let
∈ Rn×n be a Metzler and Hurwitz matrix and P ∈ Rn×n be

nonnegative matrix. Let τ = max{τ1, . . . , τn} with τi > 0 and
= [V1, . . . , Vn]

T
: [−τ , ∞) → [0, ∞)n be C1 and

˙ (t) ≤ MV (t) + P sups∈[t−τ ,t] V (s),

here sups∈[t−τ ,t] V (s) = col{sups∈[t−τi,t] Vi(s)}ni=1. If M + P is
urwitz, then |V (t)| ≤ De−δ0t , t ≥ 0 for some δ > 0 and D > 0.
0
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. Non-local actuation and measurement

.1. System under consideration and controller design

Consider the following heat equation under delayed nonlocal
ctuation:

t (x, t) = ∆z(x, t) + qz(x, t)
+ bT(x)u(t − τu(t)), in Ω × (0, ∞),

z(x, t) = 0, on ΓD × (0, ∞),
∂z
∂n (x, t) = 0, on ΓN × (0, ∞),
z(·, 0) = z0(·) ∈ L2(Ω),

(2.1)

here u(t) = [u1(t), . . . , ud(t)]T is the control input to be de-
signed later, τu(t) is a known input delay which is upper bounded
by τM,u, b = [b1, . . . , bd]T ∈ (L2(Ω))d. Assume the following
delayed non-local measurement:

y(t) = ⟨c, z(·, t − τy(t))⟩, t − τy(t) ≥ 0,
y(t) = 0, t − τy(t) < 0, c = [c1, . . . , cd]T ∈ (L2(Ω))d,

(2.2)

where τy(t) is a known measurement delay which is upper
bounded by τM,y. The controller construction will follow Katz
and Fridman (2020) for 1D case (where only simple eigenvalues
appear), but the single-input and single-output as in Katz and
Fridman (2020) are not applicable to the 2D case due to the
existence of multiple eigenvalues (the system is uncontrollable
and unobservable). Here we introduce multi-input u(t) and multi-
output (2.2) with b, c satisfying Assumption 1 (see below) to
manage with the controllability and observability.

We treat two classes of input/output delays: continuously
differentiable delays and sawtooth delays that correspond to
network-based control. For the case of continuously differentiable
delays, we assume that τu(t) and τy(t) are lower bounded by
τm > 0. This assumption is employed for well-posedness only.
As in Katz and Fridman (2021) and Liu and Fridman (2014), we
assume that there exists a unique t∗ ∈ [τm,min{τM,y, τM,u}] such
that t − τ (t) < 0 if t < t∗ and t − τ (t) ≥ 0 if t ≥ t∗ for τ (t) ∈

{τu(t), τy(t)}. For the case of sawtooth delays, τy(t) and τu(t) are
nduced by two networks: from sensor to controller and from
ontroller to actuator, respectively (see Section 7.5 in Fridman
2014)). Henceforth the dependence of τy(t) and τu(t) on t will
e suppressed to shorten notations.
We present the solution to (2.1) as

(x, t) L2
=

∞∑
n=1

zn(t)φn(x), zn(t) = ⟨z(·, t), φn⟩, (2.3)

here {φn}
∞

n=1 are corresponding eigenfunctions of eigenvalues
1.2). Differentiating zn in (2.3) and applying Green’s first identity,
e obtain

˙n(t) = (−λn + q)zn(t) + bT
nu(t − τu), t ≥ 0,

n(0) = ⟨z(·, 0), φn⟩, bn = ⟨b, φn⟩ ∈ Rd.
(2.4)

et δ > 0 be a desired decay rate and N0 be defined by (1.3). We
onstruct a N-dimensional (N ≥ N0) observer of the form

ˆ(x, t) =

N∑
n=1

ẑn(t)φn(x), N > N0, (2.5)

here ẑn(t) satisfy
˙̂
n(t) = (−λn + q)ẑn(t) + bT

nu(t − τu)
− ln

[
⟨c, ẑ(·, t − τy)⟩ − y(t)

]
, t > 0,

ˆn(0) = 0, t ≤ 0,
(2.6)

ith y(t) in (2.2), observer gains ln ∈ R1×d, 1 ≤ n ≤ N0 being
esigned later and l = 0 for N < n ≤ N .
n 1×d 0 ξ

3

Introduce the notations

A0 = diag{−λn + q}N0
n=1, A1 = diag{−λn + q}Nn=N0+1,

cn = ⟨c, φn⟩, C0 = [c1, . . . , cN0 ], C1 = [cN0+1, . . . , cN ],

B0 = [b1, . . . , bN0 ]
T, B1 = [bN0+1, . . . , bN ]

T.

(2.7)

We rewrite A0 as:

A0 = diag{Ã1, . . . , Ãp},

Ãj = diag{−λj + q, . . . ,−λj + q} ∈ Rnj×nj ,

λk ̸= λj iff k ̸= j, k, j = 1, . . . , p,
(2.8)

where n1, . . . , np are positive integers such that n1 + · · · + np =

N0. Clearly, nj ≤ d, j = 1, . . . , p and there exists at least one
ȷ ∈ {1, . . . , p} such that nȷ = d. According to the partition of (2.8),
we rewrite B0 and C0 as

B0 = [BT
1, . . . , B

T
p]

T, Bj ∈ Rnj×d,

C0 = [C1, . . . , Cp], Cj ∈ Rd×nj .

Assumption 1. Let rank(Bj) = nj and rank(Cj) = nj, j = 1, . . . , p.

Lemma 2.1. Under Assumption 1, the pair (A0,B0) is controllable
and the pair (A0, C0) is observable.

Proof. The proof is inspired by Lemma 7.2 of Meng and Feng
(2022). Assume that the pair (A0, C0) is not observable. By the
Hautus test (see Tucsnak and Weiss (2009, Remark 1.5.2)), there
exist 0 ̸= ν ∈ RN0 and j ∈ {1, . . . , p} such that A0ν = λjν, C0ν =

0. Without loss of generality, we suppose that ν = col{ν1, . . . , νp},
where νj = [ν

(1)
j , . . . , ν

(nj)
j ]

T. Then we have A0ν − λjν = col{(λk −

λj)νk}
p
k=1 = 0 and

∑p
k=1 Ckνk = 0, which implies νk = 0 for k ̸= j

and Cjνj = 0. Since rank(Cj) = nj, we have νj = 0. This contradicts
to the fact ν ̸= 0. Therefore, pair (A0, C0) is observable. The
controllability of (A0,B0) follows similarly.

Under Assumption 1, we can let L0 = col{l1, . . . , lN0} ∈ RN0×d

and K0 ∈ Rd×N0 satisfy

Po(A0 − L0C0) + (A0 − L0C0)TPo < −2δPo, (2.9a)

Pc(A0 − B0K0) + (A0 − B0K0)TPc ≤ −2δPc, (2.9b)

for 0 < Po, Pc ∈ RN0×N0 . We propose a controller of the form

u(t) = −K0ẑN0 (t), ẑN0 = [ẑ1, . . . , ẑN0 ]
T. (2.10)

For well-posedness of closed-loop system (2.1), (2.6) with con-
trol input (2.10), we consider the state ξ (t) = col{z(·, t), ẑN (t)},
where ẑN (t) = col{ẑn(t)}Nn=1. The closed-loop system can be
presented as

d
dt ξ (t) + diag{A,A0}ξ (t) =

[
qz(·, t) + f1(t − τu)

f2(t − τu) + f3(t − τy)

]
,

0 = diag{−A0, −A1}, f1(t) = −bT(·)K0ẑN0 (t),

2(t) = −BK0ẑN0 (t), B = [BT
0,B

T
1]

T, C = [C0, C1],

3(t) = −

[
L0

0(N−N0)×d

]
[CẑN (t) − ⟨c, z(·, t)⟩],

(2.11)

here A is defined in (1.1). We begin with continuously differ-
ntiable delays. By using Theorems 6.1.2 and 6.1.5 in Pazy (1983)
ogether with the step method on intervals [0, t∗], [t∗, (s+ 1)τm],
(s + 1)τm, (s + 2)τm], . . . , where s ∈ N satisfies sτm ≤ t∗ <
s+1)τm (see arguments similar to the well-posedness in Section
of Katz and Fridman (2021)), we obtain that for any initial value
(0) = [z0(·), 0]T ∈ D(A)×RN , the closed-loop system (2.11) has
unique classical solution

∈ C([0, ∞), L2(Ω) × RN ) ∩ C1([0, ∞)\J, L2(Ω) × RN ),
N (2.12)
(t) ∈ D(A) × R , ∀t ≥ 0,
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here J = {t∗, (s + 1)τm, (s + 2)τm, . . . }. The well-posedness for
awtooth delays follows similarly.

.2. Stability analysis and main results

Let en(t) = zn(t) − ẑn(t), 1 ≤ n ≤ N be the estimation error.
he last term on the right-hand side of (2.6) can be presented as
N
n=1 cnẑn(t − τy) − y(t)

−
∑N

n=1 cnen(t − τy) − ζ (t − τy),
(t) =

∑
∞

n=N+1 cnzn(t).
(2.13)

rom (2.4), (2.6), (2.13), the error system has the form

˙n(t) = (−λn + q)en(t) − ln
∑N

i=1 ciei(t − τy)
− lnζ (t − τy), 1 ≤ n ≤ N.

(2.14)

enote
ˆN−N0 (t) = [ẑN0+1(t), . . . , ẑN (t)]T,
N0 (t) = [e1(t), . . . , eN0 (t)]

T, C0 = [C0, 0d×N0 ]

N−N0 (t) = [eN0+1(t), . . . , eN (t)]T,

0(t) = col{ẑN0 (t), eN0 (t)}, K0 = [K0, 0d×N0 ],

0 =

[
A0 − B0K0 L0C0

0 A0 − L0C0

]
, L0 =

[
L0

−L0

]
,

ντu (t) = ẑN0 (t) − ẑN0 (t − τu), B0 =

[
B0

0N0×d

]
,

ντy (t) = X0(t) − X0(t − τy).

(2.15)

We follow Katz and Fridman (2022a) and consider the reduced-
order closed-loop system. First, from (2.14) and ln = 0 for N0 +

≤ n ≤ N , we have ėN−N0 (t) = A1eN−N0 (t), t ≥ 0, which is
exponentially decaying (since A1 defined in (2.7) is stable due to
(1.3)). It follows

eN−N0 (t − τy) = e−A1τyeN−N0 (t). (2.16)

By (2.6), (2.10), (2.14), and (2.16), we obtain the reduced-order
closed-loop system

Ẋ0(t) = F0X0(t) + B0K0ντu (t) − L0C0ντy (t) (2.17a)

+ L0ζ (t − τy) + L0C1e−A1τyeN−N0 (t),

żn(t) = (−λn + q)zn(t) − bT
nK0X0(t − τy), n > N, (2.17b)

where ζ (t) is defined in (2.13). Note that ζ (t) does not depend
on ẑN−N0 (t) which satisfies
˙̂zN−N0 (t) = A1ẑN−N0 (t) − B1K0X0(t − τu), (2.18)

and is exponentially decaying provided X0(t) is exponentially
decaying. Therefore, for stability of (2.1) under the control law
(2.10), it is sufficient to show the stability of the reduced-order
system (2.17). The latter can be considered as a singularly per-
turbed system with the slow sate X0(t) and the fast infinite-
dimensional state zn(t), n > N .

For exponential L2-stability of the closed-loop system (2.17),
we consider the following vector Lyapunov functional

V (t) = [V0(t), Vtail(t)]T, Vtail(t) =
∑

∞

n=N+1 z
2
n (t),

V0(t) = VP (t) + Vy(t) + Vu(t) + Ve(t),

VP (t) = |X0(t)|2P , Ve(t) = pe|eN−N0 (t)|2,

Vy(t) =
∫ t
t−τM,y

e2δ(s−t)
|X0(s)|2Syds,

+ τM,y
∫ 0

−τM,y

∫ t
t+θ

e2δ(s−t)
|Ẋ0(s)|

2
Rydsdθ,

Vu(t) =
∫ t
t−τM,u

e2δ(s−t)
|K0X0(s)|2Suds

+ τ
∫ 0 ∫ t e2δ(s−t)

|K Ẋ (s)|
2
dsdθ,

(2.19)
M,u −τM,u t+θ 0 0 Ru

4

where 0 < P, Sy, Ry ∈ R2N0×2N0 and 0 < Su, Ru ∈ Rd×d. Here
Vy(t) is used to compensate ντy (t), Vu(t) is used to compensate
ντu (t), and Ve(t) is used to compensate eN−N0 (t). To compensate
ζ (t−τy) we will use vector Halanay’s inequality and the following
Cauchy–Schwarz inequality:

|ζ (t)|2 ≤ ∥c∥2
N

∑
∞

n=N+1 z
2
n (t),

∥c∥2
N :=

∑d
j=1 ∥cj∥2

N =
∑

∞

n=N+1 |cn|2.
(2.20)

As explained in Remark 2.1, compared to the classical Halanay’s
inequality, the vector one allows to use smaller δ in Vy and
Vu in the stability analysis essentially improving results in the
numerical examples for comparatively large N .

Differentiation of Vtail(t) along (2.17b) gives

V̇tail(t) =
∑

∞

n=N+1 2(−λn + q)z2n (t)
−

∑
∞

n=N+1 2zn(t)b
T
nK0X(t − τu).

(2.21)

Let α > 0. Applying Young’s inequality we arrive at

−
∑

∞

n=N+1 2zn(t)b
T
nK0X(t − τu)

≤
∥b∥

2
N

α
XT(t − τu)KT

0K0X(t − τu)

+ α
∑

∞

n=N+1 z
2
n (t), ∥b∥

2
N :=

∑d
i=1 ∥bi∥2

N .

(2.22)

rom (2.21) and (2.22), we have
˙tail(t) + [2λN+1 − 2q − α]Vtail(t)

∥b∥
2
N

α
|K0X(t − τu)|2 ≤ βV0(t − τu)

(2.23)

rovided
∥b∥

2
N

α
KT

0K0 < βP . (2.24)

Let β0 = αβ . By Schur complement, we find that (2.24) holds iff[
−P KT

0

∗ −
β0

∥b∥
2
N
I

]
< 0. (2.25)

Let
εy = e−2δτM,y , θτy (t) = eN0 (t − τy) − eN0 (t − τM,y),

εu = e−2δτM,u , θτu (t) = ẑN0 (t − τu) − ẑN0 (t − τM,u).

Differentiation of V0(t) along (2.17a) gives

V̇0(t) + 2δV0(t) ≤ XT
0 (t)[PF0 + F T

0 P + 2δP]X0(t)
+2XT

0 (t)P[B0K0ντu (t) − L0C0ντy (t) + L0ζ (t − τy)]

+2XT
0 (t)PL0C1e−A1τyeN−N0 (t)

+|X0(t)|2Sy − εy|X0(t) − ντy (t) − θτy (t)|
2
Sy

+τ 2
M,y|Ẋ0(t)|

2
Ry − εyτM,y

∫ t
t−τM,y

|Ẋ0(s)|
2
Ryds

+|K0X0(t)|2Su − εu|K0X0(t) − K0ντu (t) − K0θτu (t)|
2
Su

+τ 2
M,u|K0Ẋ0(t)|

2
Ru − εuτM,u

∫ t
t−τM,u

|K0Ẋ0(s)|
2
Ruds

+2pe(eN−N0 (t))T[A1 + δI]eN−N0 (t).

(2.26)

Let Gy ∈ R2N0×2N0 and Gu ∈ Rd×d satisfy[
Ry Gy

∗ Ry

]
≥ 0,

[
Ru Gu

∗ Ru

]
≥ 0. (2.27)

Applying Jensen’s and Park’s inequalities (see, e.g., Fridman (2014,
Section 3.6.3)), we obtain for ξy(t) = col{ντy (t), θτy (t)}, ξu(t) =

col{K0ντu (t), K0θτu (t)},

−τM,y
∫ t
t−τM,y

|Ẋ0(s)|
2
Ryds ≤ −ξ T

y (t)
[
Ry Gy

∗ Ry

]
ξy(t),

−τM,u
∫ t
t−τ

|K0Ẋ0(s)|
2
Ruds ≤ −ξ T

u (t)
[
Ru Gu

]
ξu(t).

(2.28)
M,u ∗ Ru
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et η(t) = col{X0(t), ζ (t − τy), ξy(t), ξu(t), eN−N0 (t)}. Substituting
(2.28) into (2.26), we get for δ1 > 0,

V̇0(t) + 2δV0(t) − 2δ1Vtail(t − τy)
(2.20)
≤ V̇X (t) + 2δVX (t) −

2δ1
∥c∥2N

|ζ (t − τy)|2

≤ ηT(t)Φη(t) ≤ 0

(2.29)

rovided

=

[
Φ0 PL0C1e

−A1τy

∗ 2pe(A1 + δI)

]
+ ΛT

[τ 2
M,yRy + τ 2

M,uK
T
0RuK0]Λ ≤ 0,

(2.30)

where

Φ0 =

⎡⎢⎢⎢⎢⎣
Ω0 PL0

∗ −
2δ1

∥c∥2N
I

Ω1 εySy

0 0

Ω2 εuKT
0Su

0 0

∗ Ωy 0

∗ ∗ Ωu

⎤⎥⎥⎥⎥⎦,

0 = PF0 + FT0 P + 2δP + (1 − εy)Sy + (1 − εu)KT
0SuK0,

Ω1 = εySy − PL0C0, Ω2 = PB0 + εuKT
0Su,

Λ = [Λ0, L0C1e−A1τy ], Λ0 = [F0,L0, −L0C0, 0,B0, 0],

ΩJ =

[
−εJ (SJ + RJ ) − εJ (SJ + GJ )

∗ − εJ (SJ + RJ )

]
, J ∈ {y, u}.

(2.31)

We now show the feasibility of (2.30) for large N . Since A1 +δI <
due to (1.3), by Schur complement for pe → ∞, we obtain that

he feasibility of (2.30) holds iff

0 + ΛT
0[τ

2
M,yRy + τ 2

M,uK
T
0RuK0]Λ0 ≤ 0. (2.32)

From (2.23) and (2.29), we have

V̇ (t) ≤

[
−2δ 0

0 −2λN+1 + 2q +
1
α

]
V (t)

+

[
0 2δ1
0 0

]
V (t − τy) +

[
0 0
β 0

]
V (t − τu).

(2.33)

y vector Halanay’s inequality (see Lemma 1.2) we have

V (t)| ≤ De−2δ0t , t ≥ 0 (2.34)

or some δ0 > 0 and D > 0, provided

−2δ 2δ1
β −2λN+1 + 2q + α

]
is Hurwitz. (2.35)

y Parseval’s equality, we obtain from (2.34) that

z(·, t)∥2
L2 + ∥z(·, t) − ẑ(·, t)∥2

L2 ≤ D̃e−δ0t , t ≥ 0 (2.36)

or some D̃ > 0. Recalling that β0 = αβ , we find that (2.35) holds
ff
2(λN+1 − q + δ) + α < 0,
−2α(λN+1 − q) +

δ1
δ
β0 α

∗ −1

]
< 0. (2.37)

For asymptotic feasibility of LMIs (2.25), (2.27), (2.32), and
2.37) with large N and small τM,y, τM,u > 0, let Si = 0, Gi = 0 for
∈ {y, u}. Taking τM,y, τM,u → 0+, it is sufficient to show (2.25),
2.37) and

PF0 + FT0 P + 2δP PL0 −PL0C0 PB0

∗ −
2δ1

∥c∥2N
I 0 0

∗ ∗ −Ry 0

∗ ∗ ∗ −Ru

⎤⎥⎥⎦ < 0. (2.38)

Take α = δ = 1, δ1 = β0 = N
1
3 , Ry = NI , Ru = NI . Let

< P ∈ R2N0×2N0 be the solution to the Lyapunov equation
5

(F0 + δI) + (F0 + δI)TP = −I . We have ∥P∥ = O(1), N →

. Substituting above values into (2.25), (2.37), (2.38) and using
chur complement and the fact that λN = O(N) (see Lemma 1.1),
L0∥ = O(1), ∥B0∥ = O(1) for N → ∞, we obtain the feasibility
f (2.25), (2.37) and (2.38) for large enough N . Fixing such N and
sing continuity, we have that (2.25), (2.27), (2.30) and (2.37) are
easible for small enough τM,y, τM,u > 0. Summarizing, we arrive
t:

heorem 2.1. Consider (2.1) with control law (2.10) and measure-
ent (2.2). For δ > 0, let N0 ∈ N satisfy (1.3) and N ∈ N satisfy
≥ N0. Let Assumption 1 hold and L0, K0 be obtained from (2.9).

iven τM,y, τM,u > 0 and δ1 > 0, let there exist 0 < P, Sy, Ry ∈

R2N0×2N0 , 0 < Su, Ru ∈ Rd×d, Gy ∈ R2N0×2N0 , Gu ∈ Rd×d and scalars
α, β0 > 0 such that LMIs (2.25), (2.27), (2.32) with Φ0 and Λ0 given
in (2.31), and (2.37) hold. Then the solution z(x, t) to (2.1) subject to
the control law (2.6), (2.10) and the corresponding observer ẑ(x, t)
given by (2.5) satisfy (2.36) for some D̃ > 0 and δ0 > 0. Moreover,
LMIs (2.25), (2.27), (2.32), and (2.37) are always feasible for large
enough N and small enough τM,y, τM,u > 0.

Remark 2.1. Multiplying decision variables P , Si, Ri, Gi (i ∈ {y, u})
in (2.25), (2.27), (2.32) by δ1 and changing β0 in (2.25) and (2.37)
to β0

δ1
, we find that the feasibility of LMIs (2.25), (2.27), (2.32),

and (2.37) is independent of δ1 > 0. The fact also holds true for
Theorems 3.1 and 4.1. This is different from the classical Halanay
inequality (see Remark 2.3) where δ1 ≤ δ should not be small to
compensate ζ (t−τy). However, compared to the classical Halanay
inequality, the vector one needs constraint (2.24) (i.e., (2.25)
which is usually more difficult to meet for larger N0) whose
feasibility requires ∥b∥

2
N or 1

α
to be very small. This together with

(2.37) implies that N should be very large.

Remark 2.2. Note that for N0 > 1, it is difficult to find efficient
L0, K0 from (2.9) (see numerical example in Section 4). Here for
N0 > 1 we can use the following steps to find more efficient L0
and K0:

Step 1: We find L0 from the following inequality:[
Po(A0 − L0C0) + (A0 − L0C0)

TPo + 2δPo −PoL0

∗ −
2δ

∥c∥2N
I

]
< 0. (2.39)

The additional terms compared to (2.9) are from the compensa-
tion of infinite-tail term of closed-loop system.

Step 2: Based on the L0 obtained from (2.39), we design the
ontroller gain K0 ∈ Rd×N0 from the delay-free case (i.e., τu ≡ 0
and τy ≡ 0). In this case, the closed-loop system (2.17) becomes

Ẋ0(t) = F0X0(t) + L0ζ (t) + L0C1eN−N0 (t),
żn(t) = (−λn + q)zn(t) − BnK0X0(t), n > N.

We consider vector Lyapunov function

V (t) = [V0(t), Vtail(t)]T,

V0(t) = |ẑN0 (t)|2Pz + |eN0 (t)|2Pe + pe|eN−N0 (t)|2,
(2.40)

where 0 < Pz, Pe ∈ RN0×N0 , pe > 0 and Vtail(t) is defined in (2.19).
By arguments similar to (2.21)–(2.37), we have (2.36) for some
D̃ > 0 provided

1
α
K T
0ΛbK0 < βPz,

⎡⎢⎣
Φz Pz L0C0 Pz L0

∗ Φe −PeL0

∗ ∗ −
2δ1

∥c∥2N
I

⎤⎥⎦ < 0,

2δ + 2λN+1 − 2q − α > 0,
(2.41)
δ(2λN+1 − 2q − α) − βδ1 > 0,
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z = Pz(A0 − B0K0) + (A0 − B0K0)TPz + 2δPz,
Φe = Pe(A0 − L0C0) + (A0 − L0C0)TPe + 2δPe.

Let β0 = αβ , Qz = P−1
z and Yz = K0Qz . By Schur complement, we

find that (2.41) hold iff[
−Qz YTz

∗ −
β0

∥b∥2N

]
< 0,

⎡⎢⎣
Φ̃z L0C0 L0

∗ Φe −PeL0

∗ ∗ −
2δ1

∥c∥2N
I

⎤⎥⎦ < 0,

˜ z = A0Qz + QzAT
0 − B0Yz − Y T

z B
T
0 + 2δQz,

2(λN+1 − q + δ) + α < 0,

−2α(λN+1 − q) +
δ1
δ

β0 α

∗ −1

]
< 0.

(2.42)

In particular, (2.42) are LMIs that depend on decision variables
0 < Qz, Pe ∈ RN0×N0 , Yz ∈ Rd×N0 and scalars α, β0 > 0. If LMIs
2.42) hold, the controller gain is given by K0 = Q−1

z Yz .

Remark 2.3 (Stability Analysis Via Classical Halanay’s Inequality).
Consider Lyapunov functional

V (t) = V0(t) + Vtail(t) (2.43)

with V0(t) and Vtail(t) in (2.19). To compensate ζ (t − τy), the
ollowing bound is used for 0 < δ1 < δ:

2δ1 sup
t−τM,y≤θ≤t

V (θ ) ≤ −2δ1[VP (t − τy) + Vtail(t − τy)]

2.20)
≤ −2δ1|X0(t) − ντy (t)|

2
P −

2δ1
∥c∥2N

|ζ (t − τy)|2.
(2.44)

y arguments similar to (2.21), (2.26)–(2.29), (2.44), and the
ollowing Young inequality for α1, α2 > 0,∑

∞

n=N+1 2zn(t)b
T
nK0X(t − τu)

α1∥b∥
2
N |K0X0(t)|2 + α2∥b∥

2
N |K0ντu (t)|

2

+ ( 1
α1

+
1
α2

)
∑

∞

n=N+1 z
2
n (t),

(2.45)

we have
V̇ (t) + 2δV (t) − 2δ1 sup

t−τM,y≤θ≤t
V (θ ) ≤ 0 (2.46)

provided (2.27) and the following inequalities hold:[
−λN+1 + q + δ 1 1

∗ diag{−2α1, −2α2}

]
< 0,

0 + ΛT
0[τ

2
M,yRy + τ 2

M,uK
T
0RuK0]Λ0 < 0,

(2.47)

where Λ0 is defined in (2.31) and

Φ0 =

⎡⎢⎢⎣
Ω0 PL0

∗ −
2δ1

∥c∥2N
I

Ω1 εySy

0 0

PB0 + εuKT
0Su εuKT

0Su

0 0

∗ Ωy 0

∗ ∗ Ωu

⎤⎥⎥⎦,

Ω0 = PF0 + F T
0 P + 2(δ − δ1)P + (1 − εu)KT

0SuK0

+ (1 − εy)Sy + α1∥b∥
2
NK

T
0K0,

Ω1 = 2δ1P − PL0C0 + εySy,

Ωy =

[
−2δ1P − εy(Sy + Ry) − εy(Sy + Gy)

∗ − εy(Sy + Ry)

]
,

Ωu =

[
α2∥b∥

2
N I − εu(Su + Ru) − εu(Su + Gu)

∗ − εu(Su + Ru)

]
.

(2.48)

Then classical Halanay’s inequality (see P. 138 in Fridman (2014))
and (2.46) imply (2.36), where δ0 > 0 is the unique solution of
δ = δ − δ e2δ0τM,y .
0 1

6

3. Non-local actuation and boundary measurement

Consider system (2.1) with b ∈ (H1(Ω))d, b(x) = 0 for x ∈ ΓD.
We assume the following delayed boundary measurement:

y(t) =
∫

ΓN
c(x)z(x, t − τy)dx, t − τy ≥ 0,

y(t) = 0, t − τy < 0, c = [c1, . . . , cd]T ∈ (L2(ΓN ))d.
(3.1)

Note that (3.1) is actually a weighted averaged boundary mea-
surement with c representing the weighted coefficient. We
present the solution to (2.1) as (2.3) with zn satisfying (2.4). Let
δ > 0, N0 satisfy (1.3) and N ≥ N0. We construct a N-dimensional
observer of the form (2.5), where ẑn(t) (1 ≤ n ≤ N) satisfy
˙̂zn(t) = (−λn + q)ẑn(t) + bnu(t)

− ln[
∑N

i=1 ciẑi(t − τy) − y(t)], t > 0,
ˆn(0) = 0, t ≤ 0, ci =

∫
ΓN

c(x)φi(x)dx,
(3.2)

ith y(t) in (3.1) and observer gains {ln}Nn=1, ln ∈ R1×d. In this
ection, all notations are the same as in Section 2 except of cn
hich are defined in (3.2). Let B0 and C0 satisfy Assumption 1.
rom Lemma 2.1, we let L0 = col{l1, . . . , lN0} ∈ RN0×d satisfy
2.9a). Define u(t) in (2.10) with K0 ∈ Rd×N0 satisfying (2.9b). By
(2.10), (2.13), (2.14), (3.2), and X0(t) defined in (2.15), we obtain
the closed-loop system (2.17).

Note that we need (2.20) to compensate ζ (t − τy) in (2.17a)
y Halanay inequality. However, differently from the non-local
easurement where

∑
∞

n=N+1 |cn|2 < ∞, for the boundary mea-
urement with cn defined in (3.2), we do not have this property.
ere we assume
∞∑

=N+1

|cn|2

λn
≤ ϱN ≤ ϱ, (3.3)

or some ϱN > 0, where ϱ > 0 is independent of N . For ζ (t)
defined in (2.13), by Cauchy–Schwarz inequality, we have

|ζ (t)|2 ≤
∑

∞

n=N+1
|cn|

2

λn

∑
∞

n=N+1 λnz2n (t)
(3.3)
≤ ϱN

∑
∞

n=N+1 λnz2n (t).
(3.4)

emark 3.1. Note that (3.3) holds for rectangular domain Ω =

0, a1) × (0, a2) with the following boundary

Γ = ΓD ∪ ΓN , ΓN = {(x1, 0), x1 ∈ (0, a1)}. (3.5)

The eigenvalues and corresponding eigenfunctions ofA (see (1.1))
are given by:

λm,k = π2
[
m2

a21
+

(k− 1
2 )

2

a22
], m, k ∈ N,

φm,k(x1, x2) =
2

√
a1a2

sin(mπx1
a1

) cos( (k−
1
2 )πx2
a2

).
(3.6)

e reorder the eigenvalues (3.6) to form a non-decreasing se-
uence (1.2) and denote the corresponding eigenfunctions as
φn}

∞

n=1. Let the corresponding relationship between (1.2) and
3.6) be n ∼ (m, k). We have |cn|2 = |cm,k|

2
=

∑d
j=1∫ a1

0 cj(x1)φm,k(x1, 0)dx1|
2

=
2
a2

∑d
j=1 c

2
j,m where cj,m =

∫ a1
0 cj(x1) ·

√
2

√
a1

sin(mπx1
a1

)dx1 satisfying ∥cj∥2
L2(ΓN )

=
∑

∞

m=1 c
2
j,m. Therefore, we

ave
∞

n=1
|cn|

2

λn
=

2
a2

∑d
j=1

∑
∞

m,k=1
c2j,m
λm,k

≤
∑d

j=1
∑

∞

m=1 c
2
j,m

∑
∞

k=1
2a2

(k− 1
2 )

2π2

= a2
∑d

j=1 ∥cj∥2
L2(0,a1)

=: ϱ,

(3.7)

where we use
∑

∞

k=1
1

(2k−1)2
=

∑
∞

k=1
1
k2

−
∑

∞

k=1
1

(2k)2
=

3
4

∞ 1
=

π2
(see Dyke (2001, P. 99)). Clearly, ϱ is independent
k=1 k2 8
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f N . From (3.7) it follows

∞∑
n=N+1

|cn|2

λn
≤ ϱ −

N∑
n=1

|cn|2

λn
=: ϱN . (3.8)

Taking into account (3.4), for exponential H1-stability we con-
ider the vector Lyapunov functional (2.19) with Vtail(t) therein
eplaced by

tail(t) =

∞∑
n=N+1

λnz2n (t). (3.9)

ifferentiation of Vtail(t) in (3.9) along (2.17b) gives

˙tail(t) =
∑

∞

n=N+1 2(−λn + q)λnz2n (t)
−

∑
∞

n=N+1 2λnzn(t)bT
nK0X(t − τu)

≤
∑

∞

n=N+1 2(−λn + q + α)λnz2n (t)

+
1
α
∥∇b∥

2
N |K0X(t − τu)|2

(3.10)

for some α > 0, where ∥∇b∥
2
N =

∑d
j=1 ∥∇bj∥2

N
(1.4)
=

∑d
j=1

∑
∞

n=N+1

λn⟨bj, φn⟩
2. By arguments similar to (2.21)–(2.37) and using (3.4),

(3.10), we obtain

∥z(·, t)∥2
H1 + ∥z(·, t) − ẑ(·, t)∥2

H1 ≤ D̃e−δ0t , t ≥ 0 (3.11)

for some D̃ > 0 and δ0 > 0 provided LMIs (2.25) (where
∥b∥

2
N is changed to ∥∇b∥

2
N ), (2.27), (2.30) with Φ0 (where ∥c∥2

N
is changed to ϱN ) and Λ0 given in (2.31), and (2.37) hold. The
asymptotic feasibility of above LMIs for large enough N and small
enough τM,y, τM,u > 0 can be obtained by arguments similar to
Theorem 2.1. Summarizing, we arrive at:

Theorem 3.1. Consider (2.1) with control law (2.10) where b ∈

(H1(Ω))d, b(x) = 0 for x ∈ ΓD, measurement (3.1), and z0 ∈ D(A).
Given δ, δ1 > 0, let N0 ∈ N satisfy (1.3) and N ∈ N satisfy N ≥ N0.
Let Assumption 1 and (3.3) hold and L0, K0 be obtained from (2.9).
Given τM,y, τM,u > 0, let there exist 0 < P, Sy, Ry ∈ R2N0×2N0 ,
0 < Su, Ru ∈ Rd×d, scalars α, β0 > 0, Gy ∈ R2N0×2N0 and Gu ∈ Rd×d

such that LMIs (2.25) (where ∥b∥
2
N is changed to ∥∇b∥

2
N ), (2.27),

(2.30) with Φ0 (where ∥c∥2
N is changed to ϱN ) and Λ0 given in

(2.31), and (2.37) hold. Then the solution z(x, t) to (2.1) subject to
the control law (2.6), (2.10) and the corresponding observer ẑ(x, t)
given by (2.5) satisfy (3.11). Moreover, the above LMIs always hold
for large enough N and small enough τM,y, τM,u > 0.

Remark 3.2 (Stability Analysis Via Classical Halanay’s Inequality).
Consider Lyapunov functional (2.43) with V0(t) in (2.19) and
Vtail(t) in (3.9). By arguments similar to (2.21)–(2.37) and using
following bound for 0 < δ1 < δ:

−2δ1 sup
t−τM,y≤θ≤t

V (θ ) ≤ −2δ1[VP (t − τy) + Vtail(t − τy)]

(3.4)
≤ −2δ1|X0(t) − ντy (t)|

2
P −

2δ1
ϱN

|ζ (t − τy)|2,

nd the following Young inequality for α1, α2 > 0,∑
∞

n=N+1 2λnzn(t)bT
nK0X(t − τu)

α1∥∇b∥
2
N |K0X0(t)|2 + α2∥∇b∥

2
N |K0ντu (t)|

2

+ ( 1
α1

+
1
α2

)
∑

∞

n=N+1 λnz2n (t),

we obtain (3.11) provided (2.27) and (2.47) hold with Λ0 in (2.31)
nd Φ0, Ωy, Ωu in (2.48) (where ∥b∥

2
N and ∥c∥2

N are changed to
∇b∥

2 and ϱ , respectively).
N N n

7

4. Boundary actuation and non-local measurement

Consider the delayed Neumann actuation

zt (x, t) = ∆z(x, t) + qz(x, t), in Ω × (0, ∞),
z(x, t) = 0, on ΓD × (0, ∞),
∂z
∂n (x, t) = bT(x)u(t − τu), on ΓN × (0, ∞),
(x, 0) = z0(x), x ∈ Ω,

(4.1)

here b = [b1, . . . , bd]T ∈ (L2(ΓN ))d and u(t) = [u1(t), . . . , ud(t)]T
s the control input to be designed. We consider the delayed non-
ocal measurement (2.2) with c ∈ (L2(Ω))d. We present the solu-
ion to (4.1) as (2.3) and obtain (2.4) with bn =

∫
ΓD

b(x)φn(x)dx.
In this section, all notations are the same as in Section 2 except

f bn that are defined above. We construct a N-dimensional
bserver of the form (2.5), where N ≥ N0, ẑn(t) satisfy (2.6).
et B0 and C0 satisfy Assumption 1. From Lemma 2.1, let L0 =

ol{l1, . . . , lN0} ∈ RN0×d satisfy (2.9a). Define u(t) in (2.10) with
K0 ∈ Rd×N0 satisfying (2.9b).

For the well-posedness of closed-loop system (4.1) and (2.6),
with control input (2.10), we introduce the change of variables

w(x, t) = z(x, t) − rT(x)u(t − τu), (4.2)

where r(x) = [r1(x), . . . , rd(x)]T with rj(x), j = 1, . . . , d being the
solution to the following Laplace equation:

∆rj(x) = 0, x ∈ Ω,

rj(x) = 0, x ∈ ΓD,
∂rj
∂n (x) = bj(x), x ∈ ΓN .

(4.3)

Since bj ∈ L2(ΓN ), from Feng et al. (2022, Lemma 2.1) we have rj ∈

L2(Ω). By (4.1), (4.2), and (4.3), we get the equivalent evolution
equation:

ẇ(t) + Aw(t) = qw(t) − rT(·)u̇(t − τu)(1 − τ̇u)
+ qrT(·)u(t − τu), w(0) = z(·, 0).

(4.4)

efine the state ξ (t) = col{w(t), ẑN (t)}, where ẑN (t) =

[ẑ1(t), . . . , ẑN (t)]T. By (2.6), (2.10), and (4.4), we present the
closed-loop system as

d
dt ξ (t) + diag{A,A0}ξ (t) =

⎡⎣ qw(t) + f1(t − τu)
f2(t − τu) + f3(t − τy)

0(N−N0)×1

⎤⎦,

3(t) = −L0[CẑN (t) − ⟨c, w(·, t)⟩ + ⟨c, rT(·)K0ẑN0 (t − τu)⟩],

1(t) = rT(·)(1 − τ̇u)K0[A0ẑN0 (t) + f3(t − τy)
− B0K0ẑN0 (t − τu)] − qrT(·)ẑN0 (t),

(4.5)

here A0, C, and f2(t) are defined in (2.11). By arguments similar
o the well-posedness in Section 2, we obtain that (4.5) has
unique solution satisfying (2.12). From (4.2), it follows (4.1),

ubject to (2.6), (2.10), has a unique classical solution such that
∈ C([0, ∞), L2(Ω))∩C1((0, ∞), L2(Ω)) and z(·, t) ∈ H2(Ω) with
(x, t) = 0, x ∈ ΓD and ∂

∂n z(x, t) = bT(x)u(t − τu), x ∈ ΓN , for
∈ [0, ∞).
With notations (2.15), the closed-loop system has a form:

˙0(t) = F0X0(t) − L0Cντy (t) + BK0ντu (t) + L0ζ (t − τy),

żn(t) = (−λn + q)zn(t) − bT
nK0X0(t − τu), n > N.

(4.6)

For non-local actuation case in Section 2, we employ Young’s
inequality (2.22) to split the finite- and infinite-dimensional parts,
where

∑
∞

n=N+1 |bn|
2 < ∞ is used. However, for the boundary

actuation with bn defined below (4.1), we do not have such
property. Here we assume

∞∑ |bn|
2

λn
≤ ρN ≤ ρ, (4.7)
=N+1
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Table 1
Chosen gains L0 and K0 .
q = 3, N0 = 1 Theorem 2.1 Theorem 3.1 Theorem 4.1

b1 f1 f3 f5
c1 g1 g3 g1
L0 from (2.9a) 1.6349 2.1837 4.1634
K0 from (2.9b) 1.2696 47.3821 1.6349

q = 8.1, N0 = 3 Theorem 2.1 Theorem 3.1 Theorem 4.1

b1, b2 f1, f2 f3, f4 f5, f6
c1, c2 g1, g2 g3, g4 g1, g2

L0 from (2.39)

⎡⎣ 8.428 6.036
−0.295 −0.424
0.204 0.150

⎤⎦ ⎡⎣9.964 58.153
0.161 −0.416
0.927 −0.188

⎤⎦ ⎡⎣ 7.108 4.841
−0.133 −0.525
0.709 0.085

⎤⎦
δ = 0.04 δ = 0.02 δ = 0.05

K0 from (2.42)
[

5.260 0.029 −0.034
−0.094 0.253 −0.097

] [
11.033 0.026 0

0 0 −0.040

] [
7.886 −0.280 0.385

−8.444 0.039 0.518

]

a

5

f

f

f

H
f
L
s

for some ρN > 0, where ρ > 0 is independent of N . Then we use
he following Young inequality for α > 0:∑

n=N+1 2zn(t)b
T
nK0X0(t − τu)

1
α

∑
∞

n=N+1
|bn|

2

λn
|K0X0(t − τu)|2 +

∑
∞

n=N+1 αλnz2n (t)
4.7)
≤

ρN
α

|K0X0(t − τu)|2 +
∑

∞

n=N+1 αλnz2n (t).

(4.8)

Remark 4.1. Note that (4.7) holds for rectangular domain. Con-
sider the rectangular domain introduced in Remark 3.1. Similar
to estimates (3.7) and (3.8), we have

∑
∞

n=N+1
|bn|

2

λn
≤ ρ −

N
n=1

|bn|
2

λn
=: ρN with ρ = a2

∑d
j=1 ∥bj∥2

L2(0,a1)
which is indepen-

dent of N .

According to (4.8), we consider the following Cauchy–Schwarz
inequality:

|ζ (t)|2 ≤
∑

∞

n=N+1
|cn|

2

λn

∑
∞

n=N+1 λnz2n (t)

≤
∥c∥2N
λN

∑
∞

n=N+1 λnz2n (t),
(4.9)

here ∥c∥2
N is defined in (2.20). Consider the vector Lyapunov

functional (2.19) with Vtail(t) therein replaced by (3.9). By argu-
ments similar to (2.23)–(2.37), (3.10), and using (4.8) and (4.9),
we conclude that the solutions to (4.1), (2.6), (2.10) satisfy (3.11)
for some D̃ > 0 and δ0 > 0 provided (2.27), (2.32) with Φ0, Λ0
in (2.31) (where ∥c∥2

N is changed to 1
λN

∥c∥2
N ), and the following

inequalities hold:[
−P KT

0

∗ −
β0
ρN

I

]
< 0,

[
−2α(λN+1 − q) +

δ1
δ
β0 α

∗ −1

]
< 0. (4.10)

The asymptotic feasibility of above LMIs for large enough N and
mall enough τM,y, τM,u > 0 can be obtained by arguments similar
to Theorem 2.1. Summarizing, we have:

Theorem 4.1. Consider (4.1) with control law (2.10) and delayed
on-local measurement (2.2). Given δ > 0, let N0 ∈ N satisfy (1.3)
nd N ∈ N satisfy N ≥ N0. Let Assumption 1 hold and L0 ∈ RN0×d,

K0 ∈ Rd×N0 be obtained from (2.9). Given τM,y, τM,u > 0, let there
xist 0 < P, Sy, Ry ∈ R2N0×2N0 , 0 < Su, Ru ∈ Rd×d, Gy ∈ R2N0×2N0

and Gu ∈ Rd×d, scalars α, β0 > 0 such that LMIs (2.27), (2.30) with
Φ0 and Λ0 given in (2.31) (where ∥c∥2

N is changed to ∥c∥2
N/λN ) and

(4.10) hold. Then the solution z(x, t) to (4.1) subject to the control
law (2.6), (2.10) and the corresponding observer ẑ(x, t) given by
(2.5) satisfy (3.11) for some D̃ > 0 and δ0 > 0. Moreover, the
above inequalities always hold for large enough N and small enough
τ , τ > 0.
M,y M,u
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Remark 4.2 (Stability Analysis Via Classical Halanay’s Inequality).
Consider Lyapunov functional (2.43) with V0(t) in (2.19) and
Vtail(t) in (3.9). By arguments similar to (2.21)–(2.37) and using
following bound for 0 < δ1 < δ:

−2δ1 sup
t−τM,y≤θ≤t

V (θ ) ≤ −2δ1[VP (t − τy) + Vtail(t − τy)]

(4.9)
≤ −2δ1|X0(t) − ντy (t)|

2
P −

2δ1λN
∥c∥N

|ζ (t − τy)|2,

and the following Young inequality for α1, α2 > 0,

−
∑

∞

n=N+1 2λnzn(t)bT
nK0X(t − τu)

(4.7)
≤ α1ρN |K0X0(t)|2 + α2ρN |K0ντu (t)|

2

+ ( 1
α1

+
1
α2

)
∑

∞

n=N+1 λnz2n (t),

we obtain (3.11) provided (2.27) and (2.47) hold with Λ0 in (2.31)
nd Φ0, Ωy, Ωu in (2.48) (where ∥b∥

2
N and ∥c∥2

N are changed to
ρN and ∥c∥2

N/λN , respectively).

. Numerical examples

In this section, we consider a rectangular domain Ω = (0, a1)
× (0, a2) with a1 =

4
√
3

3 , a2 =
4
√
3

3 and boundary (3.5). We
consider q = 3 which results in an unstable open-loop system
with 1 unstable mode (in this case, N0 = 1 and d = 1) and
q = 8.1 which results in an unstable open-loop system with 3
unstable modes with λ1 < λ2 = λ3 (in this case, N0 = 3 and
d = 2), respectively. We consider three cases corresponding to
Sections 2–4. For all cases we take τM,y = τM,u = τM . In each case,
functions b = b1, c = c1 for d = 1 and b = [b1, b2]T, c = [c1, c2]T
for d = 2 are chosen according to Table 1, where

f1(x) = 20x1(x2 − x22)χ[0, a12 ]×[0, a22 ]
(x),

2(x) = x1(x2 − x22)χ[
a1
2 ,

3a1
4 ]×[

a2
2 ,a2]

(x),

f3(x) = (x21 − a1x1)(x32 − a2x22),

4(x) = (x2 − a2) sin(
2πx1
a1

),

5(x1) = sin( 2x1π

a1 )χ
[0, a12 ]

, f6(x1) = sin( 3x1π

a1 )χ
[
a1
3 ,

2a1
3 ]

,

and
g1(x) = χ

[0,a1]×[0, a22 ]
(x), g2(x) = χ

[
a1
2 ,a1]×[0,a2]

(x),

g3(x1) = 0.2χ
[0, a14 ]

(x1), g4(x1) = 0.2χ
[
a1
4 ,a1]

(x1).

ere χ is an indicator function. We see that f1, f2, g1, g2 ∈ L1(Ω),
3, f4 ∈ H1(Ω), f3(x) = f4(x) = 0 for x ∈ ΓD, and g3, g4, f5, f6 ∈
2(ΓN ). It can be checked that for each case, Assumption 1 is
atisfied.
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Table 2
Max τM for feasibility of LMIs (q = 3, N0 = 1): Theorems 2.1, 3.1 and 4.1 (vector Halanay’s inequality) vs. Remarks 2.3, 3.2 and 4.2 (classical scalar Halanay’s
nequality).
N 2 3 4 5 6 7

δ τM δ τM δ τM δ τM δ τM δ τM

Theorem 2.1 0.35 0.237 0.12 0.292 0.1 0.303 0.07 0.311 0.05 0.318 0.05 0.39
Remark 2.3 1 0.196 1 0.225 1 0.236 0.95 0.247 0.9 0.256 0.8 0.259

Theorem 3.1 – – – – 0.48 0.137 0.45 0.175 0.3 0.248 0.25 0.259
Remark 3.2 – – – – 3 0.033 2.5 0.041 1.2 0.107 1.1 0.123

Theorem 4.1 0.18 0.276 0.06 0.312 0.06 0.319 0.03 0.323 0.03 0.328 0.02 0.329
Remark 4.2 0.9 0.222 0.8 0.257 0.6 0.266 0.6 0.275 0.5 0.281 0.4 0.285
Table 3
Max τM for feasibility of LMIs (q = 8.1, N0 = 3): Theorems 2.1, 3.1 and 4.1 (Vector Halanay’s inequality) vs. Remarks 2.3, 3.2 and 4.2 (Classical Scalar Halanay’s
nequality).
N 20 25 30 35 40

δ τM δ τM δ τM δ τM δ τM

Theorem 2.1 0.051 0.0104 0.049 0.0342 0.048 0.0414 0.047 0.0454 0.045 0.0481
Remark 2.3 4.5 0.0267 4 0.0330 3 0.0357 3 0.0376 2.8 0.0395

N 30 35 40 45 50

δ τM δ τM δ τM δ τM δ τM

Theorem 3.1 0.019 0.0168 0.018 0.0219 0.018 0.0271 0.017 0.0301 0.017 0.0311
Remark 3.2 6 0.0206 6 0.0215 5 0.0230 4.5 0.0238 4 0.0240

N 7 8 9 10 15

δ τM δ τM δ τM δ τM δ τM

Theorem 4.1 – – 0.15 0.0112 0.15 0.0242 0.15 0.0291 0.14 0.0467
Remark 4.2 7 0.0036 6 0.0106 5 0.0136 5 0.0151 2.5 0.0254
∥

w
i
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l

For the case that q = 3 and N0 = 1, the gains L0 and K0
re found from (2.9) with δ = 1 and are given in Table 1. The
MIs of Theorems 2.1, 3.1, and 4.1 as well as their counterparts
y classical Halanay’s inequality (Remarks 2.3, 3.2, and 4.2) were
erified, respectively, for N = 2, . . . , 8 to obtain maximal values
f τM (δ = δ1 > 0 is chosen optimally) that preserve the
easibility of LMIs. The results are given in Table 2. From Table 2,
t is seen that the vector Halanay inequality always leads to larger
elays than the classical scalar Halanay inequality.
For the case that q = 8.1 and N0 = 3, we found that the L0

nd K0 obtained from (2.9) were not efficient for the feasibility
f LMIs of Theorems 2.1, 3.1, 4.1 and Remarks 2.3, 3.2, 4.2 even
or τM,y = τM,u = 0. We design L0 (δ = δ1 = 0.01, N = 20) and
0 (N = 30) from (2.39) and (2.42) in Remark 2.2 and give the
alues in Table 1. The LMIs of Theorems 2.1, 3.1, and 4.1 as well as
heir counterparts by classical Halanay’s inequality (Remarks 2.3,
.2, and 4.2) were verified, respectively, for different N to obtain
aximal values of τM (δ = δ1 > 0 is chosen optimally) that
reserve the feasibility of LMIs. The results are given in Table 3.
rom Table 3, it is seen that the vector Halanay inequality leads to
arger delays than the classical scalar one for comparatively large
, whereas for comparatively small N , the classical scalar Halanay
nequality leads to larger delays. This phenomenon corresponds
o Remark 2.1.

For simulation of closed-loop systems studied in Sections 2–4,
e consider the case q = 3, N0 = 1 and fix N = 5. Consider time-
arying delays τy(t) =

τM
2 [1 + sin2 t] and τu(t) =

τM
2 [1 + cos2 t]

(corresponding maximal values of τM are chosen as 0.311, 0.175,
nd 0.323, respectively according to Table 3). We approximate
he solution norm using 150 modes as ∥z(·, t)∥2

L2
≈

∑150
n=1 z

2
n (t)

and ∥∇z(·, t)∥2
L2

≈
∑150

n=1 λnz2n (t). Take initial conditions z0(x) =

1(a1−x1) cos( π
2a2

x2). The closed-loop systems (with the tail ODEs

truncated after 150 modes) are simulated using MATLAB. The
simulations are presented in Fig. 1. The numerical simulations
validate the theoretical results. Stability of the closed-loop sys-
tems in simulations was preserved for τM = 0.48 for Theorem 2.1,

= 0.38 for Theorem 3.1, and τ = 0.42 for Theorem 4.1,
M M p
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Fig. 1. Evolutions ∥z(·, t)∥2
L2

(Theorem 2.1), ∥∇z(·, t)∥2
L2

(Theorem 3.1), and
z(·, t)∥2

L2
(Theorem 4.1) vs. t .

hich may indicate that our approach is somewhat conservative
n this example.

. Conclusions

We considered the finite-dimensional observer-based control
f 2D linear heat equation with fast-varying input and output de-
ays. To compensate the output delay that appears in the infinite-
imensional part of the closed-loop system, we suggested a vec-
or Lyapunov functional combined with vector Halanay’s inequal-
ty. In the numerical examples, the vector Halanay inequality
ed to larger delays for larger dimensions of the observer that
reserve the stability than the classical one. Improvements and
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xtension of the results to various high-dimensional PDEs may
e topics for future research.
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