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SAMPLED-DATA FINITE-DIMENSIONAL OBSERVER-BASED
CONTROL OF 1D STOCHASTIC PARABOLIC PDEs\ast 

PENGFEI WANG\dagger AND EMILIA FRIDMAN\dagger 

Abstract. Sampled-data control of PDEs has become an active research area; however, existing
results are confined to deterministic PDEs. Sampled-data controller design of stochastic PDEs is
a challenging open problem. In this paper we suggest a solution to this problem for 1D stochastic
diffusion-reaction equations under discrete-time nonlocal measurement via the modal decomposition
method, where both the considered system and the measurement are subject to nonlinear multi-
plicative noise. We present two methods: a direct one with sampled-data controller implemented
via zero-order hold device, and a dynamic-extension-based one with sampled-data controller imple-
mented via a generalized hold device. For both methods, we provide mean-square L2 exponential
stability analysis of the full-order closed-loop system. We construct a Lyapunov functional V that
depends on both the deterministic and stochastic parts of the finite-dimensional part of the closed-
loop system. We employ corresponding It\^o's formulas for stochastic ODEs and PDEs, respectively,
and further combine V with Halanay's inequality with respect to the expected value of V to com-
pensate for sampling in the infinite-dimensional tail. We provide linear matrix inequalities (LMIs)
for finding the observer dimension and upper bounds on sampling intervals and noise intensities that
preserve the mean-square exponential stability. We prove that the LMIs are always feasible for large
enough observer dimension and small enough bounds on sampling intervals and noise intensities. A
numerical example demonstrates the efficiency of our methods. The example shows that for the same
bounds on noise intensities, the dynamic-extension-based controller allows larger sampling intervals,
but this is due to its complexity (generalized hold device for sample-data implementation compared
to zero-order hold for the direct method).

Key words. stochastic parabolic PDEs, sampled-data control, observer-based control, boundary
control, Lyapunov--Krasovskii method

MSC codes. 93C57, 60H15, 93E15

DOI. 10.1137/22M1538247

1. Introduction. Stochastic PDEs are natural generalizations of deterministic
PDEs and stochastic ODEs, and their theory has motivations coming from both math-
ematics and natural sciences: physics, chemistry, biology, and mathematical finance
[5]. However, control theory for stochastic PDEs is not mature till now compared
with the deterministic setting and stochastic finite-dimensional problems [30]. In-
deed, many tools and methods which are effective in the deterministic case no longer
work in the stochastic setting.

Recently, some scholars extended the spatial decomposition method introduced in
[9, 10] to stochastic parabolic PDEs with linear multiplicative noise [18, 41]. However,
spatial decomposition requires many sensors and actuators, covering the whole spa-
tial domain. Inspired by the finite-dimensional observer-based control for determin-
istic PDEs via the modal decomposition approach (see, e.g., [1, 4]), Christofides and
coworkers studied finite-dimensional state-feedback and output-feedback controllers
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298 PENGFEI WANG AND EMILIA FRIDMAN

for stochastic PDEs subject to additive noise under nonlocal actuation [3, 15]. In [32],
Munteanu presented the first results on finite-dimensional boundary state-feedback
stabilization for stochastic heat equations with nonlinear multiplicative noise by using
a fixed point argument. The latter results were restricted to full state knowledge, and
their extension to partial state knowledge seems to be nontrivial (see the conclusion of
[32]). Note that the results in [1, 3, 4, 15, 32] for deterministic or stochastic parabolic
PDEs by the modal decomposition approach were qualitative, and efficient bounds
on the observer or controller dimensions were not provided. In the recent paper [21],
the first constructive LMI-based method for a finite-dimensional observer-based con-
troller of deterministic parabolic PDEs was suggested, where the observer dimension
was found from simple LMI conditions. Finite-dimensional boundary control of 1D
parabolic PDEs under point or boundary measurement was studied in [23, 28] by
employing a dynamic extension. In our recent paper [40], by using several stochastic
analysis techniques, the results in [21, 23, 28] were extended to stochastic parabolic
PDEs with nonlinear multiplicative noise under boundary control and observer.

Sampled-data finite-dimensional controllers for deterministic parabolic PDEs, im-
plemented via zero-order hold devices, were suggested in [9, 10] for distributed static
output-feedback control, in [20] for boundary state-feedback control, and in [22] for
observer-based control. In [26], a sampled-data implementation of boundary con-
troller via a generalized hold device was developed for 1D parabolic PDEs under
discrete-time point measurement. Event-triggered sampled-data control of determin-
istic parabolic PDEs was studied in [6] for boundary state-feedback control and in
[36, 17] for distributed static output control. For sampled-data and delayed control
of parabolic PDEs, combinations of Lyapunov functionals with Halanay's inequality
appear to be an efficient tool. The combinations were introduced for stabilization
via the spatial decomposition method in [10, 36] and via modal decomposition in
[22, 25, 26]. However, for stochastic systems there are few results on sample-data
control, and all of them are confined to stochastic ODEs (see [42, 43]). Sampled-data
control of stochastic PDEs is a challenging open problem. Note that all the results for
sampled-data control of deterministic PDEs employed Lyapunov functionals for H1

stability. However, for stochastic PDEs, It\^o's formula is well studied for L2 stability.
This is probably the reason why earlier suggested spatial decomposition methods for
stochastic PDEs [18, 41] have not yet been extended to the sampled-data case.

In the present paper, for the first time, we provide a solution for sampled-data
control of stochastic parabolic PDEs. We consider finite-dimensional observer-based
boundary control of 1D stochastic parabolic PDEs under discrete-time nonlocal mea-
surement, where both the PDE and the measurement are subject to nonlinear multi-
plicative noise. Inspired by [22] and [26] for the deterministic PDEs, we present two
methods: a direct method and a dynamic-extension-based method. For the direct
one, we consider the sampled-data via a zero-order hold device, and for the dynamic-
extension-based one, we suggest a sampled-data via a generalized hold device. For
both methods, we construct an appropriate Lyapunov functional V for mean-square
L2 exponential stability and employ corresponding It\^o's formulas for stochastic ODEs
and PDEs. We provide LMIs for finding the observer dimension and upper bounds
on sampling intervals and noise intensities that preserve the exponential stability.
We prove that the LMIs are always feasible for large enough observer dimension and
small enough bound on sampling intervals and noise intensities. Numerical simulations
demonstrate the efficiency of the two methods and show that for the same bounds
on noise intensities, the dynamic-extension-based controller allows larger sampling
intervals.
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 299

The contribution of this paper is summarized as follows:
\bullet We study, for the first time, the sampled-data implementation of finite-

dimensional output-feedback controller for stochastic PDEs and provide mean-
square exponential L2 stability analysis.

\bullet Compared to deterministic sampled-data control in [22, 26], the Lyapunov
analysis has the following novel features:
(a) We employ a novel stochastic Lyapunov functional V that depends

on the deterministic and stochastic terms of the finite-dimensional
part of the closed-loop system. Such a construction of V is inspired
by [11] for stochastic ODEs.

(b) Halanay's inequality in the stochastic case is applied with respect
to expected value of V to compensate for sampling in the infinite-
dimensional tail.

(c) We present novel design LMIs to choose the controller gain, which
leads to improved results in the numerical example compared to the
design presented in [22, 26] for the deterministic case.

In the conference version of this paper (see [39]) the dynamic-extension-based
method was not considered.

Notation and preliminaries. Let (\Omega ,\scrF ,\BbbP ) be a complete probability space with
a filtration \{ \scrF t\} t\geq 0 of increasing sub-\sigma -fields of \scrF (see [5, p. 71]), and let \BbbE \{ \cdot \} be
the expectation operator. Denote by L2(0,1) the space of square integrable functions

with inner product \langle f, g\rangle =
\int 1

0
f(x)g(x)dx and induced norm \| f\| 2L2 = \langle f, f\rangle . Let

L2(\Omega ;L2(0,1)) be the set of all \scrF 0-measurable random variables z \in L2(0,1) with
\BbbE \| z\| 2L2 < 0. H1(0,1) is the Sobolev space of functions f : [0,1]  - \rightarrow \BbbR with a square
integrable weak derivative. The norm defined in H1(0,1) is \| f\| 2H1 = \| f\| 2L2 + \| f \prime \| 2L2 .
Let \BbbZ + denote the set of nonnegative integers, and let \BbbN denote the set of positive
integers. The Euclidean norm is denoted by | \cdot | . For P \in \BbbR n\times n, P > 0 means that P
is positive definite. The symmetric elements of a symmetric matrix will be denoted
by \ast . For 0<P \in \BbbR n\times n and x\in \BbbR n, we write | x| 2P = xTPx. Let I denote the identity
matrix of appropriate size.

Consider the Sturm--Liouville eigenvalue problem

\phi \prime \prime + \lambda \phi = 0, x\in (0,1), \phi (0) = \phi \prime (1) = 0.(1.1)

This problem induces a sequence of eigenvalues with corresponding eigenfunctions
given by

\lambda n = (n - 0.5)2\pi 2, \phi n(x) =
\surd 
2 sin(

\surd 
\lambda nx), x\in [0,1], n\in \BbbN .(1.2)

The eigenfunctions \{ \phi n\} \infty n=1 form a complete orthonormal system in L2(0,1). Given

a positive integer N and h \in L2(0,1) satisfying h
L2

=
\sum \infty 

n=1 hn\phi n, we denote \| h\| 2N =\sum \infty 
n=N+1 h

2
n.

2. Sampled-data control using zero-order hold device. Consider the fol-
lowing stochastic 1D heat equation subject to nonlinear multiplicative noise under
Neumann actuation:

dz(x, t) = [ \partial 2

\partial x2 z(x, t) + qz(x, t)]dt+ \sigma 1(x, z(x, t))d\scrW 1(t), t\geq 0,
z(0, t) = 0, zx(1, t) = u(t),
z(x,0) = z0(x), x\in [0,1],

(2.1)

where z0 \in L2(\Omega ;L2(0,1)), q \in \BbbR is the reaction coefficient, u(t) is a control input to
be designed, \sigma 1(x, z(x, t))d\scrW 1(t) is the nonlinear multiplicative noise which is due to
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300 PENGFEI WANG AND EMILIA FRIDMAN

the random parameter variation of qz(x, t)dt [13], \scrW 1(t) is a 1D standard Brownian
motion defined on (\Omega ,\scrF ,\BbbP ), and the nonlinear function \sigma 1 : [0,1]\times \BbbR \rightarrow \BbbR describes
the distribution of noise with respect to the space and state and satisfies

\sigma 1(x,0) = 0, | \sigma 1(x, z1) - \sigma 1(x, z2)| \leq \=\sigma 1| z1  - z2| \forall z1, z2 \in \BbbR , x\in [0,1],(2.2)

where \=\sigma 1 > 0 describes the upper bound of noise intensity.
Following [26], let 0 = s0 < . . . < sk < \cdot \cdot \cdot , and limk\rightarrow \infty sk =\infty be the measurement

sampling instances. The sampling is variable and subject to sk+1  - sk \leq \tau M,y for all
k \in \BbbZ + and some constant \tau M,y > 0. We consider the nonlocal measurement with
nonlinear multiplicative noise (see, e.g., [12])

dy(t) = \langle c, z(\cdot , sk)\rangle dt+ \sigma 2(\langle c, z(\cdot , sk)\rangle )d\scrW 2(t), t\geq 0,(2.3)

where c\in L2(0,1), the nonlinear function \sigma 2 :\BbbR \rightarrow \BbbR satisfies

\sigma 2(0) = 0, | \sigma 2(z1) - \sigma 2(z2)| \leq \=\sigma 2| z1  - z2| \forall z1, z2 \in \BbbR ,(2.4)

with \=\sigma 2 > 0 describing the upper bound of measurement noise intensity, and \scrW 2(t)
is a 1D standard Brownian motion defined on (\Omega ,\scrF ,\BbbP ). Note that \scrW 1(t) and \scrW 2(t)
are assumed to be mutually independent.

Remark 2.1. For simplicity, we impose the globally Lipschitz continuity condition
on the nonlinear terms \sigma 1, \sigma 2. The globally Lipschitz condition can be relaxed to hold
locally, but then the solution may be local. In the scenario, we can only study the
regional stabilization as in [24] for the deterministic Kuramoto--Sivashinsky equation.

As in [40], our results can be easily extended to a more general Sturm--Liouville
operator \partial 

\partial (p(x)
\partial 
\partial xz(x, t)) + q(x) on the right-hand side of (2.1).

In section 2.2 below, we will prove that for (2.1) with initial value z0 \in \scrD (\scrA 1)
almost surely and z0 \in L2(\Omega ;L2(0,1)), where operator \scrA 1 is defined in (2.30) below,
there exists a unique global solution. Therefore, we can present the solution to (2.1)
as

z(x, t) =
\sum \infty 

n=1 zn(t)\phi n(x), zn(t) = \langle z(\cdot , t), \phi n\rangle (2.5)

with \phi n, n \in \BbbN , defined as in (1.2). Differentiating zn in (2.5), integrating by parts,
and using (1.2), we obtain

dzn(t) = [( - \lambda n + q)zn(t) + bnu(t)]dt+ \sigma 1,n(t)d\scrW 1(t), t\geq 0,

bn = \phi n(1) = ( - 1)n+1
\surd 
2, \sigma 1,n(t) = \langle \sigma 1(\cdot ,

\sum \infty 
j=1 zj(t)\phi j), \phi n\rangle , n\in \BbbN ,

zn(0) = \langle z0, \phi n\rangle =: z0,n.

(2.6)

By (1.2) and the integral convergence test, we have\sum \infty 
n=N+1

b2n
\lambda n

\leq 2
\pi 2N ( 1

N + 1) =: \chi N , N \geq 1.(2.7)

Let \delta > 0 be a desired decay rate and let N0 \in \BbbN satisfy

 - \lambda n + q+ \delta +
\=\sigma 2
1

2 < 0, n >N0,(2.8)

where N0 means the number of ``relatively unstable"" modes that need to be stabilized
and is used for the controller design. Note that compared with [21, 23, 28] for the
deterministic PDEs, the additional term \=\sigma 2

1/2 in (2.8) is induced by the stochastic
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 301

perturbations (see Remark 2.2 in [40]). Let N \in \BbbN , N0 \leq N , where N will define the
dimension of the observer.

Following [21, 37], we construct a finite-dimensional observer of the form

\^z(x, t) =
\sum N

n=1 \^zn(t)\phi n(x),(2.9)

where \^zn(t) (1\leq n\leq N) satisfy

d\^zn(t) = [( - \lambda n + q)\^zn(t) + bnu(t)]dt - ln[\langle c, \^z(\cdot , t - \tau y)\rangle dt - dy(t)], t\geq 0,
\^zn(0) = 0, 1\leq n\leq N,

(2.10)

with y(t) satisfying (2.3) and scalar observer gains \{ ln\} Nn=1.
Let

A0 =diag\{  - \lambda n + q\} N0
n=1, B0 = [b1, . . . , bN0

]T, cn = \langle c,\phi n\rangle , C0 = [c1, . . . , cN0
].

(2.11)

We assume that cn \not = 0, 1 \leq n \leq N0. Then the pair (A0,C0) is observable by the
Hautus lemma. Choose l1, . . . , lN0

such that L0 = [l1, . . . , lN0
]T satisfies

Po(A0  - L0C0) + (A0  - L0C0)
TPo < - 2\delta Po,(2.12)

where 0<Po \in \BbbR N0\times N0 . Furthermore, choose ln = 0, n>N0.
Since bn \not = 0 (see (2.6)), the pair (A0,B0) is controllable. We propose an N0-

dimensional sampled-data controller of the form

u(t) =K0\^z
N0(tj), t\in [tj , tj+1), \^zN0(t) = [\^z1(t), . . . , \^zN0(t)]

T,(2.13)

where \{ tj\} \infty j=1 are the controller hold times satisfying 0 = t0 < \cdot \cdot \cdot < tj < \cdot \cdot \cdot ,
limj\rightarrow \infty tj =\infty . Assume that the sampling is variable and subject to tj+1 - tj \leq \tau M,u

for all j \in \BbbZ + and some constant \tau M,u > 0. In (2.13), the controller gain K0 \in \BbbR 1\times N0

will be obtained from the state-feedback controller design (see section 2.1).
Using the time-delay approach to sampled-data measurement and control (see,

e.g., [8, 22]), we introduce the following representations of the measurement and input
delays:

\tau y(t) = t - sk, t\in [sk, sk+1), \tau y(t)\leq \tau M,y,
\tau u(t) = t - tj , t\in [tj , tj+1), \tau u(t)\leq \tau M,u.

(2.14)

Henceforth the dependence of \tau y(t), \tau u(t) on t will be suppressed to shorten notation.

2.1. Design of gain \bfitK 0. Since in many applications one cannot a priori know
the noise intensity, here we ignore the stochastic noise (i.e., \sigma 1(x, z)\equiv 0) and present
the state-feedback design for controller gain.

Consider (2.1) with \sigma 1(x, z) \equiv 0. By presenting the solution as (2.5) and differ-
entiating zn in (2.5), we obtain (2.6) with \sigma 1,n \equiv 0. Let \delta > 0 be a desired decay rate,
and let N0 \in \BbbN satisfy  - \lambda n + q+ \delta < 0, n>N0.

Since bn \not = 0 (see (2.6)), the pair (A0,B0) is controllable. We propose an N0-
dimensional sampled-data controller of the form

u(t) =K0z
N0(tj), t\in [tj , tj+1), zN0(t) = [z1(t), . . . , zN0

(t)]T,(2.15)

where K0 \in \BbbR 1\times N0 is obtained from LMIs below (see (2.23) and (2.24)). Using the
notation of (2.11) and (2.14), we have the closed-loop system for t\geq 0:

\.zN0(t) =A0z
N0(t) +B0K0z

N0(t - \tau u),
\.zn(t) = ( - \lambda n + q)zn(t) + bnK0z

N0(t - \tau u), n >N0.
(2.16)
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302 PENGFEI WANG AND EMILIA FRIDMAN

For the exponential stability of (2.16), we consider the Lyapunov functional:

V (t) =
\sum \infty 

n=N0+1 \rho z
2
n(t) + | zN0(t)| 2P +

\int t

t - \tau M,u
e - 2\delta (t - s)| zN0(s)| 2Sds

+ \tau M,u

\int 0

 - \tau M,u

\int t

t+\theta 
e - 2\delta (t - s)| \.zN0(s)| Rdsd\theta ,

where 0<P,S,R \in \BbbR N0\times N0 , and \rho > 0. Let G\in \BbbR N0\times N0 satisfy\biggl[ 
R G
\ast R

\biggr] 
\geq 0.(2.17)

Using the descriptor method

0 = [(zN0(t))TPT
2 + ( \.zN0(t))TPT

3 ][A0z
N0(t) +B0K0z

N0(t - \tau u) - \.zN0(t)],(2.18)

with some matrices P2, P3 \in \BbbR N0\times N0 (see [7]) and further employing Jensen's and
Park's inequalities (see, e.g, section 3.6.3 of [8]), we arrive at

\.V (t) + 2\delta V (t)\leq \eta T(t)\Xi \eta (t) + 2\rho 
\sum \infty 

n=N0+1( - \lambda n + q+ \delta )z2n(t)
+\rho 

\sum \infty 
n=N0+1 2zn(t)bnK0z

N0(t - \tau u),
(2.19)

where \eta (t) = col\{ zN0(t), \.zN0(t), zN0(t - \tau M,u), z
N0(t - \tau u)\} ,

\Xi =

\left[  \Xi 0 P  - P\mathrm{T}
2 +A\mathrm{T}

0 P3 \varepsilon uG \varepsilon u(R - G) + P\mathrm{T}
2 B0K0

\ast  - P3  - P\mathrm{T}
3 + \tau 2

M,uR 0 P\mathrm{T}
3 B0K0

\ast \ast  - \varepsilon u(S +R) \varepsilon u(R - G\mathrm{T})

\ast \ast \ast \varepsilon u( - 2R+G+G\mathrm{T})

\right]  ,
\Xi 0 =AT

0 P2 + PT
2 A0 + S  - \varepsilon uR+ 2\delta P, \varepsilon u = e - 2\delta \tau M,u .

(2.20)

By substituting Young's inequality

\rho 
\sum \infty 

n=N0+1 2zn(t)bnK0z
N0(t - \tau u)

\leq \alpha \rho 2
\sum \infty 

n=N0+1 \lambda nz
2
n(t) +

1
\alpha 

\sum \infty 
n=N0+1

b2n
\lambda n

| K0z
N0(t - \tau u)| 2

(2.7)

\leq \alpha \rho 2
\sum \infty 

n=N0+1 \lambda nz
2
n(t) +

\chi N0

\alpha | K0z
N0(t - \tau u)| 2

into (2.19), we obtain

\.V (t) + 2\delta V (t)\leq \eta T(t)\~\Xi \eta (t) +
\sum \infty 

n=N0+1 \mu nz
2
n(t)\leq 0,(2.21)

provided \mu n := 2\rho ( - \lambda n + q+ \delta ) + \alpha \rho 2\lambda n < 0, n>N0 and

\~\Xi :=

\left[  \Xi 0 P  - P\mathrm{T}
2 +A\mathrm{T}

0 P3 \varepsilon uG \varepsilon u(R - G) + P\mathrm{T}
2 B0K0

\ast  - P3  - P\mathrm{T}
3 + \tau 2

M,uR 0 P\mathrm{T}
3 B0K0

\ast \ast  - \varepsilon u(S +R) \varepsilon u(R - G\mathrm{T})

\ast \ast \ast \varepsilon u( - 2R+G+G\mathrm{T}) +
\chi N0
\alpha K\mathrm{T}

0 K0

\right]  < 0.

(2.22)

Feasibility of (2.21) guarantees the exponential stability of (2.1) with \sigma 1(x, z) \equiv 0
under state-feedback controller (2.15).

Similarly to the controller design in section 5.2.1 of [8], we choose P3 = \varepsilon P2 with
a tuning scalar \varepsilon > 0 and denote

\=P2 = P - 1
2 , Y =K0

\=P2, [ \=P , \=R, \=S, \=G] = \=PT
2 [P,R,S,G] \=P2, \=\rho = 1/\rho .
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 303

We multiply \~\Xi in (2.22) by diag\{ \=P2, \=P2, \=P2, \=P2\} and its transpose, from the right and
the left, respectively. By the Schur complement, we find that (2.22) holds iff\left[    

\^\Xi 0
\=P  - \=P2 + \varepsilon \=P\mathrm{T}

2 A\mathrm{T}
0 \varepsilon u \=G \varepsilon u( \=R - \=G) +B0Y 0

\ast  - \varepsilon ( \=P2 + \=P\mathrm{T}
2 ) + \tau 2

M,u
\=R 0 \varepsilon B0Y 0

\ast \ast  - \varepsilon u( \=S + \=R) \varepsilon u( \=R - \=G\mathrm{T}) 0

\ast \ast \ast \varepsilon u( - 2 \=R+ \=G+ \=G\mathrm{T}) Y \mathrm{T}

\ast \ast \ast \ast  - \alpha 
\chi N0

\right]    < 0,

\^\Xi 0 = \=PT
2 AT

0 +A0
\=P2 + \=S  - \varepsilon u \=R+ 2\delta \=P .

(2.23)

Similarly, multiplying (2.17) by diag\{ \=P2, \=P2\} and its transpose, from the right and
the left, respectively, we conclude that (2.17) holds iff\biggl[ 

\=R \=G
\ast \=R

\biggr] 
\geq 0.(2.24)

From the monotonicity of \lambda n, we find that \mu n < 0 for all n>N iff

2\=\rho ( - \lambda N0+1 + q+ \delta ) + \alpha \lambda N0+1 < 0.(2.25)

In particular, (2.23), (2.24), and (2.25) are LMIs that depend on the tuning parameter
\varepsilon and decision variables \=P , \=P2, \=R, \=S, \=G, Y , \=\rho , and \alpha . If LMIs (2.23) and (2.24) hold,
the controller gain is obtained by K0 = Y \=P - 1

2 .

Remark 2.2. In [21, 22, 28], the controller gain K0 \in \BbbR 1\times N0 is chosen such that

Pc(A0 +B0K0) + (A0 +B0K0)
TPc \leq  - 2\delta Pc(2.26)

holds with 0<Pc \in \BbbR N0\times N0 . Choose \=Pc = P - 1
c and Y =K0

\=Pc. Multiplying (2.26) by
\=Pc from the right and left, respectively, we find that (2.26) holds iff

A0
\=Pc + \=PcA

T
0 +B0Y + Y TBT

0 + 2\delta \=Pc \leq 0,(2.27)

where \=Pc and Y are decision variables. If (2.27) is feasible, then the controller gain is
obtained by K0 = Y \=P - 1

c . In this section, the controller gain design depends on \tau M,u.
This gain should satisfy (2.26), but it is difficult to find an efficient K0 from (2.27)
(see the numerical example in section 4).

2.2. Well-posedness of the closed-loop system. For well-posedness of sys-
tem (2.1), (2.10) with control input (2.13), we introduce the change of variables

w(x, t) = z(x, t) - r(x)u(t), r(x) = x,(2.28)

which leads to the equivalent stochastic PDEs

dw(x, t) =
\Bigl[ 

\partial 2

\partial x2w(x, t) + qw(x, t) + qr(x)u(t)
\Bigr] 
dt

+\sigma 1(x,w(x, t) + r(x)u(t))d\scrW 1(t), t\geq 0,
w(0, t) = 0, wx(1, t) = 0, t\geq 0,
w(x,0) = z0(x), x\in [0,1].

(2.29)

We define an operator

\scrA 1 :\scrD (\scrA 1)\subseteq L2(0,1)\rightarrow L2(0,1), \scrA 1w=w\prime \prime ,
\scrD (\scrA 1) = \{ w \in H2(0,1) :w(0) =w\prime (1) = 0\} ,(2.30)
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304 PENGFEI WANG AND EMILIA FRIDMAN

and the notation

A1 =diag\{  - \lambda n+1 + q\} Nn=N0+1, B1 = [bN0+1, . . . , bN ]T, B = col\{ B0,B1\} ,
K1 = [K0,01\times (N - N0)], C = [c1, . . . , cN ], \~L0 = col\{ L0,0(N - N0)\times 1\} .

(2.31)

Let \scrH =L2(0,1)\times \BbbR N be a Hilbert space with norm \| \cdot \| 2\scrH = \| \cdot \| 2L2 + | \cdot | 2. Consider
\scrV := H1

L(0,1) \times \BbbR N with norm \| \cdot \| 2\scrV = \| \cdot \| 2H1 + | \cdot | 2, where H1
L(0,1) := \{ w \in 

H1(0,1) : w(0) = 0\} . From page 183 in [38], H - 1(0,1) = (H1
L(0,1))

\prime is the dual of
H1

L(0,1) with respect to the pivot space L2(0,1). Let \scrV \prime :=H - 1(0,1)\times \BbbR N . Hence,
\scrV \subset \scrH \subset \scrV \prime . The duality scalar product between \scrV \prime and \scrV is denoted by \langle \cdot , \cdot \rangle \scrV \prime ,\scrV .
We have \langle \varsigma , v\rangle \scrV \prime ,\scrV = \langle \varsigma , v\rangle \scrH for all \varsigma \in \scrH , v \in \scrV (see [35, p. 71]). Consider the state
\xi (t) = col\{ w(\cdot , t), \^zN (t)\} with \^zN (t) = [\^z1(t), . . . , \^zN (t)]T. We present the closed-loop
system as

d\xi (t) = [\scrA \xi (t) + f(t, \xi (t))]dt+ g(t, \xi (t))d\scrW (t), t\geq 0,(2.32)

with \scrW (t) = [\scrW 1(t),\scrW 2(t)]
T and

\scrA =diag\{ \scrA 1,\scrA 2\} , \scrA 2 =diag\{ A0,A1\} , f(t, \xi (t)) =
\biggl[ 

qw(\cdot , t) + qr(\cdot )K1\^z
N (t - \tau u)

f1(t)

\biggr] 
,

f1(t) =BK1\^z
N (t - \tau u) - \~L0C\^zN (t - \tau y) + \~L0\langle c,w(\cdot , t - \tau y) + r(\cdot )K1\^z

N (t - \tau u)\rangle ,
g(t, \xi (t)) = diag\{ g1, g2\} , g1 = \sigma 1(\cdot ,w(\cdot , t) + r(\cdot )K1\^z

N (t - \tau u)),

g2 = \~L0\sigma 2(\langle c,w(\cdot , t - \tau y) + r(\cdot )K1\^z
N (t - \tau u)\rangle .

Then \scrA : \scrV \rightarrow \scrV \prime is a closed linear operator with domain \scrD (\scrA ) dense in \scrH . For any
\xi i \in \scrV , i = 1,2, by arguments similar to those in [40] (see (2.29), (2.30) therein), we
can check from (2.2) and (2.4) that there exist constants \alpha ,\beta > 0 and \gamma such that

| \langle \scrA \xi 1, \xi 2\rangle \scrV \prime ,\scrV | \leq \alpha \| \xi 1\| \scrV \| \xi 2\| \scrV , \langle \scrA \xi 1, \xi 1\rangle \scrV \prime ,\scrV \leq  - \beta \| \xi 1\| 2\scrV + \gamma \| \xi 1\| 2\scrH .

For simplicity, we define \{ \scrT i\} \infty i=0 := \{ sk\} \infty k=0 \cup \{ tj\} \infty j=0 as follows: 0 = \scrT 0 < \scrT 1 < \cdot \cdot \cdot ,
limi\rightarrow \infty \scrT i = \infty . Clearly, \scrT i+1  - \scrT i \leq max\{ \tau M,u, \tau M,y\} for all i \in \BbbZ +. Let \^f(t, \xi ) :=
f(t, \xi ) - f(t,0) and \^g(t, \xi ) := g(t, \xi ) - g(t,0). For any \xi 1, \xi 2 \in \scrH , by (2.2) and (2.4),
we obtain that there exist positive constants \kappa 1, \kappa 2 such that

\| \^f(t, \xi 1)\| 2\scrH + tr\{ \^gT(t, \xi 1)\^g(t, \xi 1)\} \leq \kappa 1(1 + \| \xi 1\| 2\scrH ),
tr\{ [g(t, \xi 2) - g(t, \xi 1)]

T[g(\xi 2) - g(\xi 1)]\} + \| f(t, \xi 2) - f(t, \xi 1)\| 2\scrH \leq \kappa 2\| \xi 2  - \xi 1\| 2\scrH ,

where tr\{ gT(t, \xi )g(t, \xi )\} := \| g1\| 2L2+| g2| 2. We first consider t\in [0,\scrT 1]. Since f(t,0) and
g(t,0) depend on z0 only for t\in [0,\scrT 1], we have \BbbE 

\int \scrT 1

\scrT 0
[\| f(s,0)\| 2\scrH +tr\{ gT(s,0)g(s,0)\} ]ds

< M0 for some constant M0 > 0. By Theorem 6.7.4 of [2], for any initial value
\xi 0 \in \scrD (\scrA ) almost surely, (2.32) has a unique strong solution

\xi \in L2(\Omega ;C([0,\scrT 1);\scrH ))\cap L2([0,\scrT 1)\times \Omega ;\scrV ],(2.33)

such that

\xi (t)\in \scrD (\scrA ) =\scrD (\scrA 1)\times \BbbR N \forall t\in [0,\scrT 1](2.34)

almost surly and is adapted to \scrF t, t\in [0,\scrT 1]. The latter follows from the definition of a
strong solution in [29] (see Definition 1.3.3 therein). Next, consider t\in [\scrT 1,\scrT 2). In this
regard, f(t,0) and g(t,0) depend on \xi (\scrT 1) only. From (2.33), it follows that there exists
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 305

a positive constant M1 such that \BbbE 
\int \scrT 2

\scrT 1
[\| f(s,0)\| 2\scrH +tr\{ gT(s,0)g(s,0)\} ]ds <M1. Since

\xi (\scrT 1) \in \scrD (\scrA ) almost surely, there exists a unique strong solution \xi satisfying (2.33)
and (2.34) on [\scrT 1,\scrT 2] almost surely. Using these arguments step by step on [\scrT i,\scrT i+1]
(i\in \BbbZ +) with initial conditions \xi (\scrT i)\in \scrD (\scrA ), we obtain, for z0 \in \scrD (\scrA 1) almost surely,
existence of a unique solution \xi \in L2(\Omega ;C([0,\infty );\scrH )) \cap L2(\Omega \times [0,\infty )\setminus \scrJ ;\scrV ), where
\scrJ = \{ \scrT i\} \infty i=0, such that \xi (t) \in \scrD (\scrA ), t\geq 0, almost surely. By the change of valuables
(2.28), we have that the solutions to (2.1) satisfy z \in L2(\Omega ;C([0,\infty );L2(0,1))) \cap 
L2(\Omega \times [0,\infty )\setminus \scrJ ;H1(0,1)).

2.3. Mean-square \bfitL 2 stability analysis. Let

en(t) = zn(t) - \^zn(t).(2.35)

By using (2.3) and (2.9), we write the last term on the right-hand side of (2.10) as

[\langle c, \^z(\cdot , t - \tau y)\rangle dt - dy(t)] = - [
\sum N

n=1 cnen(t - \tau y) + \zeta (t - \tau y)]dt

 - \sigma 2(\^\zeta (t - \tau y))d\scrW 2(t),

\zeta (t) =
\sum \infty 

n=N+1 cnzn(t),
\^\zeta (t) = \zeta (t) +

\sum N
n=1 cn[\^zn(t) + en(t)].

(2.36)

By the Cauchy--Schwarz inequality, we have

\zeta 2(t)\leq \| c\| 2N
\sum \infty 

n=N+1 z
2
n(t).(2.37)

Then the error equations have the form

den(t) = \{ ( - \lambda n + q)en(t) - ln[
\sum N

n=1 cnen(t - \tau y) + \zeta (t - \tau y)]\} dt
+\sigma 1,n(t)d\scrW 1(t) - ln\sigma 2(\^\xi (t - \tau y))d\scrW 2(t), t\geq 0.

(2.38)

Recall the notation in (2.11), (2.13), (2.31) and let

eN0(t) = col\{ en(t)\} N0
n=1, eN - N0(t) = col\{ en(t)\} Nn=N0+1,

\^zN - N0(t) = col\{ \^zn(t)\} Nn=N0+1, C1 = [cN0+1, . . . , cN ],

X(t) = col\{ \^zN0(t), eN0(t), \^zN - N0(t), eN - N0(t)\} ,
\BbbC = [C0,C0,C1,C1], \BbbK 0 = [K0,01\times (2N - N0)],

\BbbL 0 = col\{ L0, - L0,02(N - N0)\times 1\} ,

F0 =

\left[    
A0 +B0K0 L0C0 0 L0C1

0 A0  - L0C0 0  - L0C1

B1K0 0 A1 0
0 0 0 A1

\right]    ,
F1 =\BbbL 0 \cdot [0,C0,0,C1], F2 = col\{ B0,0,B1,0\} ,
\nu y(t) =X(t) - X(t - \tau y), \nu u(t) =X(t) - X(t - \tau u).

(2.39)

By (2.6), (2.10), and (2.38), we have the closed-loop system for t\geq 0,

dX(t) = F (t)dt+\Sigma 1(t)d\scrW 1(t) +\Sigma 2(t)d\scrW 2(t),(2.40a)

dzn(t) = [( - \lambda n + q)zn(t) + bn\BbbK 0[X(t) - \nu u(t)]]dt+ \sigma 1,n(t)d\scrW 1(t), n >N,(2.40b)

where

F (t) = F0X(t) - F1\nu y(t) - F2\BbbK 0\nu u(t) +\BbbL 0\zeta (t - \tau y),

\Sigma 1(t) = col\{ 0N0\times 1, \sigma 
N0(t),0(N - N0)\times 1, \sigma 

N - N0(t)\} ,
\sigma N0(t) = col\{ \sigma 1,n(t)\} N0

n=1, \sigma 
N - N0(t) = col\{ \sigma 1,n(t)\} Nn=N0+1,

\Sigma 2(t) =\BbbL 0\sigma 2(\zeta (t - \tau y) +\BbbC X(t) - \BbbC \nu y(t)).

(2.41)
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306 PENGFEI WANG AND EMILIA FRIDMAN

For mean-square L2 exponential stability of the closed-loop system (2.40), we
define the Lyapunov functional

V (t) =
\sum 2

i=1[VSi
(t) + VRi

(t) + VQ1i
(t) + VQ2i

(t)] + Vnom(t),

Vnom(t) = VP (t) + \rho 
\sum \infty 

n=N+1 z
2
n(t), VP (t) = | X(t)| 2P ,

VS1
(t) =

\int t

t - \tau M,y
e2\delta 0(s - t)| X(s)| 2S1

ds,

VS2
(t) =

\int t

t - \tau M,u
e2\delta 0(s - t)| \BbbK 0X(s)| 2S2

ds,

VR1
(t) = \tau M,y

\int 0

 - \tau M,y

\int t

t+\theta 
e2\delta 0(s - t)| F (s)| 2R1

dsd\theta ,

VR2
(t) = \tau M,u

\int 0

 - \tau M,u

\int t

t+\theta 
e2\delta 0(s - t)| \BbbK 0F (s)| 2R2

dsd\theta ,

VQ1i(t) =
\int 0

 - \tau M,y

\int t

t+\theta 
e2\delta 0(s - t)| \Sigma i(s)| 2Q1i

dsd\theta ,

VQ2i(t) =
\int 0

 - \tau M,u

\int t

t+\theta 
e2\delta 0(s - t)| \BbbK 0\Sigma i(s)| 2Q2i

dsd\theta , i= 1,2,

(2.42)

with 0 < P,S1,R1,Q11,Q12 \in \BbbR 2N\times 2N and positive scalars S2, R2, Q21, Q22, \rho .
Without loss of generality we assume that z(\cdot , t) = z0(\cdot ) and \^z(\cdot , t) = 0 for t < 0. In
this regard, the solution of the closed-loop system (2.40) for t < 0 is well-defined.
Functional V (t) is a stochastic extension of the Lyapunov functional in [22, 25]. The
terms VP , VS1 , and VS2 have the same form as the deterministic case. The terms VR1

and VR2
are stochastic extensions of the state-derivative-dependent double integral

terms, whereas VQ1i
and VQ2i

compensate for the stochastic parts of (2.40a) (see
[11, 43]). By Parseval's equality and (2.28), we present Vnom(t) in (2.42) as

Vnom(t) = VP (t) - V1(t) + V2(t,w(\cdot , t)),

V1(t) = \rho | \BbbI X(t)| 2, \BbbI =
\biggl[ 

IN0
IN0

0 0

0 0 IN - N0 IN - N0

\biggr] 
,

V2(t,w(\cdot , t)) = \rho \| w(\cdot , t) + r(\cdot )u(t)\| 2L2 .

(2.43)

For functions VP and V1, calculating the generator \scrL along stochastic ODE (2.40a)
(see [27, p. 149]), we have

\scrL VP (t) + 2\delta 0VP (t)
(2.4)

\leq XT(t)[PF0 + FT
0 P + 2\delta 0P ]X(t)

 - 2XT(t)PF1\nu y(t) +\Sigma T
1 (t)P\Sigma 1(t)

 - 2XT(t)PF2\BbbK 0\nu u(t) + 2XT(t)P\BbbL 0\zeta (t - \tau y)

+ \=\sigma 2
2\BbbL T

0 P\BbbL 0[\zeta (t - \tau y) +\BbbC X(t) - \BbbC \nu y(t)]2, t\geq 0,

(2.44)

\scrL V1(t) + 2\delta 0V1(t) = 2\rho XT(t)\BbbI T\BbbI F (t) + \rho \Sigma T
1 (t)\BbbI T\BbbI \Sigma 1(t)

+\rho \Sigma T
2 (t)\BbbI T\BbbI \Sigma 2(t) + 2\delta 0\rho | \BbbI X(t)| 2

= 2\rho 
\sum N

n=1( - \lambda n + q+ \delta 0)z
2
n(t) + \rho | \Sigma 1(t)| 2

+2\rho 
\sum N

n=1 zn(t)bn\BbbK 0[X(t) - \nu u(t)], t\geq 0.

(2.45)

Recalling the operator \scrA 1 given by (2.30), we can write stochastic PDE (2.29) as

dw(t) = [\scrA 1w(t) + qw(t) + qr(\cdot )u(t)]dt
+\sigma 1(\cdot ,w(t) + r(\cdot )u(t))d\scrW 1(t), t\in [tj , tj+1),

(2.46)

where w(t) =w(\cdot , t), r= r(\cdot ). Since w(t) is a strong solution to (2.46) (see section 2.2),
for function V2(t,w(\cdot , t)), we estimate the generator \scrL of (2.46) as follows (see [2,
p. 228]):
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\scrL V2(t,w(\cdot , t)) = 2\rho 
\int 1

0
[w(x, t) + r(x)u(t)]

\Bigl[ 
\partial 2w(x,t)

\partial x2 + qw(x, t) + qr(x)u(t)
\Bigr] 
dx

+\rho 
\int 1

0
\sigma 2
1(x,w(x, t) + r(x)u(t))2dx.

By Parseval's equality (see [33, Proposition 10.29]) and (2.2), (2.28), we arrive at

\scrL V2(t,w(\cdot , t))\leq \rho 
\sum \infty 

n=1

\int 1

0
\phi n(x)[w(x, t) + r(x)u(t)]dx

\times 
\int 1

0
\phi n(x)

\Bigl[ 
\partial 2w(x,t)

\partial x2 + qw(x, t) + qr(x)u(t)
\Bigr] 
dx+ \rho \=\sigma 2

1

\int 1

0
z2(x, t)dx

= \rho 
\sum \infty 

n=1 zn(t)[( - \lambda n + q)wn(t) + qrnu(t)] + \rho \=\sigma 2
1

\sum \infty 
n=1 z

2
n(t).

(2.47)

where rn = \langle r,\phi n\rangle . By (2.13) and (2.28), we have

wn(t) = zn(t) - rnu(t) = zn(t) - rn\BbbK 0[X(t) - \nu u(t)].(2.48)

Substituting (2.48) into (2.47) we get

\scrL V2(t,w(\cdot , t)) + 2\delta 0V2(t,w(\cdot , t))
\leq 2\rho 

\sum \infty 
n=1( - \lambda n + q+ \delta 0 +

\=\sigma 2
1

2 )z2n(t) + 2\rho 
\sum \infty 

n=1 zn(t)\lambda nrn\BbbK 0[X(t) - \nu u(t)].

(2.49)

Note that

bn = \phi n(1) =
\int 1

0
\phi \prime 
n(x)dx= - 

\int 1

0
x\phi \prime \prime 

n(x)dx= \lambda nrn.(2.50)

Combining (2.43), (2.44), (2.45), (2.49), and (2.50) gives us

\scrL Vnom(t) + 2\delta 0Vnom(t)\leq XT(t)[PF0 + FT
0 P + 2\delta 0P + \rho \=\sigma 2

1\BbbI T\BbbI ]X(t)

 - 2XT(t)PF2\BbbK 0\nu u(t) - 2XT(t)PF1\nu y(t) +\Sigma T
1 (t)(P  - \rho I)\Sigma 1(t)

+ \=\sigma 2
2\BbbL T

0 P\BbbL 0[\zeta (t - \tau y) +\BbbC X(t) - \BbbC \nu y(t)]2 + 2XT(t)P\BbbL 0\zeta (t - \tau y)

+\rho 
\sum \infty 

n=N+1 2zn(t)bn\BbbK 0[X(t) - \nu u(t)]

+\rho 
\sum \infty 

n=N+1 2( - \lambda n + q+ \delta 0 +
\=\sigma 2
1

2 )z2n(t).

(2.51)

Let \alpha > 0. Applying Young's inequality, we arrive at

\rho 
\sum \infty 

n=N+1 2zn(t)bn\BbbK 0[X(t) - \nu u(t)]

=
\sum \infty 

n=N+1 2
\Bigl[ \surd 

2\lambda n\surd 
\alpha 

\rho zn(t)
\Bigr] \Bigl[ \surd 

\alpha \surd 
2\lambda n

bn\BbbK 0(X(t) - \nu u(t))
\Bigr] 

\leq 2\rho 2

\alpha 

\sum \infty 
n=N+1 \lambda nz

2
n(t) + \alpha 

\sum \infty 
n=N+1

b2n
\lambda n

\bigl[ 
| \BbbK 0X(t)| 2 + | \BbbK 0\nu u(t)| 2

\bigr] 
(2.7)

\leq 2\rho 2

\alpha 

\sum \infty 
n=N+1 \lambda nz

2
n(t) +

2\alpha 
\pi 2N ( 1

N + 1)
\bigl[ 
| \BbbK 0X(t)| 2 + | \BbbK 0\nu u(t)| 2

\bigr] 
.

(2.52)

We further consider compensation of terms with delays via Lyapunov analysis.
Let

\varepsilon y = e - 2\delta 0\tau M,y , \theta y(t) =X(t - \tau y) - X(t - \tau M,y),
\varepsilon u = e - 2\delta 0\tau M,u , \theta u(t) =X(t - \tau u) - X(t - \tau M,u).

(2.53)

For functionals VSi(t), VRi(t), i= 1,2, calculation of the generator \scrL along stochastic
ODE (2.40a) (see [27, p. 149]) gives

\scrL VS1(t) + 2\delta 0VS1(t) = | X(t)| 2S1
 - \varepsilon y| X(t) - \nu y(t) - \theta y(t)| 2S1

,
\scrL VS2(t) + 2\delta 0VS2(t) = | \BbbK 0X(t)| 2S2

 - \varepsilon u| \BbbK 0X(t) - \BbbK 0\nu u(t) - \BbbK 0\theta u(t)| 2S2
,

(2.54)
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308 PENGFEI WANG AND EMILIA FRIDMAN

and

\scrL VR1
(t) + 2\delta 0VR1

(t)\leq \tau 2M,y| F (t)| 2R1
 - \varepsilon y\tau M,y

\int t

t - \tau M,y
| F (s)| 2R1

ds,

\scrL VR2(t) + 2\delta 0VR2(t)\leq \tau 2M,u| \BbbK 0F (t)| 2R2
 - \varepsilon u\tau M,u

\int t

t - \tau M,u
| \BbbK 0F (s)| 2R2

ds,
(2.55)

where F (t) is defined as in (2.41). Let G1 \in \BbbR 2N\times 2N and G2 \in \BbbR satisfy\biggl[ 
R1 G1

\ast R1

\biggr] 
\geq 0,

\biggl[ 
R2 G2

\ast R2

\biggr] 
\geq 0.(2.56)

Applying Jensen's and Park's inequalities (see, e.g., section 3.6.3 of [8]), we obtain

\tau M,y

\int t

t - \tau M,y
| F (s)| 2R1

ds\geq 

\Biggl[ \int t

t - \tau y
F (s)ds\int t - \tau y

t - \tau M,y
F (s)ds

\Biggr] T\biggl[ 
R1 G1

\ast R1

\biggr] \Biggl[ \int t

t - \tau y
F (s)ds\int t - \tau y

t - \tau M,y
F (s)ds

\Biggr] 
,

\tau M,u

\int t

t - \tau M,u
| \BbbK 0F (s)| 2R2

ds\geq 

\Biggl[ \int t

t - \tau u
\BbbK 0F (s)ds\int t - \tau u

t - \tau M,u
\BbbK 0F (s)ds

\Biggr] T\biggl[ 
R2 G2

\ast R2

\biggr] \Biggl[ \int t

t - \tau u
\BbbK 0F (s)ds\int t - \tau u

t - \tau M,u
\BbbK 0F (s)ds

\Biggr] 
.

(2.57)

From (2.40a) we have\int t

t - \tau y
F (s)ds= \nu y(t) - \xi y11(t) - \xi y21(t),

\int t - \tau y
t - \tau M,y

F (s)ds= \theta y(t) - \xi y12(t) - \xi y22(t),

\xi yi1(t) =
\int t

t - \tau y
\Sigma i(s)d\scrW i(s), \xi yi2(t) =

\int t - \tau y
t - \tau M,y

\Sigma i(s)d\scrW i(s), i= 1,2,\int t

t - \tau u
\BbbK 0F (s)ds=\BbbK 0\nu u(t) - \BbbK 0\xi 

u
11(t) - \BbbK 0\xi 

u
21(t),\int t - \tau u

t - \tau M,u
\BbbK 0F (s)ds=\BbbK 0\theta u(t) - \BbbK 0\xi 

u
12(t) - \BbbK 0\xi 

u
22(t),

\xi ui1(t) =
\int t

t - \tau u
\Sigma i(s)d\scrW i(s), \xi ui2(t) =

\int t - \tau u
t - \tau M,u

\Sigma i(s)d\scrW i(s), i= 1,2.

By employing the It\^o integral properties (see [31, (5.27) on p. 28]), we have

\BbbE [(\xi y1i(t))TR1\xi 
y
2i(t)] = 0, \BbbE [(\xi yj1(t))TG1\xi 

y
i2(t)] = 0,

\BbbE [(\BbbK 0\xi 
u
1i(t))

TR2\BbbK 0\xi 
u
2i(t)] = 0, \BbbE [(\BbbK 0\xi 

u
j1(t))

TG2\BbbK 0\xi 
u
i2(t)] = 0, i, j = 1,2.

(2.58)

Let

\eta 1(t) = col\{ \nu y(t), \theta y(t), \xi y(t)\} , \eta 2(t) = col\{ \BbbK 0\nu u(t),\BbbK 0\theta u(t), \xi u(t)\} ,
\xi y(t) = col\{ \xi y11(t), \xi 

y
12(t), \xi 

y
21(t), \xi 

y
22(t)\} ,

\xi u(t) = col\{ \BbbK 0\xi 
u
11(t),\BbbK 0\xi 

u
12(t),\BbbK 0\xi 

u
21(t),\BbbK 0\xi 

u
22(t)\} .

(2.59)

Taking expectation on both sides of (2.55) and using (2.57) as well as (2.58), we get

\BbbE [\scrL VR1
(t) + 2\delta 0VR1

(t)]\leq \tau 2M,y\BbbE | F (t)| 2R1

+\BbbE 

\left[  \eta T1 (t)
\left[   - \varepsilon yR1  - \varepsilon yG1 \varepsilon y[R1,G1,R1,G1]

\ast  - \varepsilon yR1 \varepsilon y[G
T
1 ,R1,G

T
1 ,R1]

\ast \ast  - \varepsilon ydiag\{ R1,R1,R1,R1\} 

\right]  \eta 1(t)
\right]  ,

\BbbE [\scrL VR2
(t) + 2\delta 0VR2

(t)]\leq \tau 2M,u\BbbE | \BbbK 0F (t)| 2R2

+\BbbE 

\left[  \eta T2 (t)
\left[   - \varepsilon uR2  - \varepsilon uG2 \varepsilon u[R2,G2,R2,G2]

\ast  - \varepsilon uR2 \varepsilon u[G2,R2,G2,R2]
\ast \ast  - \varepsilon udiag\{ R2,R2,R2,R2\} 

\right]  \eta 2(t)
\right]  .

(2.60)

For functionals VQ1i(t), VQ2i(t), i= 1,2, calculating the generator \scrL along stochastic
ODE (2.40a) and taking expectation, we get for i= 1,2
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 309

\BbbE [\scrL VQ1i
(t) + 2\delta 0VQ1i

(t)]\leq \tau M,y\BbbE | \Sigma i(t)| 2Q1i
 - \varepsilon y[\BbbE | \xi yi1(t)| 2Q1i

+\BbbE | \xi yi2(t)| 2Q1i
],

\BbbE [\scrL VQ2i(t) + 2\delta 0VQ2i(t)]\leq \tau M,u\BbbE | \BbbK 0\Sigma i(t)| 2Q2i

 - \varepsilon u[\BbbE | \BbbK 0\xi 
u
i1(t)| 2Q2i

+\BbbE | \BbbK 0\xi 
u
i2(t)| 2Q2i

],

(2.61)

where the following It\^o integral properties are used (see, e.g., [27, 31]):

\BbbE 
\int t

t - \tau M,y
| \Sigma i(s)| 2Q1i

ds=\BbbE | \xi yi1(t)| 2Q1i
+\BbbE | \xi yi2(t)| 2Q1i

,

\BbbE 
\int t

t - \tau M,u
| \BbbK 0\Sigma i(s)| 2Q2i

ds=\BbbE | \BbbK 0\xi 
u
i1(t)| 2Q2i

+\BbbE | \BbbK 0\xi 
u
i2(t)| 2Q2i

.

We will compensate for the \zeta (t - \tau y) that appears in (2.51) by employing Halanay's
inequality. For this we will use the following bound:

 - 2\delta 1 supsk\leq \theta \leq t\BbbE V (\theta )
(2.14),(2.42)

\leq  - 2\delta 1\BbbE Vnom(t - \tau y)

= - 2\delta 1\BbbE | X(t) - \nu y(t)| 2P  - 2\delta 1\rho \BbbE [
\sum \infty 

n=N+1 z
2
n(t - \tau y)]

(2.37)

\leq  - 2\delta 1\BbbE | X(t) - \nu y(t)| 2P  - 2\delta 1\rho \| c\|  - 2
N \BbbE \zeta 2(t - \tau y),

(2.62)

where 0< \delta 1 < \delta 0.

Remark 2.3. In (2.62), the bound (2.37) for \zeta 2(t) is employed. For the case of
boundary measurement, we have to use estimate (3.72) in [26] to compensate for
\zeta (t  - \tau y). In that scenario, the H1 stability is desired (see [26]). However, the L2

regularity in H1(0,1) (see the well-posedness in section 2.2) complicates studying the
H1 stability. That is why we consider the nonlocal measurement.

By Parseval's equality and (2.2), we have

| \Sigma 1(t)| 2 =
\sum N

n=1 \sigma 
2
1,n(t)\leq 

\sum \infty 
n=1 \sigma 

2
1,n(t) =

\int 1

0
| \sigma (x, z(x, t))| 2dx

\leq \=\sigma 2
\sum \infty 

n=1 z
2
n(t) = \=\sigma 2

1 | \BbbI X(t)| 2 + \=\sigma 2
1

\sum \infty 
n=N+1 z

2
n(t).

(2.63)

Denote \eta (t) = col\{ X(t), \zeta (t  - \tau y), \eta 1(t), \eta 2(t)\} with \eta 1(t), \eta 2(t) given by (2.59). By
(2.51)--(2.54), (2.60)--(2.63), and using the S-Procedure (see proposition 3.2 in [8]), we
obtain

\BbbE [\scrL V (t) + 2\delta 0V (t)] - 2\delta 1 supsk\leq \theta \leq t\BbbE V (\theta )

+\beta [\=\sigma 2
1\BbbE | \BbbI X(t)| 2 + \=\sigma 2

1\BbbE 
\sum \infty 

n=N+1 z
2
n(t) - \BbbE | \Sigma 1(t)| 2]

\leq \BbbE [\eta T(t)\Phi 1\eta (t)] +\BbbE [
\sum \infty 

n=N+1 \mu nz
2
n(t)] +\BbbE [\Sigma T

1 (t)\Phi 2\Sigma 1(t)]\leq 0,

(2.64)

provided \mu n := 2\rho ( - \lambda n + q+ \delta 0) +
2\rho 2

\alpha \lambda n + (\beta + \rho )\=\sigma 2
1 < 0 for all n>N and

\Phi 1 =

\biggl[ 
\Omega 1 \Theta 1 \Theta 2

\ast diag\{ \Omega 2,\Omega 3\} 

\biggr] 
+ \tau 2M,y\Lambda 

T
1 R1\Lambda 1 + \tau M,y\=\sigma 

2
2\Lambda 

T
2 Q12\Lambda 2(2.65a)

+ \tau 2M,u\Lambda 
T
1 \BbbK T

0 R2\BbbK 0\Lambda 1 + \tau M,u\=\sigma 
2
2\Lambda 

T
2 \BbbK T

0 Q22\BbbK 0\Lambda 2 < 0,

\Phi 2 = P + \tau M,yQ11 + \tau M,u\BbbK T
0 Q21\BbbK 0  - (\rho + \beta )I < 0,(2.65b)
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310 PENGFEI WANG AND EMILIA FRIDMAN

where

\Omega 1 =

\biggl[ 
\~\Omega 
(11)
1 +\Omega 

(11)
1 P\BbbL 0 + \=\sigma 2

2\BbbC T\BbbL T
0 P\BbbL 0

\ast  - 2\delta 1\rho \| c\|  - 2
N + \=\sigma 2

2\BbbL T
0 P\BbbL 0

\biggr] 
,

\~\Omega 
(11)
1 = PF0 + FT

0 P + 2\delta P + 2\alpha 
\pi 2N ( 1

N + 1)\BbbK T
0 \BbbK 0, \delta = \delta 0  - \delta 1,

\Omega 
(11)
1 = \=\sigma 2

2\BbbC T\BbbL T
0 P\BbbL 0\BbbC + (1 - \varepsilon y)S1 + (1 - \varepsilon u)\BbbK T

0 S2\BbbK 0 + (\rho + \beta )\=\sigma 2
1\BbbI T\BbbI ,

\Omega 2 =

\left[   \Omega 
(11)
2  - \varepsilon y(S1 +G1) \varepsilon y[R1,G1,R1,G1]
\ast  - \varepsilon y(S1 +R1) \varepsilon y[G

T
1 ,R1,G

T
1 ,R1]

\ast \ast  - \varepsilon y\Omega 
(33)
2

\right]   ,
\Omega 

(11)
2 = \=\sigma 2

2\BbbC T\BbbL T
0 P\BbbL 0\BbbC  - 2\delta 1P  - \varepsilon y(S1 +R1),

\Omega 
(33)
2 =diag\{ R1 +Q11,R1 +Q11,R1 +Q12,R1 +Q12\} ,

\Omega 3 =

\left[   \Omega 
(11)
3  - \varepsilon u(S2 +G2) \varepsilon u[R2,G2,R2,G2]
\ast  - \varepsilon u(S2 +R2) \varepsilon u[G2,R2,G2,R2]

\ast \ast  - \varepsilon u\Omega 
(33)
3

\right]   ,
\Omega 

(11)
3 = 2\alpha 

\pi 2N ( 1
N + 1) - \varepsilon u(S2 +R2),

\Omega 
(33)
3 =diag\{ R2 +Q21,R2 +Q21,R2 +Q22,R2 +Q22\} ,

\Theta 1 =

\biggl[ 
P (2\delta 1I  - F1) - \=\sigma 2

2\BbbC T\BbbL T
0 P\BbbL 0\BbbC + \varepsilon yS1 \varepsilon yS1 02N\times 8N

 - \=\sigma 2
2\BbbL T

0 P\BbbL 0\BbbC 01\times 2N 01\times 8N

\biggr] 
,

\Theta 2 =

\biggl[ 
 - PF2 + \varepsilon u\BbbK T

0 S2 \varepsilon u\BbbK T
0 S2 02N\times 4

01\times 1 01\times 1 01\times 4

\biggr] 
,

\Lambda 1 = [F0,\BbbL 0, - F1,02N\times 10N , - F2,02N\times 5],

\Lambda 2 = [\BbbL 0\BbbC ,\BbbL 0, - \BbbL 0\BbbC ,02N\times (10N+6)].

(2.66)

From the monotonicity of \lambda n and Schur complement, we find that \mu n < 0 for all n>N
iff \biggl[ 

2\rho ( - \lambda N+1 + q+ \delta 0) + (\rho + \beta )\=\sigma 2
1 \rho 

\ast  - \alpha 
2\lambda N+1

\biggr] 
< 0.(2.67)

Applying It\^o's formula for VP (t) along stochastic ODE (2.40a) (see [27, Theorem
4.18]), we obtain for all t\geq 0 and \Delta > 0

VP (t+\Delta ) - VP (t) =
\int t+\Delta 

t
\scrL VP (s)ds+

\sum 2
i=1

\int t+\Delta 

t
\partial VP

\partial X (s)\Sigma i(s)d\scrW i(s),(2.68)

where \partial VP

\partial X (s) = 2XT(s)P . Taking expectation on both sides of (2.68) and applying
Fubini's theorem (see [27, Theorem 2.39]) we have

\BbbE VP (t+\Delta ) - \BbbE VP (t) =\BbbE [
\int t+\Delta 

t
\scrL VP (s)ds] =

\int t+\Delta 

t
\BbbE [\scrL VP (s)]ds,

which implies that

D+\BbbE VP (t) = limsup\Delta \searrow 0
\BbbE VP (t+\Delta ) - \BbbE VP (t)

\Delta 

= limsup\Delta \searrow 0
1
\Delta 

\int t+\Delta 

t
\BbbE [\scrL VP (s)]ds=\BbbE [\scrL VP (t)],

(2.69)

where the limit exists because \BbbE [\scrL VP (t)] is continuous (see Lemma 3.1 in [16]). Note
that (2.69) also holds with VP replaced by V1, VSi , VRi , VQ1i and VQ2i , i= 1,2. Since
w(t) is a strong solution to (2.46), applying It\^o's formula for V2(t,w(t)) along with
(2.46) (see [2, Theorem 7.2.1]), we have for all t\geq 0 and \Delta > 0

V2(t+\Delta ,w(t+\Delta )) - V2(t,w(t)) =
\int t+\Delta 

t
\scrL V2(s,w(s))ds

+2\rho 
\int t+\Delta 

t
\langle \partial V2

\partial w (s,w(s)), \sigma 1(\cdot ,w(s) + r\BbbK 0X(s - \tau u(s)))d\scrW 1(s)\rangle .
(2.70)
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 311

Since the stochastic integral in (2.70) is a continuous L2-martingale (see [5, subsection
3.4]), taking expectation on both sides of (2.70) and applying infinite-dimensional
Fubini's theorem (see [5, Theorem 4.33]) we arrive at

D+\BbbE V2(t,w(t)) = limsup\Delta \searrow 0
\BbbE [V2(t+\Delta ,w(t+\Delta )) - V2(t,w(t))]

\Delta 

= limsup\Delta \searrow 0
\BbbE 
\int t+\Delta 
t

\scrL V2(w(s))ds

\Delta = limsup\Delta \searrow 0

\int t+\Delta 
t

\BbbE \scrL V2(w(s))ds

\Delta 

=\BbbE [\scrL V2(t,w(t))].

(2.71)

By the definition of V (t) in (2.42), (2.43), and combining (2.69) and (2.71), we arrive
at D+\BbbE V (t) =\BbbE [\scrL V (t)], which together with (2.64) gives

D+\BbbE V (t) + 2\delta 0\BbbE V (t) - 2\delta 1 supsk\leq \theta \leq t\BbbE V (\theta )\leq 0, t\geq 0.

By (2.33) we have that \BbbE \| z(\cdot , t)\| 2L2 and \BbbE | X(t)| 2 are continuous. From the construc-
tion of V (t) in (2.42), we see that \BbbE V (t) is continuous. Then employing Halanay's
inequality (see [8, p. 138]) we arrive at

\BbbE V (t)\leq \BbbE V (0)e - 2\delta \tau t, t\geq 0,(2.72)

where \delta \tau > 0 is the unique solution of \delta \tau = \delta 0  - \delta 1e
2\delta \tau \tau M,y . From (2.42) we have

\BbbE V (0) =\BbbE Vnom(0)\leq max\{ \lambda max(P ), \rho \} \BbbE \| z0\| 2L2 ,

\BbbE V (t)\geq \BbbE Vnom(t)\geq min\{ \lambda min(P ), \rho \} \BbbE \| z(\cdot , t)\| 2L2 ,

which together with (2.72) implies

\BbbE [\| z(\cdot , t)\| 2L2 + \| z(\cdot , t) - \^z(\cdot , t)\| 2L2 ]\leq Me - 2\delta \tau t\BbbE \| z0\| 2L2 , t\geq 0,(2.73)

for some M \geq 1.
For the feasibility proof of inequalities (2.65) and (2.67) with large enough N and

small enough \tau M,y, \tau M,u, \=\sigma 1, and \=\sigma 2, let Si = 0, Gi = 0, i= 1,2. First, choose \alpha = 2,
\rho = 1. Monotonicity of \{ \lambda n\} \infty n=1 implies (2.67) for sufficiently large N . Next, to prove
the feasibility of LMIs (2.65), taking \=\sigma 1, \=\sigma 2 \rightarrow 0+, \tau M,y, \tau M,u \rightarrow 0+, it is sufficient to
show

P < (1 + \beta )I,

\biggl[ 
\~\Omega 1

\~\Theta 1
\~\Theta 2

\ast diag\{ \~\Omega 2, \~\Omega 3\} 

\biggr] 
< 0,(2.74)

where

\~\Theta 1 =

\biggl[ 
P (2\delta 1I  - F1) 02N\times 10N

01\times 2N 0

\biggr] 
, \~\Theta 2 =

\biggl[ 
 - PF2 02N\times 5

01\times 1 0

\biggr] 
,

\~\Omega 1 =

\biggl[ 
\~\Omega 
(11)
1 P\BbbL 0

\ast  - 2\delta 1\| c\|  - 2
N

\biggr] 
, \~\Omega 2 =

\left[   - 2\delta 1P  - R1 0 R1 0 R1 0
\ast  - R1 0 R1 0 R1

\ast \ast  - \Omega 
(33)
2

\right]  ,
\~\Omega 3 =

\left[  4
\pi 2N ( 1

N + 1) - R2 0 R2 0 R2 0
\ast  - R2 0 R2 0 R2

\ast \ast  - \Omega 
(33)
3

\right]  .
Here \~\Omega 

(11)
1 , \Omega 

(33)
2 , and \Omega 

(33)
3 are given in (2.66). Applying the Schur complement

repeatedly and substituting Q11 = Q12 = 3R1 and Q21 = Q22 = 3R2 into (2.74), we
find that (2.74) holds iff

\~\Omega 
(11)
1 +

\| c\| 2
N

2\delta 1
P\BbbL 0\BbbL T

0 P +
PF2F

\mathrm{T}
2 P

1
2R2 - 4

\pi 2N
( 1
N +1)

+P (2I  - F1)(2\delta 1P + 1
2R1)

 - 1(2\delta 1I  - F1)
TP < 0, P < (1 + \beta )I.

(2.75)
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312 PENGFEI WANG AND EMILIA FRIDMAN

Inspired by the reduced-order LMI method in [25], we let P be of the form P =
diag\{ P0, IN - N0 , pIN - N0\} with 0 < P0 \in \BbbR 2N0\times 2N0 and scalar p > 0. We rewrite F0

defined in (2.39) as

F0 =

\Biggl[ 
F

(11)
0 F

(12)
0

F
(21)
0 F

(22)
0

\Biggr] 
, F

(11)
0 =

\biggl[ 
A0 +B0K0 L0C0

0 A0  - L0C0

\biggr] 
,

F
(12)
0 =

\biggl[ 
0 L0C1

0  - L0C1

\biggr] 
, F

(21)
0 =

\biggl[ 
B1K0 0

0 0

\biggr] 
, F

(22)
0 =diag\{ A1,A1\} .

Let \^K0 = [K0,01\times N0
] and \^L0 = col\{ L0, - L0\} . We have

\~\Omega 
(11)
1 +

\| c\| 2
N

2\delta 1
P\BbbL 0\BbbL T

0 P =

\biggl[ 
\Xi 1 P0F

(12)
0 + F

(21)T
0 diag\{ IN - N0

, pIN - N0
\} 

\ast \Xi 2

\biggr] 
,

\Xi 1 := P0F
(11)
0 + F

(11)T
0 P0 + 2\delta P0 +

4
\pi 2N ( 1

N + 1) \^KT
0
\^K0 +

\| c\| 2
N

2\delta 1
P0

\^L0
\^LT
0 P0,

\Xi 2 := 2diag\{ A1 + \delta I, p(A1 + \delta I)\} .

By (2.8), we have \Xi 2 < 0. Applying the Schur complement we find that

\~\Omega 
(11)
1 +

\| c\| 2
N

2\delta 1
P\BbbL 0\BbbL T

0 P < 0(2.76)

iff

\Xi 3 := \Xi 1 +
\=cN

2p P0
\^L0

\^LT
0 P0 +

\=bN

2
\^KT
0
\^K0 < 0,

\=bN =
\sum N

n=N0+1
b2n

\lambda n - q - \delta , \=cN =
\sum N

n=N0+1
c2n

\lambda n - q - \delta ,
(2.77)

where F
(12)
0 \Xi  - 1

2 diag\{ IN - N0
, pIN - N0

\} F (21)
0 = 0 is used. By using (1.2) and the integral

convergence test, we have

\=bN \leq 2
\sum \infty 

n=N0

1
(n\pi )2 - q - \delta \leq \=b, \=cN \leq 

\sum \infty 
n=N0

\| c\| 2
N0

(n\pi )2 - q - \delta \leq \=c \forall N >N0,

where \=b and \=c are positive constants which are independent of N . Let 0 < P0 \in 
\BbbR 2N0\times 2N0 solve the Lyapunov equation

P0

\bigl( 
F

(11)
0 + \delta I

\bigr) 
+
\bigl( 
F

(11)
0 + \delta I

\bigr) T
P0 = - \chi I,(2.78)

where \chi > 0 is independent of N and large enough such that  - \chi I +
\=b
2
\^KT
0
\^K0 < 0.

Clearly, P0 is independent of N . Substituting (2.78) into \Xi 3 given in (2.77), we have

\Xi 3 = - \chi I +
\=bN

2
\^KT
0
\^K0 +

\=cN

2p P0
\^L0

\^LT
0 P0 +

4
\pi 2N ( 1

N + 1) \^KT
0
\^K0 +

\| c\| 2
N

2\delta 1
P0

\^LT
0
\^L0P0.

By taking \beta = N\gamma with 0 < \gamma < 1, \delta 1 = 1, and p =
\surd 
N , we get \Xi 3 < 0 for

large enough N , which implies that (2.76) holds for large enough N . Since P =
diag\{ P0, IN - N0

,
\surd 
NIN - N0

\} = O(
\surd 
N), N \rightarrow \infty , substituting these and R1 = N2I,

R2 =N2 into (2.75) we have that LMIs (2.75) hold for sufficiently large N . By argu-
ments similar to [22, Theorem 3.1], by continuity, inequalities (2.65) and (2.67) hold
for \tau M,y = \tau M,u = \=\sigma 1 = \=\sigma 2 = N - 2 and large enough N . Summarizing, we have the
following.
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 313

Theorem 2.4. Consider (2.1) with nonlinear noise function \sigma 1 satisfying (2.2),
control law (2.13), noisy measurement (2.3) with \sigma 2 satisfying (2.4), z0 \in \scrD (\scrA 1) almost
surely, and z0 \in L2(\Omega ;L2(0,1)). Given \delta > 0, let N0 \in \BbbN satisfy (2.8) and N \in \BbbN satisfy
N \geq N0. Let L0 and K0 be obtained from (2.12) and (2.26), respectively. Given
\tau M,y, \tau M,u, \delta 0, \=\sigma 1, \=\sigma 2 > 0, let there exist 0 < P,S1,R1,Q11,Q12 \in \BbbR 2N\times 2N , scalars
S2,R2,Q21,Q22, \alpha ,\beta , \rho > 0, G1 \in \BbbR 2N\times 2N , and G2 \in \BbbR such that the following LMIs
hold with \delta 1 = \delta 0  - \delta : LMIs (2.56), (2.67), and \Phi i < 0 (i = 1,2) with \Phi i given
in (2.65)--(2.66). Then the solution z(x, t) to (2.1) subject to the control law (2.10),
(2.13) and the corresponding observer \^z(x, t) given by (2.9) satisfy (2.73) for some
M \geq 1, where \delta \tau > 0 is the unique solution of \delta \tau = \delta 0  - \delta 1e

2\delta \tau \tau M,y . Moreover, the
above LMIs always hold for large enough N and small enough \tau M,y, \tau M,u, \=\sigma 1, \=\sigma 2.

Remark 2.5. If noise functions \sigma 1, \sigma 2 are of the linear form

\sigma 1(x, z)\equiv \=\sigma 1z, \sigma 2(z) = \=\sigma 2z,(2.79)

we have the closed-loop system (2.40) with

\sigma 1,n(t) = \=\sigma 1zn(t), \Sigma 2(t) = \=\sigma 2\BbbL 0[\zeta (t - \tau y) +\BbbC X(t) - \BbbC \nu y(t)],

\Sigma 1(t) = \=\sigma 1\scrI 1X(t), \scrI 1 =

\Biggl[ 
0N0\times N0

0 0 0
IN0

IN0
0 0

0(N - N0)\times N0
0 0 0

0 0 IN - N0
IN - N0

\Biggr] 
.

In this case, the constraint (2.65b) is not needed. By arguments similar to (2.42)--
(2.73), we find that the mean-square L2 exponential stability of the closed-loop system

can be guaranteed if (2.65a) and (2.67) are feasible with \beta = 0 and \Omega 
(11)
1 therein

replaced by

\Omega 
(11)
1 = \=\sigma 2

2\BbbC T\BbbL T
0 P\BbbL 0\BbbC + (1 - \varepsilon y)S1 + (1 - \varepsilon u)\BbbK T

0 S2\BbbK 0

+ \=\sigma 2
1\scrI T

1 (P + \tau M,yQ11 + \tau M,u\BbbK T
0 Q21\BbbK 0)\scrI 1.

(2.80)

3. Sampled-data control using a generalized hold device. In this section,
inspired by [26], we employ dynamic extension and suggest a sample-data implemen-
tation of the controller via a generalized hold device. As seen from Table 1 and Table
3 in section 4, the dynamic-extension-based method allows for a larger bound on
sampling intervals than the direct method.

Consider the stochastic 1D heat equation (2.1) with Neumann actuation where
control signal u(t) is generated by a generalized hold device and is of the following
form (see, e.g., [26]):

\.u(t) = v(tj), t\in [tj , tj+1), u(0) = 0.(3.1)

Here v is the new control input and the values \{ v(tj)\} \infty j=1 are to be determined,
and \{ tj\} \infty j=1 are the controller hold times defined below (2.13). Given v(tj), u(t) is
calculated as

u(t) = u(tj) + v(tj)(t - tj), t\in [tj , tj+1).

Consider the nonlocal noisy measurement (2.3). Following [19, 26, 34, 40], introduce
the change of variables

w(x, t) = z(x, t) - r(x)u(t), r(x) = x(3.2)

to obtain the equivalent system
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314 PENGFEI WANG AND EMILIA FRIDMAN

du(t) = v(tj)dt, t\in [tj , tj+1), u(0) = 0,(3.3a)

dw(x, t) = [ \partial 2

\partial x2w(x, t) + qw(x, t) + qr(x)u(t) - r(x)v(tj)]dt
+\sigma 1(x,w(x, t) + r(x)u(t))d\scrW 1(t), t\in [tj , tj+1),

(3.3b)

w(0, t) = 0, wx(1, t) = 0, w(x,0) = z0(x), x\in [0,1],(3.3c)

with the noisy measurement output satisfying

dy(t) = \langle c,w(\cdot , sk) + r(\cdot )u(sk)\rangle dt
+\sigma 2(\langle c,w(\cdot , sk) + r(\cdot )u(sk)\rangle )d\scrW 2(t), t\in [sk, sk+1).

(3.4)

By the well-posedness analysis in subsection 3.2, we can prove that for initial values
z0 \in L2(\Omega ;L2(0,1)) and z0 \in \scrD (\scrA 1) almost surely, for (3.3) there exists a unique
global solution which satisfies the regularity

w \in L2(\Omega ;C([0,\infty );L2(0,1)))\cap L2(\Omega \times [0,\infty )\setminus \scrJ ;H1(0,1)).(3.5)

Therefore, we can present the solution to (3.3a) as

w(x, t) =
\sum \infty 

n=1wn(t)\phi n(x), wn(t) = \langle w(\cdot , t), \phi n\rangle .(3.6)

The series (3.6) convergence in L2(0,1) to w in mean square follows from (3.5). Dif-
ferentiating wn in (3.6) and integrating by parts, we obtain

dwn(t) = [( - \lambda n + q)wn(t) + anu(t) - bnv(tj)]dt
+ \~\sigma 1,n(t)d\scrW 1(t), t\in [tj , tj+1),

(3.7)

where \~\sigma 1,n(t) = \langle 
\sum \infty 

j=1wj(t)\phi j + ru(t), \phi n\rangle and bn = \langle r,\phi n\rangle , an = q\langle r,\phi n\rangle , which can
be calculated as

an = ( - 1)n+1
\surd 
2q

\lambda n
, bn = ( - 1)n+1

\surd 
2

\lambda n
, n\geq 1.(3.8)

By using (1.2), (3.8) and the integral convergence test, we have

\| a\| 2N \leq q2\chi N , \| b\| 2N \leq \chi N , \chi N = 2
N3\pi 4 (

1
N + 1

3 ).(3.9)

Let \delta > 0 be a desired decay rate, and let N0 \in \BbbN satisfy (2.8), where N0 will be
the number of modes used for the controller design. Let N \in \BbbN , N0 \leq N , where N
will define the dimension of the observer.

Similar to section 2, we use the time-delay approach to sampled-data control
and introduce the representations (2.14). Following [21, 37], we construct a finite-
dimensional observer of the form

\^w(x, t) =
\sum N

n=1 \^wn(t)\phi n(x),(3.10)

where \^wn(t) (1\leq n\leq N) satisfy the ODEs

d \^wn(t) = [( - \lambda n + q) \^wn(t) + anu(t) - bnv(t - \tau u)]dt

 - ln[\langle c, \^w(\cdot , t - \tau y) + r(\cdot )u(t - \tau y)\rangle dt - dy(t)], t\geq 0,

\^wn(0) = 0, 1\leq n\leq N,

(3.11)

with y(t) satisfying (3.4) and scalar observer gains \{ ln\} Nn=1.
Recall the notation of (2.11). Assume that cn \not = 0, 1\leq n\leq N0. Choose l1, . . . , lN0

such that L0 = [l1, . . . , lN0
]T satisfies (2.12). Define

a0 = [a1, . . . , aN0
]T, \~B0 = col\{ 1, - B0\} , \~A0 =

\biggl[ 
0 0
a0 A0

\biggr] 
.(3.12)

Since bn \not = 0 (see (3.8)), the pair ( \~A0, \~B0) is controllable. We propose an N0 + 1-
dimensional controller of the form

v(tj) = \~K0 \^w
N0(tj), \^wN0(t) = [u(t), \^w1(t), . . . , \^wN0

(t)]T,(3.13)

where \~K0 \in \BbbR 1\times (N0+1) will be obtained by the state-feedback controller design.
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 315

3.1. Design of gain \~\bfitK 0. Consider (3.3) with \sigma 1 \equiv 0. By presenting the solution
as (3.6) and differentiating zn in (3.6), we obtain (3.7) with \~\sigma 1,n \equiv 0. Let \delta > 0 be a
desired decay rate, and let N0 \in \BbbN satisfy  - \lambda n + q+ \delta < 0, n>N0.

Since bn \not = 0 (see (3.8)), the pair ( \~A0, \~B0) is controllable ( \~A0, \~B0 are defined as in
(3.12)). We propose a (N0 + 1)-dimensional controller of the form

v(tj) = \~K0w
N0(tj), wN0(t) = [u(t),w1(t), . . . ,wN0

(t)]T,(3.14)

where \~K0 \in \BbbR 1\times (N0+1) is obtained from the LMIs below. We have the closed-loop
system

\.wN0(t) = \~A0w
N0(t) + \~B0

\~K0w
N0(t - \tau u), t\geq 0,

\.wn(t) = ( - \lambda n + q)wn(t) + an1wN0(t) + bn \~K0w
N0(t - \tau u), t\geq 0, n >N0,

where \tau u is defined as in (2.14). Consider the Lyapunov--Krasovskii functional:

V (t) =
\sum \infty 

n=N0+1 \rho w
2
n(t) + | wN0(t)| 2P +

\int t

t - \tau M
e - 2\delta (t - s)| wN0(s)| 2Sds

+ \tau M
\int 0

 - \tau M

\int t

t+\theta 
e - 2\delta (t - s)| \.wN0(s)| Rdsd\theta ,

where 0<P,S,R \in \BbbR (N0+1)\times (N0+1), and \rho > 0. Let G\in \BbbR (N0+1)\times (N0+1) satisfy (2.17).
Choose P3 = \varepsilon P2 with a tuning scalar \varepsilon > 0 and denote

\=P2 = P - 1
2 , Y =K \=P2, [ \=P , \=R, \=S, \=G] = \=PT

2 [P,R,S,G] \=P2, \=\rho = 1/\rho .

By arguments similar to (2.18)--(2.24) and using following Young's inequalities for
\alpha 1, \alpha 2 > 0:

\rho 
\sum \infty 

n=N0+1 2wn(t)an1wN0(t)\leq 
\sum \infty 

n=N0+1 \rho 
2\alpha 1w

2
n(t) +

\| a\| 2
N0

\alpha 1
| 1wN0(t)| 2,

\rho 
\sum \infty 

n=N0+1 2wn(t)bn \~K0w
N0(t - \tau u)\leq 

\sum \infty 
n=N0+1 \rho 

2\alpha 2w
2
n(t) +

\| b\| 2
N0

\alpha 2
| \~K0w

N0(t - \tau u)| 2,

we arrive at

\.V (t) + 2\delta V (t)\leq 0,(3.15)

provided (2.24) and

2\=\rho ( - \lambda N0+1 + q+ \delta ) + \alpha 1 + \alpha 2 < 0,\left[         

\=\Phi 11
\=\Phi 12 \varepsilon u \=G \varepsilon u( \=R - \=G) + \~B0Y 0 \=PT

2 1T

\ast \=\Phi 22 0 \varepsilon \~B0Y 0 0
\ast \ast  - \varepsilon u( \=S + \=R) \varepsilon u( \=R - \=GT) 0 0
\ast \ast \ast \varepsilon u( - 2 \=R+ \=G+ \=GT) Y T 0
\ast \ast \ast \ast  - \alpha 2

\| b\| 2
N0

0

\ast \ast \ast \ast \ast  - \alpha 1

\| a\| 2
N0

\right]         
< 0,

\=\Phi 11 = \=PT
2

\~AT
0 + \~A0

\=P2 + \=S  - \varepsilon u \=R, \varepsilon u = e - 2\delta \tau M,u ,
\=\Phi 12 = \=P  - \=P2 + \varepsilon \=PT

2
\~AT
0 ,

\=\Phi 22 = - \varepsilon ( \=P2 + \=PT
2 ) + \tau 2M,u

\=R.

(3.16)

The feasibility of (3.15) guarantees the exponential stability of closed-loop system
(3.3) with \sigma 1 \equiv 0 under state-feedback controller (3.14). In addition, if LMIs (2.24)
and (3.16) hold, the controller gain is obtained by \~K0 = Y \=P - 1

2 .

Remark 3.1. In [25, 26], the controller gain is obtained from

Pc( \~A0 + \~B0
\~K0) + ( \~A0 + \~B0

\~K0)
TPc \leq  - 2\delta Pc,(3.17)
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316 PENGFEI WANG AND EMILIA FRIDMAN

where 0< Pc \in \BbbR (N0+1)\times (N0+1). Let \=Pc = P - 1
c and Y =K0

\=Pc. By arguments similar
to those in Remark 2.2, we have that (3.17) holds iff

\~A0
\=Pc + \=Pc

\~AT
0 + \~B0Y + Y T \~BT

0 + 2\delta \=Pc \leq 0.(3.18)

If LMI (3.18) is feasible, the controller gain is given by K0 = Y \=P - 1
c . As seen from

Table 3 in section 4, the state-feedback controller design based on LMIs (2.24) are
(3.16) allows larger \tau M,u than the gain obtained from (3.17).

3.2. Well-posedness of the closed-loop system. For well-posedness of the
closed-loop system (3.3) and (3.11) with control input (3.13), we recall (2.30) and the
notation of (2.31), and we further define

\~B = col\{ 1, - B0, - B1\} , 10 = [1,01\times N0
], 11 = [1,01\times N ],

\~C = [01\times 1, c1, . . . , cN ], \~L= col\{ 01\times 1,L0,0(N - N0)\times 1\} ,
a1 = [aN0+1, . . . , aN ]T, \~K1 = [ \~K0,01\times (N - N0)], rc = \langle r, c\rangle .

(3.19)

Consider \scrH , \scrV , and \scrV \prime as in section 2.2 with \BbbR N therein replaced by \BbbR N+1. Define
the state \xi (t) as \xi (t) = col\{ w(\cdot , t), \^wN (t)\} , \^wN (t) = [u(t), \^w1(t), . . . , \^wN (t)]T. We can
present the closed-loop system as (2.32) with \scrW (t) = [\scrW 1(t),\scrW 2(t)]

T and

\scrA =diag\{ \scrA 1,\scrA 2\} , \scrA 2 =

\biggl[ 
\~A0 0

a110 A1

\biggr] 
,

f(t, \xi (t)) =

\biggl[ 
qw(\cdot , t) + qr(\cdot )11 \^w

N (t) - r(\cdot ) \~K1 \^w
N (t - \tau u)

\~B \~K1 \^w
N (t - \tau u) - \~L \~C \^wN (t - \tau y) + \~L\langle c,w(\cdot , t - \tau y)\rangle 

\biggr] 
,

g(t, \xi (t)) = diag\{ \sigma 1(\cdot ,w(\cdot , t) + r(\cdot )11 \^w
N (t)), \~L\sigma 2(\langle c,w(\cdot , t - \tau y)\rangle + rc11 \^w

N (t - \tau y))\} .

By arguments similar to those in section 2.2, we obtain, for z0 \in \scrD (\scrA 1) almost surely
and z0 \in L2(\Omega ;L2(0,1)), existence of a unique solution \xi \in L2(\Omega ;C([0,\infty );\scrH )) \cap 
L2([0,\infty )\setminus \scrJ \times \Omega ;\scrV ), where \scrJ = \{ sk\} \infty k=0 \cup \{ tj\} \infty j=0, such that \xi (t) \in \scrD (\scrA ), t \geq 0,
almost surely.

3.3. Mean-square \bfitL 2 stability analysis. Let

en(t) =wn(t) - \^wn(t).(3.20)

By using (3.4) and (3.10), we write the last term on the right-hand side of (3.11) as

\langle c, \^w(\cdot , t - \tau y) + r(\cdot )u(t - \tau y)\rangle dt - dy(t)

= [ - 
\sum N

n=1 cnen(t - \tau y) - \zeta (t - \tau y)]dt - \sigma 2(\^\zeta (t - \tau y))d\scrW 2(t),

\zeta (t) =
\sum \infty 

n=N+1 cnwn(t), \^\zeta (t) = \zeta (t) +
\sum N

n=1 cn[ \^wn(t) + en(t)] + rcu(t).

By the Cauchy--Schwarz inequality, we have

\zeta 2(t)\leq \| c\| 2N
\sum \infty 

n=N+1w
2
n(t).(3.21)

Then the error equations have the form

den(t) = \{ ( - \lambda n + q)en(t) - ln[
\sum N

n=1 cnen(t - \tau y) + \zeta (t - \tau y)]\} dt
+\sigma 1,n(t)d\scrW 1(t) - ln\sigma 2(\^\xi (t - \tau y))d\scrW 2(t), t\geq 0.

(3.22)
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 317

Recall the notation in (3.12), (3.13), (3.19) and eN0(t), eN - N0(t), C1 given in
(2.39). Let

\^wN - N0(t) = [ \^wN0+1(t), . . . , \^wN (t)]T, \BbbK 0 = [ \~K0,01\times (2N - N0)], 1= [1,01\times 2N ],
\~L0 = col\{ 01\times 1,L0\} , \BbbL 0 = col\{ \~L0, - L0,02(N - N0)\times 1\} , \BbbC = [rc,C0,C0,C1,C1],

X(t) = col\{ \^wN0(t), eN0(t), \^wN - N0(t), eN - N0(t)\} , F1 =\BbbL 0 \cdot [0,C0,0,C1],

F0 =

\left[    
\~A0 + \~B0

\~K0
\~L0C0 0 \~L0C1

0 A0  - L0C0 0  - L0C1

a110  - B1
\~K0 0 A1 0

0 0 0 A1

\right]    , F2 = col\{ \~B0,0, - B1,0\} .

(3.23)

In the following analysis, the definition for notations \nu y and \nu u are the same as that
in (2.39). By (3.1), (3.11) and (3.22), we have the closed-loop system

dX(t) = F (t)dt+\Sigma 1(t)d\scrW 1(t) +\Sigma 2(t)d\scrW 2(t), t\geq 0,(3.24a)

dwn(t) = [( - \lambda n + q)wn(t) + (an1+ bn\BbbK 0)X(t)(3.24b)

 - bn\BbbK 0\nu u(t)]dt+ \~\sigma 1,n(t)d\scrW 1(t), t\geq 0, n >N,

where

F (t) = F0X(t) - F1\nu y(t) - F2\BbbK 0\nu u(t) +\BbbL 0\zeta (t - \tau y),
\Sigma 1(t) = col\{ 0(N0+1)\times 1, \~\sigma 

N0(t),0(N - N0)\times 1, \~\sigma 
N - N0(t)\} ,

\~\sigma N0(t) = col\{ \~\sigma 1,n(t)\} N0
n=1, \~\sigma 

N - N0(t) = col\{ \~\sigma 1,n(t)\} Nn=N0+1,
\Sigma 2(t) =\BbbL 0\sigma 2(\zeta (t - \tau y) +\BbbC X(t) - \BbbC \nu y(t)).

(3.25)

For mean-square L2 exponential stability of the closed-loop system (2.40), we define
the Lyapunov functional as (2.42) with 0<P,S1,R1,Q11,Q12 \in \BbbR (2N+1)\times (2N+1), posi-
tive scalars S2,R2,Q21,Q22, \rho , and

\sum \infty 
n=N+1 z

2
n(t) therein replaced by

\sum \infty 
n=N+1w

2
n(t).

By Parseval's equality we present Vnom(t) in (2.42) as

Vnom(t) = VP (t) - V1(t) + V2(t),

V1(t) = \rho | \BbbI 0X(t)| 2, V2(t) = \rho \| w(\cdot , t)\| 2L2 ,

\BbbI 0 =
\biggl[ 

0N0\times 1 IN0
IN0

0 0
0(N - N0)\times 1 0 0 IN - N0

IN - N0

\biggr] 
.

(3.26)

Recalling the operator \scrA 1 in (2.30), we can rewrite the stochastic PDE in (3.3)
as

dw(t) = [\scrA 1w(t) + qw(t) + qr1X(t) - r\BbbK 0X(t - \tau u)]dt

+\sigma 1(\cdot ,w(t) + r1X(t))d\scrW 1(t), t\geq 0,
(3.27)

where w(t) = w(\cdot , t), r = r(\cdot ). Since w(t) is a strong solution to (3.27), for function
V2(t) in (3.26), we estimate the generator \scrL of (3.27) as follows (see [2, p. 228]):

\scrL V2(t)
(2.2)

\leq 2\rho 
\int 1

0
w(x, t)[\partial 

2w(x,t)
\partial x2 + qw(x, t)]dx+ \=\sigma 2

1\rho 
\int 1

0
[w(x, t) + r(x)1X(t)]2dx

+2\rho 
\int 1

0
w(x, t)[qr(x)1X(t) - r(x)\BbbK 0X(t - \tau u)]dx.

(3.28)

By Parseval's equality (see [33, Proposition 10.29]), we have\int 1

0
w(x, t)r(x)dx=

\sum \infty 
n=1\langle w(\cdot , t), \phi n\rangle \langle r,\phi n\rangle =

\sum \infty 
n=1 bnwn(t),\int 1

0
w(x, t)qr(x)dx=

\sum \infty 
n=1 anwn(t),\int 1

0
[w(x, t) + r(x)1X(t)]2dx=

\sum \infty 
n=1[wn(t) + bn1X(t)]2.

(3.29)
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318 PENGFEI WANG AND EMILIA FRIDMAN

Integrating by parts and substituting (3.29) into (3.28), we get

\scrL V2(t) + 2\delta 0V2(t)\leq 2\rho 
\sum \infty 

n=1( - \lambda n + q+ \delta 0)w
2
n(t)

+2\rho 
\sum \infty 

n=1wn(t)an1X(t) - 2\rho 
\sum \infty 

n=1wn(t)bn\BbbK 0[X(t) - \nu u(t)]

+\rho \=\sigma 2
1

\sum \infty 
n=N+1[wn(t) + bn1X(t)]2 + \=\sigma 2

1\rho X
T(t)\BbbB T\BbbB X(t),

\BbbB =

\biggl[ 
B0 IN0 IN0 0 0
B1 0 0 IN - N0

IN - N0

\biggr] 
.

(3.30)

We calculate \scrL VP (t) and \scrL V1(t) along with (3.24a) (similar to (2.44), (2.45)) and
combine (3.30) as well as the following estimates by Young's inequality:

\rho 
\sum \infty 

n=N+1 2wn(t)an1X(t)\leq \rho 2

\alpha 1

\sum \infty 
n=N+1w

2
n(t) + \alpha 1\| a\| 2N | 1X(t)| 2,

 - \rho 
\sum \infty 

n=N+1 2wn(t)bn\BbbK 0[X(t) - \nu u(t)]\leq 2\rho 2

\alpha 2

\sum \infty 
n=N+1w

2
n(t)

+\alpha 2\| b\| 2N
\bigl[ 
| \BbbK 0X(t)| 2 + | \BbbK 0\nu u(t)| 2

\bigr] 
,

\rho 
\sum \infty 

n=N+1[wn(t) + bn1X(t)]2 \leq 
\sum \infty 

n=N+1(\rho +
\rho 2

\alpha 3
)w2

n(t) + (\rho + \alpha 3)\| b\| 2N | 1X(t)| 2,

(3.31)

where \alpha 1, \alpha 2, \alpha 3 > 0. We arrive at

\scrL Vnom(t) + 2\delta 0Vnom(t)\leq XT(t)
\bigl[ 
PF0 + FT

0 P + 2\delta 0P + \rho \=\sigma 2
1\BbbB T\BbbB 

+
\bigl[ 
\alpha 1\| a\| 2N + \=\sigma 2

1(\rho + \alpha 3)\| b\| 2N
\bigr] 
1T1+ \alpha 2\| b\| 2N\BbbK T

0 \BbbK 0

\bigr] 
X(t)

 - 2XT(t)PF2\BbbK 0\nu u(t) - 2XT(t)PF1\nu y(t) +\Sigma T
1 (t)(P  - \rho I)\Sigma 1(t)

+ \=\sigma 2
2\BbbL T

0 P\BbbL 0[\zeta (t - \tau y) +\BbbC X(t) - \BbbC \nu y(t)]2 + 2XT(t)P\BbbL 0\zeta (t - \tau y)

+
\sum \infty 

n=N+1

\Bigl[ 
2\rho ( - \lambda n + q+ \delta 0 +

\=\sigma 2
1

2 ) + \rho 2

\alpha 1
+ 2\rho 2

\alpha 2
+

\=\sigma 2
1\rho 

2

\alpha 3

\Bigr] 
w2

n(t).

(3.32)

Consider the presentations (2.53). By arguments similar to (2.54)--(2.61) and using
(3.32) and the bound

| \Sigma 1(t)| 2 \leq 
\sum \infty 

n=1 \~\sigma 
2
1,n(t) =

\int 1

0
| \sigma (x,w(x, t) + r(x)1X(t))| 2dx

\leq \=\sigma 2
1

\int 1

0
[w(x, t) + r(x)1X(t)]2dx= \=\sigma 2

1

\sum \infty 
n=1[wn(t) + bn1X(t)]2

\leq \=\sigma 2
1

\sum \infty 
n=N+1 2w

2
n(t) + \=\sigma 2

1X
T(t)[2\| b\| 2N1T1+\BbbB T\BbbB ]X(t),

 - 2\delta 1 supsk\leq \theta \leq t\BbbE V (\theta )
(2.14),(2.42)

\leq  - 2\delta 1\BbbE Vnom(t - \tau y)
= - 2\delta 1\BbbE | X(t) - \nu y(t)| 2P  - 2\delta 1\rho \BbbE [

\sum \infty 
n=N+1w

2
n(t - \tau y)]

(2.37)

\leq  - 2\delta 1\BbbE | X(t) - \nu y(t)| 2P  - 2\delta 1\rho \| c\|  - 2
N \BbbE \zeta 2(t - \tau y),

where 0< \delta 1 < \delta 0, we arrive at

\BbbE [\scrL V (t) + 2\delta 0V (t)] - 2\delta 1 supsk\leq \theta \leq t\BbbE V (\theta )

+\beta [\=\sigma 2
1

\sum \infty 
n=N+1 2w

2
n(t) + \=\sigma 2

1X
T(t)[2\| b\| 2N1T1+\BbbB T\BbbB ]X(t) - | \Sigma 1(t)| 2]

\leq \BbbE [\eta T(t)\Phi 1\eta (t)] +\BbbE [
\sum \infty 

n=N+1 \mu nw
2
n(t)] +\BbbE [\Sigma T

1 (t)\Phi 2\Sigma 1(t)]\leq 0,

(3.33)

where \eta (t) is defined above (2.64), provided \mu n := 2\rho ( - \lambda n+ q+ \delta 0+
\=\sigma 2
1

2 )+ \rho 2

\alpha 1
+ 2\rho 2

\alpha 2
+

\=\sigma 2
1\rho 

2

\alpha 3
+ 2\beta \=\sigma 2

1 for all n\geq N + 1 and

\Phi 1 =

\biggl[ 
\Omega 1 \Theta 1 \Theta 2

\ast diag\{ \Omega 2,\Omega 3\} 

\biggr] 
+ \tau 2M,y\Lambda 

T
1 R1\Lambda 1 + \tau M,y\=\sigma 

2
2\Lambda 

T
2 Q12\Lambda 2(3.34a)

+ \tau 2M,u\Lambda 
T
1 \BbbK T

0 R2\BbbK 0\Lambda 1 + \tau M,u\=\sigma 
2
2\Lambda 

T
2 \BbbK T

0 Q22\BbbK 0\Lambda 2 < 0,

\Phi 2 = P + \tau M,yQ11 + \tau M,u\BbbK T
0 Q21\BbbK 0  - (\rho + \beta )I < 0(3.34b)
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 319

hold, where

\Omega 1 =

\biggl[ 
\~\Omega 
(11)
1 +\Omega 

(11)
1 P\BbbL 0 + \=\sigma 2

2\BbbC T\BbbL T
0 P\BbbL 0

\ast  - 2\delta 1\rho \| c\|  - 2
N + \=\sigma 2

2\BbbL T
0 P\BbbL 0

\biggr] 
, \delta = \delta 0  - \delta 1,

\~\Omega 
(11)
1 = PF0 + FT

0 P + 2\delta P + \alpha 1\| a\| 2N1T1+ \alpha 2\| b\| 2N\BbbK T
0 \BbbK 0,

\Omega 
(11)
1 = \=\sigma 2

1 [\rho + \alpha 3 + 2\beta ]\| b\| 2N1T1+ \=\sigma 2
2\BbbC T\BbbL T

0 P\BbbL 0\BbbC 
+(1 - \varepsilon y)S1 + (1 - \varepsilon u)\BbbK T

0 S2\BbbK 0 + \=\sigma 2
1(\rho + \beta )\BbbB T\BbbB ,

\Omega 2 =

\left[   \Omega 
(11)
2  - \varepsilon y(S1 +G1) \varepsilon y[R1,G1,R1,G1]
\ast  - \varepsilon y(S1 +R1) \varepsilon y[G

T
1 ,R1,G

T
1 ,R1]

\ast \ast  - \varepsilon y\Omega 
(33)
2

\right]   ,
\Omega 

(11)
2 = \=\sigma 2

2\BbbC T\BbbL T
0 P\BbbL 0\BbbC  - 2\delta 1P  - \varepsilon y(S1 +R1),

\Omega 
(33)
2 =diag\{ R1 +Q11,R1 +Q11,R1 +Q12,R1 +Q12\} ,

\Omega 3 =

\left[  \alpha 2\| b\| 2N  - \varepsilon u(S2 +R2)  - \varepsilon u(S2 +G2) \varepsilon u[R2,G2,R2,G2]
\ast  - \varepsilon u(S2 +R2) \varepsilon u[G2,R2,G2,R2]

\ast \ast  - \varepsilon u\Omega 
(33)
3

\right]  ,
\Omega 

(33)
3 =diag\{ R2 +Q21,R2 +Q21,R2 +Q22,R2 +Q22\} ,

\Theta 1 =

\biggl[ 
\Theta 

(11)
1 \varepsilon yS1 0(2N+1)\times (8N+4)

 - \=\sigma 2
2\BbbL T

0 P\BbbL 0\BbbC 01\times (2N+1) 01\times (8N+4)

\biggr] 
,

\Theta 
(11)
1 = P (2\delta 1I  - F1) - \=\sigma 2

2\BbbC T\BbbL T
0 P\BbbL 0\BbbC + \varepsilon yS1,

\Theta 2 =

\biggl[ 
 - PF2 + \varepsilon u\BbbK T

0 S2 \varepsilon u\BbbK T
0 S2 0(2N+1)\times 4

01\times 1 01\times 1 01\times 4

\biggr] 
,

\Lambda 1 = [F0,\BbbL 0, - F1,0(2N+1)\times (10N+5), - F2,0(2N+1)\times 5],

\Lambda 2 = [\BbbL 0\BbbC ,\BbbL 0, - \BbbL 0\BbbC ,0(2N+1)\times (10N+11)].

(3.35)

From the monotonicity of \lambda n we find that \mu n < 0 for all n\geq N + 1 iff\biggl[ 
2\rho ( - \lambda N+1 + q+ \delta 0) + \=\sigma 2

1(\rho + 2\beta ) \rho \rho \=\sigma \rho 
\ast diag\{  - \alpha 1, - \alpha 2

2 , - \alpha 3\} 

\biggr] 
< 0.(3.36)

Applying It\^o's formula and Halanay's inequality (similar to the arguments (2.68)--
(2.72)), we arrive at

\BbbE V (t)\leq \BbbE V (0)e - 2\delta \tau t, t\geq 0,(3.37)

where \delta \tau > 0 is the unique solution of \delta \tau = \delta 0  - \delta 1e
2\delta \tau \tau M,y . Since u(0) = 0 and

\^wn(0) = 0, 1\leq n\leq N , we have

\BbbE V (0) =\BbbE Vnom(0)\leq max\{ \lambda max(P ), \rho \} \BbbE \| w(\cdot ,0)\| 2L2 .(3.38)

Note that \^w2
n + e2n = (wn  - en)

2 + e2n \geq 0.5w2
n. Then by Parseval's equality, we have

for some M > 0

\BbbE V (t)\geq \BbbE Vnom(t)\geq \lambda min(P )\BbbE [u2(t) +
\sum N

n=1( \^w
2
n(t) + e2n(t))]

+\rho \BbbE [
\sum \infty 

n=N+1w
2
n(t)]\geq min\{ \lambda \mathrm{m}\mathrm{i}\mathrm{n}(P )

2 , \rho \} \BbbE [u2(t) + \| w(\cdot , t)\| 2L2 ], t\geq 0.
(3.39)

Finally, (3.37), (3.38), and (3.39) imply

\BbbE [u2(t) + \| w(\cdot , t)\| 2L2 + \| w(\cdot , t) - \^w(\cdot , t)\| 2L2 ]\leq Me - 2\delta \tau t\BbbE \| w(\cdot ,0)\| 2L2 , t\geq 0,(3.40)

for some M \geq 1.
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320 PENGFEI WANG AND EMILIA FRIDMAN

For the feasibility proof of inequalities (3.34) and (3.36) with large enough N and
small enough \tau M,y, \tau M,u, \=\sigma 1, and \=\sigma 2, let Si = 0, Gi = 0, i= 1,2. Taking \=\sigma 1, \=\sigma 2, \tau M,y,
\tau M,u \rightarrow 0+, it is sufficient to show

P < (\rho + \beta )I,

\biggl[ 
\~\Omega 1

\~\Theta 1
\~\Theta 2

\ast diag\{ \~\Omega 2, \~\Omega 3\} 

\biggr] 
< 0,(3.41)

where

\~\Theta 1 =

\biggl[ 
P (2\delta 1I  - F1) 0
01\times (2N+1) 0

\biggr] 
, \~\Theta 2 =

\biggl[ 
 - PF2 0(2N+1)\times 5

01\times 1 0

\biggr] 
, \~\Omega 1 =

\biggl[ 
\~\Omega 
(11)
1 P\BbbL 0

\ast  - 2\delta 1\rho \| c\|  - 2
N

\biggr] 
,

\~\Omega 2 =

\left[   - 2\delta 1P  - R1 0 R1 0 R1 0
\ast  - R1 0 R1 0 R1

\ast \ast  - \Omega 
(33)
2

\right]  , \~\Omega 3=

\left[  \alpha 2\| b\| 2N  - R2 0 R2 0 R2 0
\ast  - R2 0 R2 0 R2

\ast \ast  - \Omega 
(33)
3

\right]  .
Here \~\Omega 

(11)
1 , \Omega 

(33)
2 , \Omega 

(33)
3 are defined as in (3.35). Let P \in \BbbR (2N+1)\times (2N+1) solve

the Lyapunov equation P (F0 + \delta I) + (F0 + \delta I)TP =  - 1
N I. Theorem 3.3 in [21]

implies \| P\| = O(1), uniformly in N . Applying the Schur complement repeatedly
and substituting P , \alpha 1 = \delta 1 = 1, \alpha 2 = 2, \alpha 3 = 1, \rho = 1, \beta = N , R1 = N2I,
Q11 = Q12 = 3N2I, R2 = N2, and Q21 = Q22 = 3N2 into (3.41), we find that (3.41)
hold iff

 - 1
N I + \| a\| 2N1T1+ 2\| b\| 2N\BbbK T

0 \BbbK 0 +
2PF2F

\mathrm{T}
2 P

N2 - \| b\| 2
N

+
\| c\| 2

N

2 P\BbbL 0\BbbL T
0 P

+P (2I  - F1)(2P + 1
2N

2I) - 1(2I  - F1)
TP < 0, P < (1 +N)I.

(3.42)

Since \| a\| 2N , \| b\| 2N satisfy (3.9), c\in L2(0,1), \| 1T1\| = 1, \| P\| =O(1), \| \BbbK T
0 \BbbK 0\| =O(1),

N \rightarrow \infty , we find that (3.42) hold for large enough N . By arguments similar to [22,
Theorem 3.1], by continuity, inequalities (3.34) and (3.36) hold for \tau M,y = \tau M,u =
\=\sigma 1 = \=\sigma 2 =N - 2 and large enough N . Summarizing, we arrive at the following.

Theorem 3.2. Consider (3.3) with nonlinear noise function \sigma 1 satisfying (2.2),
control law (3.13), noise measurement (3.4) with \sigma 2 satisfying (2.4), and w(\cdot ,0) \in 
\scrD (\scrA 1) \cap L2(\Omega ;L2(0,1)). Given \delta > 0, let N0 \in \BbbN satisfy (2.8) and N \in \BbbN satisfy
N \geq N0. Let L0 and \~K0 be obtained from (2.12) and (3.17), respectively. Given
\tau M,y, \tau M,u, \delta 1, \=\sigma 1, \=\sigma 2 > 0 and \delta 0 = \delta 1 + \delta , let there exist 0 < P,S1,R1,Q11,Q12 \in 
\BbbR (2N+1)\times (2N+1), scalars S2,R2,Q21,Q22, \alpha 1, \alpha 2, \alpha 3, \beta , \rho > 0, G1 \in \BbbR (2N+1)\times (2N+1),
and G2 \in \BbbR such that the following LMIs hold with \delta 1 = \delta 0  - \delta : LMIs (2.56), (3.36),
and \Phi i < 0 (i= 1,2) with \Phi i defined as in (3.34)--(3.35). Then the solution u(t), w(x, t)
to (3.3) subject to the control law (3.11), (3.13) and the corresponding observer \^w(x, t)
given by (3.10) satisfies (3.40) for some M \geq 1, where \delta \tau > 0 is the unique solution of
\delta \tau = \delta 0  - \delta 1e

2\delta \tau \tau M,y . Moreover, the above LMIs always hold for large enough N and
small enough \tau M,y, \tau M,u, \=\sigma 1, \=\sigma 2.

Remark 3.3. If noise functions \sigma 1, \sigma 2 are of the linear form (2.79), we have the
closed-loop system (3.24) with

\~\sigma 1,n(t) = \=\sigma 1[wn(t) + bn1X(t)], \Sigma 2(t) = \=\sigma 2\BbbL 0[\zeta (t - \tau y) +\BbbC X(t) - \BbbC \nu y(t)],

\Sigma 1(t) = \=\sigma 1\scrI 2X(t), \scrI 2 =

\Biggl[ 
0(N0+1)\times 1 0 0 0 0

B0 IN0
IN0

0 0
0(N - N0)\times 1 0 0 0 0

B1 0 0 IN - N0
IN - N0

\Biggr] 
.

By arguments similar to (3.26)--(3.40), we find that if (3.34a) and (3.36) hold with

\beta = 0 and \Omega 
(11)
1 defined as in (3.35) replaced by
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SAMPLED-DATA CONTROL OF STOCHASTIC PDEs 321

\Omega 
(11)
1 = \=\sigma 2

1(\rho + \alpha 3)\| b\| 2N1T1+ \=\sigma 2
2\BbbC T\BbbL T

0 P\BbbL 0\BbbC + (1 - \varepsilon y)S1

+(1 - \varepsilon u)\BbbK T
0 S2\BbbK 0 + \=\sigma 2

1\scrI T
2 (P + \tau M,yQ11 + \tau M,u\BbbK T

0 Q21\BbbK 0)\scrI 2,
(3.43)

the mean-square L2 exponential stability of the closed-loop system can be guaranteed.
Here the constraint (3.34b) for \Sigma 1(t) is not needed.

Remark 3.4. Compared to the controller based on the direct method in section 2,
the dynamic-extension-based one is more difficult for implementation because of the
generalized hold device, but it allows an essentially larger bound on the sampling
intervals \tau M,u.

4. A numerical example. Consider (2.1) with q = 6, which results in an un-
stable open-loop system.

First, we consider the direct method presented in section 2. Let N0 = 2 and
c(x) =

\surd 
2\chi [0.24,0.75](x) (i.e., the indicator function of [0.24,0.75]). The observer and

controller gains L0 and K0 are found from (2.12) and (2.23)--(2.24) (with tuning
parameter \varepsilon = 0.5) and are given by

\delta = 5 : L0 = [13.3782, - 18.8783]T,(4.1a)

\delta = 1, \tau M,u = 0.02 : K0 = [ - 5.4751, - 0.6505].(4.1b)

Take \delta 0 = 0.55 and \delta = 0.01. Choose \=\sigma 1 \in \{ 0.2,0.4\} , \=\sigma 2 = 0.01, N \in \{ 6,8,10,12\} ,
\tau M,y \in \{ 0.01,0.02\} . The LMIs of Theorem 2.4 with gains (4.1) were verified to obtain
\tau max
M,u (the maximal value of \tau M,u) which preserves the feasibility. The results are given
in Table 1. On the other hand, we find the controller gain from LMI (2.27):

\delta = 1 : K0 = [ - 5.2323, - 11.7298].(4.2)

The LMIs of Theorem 2.4 with gains (4.1a) and (4.2) are not feasible even for \tau M,u = 0.

For the case of linear noise functions (2.79), inequalities (2.67) and (2.65a) with

\Omega 
(11)
1 therein replaced by (2.80) and gains (4.1) were verified to obtain \tau max

M,u , which
preserves the feasibility. The results are given in Table 2. As expected, the values of
\tau max
M,u under linear noise are essentially larger than those under the nonlinear one.

For simulations of the closed-loop system (2.1) subject to the control law (2.10),
(2.13), we consider nonlinear noise functions

Table 1
Direct method: \tau \mathrm{m}\mathrm{a}\mathrm{x}

M,u for nonlinear noise with K0 in (4.1b).

N 6 8 10 12

\=\sigma 1\setminus \tau M,y 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02

0.2 0.024 0.002 0.040 0.025 0.054 0.040 0.060 0.047
0.4 0.017 -- 0.032 0.015 0.044 0.029 0.051 0.036

Table 2
Direct method: \tau \mathrm{m}\mathrm{a}\mathrm{x}

M,u for linear noise with K0 in (4.1b).

N 6 8 10 12

\=\sigma 1\setminus \tau M,y 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02
0.2 0.026 0.005 0.043 0.027 0.057 0.043 0.064 0.050

0.4 0.022 -- 0.038 0.020 0.051 0.034 0.058 0.041
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Fig. 1. \BbbE \| z(\cdot , t)\| 2
L2 vs. t and \BbbE z(x, t) vs. (x, t) (\BbbE means taking the average over 500 sample

trajectories).

Table 3
Dynamic-extension-based method: \tau \mathrm{m}\mathrm{a}\mathrm{x}

M,u for nonlinear noise, \~K0 in (4.5) vs. \~K0 in (4.6).

N 6 8 10 12
\~K0 \=\sigma 1\setminus \tau M,y 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02

(4.5) 0.2 0.0633 0.0617 0.0636 0.0621 0.0639 0.0624 0.0640 0.0625

(4.5) 0.4 0.0496 0.0418 0.0512 0.0441 0.0525 0.0462 0.0528 0.0470
(4.6) 0.2 0.0458 0.0421 0.0468 0.0433 0.0475 0.0443 0.0478 0.0446

(4.6) 0.4 0.0325 0.0237 0.0344 0.0263 0.0363 0.0288 0.0368 0.0295

\sigma 1(x, z) = \=\sigma 1 sinz, \sigma 2(z) = \=\sigma 2 sinz(4.3)

that satisfy (2.2) and (2.4). The variable sampling instances and variable controller
hold times were generated by

sk+1 = sk + 0.5(1 +Uk)\tau M,y, tj+1 = tj + 0.5(1 +Uj)\tau M,u,(4.4)

respectively, where Uk \sim Unif (0,1), Uj \sim Unif (0,1). Fix N = 10, \=\sigma 1 = 0.2, \=\sigma 2 =
\tau M,y = 0.01. From Table 1, we can choose \tau M,u = 0.054. Take the initial condition
z0(x) = x  - 0.5x2. The simulation was carried out by using the FTCS (Forward
Time Centered Space) method and the Euler--Maruyama method (see [14]) with time
step 0.001 and space step 0.05. The simulation results are presented in Figure 1 and
confirm the theoretical analysis. Moreover, in simulations, stability of the closed-
loop system with the same gains is preserved up to \tau M,u = 0.29 (compared with the
theoretical value 0.054) for \=\sigma 1 = 0.2, \=\sigma 2 = \tau M,y = 0.01, which may illustrate some
conservatism of our method.

We next consider the method via dynamic extension presented in section 3. Take
N0 = 2 and c(x) =

\surd 
2\chi [0.24,0.75](x). The observer gain L0 is given by (4.1a) and the

controller gain \~K0 is found from (2.24), (3.16) (with \varepsilon = 0.5) and are given by

\delta = 1, \tau M,u = 0.02 : \~K0 = [ - 50.1336, - 61.6398,0.0106].(4.5)

Note that, compared with (4.1b), the large value of controller gains (4.5) is caused by
the smaller value of b1 and b2. On the other hand, we also obtain controller gain \~K0

from LMI (3.18):

\delta = 1 : \~K0 = [ - 50.3816, - 68.9515,22.8149].(4.6)

Choose \delta 0 = 0.55 and \delta = 0.01. Take \=\sigma 1 \in \{ 0.2,0.4\} , \=\sigma 2 = 0.01, N \in \{ 6,8,10,12,14\} ,
\tau M,y \in \{ 0.01,0.02\} . The LMIs of Theorem 3.2 were verified to obtain \tau max

M,u , which
preserves the feasibility. The results are given in Table 3. From Table 3, it is clear
that the state-feedback design based on LMIs (2.24) and (3.16) allows for larger \tau M,u

than the one obtained by (3.17) for all values of N .
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Table 4
Dynamic-extension-based method: \tau \mathrm{m}\mathrm{a}\mathrm{x}

M,u for linear noise with \~K0 in (4.5).

N 6 8 10 12

\=\sigma 1\setminus \tau M,y 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02
0.2 0.0673 0.0660 0.0676 0.0664 0.0677 0.0665 0.0677 0.0666

0.4 0.0634 0.0609 0.0636 0.0612 0.0637 0.0614 0.0637 0.0614

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2
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1

2

2

3

3

0
4

Fig. 2. \BbbE [u2(t)+ \| w(\cdot , t)\| 2
L2 ] vs. t and \BbbE w(x, t) vs. (x, t) (\BbbE means taking the average over 500

sample trajectories).

For the case of linear noise functions (2.79), inequalities (3.36) and (3.34a) with

\Omega 
(11)
1 therein replaced by (3.43) and gains (4.5) were verified to obtain \tau max

M,u , which
preserves the feasibility. The results are given in Table 4. As expected, the values
of \tau max

M,u under linear noise are essentially larger than those under the nonlinear one.
Moreover, from Tables 1 and 3 for nonlinear noise as well as Tables 2 and 4 for linear
noise, we see that the dynamic-extension-based method always allows for larger \tau M,u

than the direct one for N \leq 12.
For simulations of the closed-loop system (3.3) subject to the control law (3.11),

(3.13), we take nonlinear noise functions (4.3). The variable sampling instances and
the variable controller hold times were generated by (4.4), respectively. Fix N = 10,
\tau M,y = 0.01, \=\sigma 1 = 0.2, and \=\sigma 2 = 0.01. From Table 3, we take \tau M,u = 0.0677. The
simulation results are presented in Figure 2 and confirm the theoretical analysis.
Moreover, in simulations, stability of the closed-loop system with the same gain is
preserved up to \tau M,u = 0.18 (compared with the theoretical value 0.0677) for \=\sigma 1 = 0.2,
\=\sigma 2 = \tau M,y = 0.01, which may illustrate some conservatism of our method.

5. Conclusions. In this paper, we considered a sampled-data implementation
of a finite-dimensional observer-based boundary controller for 1D stochastic parabolic
PDEs under discrete-time nonlocal measurement. We presented two methods: a di-
rect one with sampled-data controller implemented via zero-order hold device, and
a dynamic-extension-based one with sampled-data controller implemented via a gen-
eralized hold device. For both methods, we provided mean-square L2 exponential
stability analysis of the full-order closed-loop system. Improvements and extension of
sampled-data control to various stochastic PDEs may be topics for future research.
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