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Abstract—The problems of stability and stabilization are
addressed for a class of nonlinear mechanical systems with
distributed delays. Assuming that potential and kinetic energy
functions are homogeneous of different degrees, it is shown
that the global asymptotic stability of the zero solution for
an auxiliary delay-free nonlinear system implies the local
asymptotic stability for the original model with distributed
delay. The influence of additional nonlinear and time-varying
perturbations is investigated using the averaging techniques.
The results are obtained applying the Lyapunov–Krasovskii
approach, and next extended via the Lyapunov–Razumikhin
method to the case with negligible dissipation. The efficiency of
the proposed theory is illustrated by solving the problem of a
rigid body stabilization.

I. INTRODUCTION

The stability analysis of nonlinear systems is a complex
problem, further complicated by the presence of time-delays
and time-varying perturbations [1], [2]. The rise of the inter-
net of things and cyber-physical systems technologies has led
to scenarios where these factors are present simultaneously
[3]. One of the main methods for stability analysis of time-
delay systems is based on Lyapunov–Krasovskii (LK) func-
tionals [2]. Existence of such properly chosen functionals
provides the necessary and sufficient conditions for stability,
being extended to verify the input-to-state stability (ISS)
property for systems with bounded disturbances [4], [5].

Distributed delays can arise from communication net-
works, the implementation of control/estimation algorithms
[6], [7], or human involvement in the loop [8]. Analyzing the
stability of these systems requires specialized extensions of
the previously established methods [9], [10]. The complexity
of the investigation increases when external perturbations
are present, especially for assessing the permissible upper
bounds of disturbances in relation to the delayed state. Care-
fully considering the time-varying nature of the perturbations
can lead to less conservative bounds, where the efficiency of
the averaging method has been demonstrated in dealing with
periodic or almost periodic perturbations [11].
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This paper studies the stability problem for a class of
mechanical systems containing the delays, or stabilized by
delay-dependent control laws. Starting from earlier works,
when the delays were considered as perturbations [12],
[13], there are many recent results devoted to introduc-
tion of the delay in the control or estimation algorithms
in order to improve the transients and robustness of the
closed-loop systems [14]. For mechanical systems this is
frequently related to applications of PID-controllers with
variable kernels [1], [6], [15]–[17]. Moreover, during the
last decades, PID-controllers with distributed delays are
widely used in formation control problems, see, e.g., [2],
[18], [19] and the references therein. In [20], the stability
of the trivial equilibrium position of a mechanical system
was studied for the delay-free case, and impact of non-
stationary perturbations on the stability was analyzed using
averaging. Complete-type LK functionals for homogeneous
systems with distributed delay were proposed in [7], [21],
where stability with respect to time-varying disturbances was
investigated using the averaging methods, with application to
some mechanical systems.

In this paper, we are going to continue the latter research
by skipping the requirement on homogeneity of nominal
system. It is assumed that kinetic and potential energy
functions are homogeneous of different degrees, i.e., the
total system is not homogeneous, then it is impossible to
benefit all advantageous properties of homogeneous dynam-
ics (the results of [22], [23] or [7], [21] cannot be used),
and the stability analysis problem becomes more complex.
New LK functionals are introduced, the robustness margins
with respect to nonlinear and time-varying disturbances are
evaluated. Through the Lyapunov–Razumikhin method these
results are developed to dissipation-free mechanical systems
described by Rayleigh equations. The efficiency of our
findings is illustrated by integral control of a rigid body.

II. PRELIMINARIES

The real numbers are denoted by R, R+ = {s ∈ R : s ≥
0}, and |s| is an absolute value for s ∈ R. Euclidean norm
for a real n-dimensional vector x ∈ Rn is defined as ∥x∥. We
denote by C([−τ, 0],Rn), 0 < τ < +∞ the Banach space
of continuous functions ϕ : [−τ, 0] → Rn with the uniform
norm ∥ϕ∥τ = sup−τ≤ς≤0 ∥ϕ(ς)∥, then C1([−τ, 0],Rn) is
the set of continuously differentiable functions with the
uniform norm ∥φ∥τ = supς∈[−τ,0] (∥φ(ς)∥+ ∥φ̇(ς)∥).
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A function f : Rn → Rp, for any integers n, p ≥ 1,
is called homogeneous with respect to standard dilation of
degree ν ∈ R+ if f(λx) = λνf(x) for all λ > 0 and x ∈ Rn.

For v ∈ Rn, diag{v} corresponds to a diagonal matrix
with the components of vector v on the main diagonal.

The Young’s inequality claims that for any a, b ∈ R+ [24]:

ab ≤ 1

p
ap +

p− 1

p
b

p
p−1

for any p > 1, while Hölder’s inequality for any f, g : I → R
with I ⊂ R ensures for any p > 1 that [2]:∫
I

|f(s)g(s)|ds ≤
(∫

I

|f(s)|pds
) 1

p
(∫

I

|g(s)|
p

p−1 ds

) p−1
p

.

Lemma 1. [22] Let a, b ∈ R+ and ℓ > 0, α > 0, β > 0,
γ > 0, δ > 0 be given, then

aα + bβ − ℓaγbδ ≥ 0

provided that max{aα, bβ} ≤ ℓ
1

1− γ
α

− δ
β and γ

α + δ
β > 1.

The standard definitions of stability and related properties
for time-delay systems can be found in [1], [2], [25], and for
delay-free dynamics in [26].

III. STATEMENT OF THE PROBLEM

Consider a vector Rayleigh equation (see [27])

Aẍ(t)+
∂W (ẋ(t))

∂ẋ
+
∂Π(x(t))

∂x
+

∫ t

t−τ

∂Π̃(x(s))

∂x
ds = 0 (1)

that models dynamics of a mechanical system, where
x(t), ẋ(t) ∈ Rn are vectors of generalized coordinates and
velocities, respectively, A is a constant, symmetric and posi-
tive definite matrix of inertial characteristics, W : Rn → R+

is a continuously differentiable and positive definite homo-
geneous of the degree ν+1 > 2 function (with respect to the
standard dilation, i.e., W (λẋ) = λν+1W (ẋ) for all λ > 0
and ẋ ∈ Rn), Π : Rn → R and Π̃ : Rn → R are continuously
differentiable homogeneous of the degree µ+1 > 2 functions
with respect to the standard dilation, τ = const > 0 is
the maximal delay. Hence, the system is under the action of
strongly nonlinear dissipative and potential forces, whereas
the term

∫ t

t−τ
∂Π̃(x(s))

∂x ds can be interpreted as integral part
of a modified PID-controller [28], [29]. It is worth noting
that, in numerous models of mechanical systems, the forces
of viscous friction and restoring forces are approximated
by homogeneous functions with degrees higher than one
(see, e.g., [30]–[32] and the references therein), whereas
PID-controllers are often used for smoothing transients and
vibration suppression [1], [28].

Assume that initial functions for solutions of (1) belong to
the space C1([−τ, 0],Rn). Denote by xt the restriction of a
solution x(t) to the segment [t− τ, t], i.e., xt : ξ 7→ x(t+ ξ)
for ξ ∈ [−τ, 0].

The system (1) admits the equilibrium position

x = ẋ = 0. (2)

We will look for conditions ensuring the asymptotic stability
of this equilibrium position. Our study will be based on
the Lyapunov direct method and constructions of special
complete-type LK functionals. Furthermore, the impact of
nonlinear time-varying perturbations on the stability of the
equilibrium position (2) will be analyzed. In the case where
the considered perturbations admit zero mean values, an orig-
inal technique for the application of the averaging method
will be proposed. In addition, with the aid of the developed
tools, new conditions for the monoaxial stabilization of a
rigid body will be derived.

IV. STABILITY OF NOMINAL SYSTEM

Our results are based on the following standard hypothesis:

Assumption 1. Let the function Π(x) + τ Π̃(x) be positive
definite for all x ∈ Rn.

This assumption introduces restrictions on admissible val-
ues of the delay τ , and it can be verified using the upper or
lower bounds on the delay (the value of τ can be uncertain). It
is well known [33] that, under Assumption 1, the equilibrium
position (2) of the delay-free counterpart of (1):

Aẍ(t) +
∂W (ẋ(t))

∂ẋ
+

∂Π(x(t))

∂x
+ τ

∂Π̃(x(t))

∂x
= 0,

which is obtained after replacing x(s) by x(t), is asymptot-
ically stable.

Theorem 1. Let Assumption 1 be fulfilled. If

ν <
3µ− 1

µ+ 1
, (3)

then the equilibrium position (2) of the system (1) is asymp-
totically stable.

Proof. In [34], it was suggested to construct a Lyapunov
function for the delay-free system in the form of a sum of
the complete energy with an auxiliary cross term:

V1(x, ẋ) =
1

2
ẋ⊤Aẋ+ ε∥x∥σ−1x⊤Aẋ+Π(x) + τ Π̃(x),

where ε > 0 and σ ≥ 1 are parameters. Differentiating V1

along the solutions of (1), we obtain

V̇1 = −ẋ⊤(t)
∂W (ẋ(t))

∂ẋ
− ẋ⊤(t)

∫ t

t−τ

∂Π̃(x(s))

∂x
ds

+τ ẋ⊤(t)
∂Π̃(x(t))

∂x
+ εẋ⊤(t)A

∂

∂x

(
∥x(t)∥σ−1x(t)

)
ẋ(t)

−ε∥x(t)∥σ−1x⊤(t)

(
∂W (ẋ(t))

∂ẋ
+

∂Π(x(t))

∂x

+

∫ t

t−τ

∂Π̃(x(s))

∂x
ds

)
.
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Using the properties of homogeneous functions (see [30]),
we arrive at the inequality

V̇1 ≤ −a1∥ẋ(t)∥ν+1 −
(
ẋ(t) + ε∥x(t)∥σ−1x(t)

)⊤
×
∫ t

t−τ

∂Π̃(x(s))

∂x
ds+ τ ẋ⊤(t)

∂Π̃(x(t))

∂x

+εa2∥ẋ(t)∥2∥x(t)∥σ−1 + εa3∥x(t)∥σ∥ẋ(t)∥ν

−ε(µ+ 1)∥x(t)∥σ−1Π(x(t)),

where a1, a2, a3 are positive coefficients.
Next, according to the approach developed in [7], choose

a LK functional candidate as follows:

V2(xt) = V1(x(t), ẋ(t))+

∫ t

t−τ

(λ+β(s+τ−t))∥x(s)∥µ+σds

−
(
ẋ(t) + ε∥x(t)∥σ−1x(t)

)⊤ ∫ t

t−τ

(s+ τ − t)
∂Π̃(x(s))

∂x
ds,

(4)
where parameters λ, β > 0. The direct computations show:

b1∥ẋ(t)∥2 + b2∥x(t)∥µ+1 + λ

∫ t

t−τ

∥x(s)∥µ+σds

−b4
(
∥ẋ(t)∥+ ε∥x(t)∥σ

) ∫ t

t−τ

∥x(s)∥µds

−εb3∥x(t)∥σ∥ẋ(t)∥ ≤ V2(xt) ≤ b5∥ẋ(t)∥2

+b6∥x(t)∥µ+1 + εb3∥x(t)∥σ∥ẋ(t)∥

+b4
(
∥ẋ(t)∥+ ε∥x(t)∥σ

) ∫ t

t−τ

∥x(s)∥µds

+(λ+ βτ)

∫ t

t−τ

∥x(s)∥µ+σds,

V̇2 ≤ −a1∥ẋ(t)∥ν+1 − ε(µ+ 1)∥x(t)∥σ−1(Π(x(t))

+τ Π̃(x(t))) + a4

(
∥ẋ(t)∥ν + ε∥x(t)∥σ−1∥ẋ(t)∥

+

∫ t

t−τ

∥x(s)∥µds+ ∥x(t)∥µ
)∫ t

t−τ

∥x(s)∥µds

+εa2∥ẋ(t)∥2∥x(t)∥σ−1 + εa3∥x(t)∥σ∥ẋ(t)∥ν

+(λ+ τβ)∥x(t)∥σ+µ − λ∥x(t− τ)∥σ+µ − β

∫ t

t−τ

∥x(s)∥σ+µds

≤ −a1∥ẋ(t)∥ν+1 − (εa5 − λ− τβ)∥x(t)∥σ+µ

−β

∫ t

t−τ

∥x(s)∥σ+µds+ a4

(
∥ẋ(t)∥ν + ε∥x(t)∥σ−1∥ẋ(t)∥

+

∫ t

t−τ

∥x(s)∥µds+ ∥x(t)∥µ
)∫ t

t−τ

∥x(s)∥µds

+εa2∥ẋ(t)∥2∥x(t)∥σ−1 + εa3∥x(t)∥σ∥ẋ(t)∥ν

where a4, a5, b1, b2, b3, b4, b5, b6 are suitable positive con-
stants. Let 4(λ + τβ) < εa5, then with the aid of Lemma
1, Young’s and Hölder’s inequalities, it is straightforward to
verify that if

max

{
µ

ν
;
(µ+ 1)(ν + 1)

2
− µ

}
≤ σ < µ (5)

and ε is sufficiently small, then there is δ > 0 such that

1

2

(
b1∥ẋ(t)∥2 + b2∥x(t)∥µ+1 + λ

∫ t

t−τ

∥x(s)∥µ+σds

)
≤ V2(xt)

≤ 2

(
b5∥ẋ(t)∥2 + b6∥x(t)∥µ+1 + (λ+ βτ)

∫ t

t−τ

∥x(s)∥µ+σds

)
,

(6)

V̇2 ≤ −1

2

(
a1∥ẋ(t)∥ν+1 + εa5∥x(t)∥σ+µ + β

∫ t

t−τ

∥x(s)∥σ+µds

)
(7)

for ∥ẋ(t)∥ν+1+∥x(t)∥σ+µ+
∫ t

t−τ
∥x(s)∥σ+µds < δ. Hence

[35], (4) is a complete-type LK functional for (1) guarantee-
ing the asymptotic stability of the equilibrium position (2).

To complete the proof, it should be noted that, for the
existence of a number σ satisfying (5), it is necessary and
sufficient the fulfillment of (3).

In the case of homogeneous dynamics (1), ν = 2µ
µ+1 and

the restriction (3) is verified [7] (another LK functional can
be used).

Extending the proof of Theorem 1 the following estimate
on the decay of solutions in (1) is derived:

Corollary 1. Let all conditions of Theorem 1 be satisfied,
then there exist κ1,κ2,κ3 > 0 such that

∥ẋ(t)∥2 + ∥x(t)∥µ+1 ≤ κ1

(1 + κ2t)
1

℘−1

for all t ≥ 0 and V2(x0) ≤ κ3, where ℘ =
ν+1
2 max

{
1, µ

ν
2

µ+1

}
and V2 is given in (4).

Proof. The proof follows (6), (7) under the restriction
V2(x0) ≤ κ3 with a sufficiently small κ3, which can be
rewritten as V̇2 ≤ −κV ℘

2 (xt) for some κ, then the required
time estimate follows by a comparison principle.

V. ROBUST STABILITY CONDITIONS

Along with (1), consider the associated perturbed system

Aẍ(t) +
∂W (ẋ(t))

∂ẋ
+

∂Π(x(t))

∂x
(8)

+

∫ t

t−τ

∂Π̃(x(s))

∂x
ds =

∫ t

t−τ

G(s, x(s), ẋ(s))ds,

where a continuous vector function G(t, x, ẋ) that represents
the disturbances is defined for

t ≥ −τ, ∥x∥ < H, ∥ẋ∥ < H (0 < H ≤ +∞). (9)

Remark 1. The term
∫ t

t−τ
G(s, x(s), ẋ(s))ds may charac-

terize control deviations in the integral part of a modified
PID-controller due to external perturbations.

We look for conditions under which the following class of
perturbations does not disturb the asymptotic stability:

Assumption 2. The upper bound ∥G(t, x, ẋ)∥ ≤ c∥x∥ρ
holds in the domain (9), where c > 0 and ρ > 0.

This condition can be verified if G is homogeneous of
degree ρ in the variable x and bounded in t and ẋ.
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Theorem 2. Let assumptions 1, 2 and the inequality (3) be
fulfilled. If

ρ > max

{
µ;

ν(µ+ 1)

2

}
, (10)

then the equilibrium (2) of (8) is asymptotically stable.

Proof. Differentiating (4) along solutions of (8), we obtain

V̇2 = Ψ(xt)−

(∫ t

t−τ

(s+ τ − t)
∂Π̃(x(s))

∂x
ds

)⊤

×A−1

∫ t

t−τ

G(s, x(s), ẋ(s))ds

+
(
ẋ(t) + ε∥x(t)∥σ−1x(t)

)⊤ ∫ t

t−τ

G(s, x(s), ẋ(s))ds,

where Ψ(xt) denotes the derivative of (4) along the solutions
of (1). Hence,

V̇2 ≤ −a1∥ẋ(t)∥ν+1 − (εa5 − λ− τβ)∥x(t)∥σ+µ

−β

∫ t

t−τ

∥x(s)∥σ+µds+ a4

(
∥ẋ(t)∥ν + ε∥x(t)∥σ−1∥ẋ(t)∥

+

∫ t

t−τ

∥x(s)∥µds+ ∥x(t)∥µ
)∫ t

t−τ

∥x(s)∥µds

+εa2∥ẋ(t)∥2∥x(t)∥σ−1 + εa3∥x(t)∥σ∥ẋ(t)∥ν

+c
(
∥ẋ(t)∥+ ε∥x(t)∥σ

) ∫ t

t−τ

∥x(s)∥ρds

+ā

∫ t

t−τ

∥x(s)∥ρds
∫ t

t−τ

∥x(s)∥µds

under (9), where ā = const > 0. Similarly to the proof of
Theorem 1 it can be shown that if (5) is valid and

ρ >
ν(σ + µ)

ν + 1
,

then, for an appropriate choice of parameters λ, β, ε, δ,
the functional (4) and its derivative with respect to (8)
satisfy estimates (6), (7) for ∥ẋ(t)∥ν+1 + ∥x(t)∥σ+µ +∫ t

t−τ
∥x(s)∥σ+µds < δ. To obtain the largest do-

main of admissible values of ρ one should take σ =
max {µ/ν; (µ+ 1)(ν + 1)/2− µ}. As a result, we arrive at
(10), and this completes the proof.

The system (1) can be treated as a nonlinear approximation
for (8), and the condition (10) determines how much the
order of the perturbations should be greater than those of
the functions in the original equations to guarantee the
preservation of the asymptotic stability.

VI. STABILITY ANALYSIS VIA AVERAGING

Next, consider the case when the perturbed system has the
form

Aẍ(t) +
∂W (ẋ(t))

∂ẋ
+

∂Π(x(t))

∂x
+

∫ t

t−τ

∂Π̃(x(s))

∂x
ds (11)

=

∫ t

t−τ

D(s)Q(x(s))ds,

where the matrix D(t) ∈ Rn×n is continuous and bounded
for t ∈ [−τ,+∞), components of a continuously differen-
tiable vector function Q : Rn → Rn are homogeneous of the
degree ρ ≥ 1 with respect to the standard dilation.

Assumption 3. Let

1

T

∫ t+T

t

D(u)du → 0 as T → +∞

uniformly with respect to t ≥ 0.

Remark 2. From Assumption 3 it follows that the mean
values of entries of the matrix D(t) are equal to zero.

Let us note that (11) is a special case of the system (8), and
under the introduced restrictions Assumption 2 is verified for
(11). Therefore, Theorem 2 provides us sufficient conditions
of the asymptotic stability for (11). However, we will show
that, taking into account Assumption 3 and applying the
averaging method, less conservative stability conditions can
be derived than those formulated in Theorem 2:

Theorem 3. Let assumptions 1, 3 and the inequality (3) be
fulfilled. If

ρ ≥ max

{
µ;

ν(µ+ 1)

2

}
, (12)

then the equilibrium (2) of (11) is asymptotically stable.

Proof. Using the approaches developed in [7], [21], construct
the following LK functional for (11):

V3(t, xt) = V2(xt) +
(
ẋ(t) + ε∥x(t)∥σ−1x(t)

)⊤
×
∫ t

t−τ

(s+ τ − t)D(s)Q(x(s))ds

−τ
(
ẋ(t) + ε∥x(t)∥σ−1x(t)

)⊤ ∫ t

0

eα(u−t)D(u)duQ(x(t)),

where α is a positive parameter and the functional V2(xt) is
defined by the formula (4) (as we will demonstrate below,
this functional is locally positive definite for small enough
α under introduced restrictions on D). Differentiating the
functional V3 along the solutions of (11), we obtain

V̇3 = Ψ(xt) + ατ
(
ẋ(t)

+ε∥x(t)∥σ−1x(t)
)⊤ ∫ t

0

eα(u−t)D(u)duQ(x(t))

−τ
(
ẋ(t) + ε∥x(t)∥σ−1x(t)

)⊤
×
∫ t

0

eα(u−t)D(u)du
∂Q(x(t))

∂x
ẋ(t)

−

(∫ t

t−τ

(s+ τ − t)
∂Π̃(x(s))

∂x
ds

)⊤

A−1

×
∫ t

t−τ

D(s)Q(x(s))ds+

(
ε
∂

∂x

(
∥x(t)∥σ−1x(t)

)
ẋ(t)
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−A−1
(∂W (ẋ(t))

∂ẋ
+

∂Π(x(t))

∂x
+

∫ t

t−τ

∂Π̃(x(s))

∂x
ds

−
∫ t

t−τ

D(s)Q(x(s))ds
))⊤(∫ t

t−τ

(s+ τ − t)D(s)Q(x(s))ds

−τ

∫ t

0

eα(u−t)D(u)duQ(x(t))

)
,

where Ψ(xt) is the derivative of V2(xt) along the solutions
of (1). Hence, the estimates

b1∥ẋ(t)∥2 + b2∥x(t)∥µ+1 − εb3∥x∥σ∥ẋ(t)∥

+λ

∫ t

t−τ

∥x(s)∥µ+σds− b4
(
∥ẋ(t)∥+ ε∥x(t)∥σ

)
×
(∫ t

t−τ

∥x(s)∥µds+
∫ t

t−τ

∥x(s)∥ρds+ 1

α
∥x(t)∥ρ

)
≤ V3(t, xt) ≤ b5∥ẋ(t)∥2 + b6∥x(t)∥µ+1 + εb3∥x∥σ∥ẋ(t)∥

+(λ+ βτ)

∫ t

t−τ

∥x(s)∥µ+σds+ b4
(
∥ẋ(t)∥+ ε∥x(t)∥σ

)
×
(∫ t

t−τ

∥x(s)∥µds+
∫ t

t−τ

∥x(s)∥ρds+ 1

α
∥x(t)∥ρ

)
,

V̇3 ≤ −a1∥ẋ(t)∥ν+1 + εa2∥ẋ(t)∥2∥x(t)∥σ−1

+εa3∥x(t)∥σ∥ẋ(t)∥ν + a4

(
∥ẋ(t)∥ν + ε∥x(t)∥σ−1∥ẋ(t)∥

+∥x(t)∥µ +

∫ t

t−τ

∥x(s)∥µds+
∫ t

t−τ

∥x(s)∥ρds
)

×
∫ t

t−τ

∥x(s)∥µds− (εa5 − λ− τβ)∥x(t)∥σ+µ

−β

∫ t

t−τ

∥x(s)∥σ+µds+ αa6

∥∥∥∥∫ t

0

eα(u−t)D(u)du

∥∥∥∥
×
(
∥ẋ(t)∥+ ε∥x(t)∥σ

)
∥x(t)∥ρ

+
a7
α

(
∥ẋ(t)∥+ ε∥x(t)∥σ

)
∥x(t)∥ρ−1∥ẋ(t)∥

+a8

(∫ t

t−τ

∥x(s)∥ρds+ 1

α
∥x(t)∥ρ

)(
∥ẋ(t)∥ν

+ε∥x(t)∥σ−1∥ẋ(t)∥+
∫ t

t−τ

∥x(s)∥µds

+∥x(t)∥µ +

∫ t

t−τ

∥x(s)∥ρds
)

hold, where aj > 0, bk > 0, j = 1, . . . , 8, k = 1, . . . , 6.
It is known (see [11]) that, under Assumption 3,

α

∥∥∥∥∫ t

0

eα(u−t)D(u)du

∥∥∥∥→ 0 as α → 0

uniformly with respect to t ∈ [0,+∞). Taking into account
this result, in a similar way as in the proof of Theorem 1, it
can be verified that if the condition (5) holds and

ρ ≥ max

{
µ;

ν(σ + µ)

ν + 1

}
, (13)

then, for sufficiently small values of tuning parameters
α, λ, β, ε, there exists a number δ > 0 such that estimates
of the form (6) and (7) are verified for the functional V3

(we need to substitute there V2 by V3) for ∥ẋ(t)∥ν+1 +
∥x(t)∥σ+µ +

∫ t

t−τ
∥x(s)∥σ+µds < δ.

To complete the proof, it should be noted that (13) defines
the largest domain of admissible values of ρ in the case
where σ = max {µ/ν; (µ+ 1)(ν + 1)/2− µ}. As a result,
we arrive at (12).

Remark 3. In comparison with Theorem 2, Theorem 3
guarantees the preservation of the asymptotic stability in the
case where the strict inequality (10) is replaced by the non-
strict one (12). Moreover, if ν ≤ 2µ/(µ + 1), then from
Theorem 3 it follows that the asymptotic stability take place
for ρ = µ, i.e., for perturbations whose order coincides with
that of positional forces in the original system. It is worth
noting that we assume that the matrix D(t) is bounded,
but we do not impose any constraints on the magnitudes
of entries of the matrix.

Next, consider the case where, instead of Assumption 3,
the following condition is fulfilled:

Assumption 4. Let
∥∥∥∫ t

0
D(u)du

∥∥∥ ≤ M for t ≥ 0, where M

is a positive constant.

For instance, this assumption is satisfied if entries of D(t)
are periodic functions with zero mean values.

It should be noted that, under Assumption 4, while con-
structing the functional V3, one can take α = 0. Then,
similarly to the proof of Theorem 3, we obtain the result:

Corollary 2. Let assumptions 1, 4 and the inequality (3) be
fulfilled. If

ρ >
ν + 1

4
max

{
µ+ 1;

2µ

ν

}
, (14)

then the equilibrium (2) of (11) is asymptotically stable.

Corollary 2 ensures the asymptotic stability even in the
case when ρ < µ.

Example 1. Consider the system

ẍ(t) + a∥ẋ(t)∥1/2ẋ(t)−

 x3
1(t)

x3
2(t)

x3
3(t)

 = U(t),

where x(t) ∈ R3, a = const > 0, U(t) ∈ R3 is a control
vector. It is known (see [27]) that if U ≡ 0, then the
equilibrium position (2) of this system is unstable. Let

U = −b

∫ t

t−τ

∥x(s)∥2x(s)ds,

where b > 0, τ > 0. Then we arrive at the closed-loop
system in the form (1):

ẍ(t)+a
√
∥ẋ(t)∥ẋ(t)−

 x3
1(t)

x3
2(t)

x3
3(t)

+b

∫ t

t−τ

∥x(s)∥2x(s)ds = 0,
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Figure 1. Behavior of ∥x(t)∥+ ∥ẋ(t)∥ in logarithmic scale, t ∈ [0, 150]

where A = I , W (ẋ) = 2a∥ẋ∥5/2/5, Π(x) = −(x4
1 + x4

2 +
x4
3)/4, Π̃(x) = b∥x∥4/4, ν = 3/2, µ = 3. In this case, the

inequality (3) is satisfied. Consider the function

Π(x) + τ Π̃(x) =
1

4

(
τb∥x∥4 − (x4

1 + x4
2 + x4

3)
)
,

which is positive definite if and only if τb > 1. Hence, if the
delay τ is sufficiently large, then the equilibrium position (2)
of the system is asymptotically stable.

The results of simulation of the closed-loop system are
shown in Fig. 1 for a = 1, b = 5 and τ = 0.5 (the explicit
Euler method was used with step ∆t = 0.01).

VII. ANALYSIS WITHOUT VELOCITY-DEPENDENT TERMS

Our aim here is to extend the proposed approaches to the
case of mechanical systems without dissipation.

Consider a variant of the system (11) without velocity-
dependent terms (i.e., with ∂W (ẋ(t))

∂ẋ = 0):

Aẍ(t) +
∂Π(x(t))

∂x
+

∫ t

t−τ

∂Π̃(x(s))

∂x
ds = 0, (15)

where as before x(t), ẋ(t) ∈ Rn are vectors of generalized
coordinates and velocities, respectively, A is a constant, sym-
metric and positive definite matrix of inertial characteristics,
Π(x) and Π̃(x) are twice continuously differentiable for
x ∈ Rn homogeneous of the degree µ + 1 > 2 functions
with respect to the standard dilation, τ = const > 0. The
system (15) admits the equilibrium position (2).

We will look for conditions ensuring the asymptotic stabil-
ity of the equilibrium position. The model (15) corresponds
to the case when the system itself has no dissipation (or
it is almost negligible), and the control utilizes only the
measurements of position x.

Note that under Assumption 1, the delay-free system
will be just stable, but not asymptotically stable, and the
previously used approach cannot be applied directly. Analysis
of this kind of systems was done in [14], [36], [37] for
the pointwise delay case, and here we will consider the
distributed one.

Applying the Mean value theorem, let us rewrite the
system (15) as follows:

Aẍ(t) +
∂Π(x(t))

∂x
+ τ

∂Π̃(x(t))

∂x
− τ2

2

∂2Π̃(x(t))

∂x2
ẋ(t)

+

∫ t

t−τ

∆(s, t) (s− t)ds = 0, (16)

where ∆(s, t) = ∂2Π̃(x(t+ϑ(s,t)(s−t)))
∂x2 ẋ(t+ ϑ(s, t)(s− t))−

∂2Π̃(x(t))
∂x2 ẋ(t) for ϑ(s, t) ∈ (0, 1)n (for brevity of presentation

we use the notation x(t+ϑ(s, t)(s−t)) = [x1(t+ϑ1(s, t)(s−
t)) . . . xn(t+ ϑn(s, t)(s− t))]⊤).

Theorem 4. Let Assumption 1 be verified, and the matrix
∂2Π̃(x)/∂x2 be negative definite for any x ∈ Rn \ {0}.
Then the equilibrium position (2) of the system (15) is
asymptotically stable.

Proof. The proof follows the main steps of [37], starting
with observation that the delay-free version of (16) is in
the Liénard form with known Lyapunov function, then the
Lyapunov–Razumikhin approach can be applied with taking
care of the multipliers

∫ t

t−τ
(s− t)ds.

A similar problem for linear mechanical systems having
a distributed delay with variable kernels was solved in [16],
[17], and the stability is achieved by imposing restrictions on
the kernels. Moreover, for constant kernels, as in Theorem
4, the approach of that papers cannot be applied.

VIII. APPLICATIONS

In the present section we apply the new theoretical out-
comes to a problem of the attitude control of a rigid body.

Assume that a rigid body rotates around its mass center
O with angular velocity ω(t) ∈ R3. Let the axes Oxyz
be principal central axes of inertia of the body. The Euler
equations modeling the attitude motion of the body under
the action of a control torque M(t) ∈ R3 have the form

Jω̇(t) + ω(t)× (Jω(t)) = M(t), (17)

where J = diag{[A1 A2 A3]
⊤} ∈ R3×3

+ is a body inertia
tensor in the axes Oxyz [38], [39].

Let two unit vectors η(t) ∈ R3 and r ∈ R3 be given.
The vector η(t) is constant in the inertial space, whereas
the vector r is constant in the body-fixed frame. Then vector
η(t) rotates with respect to the system Oxyz with the angular
velocity −ω(t), hence,

η̇(t) = −ω(t)× η(t). (18)

As a result, we obtain the system composed by the Euler
dynamic equations (17) and the Poisson kinematic equations
(18).

Consider the problem of monoaxial stabilization of the
body [39]. It is required to design control torque M(t)
providing the existence and the asymptotic stability of the
equilibrium position

ω = 0, η = r (19)

for the corresponding closed-loop system.
It is worth mentioning that this problem is of significant

practical importance due to its applications in control of
Earth-pointing satellites, space missions with telescopes,

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3583986

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on June 29,2025 at 09:12:33 UTC from IEEE Xplore.  Restrictions apply. 



7

remote sensing, etc., see [38], [40], [41]. It is known [20],
[39] that the desired control torque can be chosen as follows

M = −∂W (ω)

∂ω
− p∥η − r∥µ−1η × r,

where W (ω) is a continuously differentiable for ω ∈ R3

positive definite homogeneous of the degree ν + 1 ≥ 2
function with respect to the standard dilation, p = const > 0,
µ ≥ 1. In [20], the impact of time-varying perturbations with
zero mean values on the stability of the equilibrium position
(19) was analyzed. In this paper, in line with disturbances, we
will take into account terms with distributed delay in control
and perturbed torques.

Consider the case where the closed-loop Euler equations
can be rewritten as follows:

Jω̇(t) + ω(t)× (Jω(t)) = −∂W (ω(t))

∂ω

−a∥η(t)− r∥µ−1η(t)× r − b

∫ t

t−τ

∥η(s)− r∥µ−1η(s)× rds

+

∫ t

t−τ

D(s)Q(η(s)− r)ds, (20)

where a, b are constant coefficients, W (ω) is a continuously
differentiable for ω ∈ R3 positive definite homogeneous of
the degree ν + 1 > 2 function with respect to the standard
dilation, the matrix D(t) ∈ R3×3 is continuous and bounded
for t ∈ [−τ,+∞), components of the vector function Q(ζ)
are continuously differentiable for ζ ∈ R3 homogeneous
of the order ρ ≥ 1 functions with respect to the standard
dilation, τ > 0 is the delay, µ > 1. In such a case,
the terms that are given in the second line represent the
delay-dependent PID-like part of the control and a delayed
nonlinear perturbation, respectively.

Assumption 5. Let a+ bτ > 0.

Theorem 5. If assumptions 3, 5 and the inequalities (3), (12)
are fulfilled, then the equilibrium position (19) of the system
(18), (20) is asymptotically stable.

Proof. On the basis of approaches developed in the previ-
ous sections, construct a LK functional for (18), (20) in the
form

Ṽ (t, ω(t), ηt) =
1

2
ω⊤(t)Jω(t) +

a+ bτ

µ+ 1
∥η(t)− r∥µ+1

+ε∥η(t)× r∥σ−1ω⊤(t)J(η(t)× r)

−b
(
ω(t) + ε∥η(t)× r∥σ−1(η(t)× r)

)⊤
·
∫ t

t−τ

(s+ τ − t)∥η(s)− r∥µ−1η(s)× rds

+
(
ω(t) + ε∥η(t)× r∥σ−1(η(t)× r)

)⊤
·
∫ t

t−τ

(s+ τ − t)D(s)Q(η(s)− r)ds

Figure 2. Behavior of ∥ω(t)∥+∥η(t)−r∥ in logarithmic scale, t ∈ [0, 100]

−τ
(
ω(t) + ε∥η(t)× r∥σ−1(η(t)× r)

)⊤
·
∫ t

0

eα(u−t)D(u)duQ(η(t)− r)

+

∫ t

t−τ

(λ+ β(s+ τ − t))∥η(s)− r∥µ+σds,

where ε, α, β, λ are positive tuning parameters, σ ≥ 1. In a
similar way as in the proof of Theorem 3, it can be verified
that if the inequality (13) holds then, for an appropriate
choice of values of ε, α, β, λ, σ, there exist positive constants
δ, c1, c2, c3 such that

c1

(
∥ω(t)∥2 + ∥η(t)− r∥µ+1 +

∫ t

t−τ

∥η(s)

−r∥µ+σds

)
≤ Ṽ (t, ω(t), ηt) ≤ c2

(
∥ω(t)∥2 + ∥η(t)− r∥µ+1

+

∫ t

t−τ

∥η(s)− r∥µ+σds

)
˙̃
V ≤ −c3

(
∥ω(t)∥ν+1 + ∥η(t)− r∥µ+σ

+

∫ t

t−τ

∥η(s)− r∥µ+σds

)
for ∥ω(t)∥2 + ∥η(t)− r∥µ+1 +

∫ t

t−τ
∥η(s)− r∥µ+σds < δ.

Corollary 3. If assumptions 4, 5 and the inequalities (3),
(14) are fulfilled, then the equilibrium position (19) of the
system (18), (20) is asymptotically stable.

Example 2. Let

J = diag{[20 30 20]⊤}, a = 0.5, b = −1, r = [1 0 0]⊤,

ν = 1.5, µ = 3.3, ρ = 3.4, τ = 0.25,

W (ω) = |ω1|ν+1 + 0.25ω1ω
ν
3 + |ω2|ν+1 + |ω3|ν+1,

D(s) =

 sin(s) cos(s) cos(2s)
− sin(2s) sin(s) cos(s)
cos(s) cos(2s) sin(s)

 ,

Q(ζ) = [|ζ2|ρ−1ζ2 |ζ1|ρ−1ζ3 |ζ3|ρ−1ζ1]
⊤,

then all conditions of the last corollary are verified. The
results of simulation of the closed-loop system are shown
in Fig. 2 (the explicit Euler method was used with step
∆t = 0.01).
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IX. CONCLUSION

For a class of nonlinear mechanical systems described by
Rayleigh equation with distributed delays, the problem of
stability analysis was considered. It was demonstrated that
the local asymptotic stability of the zero solution for this
class of models, with potential and kinetic energy functions
being homogeneous of different degrees, is implied by the
global asymptotic stability for an auxiliary delay-free non-
linear system provided that a relation between degrees is
verified. The robustness with respect to delayed nonlinear and
time-varying disturbances was assessed using the averaging
techniques. Several new Lyapunov–Krasovskii functionals
were proposed. Using the Lyapunov–Razumikhin approach,
these results were developed to stabilization of dissipative-
free models. The problem of rigid body stabilization was
considered for an illustration of the efficiency of the pre-
sented approach.
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