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a b s t r a c t

In this paper, we study input-to-state stability (ISS) of affine systems with a small parameter ε > 0
and additive disturbances in the presence of state-delays. We present a time-delay approach to Lie-
brackets-based averaging, where we transform the system to a time-delay (neutral type) one. The
latter has a form of perturbed Lie brackets system. The ISS of the time-delay system guarantees the
same for the original one. We present a direct Lyapunov–Krasovskii (L–K) method for the time-delay
system and provide sufficient conditions for regional ISS. Further we apply the results to stabilization
of linear uncertain systems under unknown control directions using the bounded extremum seeking
controller with measurement delay. In contrast to the existing results that are all qualitative, we
derive constructive linear matrix inequalities for finding quantitative upper bounds on ε and the time-
delay that ensure regional ISS of the original system and on the resulting ultimate bound. Numerical
examples illustrate the efficiency of our method.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Extremum seeking (ES), as a real-time model-free optimiza-
ion approach, has received much attention during the past
ecades, starting with the rigorous proof of local convergence
n Krstić and Wang (2000) and extension to semi-global conver-
ence in Tan, Nešić, and Mareels (2006). Various maps and dithers
ere introduced for ES systems in Dürr, Stanković, Ebenbauer,
nd Johansson (2013), Grushkovskaya, Zuyev, and Ebenbauer
2018), Guay and Dochain (2014), Oliveira, Feiling, Koga, and
rstić (2020), Scheinker and Krstić (2017) and Tan, Nešić, and
areels (2008). Besides, ISS of nonlinear time-varying systems
ith application to ES was recently studied in Labar, Ebenbauer,
nd Marconi (2022). A majority of the aforementioned literature
elies on the classical averaging method (Khalil, 2002) and Lie
rackets approximation (Gurvits & Li, 1993; Sussmann & Liu,
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1993). By exploiting the converging trajectories property of the
original system and the averaged system, the stability of the
original system is guaranteed provided that the parameter ε > 0
s small enough. In case of averaging-based stability analysis of
ime-varying systems, a direct Lyapunov method along solutions
f an oscillatory system was suggested e.g. in Morin and Samson
1997) and Teel, Peuteman, and Aeyels (1999). Note that in Morin
nd Samson (1997) the first analytical upper bound on ε was
uggested, but in the example the analytical upper bound was
ot calculated (being conservative) and appropriate values of ε

ere found from simulations. However, bounds on the small
arameter found from simulations only are not reliable for the
nknown systems. Some upper bounds on the small parameter
or finite-time stabilization of linear systems under unknown
ontrol directions via classical ES method were presented in Mele,
e Tommasi, and Pironti (2022). However, the latter bounds still
mployed approximations.
Recently, a constructive time-delay approach to periodic av-

raging was introduced in Fridman and Zhang (2020), where
he system is transformed to a time-delay (neutral type) system
hose nominal part is the stable averaged system. The direct
yapunov-Krasovskii (L-K) method applied to the neutral system
eads to linear matrix inequalities (LMIs) for finding an efficient
pper bound on the small parameter ensuring the stability and
SS of the original system. In Zhang and Fridman (2022b), an im-
roved time-delay approach to periodic averaging was presented
ith fewer terms to be compensated in the L–K analysis leading
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o less conservative and simpler LMIs. The time-delay approach to
veraging was applied to power systems (Griñó, Ortega, Fridman,
hang, & Mazenc, 2021), vibrational control (Zhang & Fridman,
022a), and extended to ES (Zhu & Fridman, 2022; Zhu, Fridman,
Oliveira, 2023). Note that for the completely unknown models,

he time-delay approach allows for new results (e.g. sampled-
ata and delays in Zhu et al., 2023) and more explicit bounds,
hereas for partially unknown models (with applications of ES
o control of vehicles in GPS-denied environment) it provides the
uantitative bounds that are very important for reliable control.
As it is well known, input and output delays are unavoidable

n practical applications. Classical ES subject to a large known
onstant delay was studied in Oliveira, Krstić, and Tsubakino
2016) by using backstepping-based predictors and in Malisoff
nd Krstic (2021) by using sequential predictors. Robustness of
lassical ES with constant sampling and small constant delays
as presented in Zhu et al. (2023). We will consider, for the first
ime, affine systems in the presence of state time-varying delays
without any restriction on the delay derivative) that may include
he sampling and constant delays as particular cases.

In this paper, motivated by Fridman and Zhang (2020), Zhang
nd Fridman (2022b), Zhu and Fridman (2022) and Zhu et al.
2023), we propose a time-delay approach to Lie-brackets-based
veraging of affine systems with a small parameter ε > 0 and

additive disturbances in the presence of state-delays. We trans-
form the affine system to a time-delay system of neutral type
without any approximations. The ISS of the resulting time-delay
system guarantees the ISS of the original one. We provide L-K-
based sufficient conditions for regional ISS. We further consider
an application to stabilization of linear systems under unknown
control directions (Scheinker & Krstić, 2013), where we employ a
bounded ES controller (Scheinker & Krstić, 2014) in the presence
of delayed measurements and derive LMIs. By verifying these
LMIs, one can find quantitative bounds on ε and on the time-delay
that ensure regional ISS along with the corresponding initial and
attractive balls. A conference version of the results confined to the
non-delayed case was presented in Zhang and Fridman (2022c).

Notation: The Lie bracket of two vector fields f , g : R×Rn
→ Rn

with f (t, ·) and g(t, ·) being continuously differentiable is defined
by [f , g](t, x) =

∂g(t,x)
∂x f (t, x) −

∂ f (t,x)
∂x g(t, x). For x, y ∈ Rn, we use

x ± y to denote x + y − y (not the set {x + y, x − y}).
We will employ extended Jensen’s inequalities (Griñó et al.,

2021):

Lemma 1. Let f : [a, b] → R and φ : [a, b] → Rn, where a ≤ b, be
functions such that the integration concerned is well-defined. Then
for any 0 < R ∈ Rn×n the following extended Jensen’s inequalities
hold:∫ b
a f (s)φT (s)dsR

∫ b
a f (s)φ(s)ds

≤
∫ b
a |f (θ )|dθ

∫ b
a |f (s)|φT (s)Rφ(s)ds,

(1)∫ b
a

∫ b
s φT (θ )dθdsR

∫ b
a

∫ b
s φ(θ )dθds

≤
(b−a)2

2

∫ b
a

∫ b
s φT (θ )Rφ(θ )dθds,

(2)∫ b
a

∫ b
s

∫ b
θ

φT (ξ )dξdθdsR
∫ b
a

∫ b
s

∫ b
θ

φ(ξ )dξdθds

≤
(b−a)3

6

∫ b
a

∫ b
s

∫ b
θ

φT (ξ )Rφ(ξ )dξdθds.
(3)

2. A time-delay approach to Lie-brackets-based averaging

Consider the following input-affine system in the presence of
state time-varying delay:

ẋ(t) = f0(t, x(t)) + v(t)

+
1

√
ε

ℓ∑
ui(

t
ε
)fi(t, x(t − ετ (t))), t ≥ t0

(4)
i=1

2

with the state x(t) ∈ Rn, the fast-oscillating signals ui : [t0, ∞) →

(i = 1, . . . , ℓ), small parameter ε > 0, map f0 : [t0, ∞) ×
n

→ Rn that is continuous and locally Lipschitz continuous
n the second argument, twice continuously differentiable maps
i : [t0, ∞) × Rn

→ Rn (i = 1, . . . , ℓ) and the disturbance
: [t0, ∞) → Rn. For simplicity we consider t0 = 0. We assume

he following:

1 For i, j = 1, . . . , ℓ, the following holds (Dürr et al., 2013;
rushkovskaya et al., 2018; Labar et al., 2022; Scheinker & Krstić,
014):
(i) ui( tε ) is piecewise-continuous, bounded and ε-periodic in t ,

has zero mean value, i.e.
∫ ε

0 ui( sε )ds = 0;
(ii) for every compact set C ⊆ Rn, the functions f0(t, x), fi(t, x),

∂ fi(t,x)
∂x , ∂ fi(t,x)

∂t , ∂
∂x (

∂ fi(t,x)
∂x fj(t, x)) and ∂

∂t (
∂ fi(t,x)

∂x fj(t, x)) are uniformly
ounded for all x ∈ C and t ≥ 0.

2 The disturbance v(t) is assumed to be measurable and locally
ssentially bounded meaning that

v[0, t]∥∞ = ess supθ∈[0,t] |v(θ )| < ∞ ∀t ≥ 0.

A3 The delay τ (t) is supposed to be bounded, i.e. 0 ≤ τ (t) ≤ τM
and fast-varying (without any restriction on the delay derivative).

Assumption A3 includes sawtooth delays that model network-
based control. The initial condition of the delayed system (4) is
given by x(θ ) = φ(θ ), θ ∈ [−ετM , 0] with φ ∈ C[−ετM , 0].
he small delay consideration is consistent with the fast structure
f (4), where ẋ(t) = O(ε−0.5). The small delay ετ (t) assumption
s consistent with the same assumption (for the fast subsystem)
or a singularly perturbed LTI system, which is necessary for
elay-dependent stability of the system (Fridman, 2002).

emark 1. As in Section 3, v(t) in (4) may be dependent on x
i.e. v(t) = v(t, x)) provided that it is uniformly bounded in x and
t as well as the solution of system (4) starting from the initial ball
|x(0)| ≤ σ0 is well-defined.

The Lie brackets averaging method (Gurvits & Li, 1993; Suss-
mann & Liu, 1993) has not been applied yet to the delayed
system (4). To obtain the averaged system of (4), we first use the
following:
1

√
ε
ui( tε )fi(t, x(t − ετ (t))) =

1
√

ε
ui( tε )

× [fi(t, x(t)) −
∫ t
t−ετ (t)

∂ fi(t,x)
∂x |x=x(s)ẋ(s)ds].

(5)

By defining

Yτ1(t) = −
1

√
ε

ℓ∑
i=1

ui(
t
ε
)
∫ t

t−ετ (t)

∂ fi(t, x)
∂x

|x=x(s)ẋ(s)ds, (6)

we rewrite the delayed system (4) as

ẋ(t) = f0(t, x(t)) + v(t) + Yτ1(t)

+
1

√
ε

ℓ∑
i=1

ui(
t
ε
)fi(t, x(t)), t ≥ 0.

(7)

Note that Yτ1(t) is of the order of O(τM ) provided ẋ(t) is of the
order of O( 1

√
ε
). Thus, the term Yτ1(t) will vanish as τM → 0. The

resulting time-delay model (see (19)) will be a perturbation of the
following ‘‘averaged’’ system

ẋav(t) = f0(t, xav(t)) +

ℓ∑
i=1

ℓ∑
j=i+1

βij

×[fi, fj](t, xav(t)) + v(t) + Yτ1(t)|x=xav

(8)

with xav(t) ∈ Rn and

β =
1 ∫ ε ∫ ε u ( s )u ( θ )dθds. (9)
ij ε2 0 s i ε j ε



J. Zhang and E. Fridman Automatica 152 (2023) 110971

B
t
s

w

g

T

w

G

w

i

D

=

w
n
a

e
F
L
t
t
M
b
L
t
o

t
ε

y changing the order of integration in (9) and adding the zero
erm 1

ε2

∫ ε

0

∫ 0
ε
ui( sε )uj( θ

ε
)dsdθ (due to (i) of A1) to the right-hand

ide of (9), we obtain for i, j = 1, . . . , ℓ

βij =
1
ε2

∫ ε

0

∫ θ

0 ui( sε )uj( θ
ε
)dsdθ

+
1
ε2

∫ ε

0

∫ 0
ε
ui( sε )uj( θ

ε
)dsdθ

=
1
ε2

∫ ε

0

∫ θ

ε
ui( sε )uj( θ

ε
)dsdθ = −βji.

(10)

The latter implies βii = 0 (i = 1, . . . , ℓ).
Differently from the Lie brackets system (8) approximating the

behavior of the original system (4), we will directly transform
system (4) to a time-delay system, which may be considered as a
perturbation of (8). Namely, as in Fridman and Zhang (2020) and
Zhang and Fridman (2022b) we integrate both sides of system (7)
over [t − ε, t] for t ≥ ε + ετM , i.e.
x(t)−x(t−ε)

ε
=

1
ε

∫ t
t−ε

[f0(s, x(s)) + Yτ1(s)

+v(s) +
1

√
ε
g(s)]ds, t ≥ ε + ετM

(11)

ith

(t) =

ℓ∑
i=1

ui(
t
ε
)fi(t, x(t)). (12)

hen we present the left-hand side of (11) as
x(t)−x(t−ε)

ε
=

d
dt [x(t) + G(t)]

+
1
ε

∫ t
t−ε

[f0(s, x(s)) + Yτ1(s) + v(s)]ds
−f0(t, x(t)) − Yτ1(t) − v(t), t ≥ ε + ετM ,

(13)

here

(t) = −
1

ε
√

ε

∫ t
t−ε

(s − t + ε)g(s)ds (14)

ith notation (12). Note that G(t) depends on g(t) only (that is the
fast-varying term to be ‘‘averaged’’) and not on the whole ẋ(t) as
n Fridman and Zhang (2020). From (11) and (13) we obtain
d
dt [x(t) + G(t)] = f0(t, x(t)) + Yτ1(t) + v(t)

+
1

ε
√

ε

∫ t
t−ε

g(s)ds, t ≥ ε + ετM .
(15)

enote for t ≥ ε + ετM

Yv(t) = −
1

ε
√

ε

ℓ∑
i=1

ℓ∑
j=1

∫ t

t−ε

∫ t

s
ui(

s
ε
)

×
∂ fi(θ,x)

∂x

⏐⏐
x=x(θ )v(θ )dθds,

Y0(t) = −
1

ε
√

ε

ℓ∑
i=1

∫ t

t−ε

∫ t

s
ui(

s
ε
)
∂ fi(θ, x)

∂θ

⏐⏐
x=x(θ )dθds,

Y1(t) = −
1

ε
√

ε

ℓ∑
i=1

∫ t

t−ε

∫ t

s
ui(

s
ε
)
∂ fi(θ, x)

∂x

⏐⏐
x=x(θ )

×f0(θ, x(θ ))dθds,

Y2(t) =
1
ε2

ℓ∑
i=1

ℓ∑
j=1

∫ t

t−ε

∫ t

s

∫ t

θ

ui(
s
ε
)uj(

θ

ε
)

×
∂
∂x

(
∂ fi(ξ,x)

∂x fj(ξ, x)
)⏐⏐

x=x(ξ )ẋ(ξ )dξdθds,

Y3(t) =
1
ε2

ℓ∑
i=1

ℓ∑
j=1

∫ t

t−ε

∫ t

s

∫ t

θ

ui(
s
ε
)uj(

θ

ε
)

×
∂
∂ξ

(
∂ fi(ξ,x)

∂x fj(ξ, x)
)⏐⏐

x=x(ξ )dξdθds,

Yτ2(t) =
1
ε2

ℓ∑
i=1

ℓ∑
j=1

∫ t

t−ε

∫ t

s

∫ θ

θ−ετ (θ )
ui(

s
ε
)uj(

θ

ε
)

∂ fi(θ,x) ⏐⏐ ∂ fj(θ,x)
˙

(16)
×
∂x x=x(θ ) ∂x |x=x(ξ )x(ξ )dξdθds.

3

By subtracting the zero terms 1
ε
√

ε

∫ t
t−ε

ui( sε )dsfi(t, x(t)) (due to (i)
of A1) for i = 1, . . . , ℓ, we present

1
ε
√

ε

∫ t
t−ε

g(s)ds
(12)
=

1
ε
√

ε

ℓ∑
i=1

∫ t

t−ε

ui(
s
ε
)

×[fi(s, x(s)) − fi(t, x(t))]ds

Y0(t) −
1

ε
√

ε

ℓ∑
i=1

∫ t

t−ε

∫ t

s
ui(

s
ε
)
∂ fi(θ, x)

∂x

⏐⏐
x=x(θ )ẋ(θ )dθds.

(17)

For the last term on the right-hand side of (17), we have

−
1

ε
√

ε

ℓ∑
i=1

∫ t

t−ε

∫ t

s
ui(

s
ε
)
∂ fi(θ, x)

∂x

⏐⏐
x=x(θ )ẋ(θ )dθds

(4)
= Y1(t) + Yv(t) −

1
ε2

ℓ∑
i=1

ℓ∑
j=1

∫ t

t−ε

∫ t

s
ui(

s
ε
)

×uj( θ
ε
)[ ∂ fi(θ,x)

∂x

⏐⏐
x=x(θ )(fj(θ, x(θ − ετ (θ )))

±fj(θ, x(θ ))) ±
∂ fi(t,x)

∂x

⏐⏐
x=x(t)fj(t, x(t))]dθds

=

ℓ∑
i=1

ℓ∑
j=i+1

βij[fi, fj](t, x(t))

+

3∑
i=1

Yi(t) + Yv(t) + Yτ2(t),

(18)

where in the first equality we added and subtracted
1
ε2

∫ t
t−ε

∫ t
s ui( sε )uj( θ

ε
)[ ∂ fi(θ,x)

∂x

⏐⏐
x=x(θ )fj(θ, x(θ ))

+
∂ fi(t,x)

∂x

⏐⏐
x=x(t)fj(t, x(t))]dθds, i, j = 1, . . . , ℓ,

and in the second equality we used (9) and (10). Substituting (18)
into (17) and further into (15), we transform system (4) to the
following time-delay system:

d
dt [x(t) + G(t)] = f0(t, x(t)) +

3∑
i=0

Yi(t)

+

ℓ∑
i=1

ℓ∑
j=i+1

βij[fi, fj](t, x(t))

+Yv(t) +

2∑
i=1

Yτ i(t) + v(t), t ≥ ε + ετM

(19)

ith ẋ(t) satisfying (4), βij given by (9), G(t) defined by (14) with
otation (12), Yv(t), Yi(t) (i = 0, . . . , 3) and Yτ2(t) given by (16),
nd Yτ1(t) given by (6).
Differently from the time-delay approach to the classical av-

raging of linear systems (Fridman & Zhang, 2020; Zhang &
ridman, 2022b), we here propose a time-delay approach to the
ie-brackets-based averaging of nonlinear systems leading to a
ime-delay neutral type system. The latter system is a perturba-
ion of the averaged system (8) given in terms of Lie brackets.
oreover, compared with the averaged system (8) via the Lie
rackets averaging (Dürr et al., 2013; Grushkovskaya et al., 2018;
abar et al., 2022; Scheinker & Krstić, 2014), system (19) addi-
ionally includes perturbation terms G(t), Yi(t) (i = 0, 1, 2), Yv(t)
f the order of O(

√
ε), Y3(t) of the order of O(ε) and Yτ2(t) of the

order of O(
√

ετM ) provided ẋ is of the order of O( 1
√

ε
). Note that

he perturbations as well as Yτ1 (t) defined by (6) will vanish as
→ 0 and τM → 0. If ε and τM increase, system (4) may become

unstable. However, till recently bounds on the small parameter
could be found from simulations only, which is not reliable for the
unknown systems. Thus, differently from the qualitative analysis
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n Dürr et al. (2013), Grushkovskaya et al. (2018), Labar et al.
2022) and Scheinker and Krstić (2014), our objective is to find
he first efficient quantitative upper bounds on ε and τM that
nsure the stability.

emark 2. Note that the term Yv(t) in system (19) may be treated
n the Lyapunov analysis as a disturbance, which can be directly
pper bounded (as considered in Zhu and Fridman (2022) for ES
ethod). Alternatively, one can consider appropriate Lyapunov

unctional (see (46)) to compensate this term that leads to less
onservative results than those via the upper bounding method.

emark 3. From (11), (17) and (18) we obtain the following
integral equation

x(t + ε) = x(t) +
1

√
ε

∫ t+ε

t g(s)ds

+
∫ t+ε

t (f0(s, x(s)) + Yτ1(s) + v(s))ds

= x(t) +

3∑
i=0

εYi(t) + εYv(t) + εYτ2(t)

+

ℓ∑
i=1

ℓ∑
j=i+1

εβij[fi, fj](t, x(t))

+
∫ t+ε

t (f0(s, x(s)) + Yτ1(s) + v(s))ds, t ≥ 0,

(20)

where Yv(t), Yi(t) (i = 0, . . . , 3) and Yτ2 are from (16) and Yτ1 is
from (6) with t and t−ε changed by t+ε and t , respectively. The
latter is similar to the integral equations (A.2) in Grushkovskaya
et al. (2018) and (A.23) in Labar et al. (2022). In the time-delay
approach, instead of the integral Eq. (20), via (13) we arrive at
the differential Eq. (19) with time-delays that allows to apply L–
K method and to derive constructive and explicit LMIs for finding
an efficient upper bound on ε that ensures the ISS along with the
resulting ultimate bound (see Section 3).

We now present the relation between solutions of systems (4)
and (19):

Proposition 1. If x(t) is a solution to system (4), then it satisfies
the time-delay system (19) with notations (6), (12), (14) and (16),
where ẋ(t) is defined by (4).

From Proposition 1 it follows that if solutions x(t) of the time-
delay system (19) for t ≥ ε + ετM satisfy some bound (e.g. ISS
bound given by (22)), then the same bound holds for solutions of
the affine system (4) for t ≥ ε + ετM .

We will present next Lyapunov-based regional ISS conditions
for system (4). We assume that given 0 < σ0 < σ , ε > 0 and τM ≥

0 let there exists a constant δ > 0 such that solutions of the Lie
brackets system (8) starting from the initial ball ∥φ∥C[−ε−ετM ,0] ≤

σ0 are exponentially approaching an attractive ball of radius σ
with a decay rate δ. Our conditions will be formulated in terms
of Lyapunov functional Ṽ (t) = V (t, xt , ẋt , gt , ε, τM ) for the time-
delay system (19) (proved as Proposition 2 of Zhang and Fridman
(2022c)):

Proposition 2 (Regional ISS of System (4)). Consider system (4)
subject to A1, A2 and A3. Given ε∗ > 0 and τM ≥ 0, let
there exists a locally Lipschitz in the first four arguments Lyapunov
functional V (·, ·, ·, ·, ε, τM ) : [ε + ετM , ∞) × C[−ε, 0] × L2(−ε −

ετM , 0) × L2(−ε, 0) → R+ with ε ∈ (0, ε∗
] such that Ṽ (t) =

V (t, xt , ẋt , gt , ε, τM ) is absolutely continuous along solutions of (19)
for t ≥ ε + ετM . Moreover, let there exist positive scalars σ0, σi, ρi
(i = 1, 2, 3), δ, γ , γ0 and σ such that σ0 < σ1 and the following
conditions hold for all ε ∈ (0, ε∗

]:
(i) Ṽ (ε + ετM ) ≤ ρ1∥xε+ετM ∥

2
C[−ε,0] + ρ2∥gε+ετM ∥

2
L2(−ε,0) + ρ3

∥ẋ ∥
2 and Ṽ (ε + ετ ) ≥ |x(ε + ετ )|2;
ε+ετM L2(−ε−ετM ,0) M M

4

(ii) ˙̃V (t) + 2δṼ (t) − γ − γ0|v(t)|2 ≤ 0 ∀t ≥ ε + ετM for solutions
of (19) subject to |x(t)| ≤ σ ∀t ≥ ε + ετM ;
(iii) ∥xε+ετM ∥C[−ε,0] ≤ σ1 < σ , ∥gε+ετM ∥L2(−ε,0) ≤ σ2 and
∥ẋε+ετM ∥L2(−ε−ετM ,0) ≤ σ3 for solutions of (4) starting from
∥φ∥C[−ετM ,0] ≤ σ0.

If additionally the following holds:
3∑

i=1

ρiσ
2
i +

γ + γ0 · (v∗)2

2δ
< σ 2, (21)

then for all disturbances v(t) subject to

∥v[0, t]∥∞ ≤ v∗
∀t ≥ 0, ∀ε ∈ (0, ε∗

]

and for all ε ∈ (0, ε∗
] the solution of (4) starting from ∥φ∥C[−ετM ,0]

≤ σ0 satisfies

|x(t)|2 ≤ σ 2
1 < σ 2, t ∈ [0, ε + ετM ],

|x(t)|2 ≤ e−2δ(t−ε−ετM )
3∑

i=1

ρiσ
2
i

+
γ+γ0∥v[0,t]∥2∞

2δ < σ 2, t ≥ ε + ετM .

(22)

oreover, the ball

= {x ∈ Rn
: |x| ≤

√
γ+γ0·(v∗)2

2δ } (23)

is exponentially attractive with a decay rate δ.

Remark 4. For system (4), we can consider also a state time-
varying delay in the term f0(t, x(t)), i.e. f0(t, x(t − η(t))) with
fast-varying but bounded η(t). In this case, we will arrive at
system (19), where f0(t, x(t)) is changed by f0(t, x(t − η(t))). The
results of Propositions 1 and 2 can be correspondingly extended
to this case.

3. Stabilization under unknown control directions

We consider the following linear system

ẋ(t) = A(t)x(t) + B(t)u(t), t ≥ 0 (24)

under a bounded ES controller with a time-varying delay that
appears due to delayed measurement of the state

u(t) =
√

αω cos(ωt + k|x(t −
2π
ω

τ (t))|2)
=

√
αω[cos(ωt) cos(k|x(t −

2π
ω

τ (t))|2)
− sin(ωt) sin(k|x(t −

2π
ω

τ (t))|2)].
(25)

ere x(t) ∈ Rn is the state, u(t) ∈ R is the input, ω is the
requency of the dither signal whose magnitude is

√
αω with

α > 0, k > 0 is the controller gain, and the delay τ (t) satisfies A3.
o implement u(t) for t ≥ 0, we assume that the measurements
f x(t) are available for t ≥ −

2π
ω

τM . The time-varying coefficients
A(t) and B(t) have the following form

A(t) = A0 + ∆A(t), B(t) = B0 +

√
2π

√
ω

∆B(t), (26)

here A0 ∈ Rn×n is a constant matrix, B0 ∈ Rn is a known
constant vector up to its sign, and ∆A(t) ∈ Rn×n and ∆B(t) ∈ Rn

denote the time-varying uncertainties that satisfy the following
inequalities

∥∆A(t)∥ ≤ ∆a, |∆B(t)| ≤ ∆b ∀t ≥ 0 (27)

with small constants ∆a ≥ 0 and ∆b ≥ 0. The latter implies

∥A(t)∥ ≤ a ∀t ≥ 0, a = ∥A0∥ + ∆a. (28)

Moreover, since the sign of B0 entries is unknown, one cannot
design for system (24) a classical PID type stabilizing controller.
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or simplicity we here consider that ∆A(t) and ∆B(t) depend on
t only. Both uncertainties can be dependent on t and x provided
hat they satisfy (27) for all t and x and the solution of system
(24), (25) is well-defined.

By letting ω =
2π
ε
, we rewrite system (24)–(26) in the

following form

ẋ(t) = [A0 + ∆A(t)]x(t) +

√
2πα
√

ε
B0

[
cos( 2π t

ε
)

× cos(k|x(t − ετ (t))|2) − sin( 2π t
ε
)

× sin(k|x(t − ετ (t))|2)
]

+
√
2πα∆B(t)

× cos( 2π t
ε

+ k|x(t − ετ (t))|2), t ≥ 0,

(29)

hich can be presented as system (4) with

= 2, f0(t, x) = [A0 + ∆A(t)]x,
f1(t, x) = B0 cos(k|x|2), f2(t, x) = −B0 sin(k|x|2),
u1( tε ) =

√
2πα cos( 2π t

ε
), u2( tε ) =

√
2πα sin( 2π t

ε
),

(t) =
√
2πα∆B(t) cos( 2π t

ε
+ k|x(t − ετ (t))|2).

(30)

The initial condition of system (29) is given by x(θ ) = φ(θ ),
θ ∈ [−ετM , 0] with φ ∈ C[−ετM , 0].

Taking into account

ℓ∑
i=1

ℓ∑
j=i+1

βij[fi, fj](t, x) = −kαB0BT
0x,

the averaged system that corresponds to (29) is given by the
following Lie brackets system:

ẋav(t) = [Aav + ∆A(t)]xav(t) + Yτ1(t)|x=xav + v(t)|x=xav

with xav(t) ∈ Rn, v(t) defined in (30) and

Yτ1(t) =
2k

√
2πα

√
ε

∫ t
t−ετ (t) sin(

2π t
ε

+ k|x(s)|2)

×B0xT (s)ẋ(s)ds, Aav = A0 − kαB0BT
0 .

(31)

e assume that there exist constants α and k leading to Hurwitz
av in (31). This assumption guarantees the solvability of LMIs in
heorem 1 and Corollary 1 for small enough ε∗ > 0, τM > 0,
a > 0 and ∆b > 0. A sufficient condition for existence of
stabilizing αk is B0BT

0 > 0 (implying controllability of the
orresponding system (4), where u1 and u2 are considered as
ontrol inputs). Note that in Example 2, where A0 possesses
urely imaginary eigenvalues, we managed to find a stabilizing
k though B0BT

0 is singular.
We will further present explicitly the time-delay system (19)

hat corresponds to (29). Here G(t) is defined by (14) with

(t) =
√
2παB0 cos( 2π t

ε
+ k|x(t)|2), (32)

hereas notations (6) and (16) have the following form: Y0(t) =

3(t) = 0 (due to Ḃ0 = 0), Yτ1(t) is defined in (31) and

v(t) =
4πkα
ε
√

ε

∫ t
t−ε

∫ t
s sin( 2πs

ε
+ k|x(θ )|2)

× cos( 2πθ
ε

+ k|x(θ )|2)B0∆BT (θ )x(θ )dθds,

Y1(t) =
2k

√
2πα

ε
√

ε

∫ t
t−ε

∫ t
s sin( 2πs

ε
+ k|x(θ )|2)

×B0xT (θ )A(θ )x(θ )dθds,
Y2(t) = −

2πkα
ε2

∫ t
t−ε

∫ t
s

∫ t
θ
B0BT

0[sin(
2π
ε
(s − θ ))I

+4k cos( 2π
ε
(s + θ ) + 2k|x(ξ )|2)x(ξ )xT (ξ )

+ sin( 2π
ε
(s + θ ) + 2k|x(ξ )|2)I]ẋ(ξ )dξdθds,

Yτ2(t) =
8πk2α

ε2

∫ t
t−ε

∫ t
s

∫ θ

θ−ετ (θ ) sin(
2πs
ε

+ k|x(θ )|2)
2πθ 2 T T

(33)
× sin(
ε

+ k|x(ξ )| )B0B0x(θ )x (ξ )ẋ(ξ )dξdθds.
5

Thus, using (32) and (33) the time-delay system (19) is presented
as follows:
d
dt [x(t) + G(t)] = [Aav + ∆A(t)]x(t) + Yv(t)

+

2∑
i=1

(Yi(t) + Yτ i(t)) + v(t), t ≥ ε + ετM ,
(34)

where ẋ(t) satisfies (29).

Remark 5. Note that system (29) can be also presented as system
(4) with v(t) = 0 and

f1(t, x) = B(t) cos(k|x|2), f2(t, x) = −B(t) sin(k|x|2),

where the other terms coincide with (30). The latter leads to zero
term Yv(t) and non-zero terms Y0(t), Y3(t) (to be compared with
zero terms Y0(t), Y3(t) and non-zero term Yv(t) under the ex-
pression (30)), which complicate the stability analysis. Moreover,
one needs to impose an additional assumption on the derivative
of B(t) (which should be small) such that non-zero terms Y0(t)
and Y3(t) are small perturbations. It is clear that expression (30)
provides a simpler stability analysis and removes the assumption
on the derivative of B(t).

Theorem 1. Consider system (29) subject to (27) under ∥φ∥C[−ετM ,0]
≤ σ0. Let positive α and k lead to Hurwitz Aav in (31). Given ∆a ≥ 0,
∆b ≥ 0 and τM ≥ 0, positive scalars δ, ε∗, σ0 < σ and a tuning
arameter q > 0, let there exist n × n symmetric positive definite

matrices P, R, Qv , Qi, Qτ i (i = 1, 2) and positive scalars λP , λR, λQv ,
λQi , λQτ i (i = 1, 2), λ, γ , γ0 that satisfy the following inequalities for
all ε ∈ (0, ε∗

]: (21) and

Θ =

[
P − I P

∗ P + Re−2δε∗

]
> 0, Φ ≤ 0, (35)

γM = γ − 2λRπα|B0|
2
−

√
ελQ2 (µ̄|B0|)2 ≥ 0, (36)

≤ λP I, R ≤ λRI, Qv ≤ λQv I,

i ≤ λQi I, Qτ i ≤ λQτ i I, i = 1, 2,
(37)

1 = eaε
∗(1+τM )(σ0 +

√
2ε∗πα(|B0| +

√
ε∗∆b)

× (1 + τM )) < σ,
(38)

here Φ is the symmetric matrix composed of

11 = PAav + AT
avP + 2δP + λ(∆a)2I + [

√
ε∗λQv

×(∆b)2 +
√

ε∗λQ1 (kaσ )2 + 4
√

ε∗λQ2kµ̄
2(1 + kσ 2)

+τMλQτ1 (kµ̄)2 +
√

ε∗τMλQτ2 (e
δε∗τM σkµ̄)2]|B0|

2I,
Φ12 = AT

avP + 2δP, Φij = P, i = 1, 2, j = 3, . . . , 9,

Φ22 = −
4R
ε∗ e−2δε∗

+ 2δP, Φ33 = −
1

4
√

ε∗(πkα)2
e−2δε∗

Qv,

Φ44 = −
1

2
√

ε∗πα
e−2δε∗

Q1, Φ66 = −
1

8τMπα
e−2δε∗τMQτ1,

Φ55 = −
9

4
√

ε∗(πkα|B0|)2
e−2δε∗

Q2, Φ88 = −λI,

Φ77 = −
1

16
√

ε∗τM (πkα|B0|)2
e−2δε∗

Qτ2, Φ99 = −γ0I

(39)

ith other blocks being zero, and

2 =
√
2ε∗πα|B0|, v∗

=
√
2πα∆b,

σ3 =
√
1 + τM [aeaε

∗(1+τM )(
√

ε∗σ0 +
√
2παε∗(|B0|

+
√

ε∗∆b)(1 + τM )) +
√
2πα(|B0| +

√
ε∗∆b)],

1 = (1 +
1
q )λP + ε∗

√
ε∗|B0|

2
[λQv (∆b)2 + λQ1 (kaσ )2],

2 = (1 + q)λP + λR,

3 = ε∗
|B0|

2
[
√

ε∗λQ2 (1 + 2kσ 2)2 + τMλQτ1 (kσ )2
√

∗ 2 2 1 2δε∗τM

(40)
+ ε λQτ2 (kσ ) ( 3 + τMe )].
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ere a is defined in (28) and µ̄ =
√

ε∗aσ +
√
2πα(|B0| +

√
ε∗∆b).

Then for all ε ∈ (0, ε∗
] the solution of system (29) with the

initial condition ∥φ∥C[−ετM ,0] ≤ σ0 satisfies (22). For all the initial
conditions ∥φ∥C[−ετM ,0] ≤ σ0 the ball (23), where v∗ is defined in
(40), is exponentially attractive with a decay rate δ. Moreover, the
inequalities (21) and (35)–(38) are always feasible for small enough
ε∗ > 0, τM > 0, ∆a > 0 and ∆b > 0.

Proof. As in Zhang and Fridman (2022c) and Zhu and Fridman
(2022), we assume that

|x(t)| < σ ∀t ≥ 0. (41)

holds for solutions of system (29). Note that (41) can proven
by following the contradiction-based arguments in Zhang and
Fridman (2022c) and Zhu and Fridman (2022). For the analysis
of system (29), we employ Proposition 2 and choose

VP (t) = |x(t) + G(t)|2P , 0 < P ∈ Rn×n, (42)

where G(t) is defined by (14) with (32). Differentiating VP (t) along
(34) we obtain

V̇P (t) = 2[x(t) + G(t)]TP[(Aav + ∆A(t))x(t)

+Yv(t) +

2∑
i=1

(Yi(t) + Yτ i(t)) + v(t)].
(43)

To compensate the term G(t) in (43), we employ (Fridman &
Shaikhet, 2016)

VR(t) =
1
ε2

∫ t
t−ε

e−2δ(t−s)(s − t + ε)2|g(s)|2Rds, (44)

here 0 < R ∈ Rn×n. We have
˙R(t) + 2δVR(t) = |g(t)|2R

−
2
ε2

∫ t
t−ε

e−2δ(t−s)(s − t + ε)|g(s)|2Rds
37)
≤ 2λRπα|B0|

2
−

4
ε
e−2δε

|G(t)|2R,

(45)

where we used the extended Jensen’s inequality (1)

|G(t)|2R ≤
1
2ε

∫ t
t−ε

(s − t + ε)|g(s)|2Rds.

To compensate the term Yv(t) in (43), we suggest

VQv (t) =
2

ε
√

ε

∫ t
t−ε

∫ t
s e−2δ(t−θ )(s − t + ε)

×|B0∆BT (θ )x(θ )|2Qv
dθds, 0 < Qv ∈ Rn×n.

(46)

Via (26) and (37), we have

V̇Qv (t) + 2δVQv (t) =
√

ε|B0∆BT (t)x(t)|2Qv

−
2

ε
√

ε

∫ t
t−ε

∫ t
s e−2δ(t−θ )

|B0∆BT (θ )x(θ )|2Qv
dθds

≤
√

ελQv (∆b|B0|)2|x(t)|2 −
1

4
√

ε(πkα)2
e−2δε

|Yv(t)|2Qv
,

(47)

here we used the extended Jensen’s inequality (2)

Yv(t)|2Qv
≤

8(πkα)2
ε

∫ t
t−ε

∫ t
s |B0∆BT (θ )x(θ )|2Qv

dθds.

To compensate the term Y1(t) in (43), we suggest

VQ1(t) =
2k2
ε
√

ε

∫ t
t−ε

∫ t
s e−2δ(t−θ )(s − t + ε)

×|B0xT (θ )A(θ )x(θ )|2Q1
dθds, 0 < Q1 ∈ Rn×n.

(48)

rom (28), (37) and (41) we obtain
˙Q1 (t) + 2δVQ1 (t) =

√
εk2|B0xT (t)A(t)x(t)|2Q1

−
2k2
ε
√

ε

∫ t
t−ε

∫ t
s e−2δ(t−θ )

|B0xT (θ )A(θ )x(θ )|2Q1
dθds

≤
√

ελQ1 (kaσ |B0|)2|x(t)|2 −
1

2
√

επα
e−2δε

|Y1(t)|2Q1
,

(49)

where we used the extended Jensen’s inequality (2)
2 4πk2α

∫ t ∫ t T 2

|Y1(t)|Q1

≤
ε t−ε s |B0x (θ )Ax(θ )|Q1

dθds.

6

To compensate Y2(t) in (43), we consider

VQ2 (t) =
6

ε
√

ε|B0|2

∫ t
t−ε

∫ t
s

∫ t
θ
e−2δ(t−ξ )(s − t + ε)|B0BT

0

×(I + 2kx(ξ )xT (ξ ))ẋ(ξ )|2Q2
dξdθds, 0 < Q2 ∈ Rn×n.

(50)

rom (27)–(29), (37) and (41) we obtain

˙Q2 (t) + 2δVQ2 (t) =
ε
√

ε

|B0|2
|B0BT

0(I + 2kx(t)

×xT (t))ẋ(t)|2Q2
−

6
ε
√

ε|B0|2

∫ t
t−ε

∫ t
s

∫ t
θ
e−2δ(t−ξ )

×|B0BT
0(I + 2kx(ξ )xT (ξ ))ẋ(ξ )|2Q2

dξdθds
√

ελQ2 (µ|B0|)2(1 + 4k(1 + kσ 2)|x(t)|2)

−
9

4
√

ε(πkα|B0|)2
e−2δε

|Y2(t)|2Q2
,

(51)

here we used the extended Jensen’s inequality (3)

Y2(t)|2Q2
≤

8(πkα)2
3ε

∫ t
t−ε

∫ t
s

∫ t
θ

|B0BT
0

×(I + 2kx(ξ )xT (ξ ))ẋ(ξ )|2Q2
dξdθds,

and
√

ε|x(t)| <
√

εaσ +
√
2πα(|B0| +

√
ε∆b) ≜ µ. (52)

n order to compensate the term Yτ1(t) in (43), we suggest

VQτ1 (t) = k2
∫ t
t−ετM

∫ t
θ
e−2δ(t−s)

|B0xT (s)

×ẋ(s)|2Qτ1
dsdθ, 0 < Qτ1 ∈ Rn×n.

(53)

rom (27)–(29), (37), (41) and (52), we obtain

˙Qτ1 (t) + 2δVQτ1 (t) = ετMk2|B0xT (t)ẋ(t)|2Qτ1

−k2
∫ t
t−ετM

e−2δ(t−s)
|B0xT (s)ẋ(s)|2Qτ1

ds

τMλQτ1 (kµ|B0|)2|x(t)|2 −
1

8τMπα
e−2δτM |Yτ1(t)|2Qτ1

,

(54)

where we employed Jensen’s inequality (3.87) in Fridman (2014)

|Yτ1(t)|2Qτ1
≤ 8τMπk2α

∫ t
t−ετM

|B0xT (s)ẋ(s)|Qτ1ds.

o compensate the term Yτ2(t) in (43), we suggest

Qτ2 (t) =
2k2

ε
√

ε|B0|2

∫ t
t−ε

∫ t
s

∫ θ

θ−ετM
(s − t + ε)

×e−2δ(t−θ )
|B0BT

0x(θ )x
T (ξ )ẋ(ξ )|2Qτ2

dξdθds,
(55)

where 0 < Qτ2 ∈ Rn×n. We obtain

V̇Qτ2 (t) + 2δVQτ2 (t) =

√
εk2

|B0|2

∫ t
t−ετM

|B0BT
0x(t)

×xT (ξ )ẋ(ξ )|2Qτ2
dξ −

2k2

ε
√

ε|B0|2

∫ t
t−ε

∫ t
s

∫ θ

θ−ετM

×e−2δ(t−θ )
|B0BT

0x(θ )x
T (ξ )ẋ(ξ )|2Qτ2

dξdθds

≤
√

ελQτ2 (k|B0|)2
∫ t
t−ετM

|x(t)xT (ξ )ẋ(ξ )|2dξ

−
1

16
√

ετM (πkα|B0|)2
e−2δε

|Yτ2(t)|2Qτ2
,

(56)

where we employed the extended Jensen’s inequality

|Yτ2(t)|2Qτ2
≤

32τM (πk2α)2

ε

∫ t
t−ε

∫ t
s

∫ θ

θ−ετM

×|B0BT
0x(θ )x

T (ξ )ẋ(ξ )|2Qτ2
dξdθds.

o cancel the positive term on the right-hand side of (56), we
dditionally consider

˜Qτ2 (t) =
√

ελQτ2 (k|B0|)2
∫ t
t−ετM

∫ t
s

−2δ(t−ξ−ετM ) T 2
(57)
×e |x(t)x (ξ )ẋ(ξ )| dξds.
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rom (27)–(29), (37), (41) and (52), we obtain
˙̃
Qτ2 (t) + 2δṼQτ2 (t) =

√
εετMλQτ2 (e

δετM k|B0|)2

×|x(t)xT (t)ẋ(t)|2 −
√

ελQτ2 (k|B0|)2
∫ t
t−ετM

×e−2δ(t−ξ−ετM )
|x(t)xT (ξ )ẋ(ξ )|2dξ

≤
√

ετMλQτ2 (e
δετM σkµ|B0|)2|x(t)|2

−
√

ελQτ2 (k|B0|)2
∫ t
t−ετM

|x(t)xT (ξ )ẋ(ξ )|2dξ .

(58)

From (56) and (58), it follows that

V̇Qτ2 (t) + 2δVQτ2 (t) +
˙̃VQτ2 (t) + 2δṼQτ2 (t)

≤
√

ετMλQτ2 (e
δετM σkµ|B0|)2|x(t)|2

−
1

16
√

ετM (πkα|B0|)2
e−2δε

|Yτ2(t)|2Qτ2
.

(59)

efine a Lyapunov functional as
¯ (t) = V (t, xt , ẋt , gt , ε, τM )

= VP (t) + VR(t) + VQv (t) + ṼQτ2 (t)

+

2∑
i=1

(VQi (t) + VQτ i (t)), t ≥ ε + ετM ,

(60)

here VP (t), VR(t), VQv (t), VQ1 (t), VQ2 (t), VQτ1 (t), VQτ2 (t) and ṼQτ2 (t)
are given by (42), (44), (46), (48), (50), (53), (55) and (57), respec-
tively. Note that from (27) we obtain |∆A(t)x(t)| ≤ ∆a|x(t)|. To
compensate ∆A(t)x(t) in (43), we apply S-procedure: we add to
˙̄V (t)+2δV̄ (t)−γ −γ0|v(t)|2 the left-hand part of λ((∆a)2|x(t)|2−

|∆A(t)x(t)|2) ≥ 0 with some λ > 0. In view of (43), (45), (47),
(49), (51), (54) and (59), we obtain for all ε ∈ (0, ε∗

] and t ≥

ε + ετM

˙̄V (t) + 2δV̄ (t) − γ − γ0|v(t)|2 ≤ ζ T (t)Φζ (t) − γM ,

where γM is defined in (36), Φ is composed of (39), and

ζ (t) = col{x(t),G(t), Yv(t), Y1(t), Y2(t), Yτ1(t),
Yτ2(t), ∆A(t)x(t), v(t)}.

Thus, (ii) of Proposition 2 holds since Φ ≤ 0 in (35) and γM ≥ 0
in (37).

We now prove (i) of Proposition 2. By Jensen’s inequality
(3.87) in Fridman (2014)

VR(t) ≥
1
ε3
e−2δε

|
∫ t
t−ε

(s − t + ε)g(s)ds|2R = e−2δε
|G(t)|2R,

we find for all ε ∈ (0, ε∗
]

V̄ (t) ≥ VP (t) + VR(t)

≥
[ x(t)
G(t)

]T
Θ

[ x(t)
G(t)

]
+ |x(t)|2 ≥ |x(t)|2,

(61)

where the last inequality holds due to Θ > 0 in (35). By Young’s
inequality with tuning parameter q > 0 and Jensen’s inequality
(3.87) in Fridman (2014) to VP (t)-term we obtain

VP (t) ≤ (1 +
1
q )|x(t)|

2
P + (1 + q)|G(t)|2P

≤ (1 +
1
q )|x(t)|

2
P +

1+q
ε2

∫ t
t−ε

(s − t + ε)2|g(s)|2Pds.

Thus, from (37) we arrive at

VP (t) + VR(t) ≤ (1 +
1
q )λP |x(t)|2

+((1 + q)λP + λR)
∫ t
t−ε

|g(s)|2ds.
(62)

rom (41), (27), (28) and (37), we have

Qv (t) + VQ1 (t) ≤
√

ε|B0|
2
[λQv (∆b)2

+λQ1 (kaσ )2]
∫ t
t−ε

|x(s)|2ds,

Q2 (t) + VQτ1 (t) + VQτ2 (t) + ṼQτ2 (t) ≤ ε|B0|
2
[
√

ε

×λQ2 (1 + 2kσ 2)2 + τMλQτ1 (kσ )2 +
√

ελQτ2 (kσ
2)2

1 2δετM
∫ t 2

(63)
×( 3 + τMe )] t−ε−ετM
|ẋ(s)| ds.

7

Thus, from (40) and (61)–(63), it follows that V̄ (t) in (60) satisfies
(i) of Proposition 2 for all ε ∈ (0, ε∗

].
To prove (iii) of Proposition 2, we denote xt (θ ) = x(t + θ ),

θ ∈ [−ετM , 0]. From (29), it follows that

xt (θ ) =

⎧⎪⎪⎨⎪⎪⎩
φ(t + θ ), t + θ < 0,

φ(0) +
∫ t+θ

0 [A(s)x(s) +

√
2πα
√

ε
B(s)

× cos( 2πs
ε

+ k|x(s − ετ (s))|2)]ds, t + θ ≥ 0.

he latter together with (27) and (28) implies

xt∥C[−ετM ,0] ≤ ∥φ∥C[−ετM ,0] + a
∫ t
0 |x(s)|ds

+

√
2πα
√

ε
(|B0| +

√
ε∆b)t

≤ ∥φ∥C[−ετM ,0] +
√
2επα(|B0| +

√
ε∆b)(1 + τM )

+a
∫ t
0 ∥xs∥C[−ετM ,0]ds, t ∈ [0, ε + ετM ].

y applying the Gronwall inequality, under the initial condition
φ∥C[−ετM ,0] ≤ σ0 we arrive at

xt∥C[−ετM ,0] ≤ eat (σ0 +
√
2επα(|B0|

+
√

ε∆b)(1 + τM )), t ∈ [0, ε + ετM ].
(64)

Using (38) we obtain ∥xε+ετM ∥C[−ε,0] ≤ σ1 for all ε ∈ (0, ε∗
]. From

(32) and (40) we obtain ∥gε+ετM ∥L2(−ε,0) ≤
√
2επα|B0| ≤ σ2 for

all ε ∈ (0, ε∗
]. Moreover, from (28), (29) and (64) we find

|ẋ(t)| ≤ a|x(t)| +

√
2πα
√

ε
(|B0| +

√
ε∆b)

≤ aeat (σ0 +
√
2επα(|B0| +

√
ε∆b)(1 + τM ))

+

√
2πα
√

ε
(|B0| +

√
ε∆b), t ∈ [0, ε + ετM ].

Then, using (40) we have ∥ẋε+ετM ∥L2(−ε−ετM ,0) ≤ σ3 for all ε ∈

(0, ε∗
]. Thus, we arrive at (iii) of Proposition 2. Then Theorem 1

follows from Proposition 2.
Finally, we show the feasibility of inequalities (21) and (35)–

(38). Choose

σ = (ε∗)−
1
5 , Qv = Qi = Qτ i = I,

λQv = λQi = λQτ i = q = 1, i = 1, 2,
γ = 2.1λRπα|B0|

2, λ = (∆a)−1, γ0 = (∆b)−1,

where λR satisfies λRI ≥ R with R found from Θ > 0 defined in
(35) with ε∗

= 0. The feasibility of (21), (36)–(38) and Θ > 0 in
35) is self-evident. We now check the feasibility of Φ ≤ 0 in (35).
Since Aav in (31) is Hurwitz, there exists a n×n matrix P > 0 such
hat for any δ ∈ (0, δ̄) where −δ̄ equals to the largest real part
of the eigenvalues of matrix Aav , the following inequality holds:
PAav + AT

avP + 2δP ≤ 0. By using Schur complements to Φ ≤ 0 in
(35), we find that Φ ≤ 0 is equivalent to

PAav + AT
avP + 2δP + [O(ε

1
10 )

+O(τM ) + O(∆a) + O(∆b)]I ≤ 0.
(65)

s ε > 0, τM > 0, ∆a > 0 and ∆b > 0 go to 0, the inequality
65) (thus, Φ ≤ 0 in (35)) is always feasible provided Aav in (31)
s Hurwitz. This completes the proof. □

emark 6. It should be pointed out that in the transformation of
he delayed system (29), we used the same term G(t) defined by
14) and (32) as in the non-delay case (Zhang & Fridman, 2022c).
he latter leads to the time-delay system (34). If one uses G(t)
efined by (14) with g(t) =

√
2παB0 cos( 2π t

ε
+ k|x(t − ετ (t))|2),

ystem (34) will take the following form:

d
dt [x(t) + G(t)] = [Aav + ∆A(t)]x(t) + Yv(t) +

2∑
i=1

Yi(t)

1 ∫ t

+

ε t−ε
Yτ1(s)ds + Yτ2(t) + v(t), t ≥ ε + ετM .
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n order to compensate the new term 1
ε

∫ t
t−ε

Yτ1(s)ds, we need to
add the term 1

ε

∫ t
t−ε

∫ s
s−ετM

e−2δ(t−s+ετM )(s − t + ε)|B0xT (θ )ẋ(θ )|2Qτ1
θds to VQτ1 (t) given by (53). The latter leads to the following
ore conservative upper bounding on V̇Qτ1 (t) + 2δVQτ1 (t) (to be

compared with (54)):

V̇Qτ1 (t) + 2δVQτ1 (t) ≤ τMλQτ1 (kµ|B0|)2|x(t)|2

−
1

8τMπα
e−2δε(1+τM )

|
1
ε

∫ t
t−ε

Yτ1(s)ds|2Qτ1
,

and gives a larger upper bounding on VQτ1 (t) (to be compared
with that in (63)), which result in more conservative results.

When the time-varying delay τ (t) are absent in (29), i.e.

ẋ(t) = [A0 + ∆A(t)]x(t) +

√
2πα
√

ε
B0

[
cos( 2π t

ε
)

× cos(k|x(t)|2) − sin( 2π t
ε
) sin(k|x(t)|2)

]
+

√
2πα∆B(t) cos( 2π t

ε
+ k|x(t)|2), t ≥ 0,

(66)

hen the time-delay system that corresponds to (66) is given by
34) with Yτ i(t) = 0 (i = 1, 2) (see also the conference version
f this paper Zhang & Fridman, 2022c for the direct derivation),
here ẋ(t) satisfies (66). Based on Theorem 1, we have the fol-

owing corollary (that coincides with Theorem 1 of Zhang and
ridman (2022c)).

orollary 1. Consider system (66) subject to (27) under |x(0)| ≤

0. Let positive α and k lead to Hurwitz Aav in (31). Given ∆a ≥ 0
and ∆b ≥ 0, positive scalars δ, ε∗, σ0 < σ and a tuning parameter
q > 0, let there exist n × n symmetric positive definite matrices P,
R, Qv , Qi (i = 1, 2) and positive scalars λP , λR, λQv , λQi (i = 1, 2), λ,
, γ0 that satisfy the following inequalities for all ε ∈ (0, ε∗

]: (21)
nd (35)–(38), where we set τM = λQτ i = 0 and Qτ i = 0 (i = 1, 2),

and take away the 6th and 7th block-columns and block-rows of Φ .
Then for all ε ∈ (0, ε∗

] the solution of system (66) with the initial
condition |x(0)| ≤ σ0 satisfies (22) with τM = 0. For all the initial
onditions |x(0)| ≤ σ0 the ball (23), where v∗ is defined in (40), is
xponentially attractive with a decay rate δ. Moreover, the derived
nequalities are always feasible for small enough ε∗ > 0, τM > 0,
∆a > 0 and ∆b > 0.

Remark 7. Note that for A(t) = 0, B(t) ∈ {−1, 1} and n = 1,
system (66) coincides with the ES system in Zhu and Fridman
(2022) with f ′′

= 2. For this case our time-delay system has the
same from as (64) in Zhu and Fridman (2022):
d
dt [x(t) + G(t)] = −kαx(t) + Y2(t)

ith Y2(t) given by (33). Differently from Zhu and Fridman
(2022), where the term Y2(t) was treated as a disturbance in the
Lyapunov analysis, we employ VQ2 (t) in (50) to compensate this
term, which is consistent with Lyapunov functional construction
in Zhu et al. (2023). As a result, Corollary 1 leads to a larger upper
bound ε and a smaller ultimate bound than those via (Zhu &
Fridman, 2022) in Example 1.

4. Examples

Example 1. Consider the scalar system (24) with

|A(t)| = |∆A(t)| ≤ ∆a, B0 ∈ {−1, 1}, ∆B(t) = 0 (67)

under the bounded ES controller (25) with τ (t) ≡ 0, α = 0.1 and
k = 9. It is clear that a = ∆a, ∆b = 0 and b = |B0| = 1. We have
Aav = −0.9. Let the desired decay rate be δ = 0.5.

For different values of σ0, σ and ∆a, we verify LMIs of Theorem
3 in Zhu and Fridman (2022) and of Corollary 1 with q = 10
that lead to the upper bounds ε∗ (that preserve the ISS for all
8

Table 1
Solutions by Zhu and Fridman (2022), Corollary 1 and Theorem 1 (Example 1:
δ = 0.5).
Method σ0 , σ ∆a ε∗ τM UB

Zhu and Fridman (2022) 0.01, 1 – 0.42·10−4 – 0.9986
1, 2 – 0.16·10−4 – 1.4103

Corollary 1 0.01, 1 0 1.99·10−4 – 0.9541
0.01, 1 0.1 1.06·10−4 – 0.9203
1, 2 0 0.53·10−4 – 1.2572
1, 2 0.1 0.28·10−4 – 1.2589

Theorem 1 0.01, 1 0 0.9·10−4 0.0108 0.9118
0.01, 1 0.1 0.9·10−4 0.0019 0.9073
1, 2 0 0.2·10−4 0.0129 1.2448
1, 2 0.1 0.2·10−4 0.0041 1.2449

ε ∈ (0, ε∗
]) and the resulting ultimate bound (see Table 1). As ex-

ected, Corollary 1 provides an essentially larger ε and a smaller
ultimate bound than those via Theorem 3 in Zhu and Fridman
(2022). Note that Zhu and Fridman (2022) has not considered the
case of A(t) ̸= 0.

For the numerical simulations, under the initial condition
x(0) = 10, ε = 0.02 (that is essentially larger than that from
Table 1) and A(t) = 0.39 sin(t), the state response of system
(24), (67) under the bounded ES controller (25) with τ (t) ≡ 0,
α = 0.1, k = 9 and its norm on a logarithmic scale (from which
we obtain the practical decay rate as 0.8421 that is larger than
the theoretical decay rate δ = 0.5) are shown in Fig. 1, which
confirms our theoretical results illustrating the conservatism.

Moreover, by verifying LMIs of Theorem 1 with q = 10 and
ifferent values of σ0, σ , ∆a and ε∗, we find the quantitative

upper bounds τM (that preserve the ISS for all ε ∈ (0, ε∗
]) and

the resulting ultimate bound, see Table 1.

Example 2. Consider system (24), where

A0 =

[
0 0.1
0.1 0

]
, B0 ∈

{[
1
1

]
,

[
−1
−1

]}
,

∥∆A(t)∥ ≤ ∆a, ∆B(t) = [∆b1(t), ∆b2(t)]T ,
2∑

i=1

|∆bi(t)|2 ≤ (∆b)2, t ≥ 0

(68)

nder the delayed bounded ES controller (25) with α = 0.01
and k = 10. We obtain a = ∆a + 0.1, |B(t)| ≤

√
2 +

√
ε∆b,

nd Aav = −0.1I . Let the desired decay rate be δ = 0.067. By
erifying LMIs of Theorem 1 with q = 5 and different values of
0, σ , ∆a, ∆b and ε∗, we find the quantitative upper bounds τM
that preserve the ISS for all ε ∈ (0, ε∗

]) and the resulting ultimate
ound, see Table 2.
For the numerical simulations, under the initial condition

(t) = [5, −5]T for t ≤ 0, ε = 0.05 (that is essentially larger
han that from Table 2), ∆A(t) = 0.032 sin(t) and ∆B(t) =

.25[sin(t), cos(t)]T , the state responses of system (24), (68) un-
er the delayed bounded ES controller (25) with α = 0.01, k = 10
nd τ (t) ≡ 0.16 (that is essentially larger than that from Table 2)
nd their norm on a logarithmic scale (from which we obtain the
ractical decay rate as 0.092 that is larger than the theoretical
ecay rate δ = 0.067) are shown in Fig. 2, which confirms our
heoretical results illustrating the conservatism.

emark 8. To enlarge ε∗ and τM , one can decrease α to α
N with

some large N > 0, where accordingly the parameters A(t), ∆B(t)
and the decay rate δ are changed by A(t)

N , ∆B(t)
N and δ

N (that is N
times smaller), respectively. Then by verifying the LMIs with the
same B , k, σ , σ and q, one can find the corresponding upper
0 0
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Fig. 1. State response and its norm on a logarithmic scale (Example 1).
Fig. 2. State responses and their norms on a logarithmic scale (Example 2).
Table 2
Solutions by Theorem 1 (Example 2: δ = 0.067).
σ0 , σ ∆a, ∆b ε∗ τM UB

0.01, 1 0, 0 0.3·10−4 0.0054 0.9914
0.01, 1 0.002, 0.002 0.3·10−4 0.0045 0.9963
0.5, 2 0, 0 0.1·10−4 0.0045 1.3176
0.5, 2 0.002, 0.002 0.1·10−4 0.0037 1.3523

Table 3
Solutions by Theorem 1 (Example 1: δ = 0.05/N and Example 2: δ = 0.067/N
fter the scaling in Remark 8 with N = 100).
σ0 , σ ∆a, ∆b ε∗ τM UB

0.01, 1 0, 0 0.0045 0.0177 0.9427
0.01, 1 0.1·10−4 , 0 0.0045 0.0088 0.9256
1, 2 0, 0 0.001 0.0192 1.2786
1, 2 0.1·10−4 , 0 0.001 0.0103 1.2611

0.01, 1 0, 0 0.0015 0.0076 0.9923
0.01, 1 0.2·10−4 , 0.2·10−4 0.0015 0.0068 0.9923
0.5, 2 0, 0 0.0005 0.0070 1.2999
0.5, 2 0.2·10−4 , 0.2·10−4 0.0005 0.0062 1.3202

bounds on ε∗ and τM (see Table 3, where lines 2–5 and 6–9 are,
espectively, for Examples 1 and 2 after the scaling with N = 100)
hat are larger than those in Tables 1 and 2. Thus, there is a
radeoff between the decay rate δ and the values of ε∗ and τM .

. Conclusions

We have presented a constructive time-delay approach to Lie-
rackets-based averaging that transforms the affine system with
tate-delays and additive disturbances to a time-delay system
ithout any approximations. The latter allows to provide suffi-
ient L-K-based conditions for regional ISS of the original system.
e have further applied the results to stabilization of linear un-

ertain systems under unknown control directions via a bounded
9

ES controller with a measurement time-varying delay and have
derived constructive LMIs for finding quantitative upper bounds
on ε, the delay (that ensure the ISS) and on the resulting ultimate
bound. Alternative constructive results can be derived by using
the classical Lie brackets averaging methods if the remainder
terms are taken into account. This may be a topic for future
research.
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