
Received: 28 July 2023 Revised: 10 January 2024 Accepted: 12 January 2024

DOI: 10.1002/rnc.7221

R E S E A R C H A R T I C L E

Stabilization under unknown control directions and
disturbed measurements via a time-delay approach to
extremum seeking

Jin Zhang1 Emilia Fridman2

1School of Mechatronic Engineering and
Automation, Shanghai University,
Shanghai, China
2School of Electrical Engineering, Tel Aviv
University, Tel Aviv, Israel

Correspondence
Jin Zhang, School of Mechatronic
Engineering and Automation, Shanghai
University, Shanghai 200072, China.
Email: zhangjin1116@126.com

Funding information
National Natural Science Foundation of
China (NSFC), Grant/Award Number:
62303292; Israel Science Foundation (ISF),
Grant/Award Number: 673/19; ISF-NSFC
Joint Research Program, Grant/Award
Number: 3054/23; Chana and Heinrich
Manderman Chair at Tel Aviv University

Abstract
We study stabilization of linear uncertain systems under unknown control direc-
tions using a bounded extremum seeking controller in the presence of a small
time-varying measurement delay. We assume that the measurements are sub-
ject to discontinuous disturbances. The main novelty is that these disturbances
possess not only the constant part as in the existing results, but also small dis-
continuous part that may appear due to quantization. We consider two types of
measurements: the state measurements and the state quadratic norm ones. In
the latter case the constant part of the disturbances may be arbitrary large. By
using the recently proposed time-delay approach to Lie-brackets-based averag-
ing, we transform the closed-loop system to a time-delay (neutral type) one with
no terms depending on the disturbance derivative, which has a form of perturbed
Lie brackets system. The input-to-state stability (ISS) of the time-delay system
guarantees the same for the original one. We further transform the neutral sys-
tem to an ordinary differential equation (ODE) with delayed perturbations and
employ variation of constants formula leading to explicit conditions in terms
of simple inequalities with less conservative results in the most of numerical
examples. Two numerical examples are provided to illustrate the efficiency of
the method.
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1 INTRODUCTION

Extremum seeking (ES), as a real-time model-free optimization approach, has received much attention during the past
decades, see for example, References 1–4, starting with the rigorous proof of local convergence in Reference 5 and exten-
sion to semi-global convergence in Reference 6. ES controller was designed in Reference 7 for networked control systems
using the sporadic packet transmissions. The behavior of ES in the presence of intermittent measurements was analyzed
in Reference 8. In addition, input and output delays are unavoidable in practical applications.9 Classical ES subject to
a large known constant delay was studied in Reference 10 by using backstepping-based predictors and in Reference 11
by using sequential predictors. It is worthy mentioning that the aforementioned literature relies on the classical averag-
ing method12 and Lie brackets approximation.13 By exploiting the converging trajectories property of the original system
and the averaged system, the stability of the original system is guaranteed provided that the small parameter is small
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enough. However, till recently bounds on the small parameter could be found from simulations only, which is not reli-
able for the unknown systems. Some upper bounds on the small parameter were presented in Reference 14 in the context
of averaging by using Lyapunov function where, however, the analytical upper bound was even not calculated in the
example, and in Reference 15 for finite-time stabilization by ES controller where, however, the bound still employed
approximations.

A new constructive time-delay approach to averaging of linear system was introduced in Reference 16. This approach
allows, for the first time, to derive linear matrix inequalities (LMIs) for finding an efficient upper bound on the small
parameter that ensures the stability and ISS of the original system. The time-delay approach to averaging was then
successfully applied to power systems,17 vibrational control,18 L2-gain analysis with stochastic extension,19 and ES.20,21

Very recently, a time-delay approach to Lie-brackets-based averaging of nonlinear affine systems was suggested in Ref-
erences 22 and 23, where stabilization under a bounded ES controller without/with time-varying measurement delay
was considered, respectively. The input-to-state stability (ISS) analysis in References 22 and 23 was studied by using
Lyapunov–Krasovskii (L-K) method that is complicated leading to conservative results in the examples. An improved and
simplified analysis via time-delay approach to classical ES was recently suggested in Reference 24, where a further trans-
formation of the time-delay system led to the nondelay one with delayed disturbances. The stability analysis was further
provided by employing variation of constants formula that leads to simple inequalities. Inspired by Reference 24, we aim
to present in this article a simpler analysis that leads to simple scalar inequalities and (in most of the examples) to less
conservative results.

In practical applications, measurements may be subject to disturbances. Results for Lie-brackets approximation with
discontinuous dithers were presented in Reference 25, where the disturbance derivative was assumed to be globally
bounded and where the immunity to the additive, state-independent disturbances was shown. Recently, ISS-like proper-
ties of Lie-bracket approximations were presented in Reference 26 for the systems with Lipschitz continuous disturbances.
Note also that constant disturbance that can be arbitrary large was considered in References 20,21,27, where the results
were claimed to be applicable to the case of the differentiable disturbances with uniformly bounded derivatives. The exist-
ing results on ES with large amplitude and high frequency considered the differentiable measurement disturbances25,27

with uniformly bounded derivatives or globally Lipschitz disturbances.26 However, disturbances are usually discontinu-
ous, for example, due to quantization of the measurement signal. Recently, robustness under discontinuous measurement
disturbances was studied in Reference 28, where the results were qualitative (for fast enough oscillations) and the mea-
surement delays were not considered. Up to now, qualitative and quantitative results for bounded ES in the presence of
discontinuous in time/state measurement disturbances as well as small time-varying delays are missing in the literature,
which motivates the present article.

The objective of this paper is to present the first quantitative results for stabilization of linear uncertain systems under
a bounded ES controller with discontinuous disturbances and small measurement delays. We consider the measurements,
that is, the state measurements and the state quadratic norm ones, subject to discontinuous disturbances. As a novelty, the
disturbances possess not only the constant part as in Reference 27 but also small discontinuous part that may appear due
to quantization. Our approach consists of two steps23,24: (1) system transformation and (2) stability analysis. The first step
is challenging since the transformations in References 23,25–27 are not applicable to the discontinuous disturbances. We
propose a novel time-delay transformation for the Lie-brackets-based averaging, where the transformed system does not
depend on the disturbance derivative. The ISS of the resulting time-delay system guarantees the same for the original one.
In the second step, we suggest variation of constants formula (as introduced in Reference 24 for perturbation-based ES) to
derive explicit conditions in terms of simple inequalities. Moreover, we find that the constant part of the disturbances can
be arbitrary large when using the state quadratic norm measurements. A conference version of this paper was presented
in Reference 29, where the results were confined to the disturbance-free systems.

We now summarize the contribution as follows:

1. We consider, for the first time, the measurements subject to the time-delays and discontinuous disturbances (to be com-
pared with the differentiable disturbances25,27 and globally Lipschitz disturbances26). We propose a novel time-delay
transformation leading to the transformed system that depends on the disturbance (and does not depend on its
derivative as in Reference 23). The latter leads to a time-delay model with no terms depending on the disturbance
derivative;

2. Inspired by Reference 24, we provide a simpler analysis and simpler stability conditions leading to less conserva-
tive results (i.e., larger uncertainties and larger bounds on the small parameter, time-delay as well as disturbed
measurement) in the most of numerical examples compared to our previous (disturbance-free) result.23

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7221 by T

el A
viv U

niversity, W
iley O

nline L
ibrary on [26/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHANG and FRIDMAN 3

F I G U R E 1 Stabilization of linear uncertain systems by a bounded ES controller.

Notation: Throughout the article, Rn denotes the n-dimensional Euclidean space with the vector norm | ⋅ |, Rn×m is
the set of all n ×m real matrices with the induced matrix norm || ⋅ ||. The notation P > 0, for P ∈ Rn×n, means that P is
symmetric positive definite. Denote by C[a, b] the Banach space of continuous functions 𝜙 ∶ [a, b] → Rn with the norm
||𝜙||C[a,b] = max𝜃∈[a,b] |𝜙(𝜃)|. We use a ± b to denote a + b − b (not the set {a + b, a − b}).

2 STABILIZATION UNDER UNKNOWN CONTROL DIRECTIONS

In this section, we study stabilization of linear uncertain systems under unknown control directions using a bounded ES
controller with discontinuous disturbances and transform the closed-loop system to a time-delay (neutral type) system
by following the time-delay approach to Lie-Brackets-based averaging.22,23

As illustrated in Figure 1, the linear uncertain system is given by

ẋ(t) = A(t)x(t) + B(t)u(t), t ≥ 0, (1)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input, the time-varying coefficients A(t) ∈ Rn×n and B(t) ∈ Rn in (1) have the
following form

A(t) = A0 + ΔA(t), B(t) = B0 +
√

2𝜋
√
𝜔

ΔB(t). (2)

Here A0 is a constant matrix and B0 is a known constant vector up to its sign. Since the sign of entries of B0 is unknown,
one cannot design for system (1) a classical PID type stabilizing controller.

We design for system (1) a bounded ES controller30 with a measurement bias and a time-varying delay that appears
due to delayed measurement of the state

u(t) =
√
𝛼𝜔 cos

(

𝜔t + k|x
(

t − 2𝜋
𝜔

𝜏(t)
)

+ d(t)|2
)

, (3)

where 𝜔 is the frequency of the dither signal whose magnitude is
√
𝛼𝜔 with 𝛼 > 0, and k > 0 is the controller gain.

Moreover, the disturbance d(t) ∈ Rn is discontinuous (measurable in time) of the form

d(t) = d0 + Δd(t). (4)

Here d0 is a constant vector and Δd(t) denotes the measurement bias uncertainty that may stem from the quantization
for example, in the network-based control system.

We now make the following assumptions:

A1 The delay 𝜏(t) is supposed to be bounded, that is,

0 ≤ 𝜏(t) ≤ 𝜏M , t ≥ 0, (5)

and fast-varying (without any restrictions on its derivative).
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4 ZHANG and FRIDMAN

A2 The uncertainties ΔA(t), ΔB(t) and Δd(t) satisfy the following inequalities

||ΔA(t)|| ≤ Δa, |ΔB(t)| ≤ Δb, |Δd(t)| ≤ Δd∗ ∀t ≥ 0 (6)

with small constants Δa ≥ 0, Δb ≥ 0 and Δd∗ ≥ 0.

Note that the delay 𝜏(t) includes sawtooth delays that model networked-based control. Assumption A2 implies

||A(t)|| ≤ a ∀t ≥ 0, a = ||A0|| + Δa, |d(t)| ≤ d∗ ∀t ≥ 0, d∗ = |d0| + Δd∗. (7)

For simplicity we here consider thatΔA(t) and ΔB(t) depend on t only. Note that both uncertainties can be dependent on
t and x provided that they satisfy (7) for all t and x and the solution of system (1), (3) is well-defined.

By letting 𝜔 = 2𝜋
𝜀

, we rewrite the closed-loop system (1), (3) in the following form

ẋ(t) = A(t)x(t) +
√

2𝜋𝛼
√
𝜀

B(t) cos
(2𝜋t
𝜀

+ k|x(t − 𝜀𝜏(t)) + d(t)|2
)

= A(t)x(t) + v(t) +
√

2𝜋𝛼
√
𝜀

B0 cos
(2𝜋t
𝜀

+ k|x(t − 𝜀𝜏(t)) + d(t)|2
)

, t ≥ 0, (8)

where the initial condition is given by x(𝜃) = 𝜙(𝜃), 𝜃 ∈ [−𝜀𝜏M , 0] with 𝜙 ∈ C[−𝜀𝜏M , 0], and

v(t) =
√

2𝜋𝛼ΔB(t) cos
(2𝜋t
𝜀

+ k|x(t − 𝜀𝜏(t)) + d(t)|2
)

. (9)

The averaged system that corresponds to system (8) with 𝜏(t) = 0, ΔB(t) = 0 (i.e., v(t) = 0) and d(t) = 0 is given by the
following Lie Brackets system1–3,26:

ẋav(t) = [Aav + ΔA(t)]xav(t), xav(t) ∈ R
n
, (10)

where

Aav = A0 − 𝛼kB0BT
0 . (11)

Here we assume that there exist constants 𝛼 and k leading to Hurwitz Aav given by (11).
Note that the Lie Brackets averaging1–3,26 is an “approximate” method: it employs the averaged system (10) in terms

of Lie Brackets to approximate the behavior of system (8) with 𝜏(t) = 0, ΔB(t) = 0 and d(t) = 0. In contrast, a time-delay
approach to Lie-Brackets-based averaging that has been recently proposed in References 20,22,23 does not use approx-
imations. Inspired by References 20,22,23, we propose in this paper a novel time-delay approach to Lie-Brackets-based
averaging for system (8) (see Appendix A) that allows to transform system (8) to the following time-delay system:

d
dt
[x(t) + G(t)] = [Aav + ΔA(t)]x(t) +

2∑

i=1
(Yi(t) + Y𝜏i(t)) +

5∑

i=1
Ydi(t) + Yv(t) + v(t), t ≥ 𝜀 + 𝜀𝜏M , (12)

where ẋ(t) satisfies (8), Aav is defined by (11), v(t) is given by (9), and

G(t) = −
√

2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
(s − t + 𝜀)B0 cos

(2𝜋s
𝜀

+ k|x(s) + d(t)|2
)

ds,

Y1(t) =
2
√

2𝜋𝛼k
𝜀

√
𝜀
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

B0xT(𝜃)A(𝜃)x(𝜃)d𝜃ds,

Y2(t) = −
4𝜋𝛼k
𝜀2 ∫

t

t−𝜀∫

t

s ∫

t

𝜃

[

2k cos
(2𝜋
𝜀

(s + 𝜃) + 2k|x(𝜉) + d(t)|2
)

x(𝜃)xT(𝜉)

+ sin
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(t) + d(t)|2
)]

B0BT
0 ẋ(𝜉)d𝜉d𝜃ds,

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7221 by T

el A
viv U

niversity, W
iley O

nline L
ibrary on [26/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHANG and FRIDMAN 5

Y𝜏1(t) =
2
√

2𝜋𝛼k
√
𝜀
∫

t

t−𝜀𝜏(t)
sin

(2𝜋t
𝜀

+ k|x(s) + d(t)|2
)

B0xT(s)ẋ(s)ds,

Y𝜏2(t) =
8𝜋𝛼k2

𝜀2 ∫

t

t−𝜀∫

t

s ∫

𝜃

𝜃−𝜀𝜏(𝜃)
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

sin
(2𝜋𝜃
𝜀

+ k|x(𝜉) + d(𝜃)|2
)

B0BT
0 x(𝜃)xT(𝜉)ẋ(𝜉)d𝜉d𝜃ds,

Yd1(t) =
2
√

2𝜋𝛼k
√
𝜀
∫

t

t−𝜀𝜏(t)
sin

(2𝜋t
𝜀

+ k|x(s) + d(t)|2
)

B0dT(t)ẋ(s)ds,

Yd2(t) =
2
√

2𝜋𝛼k
𝜀

√
𝜀
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

B0dT(t)ẋ(𝜃)d𝜃ds,

Yd3(t) =
8𝜋𝛼k2

𝜀2 ∫

t

t−𝜀∫

t

s ∫

𝜃

𝜃−𝜀𝜏(𝜃)
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

sin
(2𝜋𝜃
𝜀

+ k|x(𝜉) + d(𝜃)|2
)

B0BT
0 x(𝜃)dT(𝜃)ẋ(𝜉)d𝜉d𝜃ds,

Yd4(t) =
4𝜋𝛼k2

𝜀2 ∫

t

t−𝜀∫

t

s ∫

|x(𝜃)+d(t)|2

|x(𝜃)+d(𝜃)|2
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

sin
(2𝜋𝜃
𝜀

+ k𝜉
)

B0BT
0 x(𝜃)d𝜉d𝜃ds,

Yd5(t) = −
8𝜋𝛼k2

𝜀2 ∫

t

t−𝜀∫

t

s ∫

t

𝜃

cos
(2𝜋
𝜀

(s + 𝜃) + 2k|x(𝜉) + d(t)|2
)

B0BT
0 x(𝜃)dT(t)ẋ(𝜉)d𝜉d𝜃ds,

Yv(t) =
4𝜋𝛼k
𝜀

√
𝜀
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃 − 𝜀𝜏(𝜃)) + d(𝜃)|2
)

B0ΔBT(𝜃)x(𝜃)d𝜃ds. (13)

Clearly, G(t), Yi(t) (i = 1, 2) and Yv(t) are of the order of O(
√
𝜀), Y𝜏1(t) is of the order of O(𝜏M), Y𝜏2(t) is of the order of

O(
√
𝜀𝜏M), Yd1(t) is of the order of O(𝜏Md∗), Yd2(t) and Yd4(t) are of the order of O(d∗), Yd3(t) is of the order of O(

√
𝜀𝜏Md∗),

and Yd5(t) is of the order of O(
√
𝜀d∗) provided ẋ(t) is of the order of O( 1

√
𝜀

). Thus, it can be seen that system (12) is a
perturbation of the stable averaged system (10). Note that the perturbations in (12) will vanish as 𝜀→ 0, 𝜏M → 0 and
d∗ → 0. If 𝜀, 𝜏M and d∗ increase, system (12) may become unstable. However, till recently bounds on 𝜀 could be found
from simulations only, which is not reliable for the unknown systems. Thus, differently from the qualitative analysis in
References 1–3,26,30, our objective is to find the first efficient quantitative upper bounds on 𝜀, 𝜏M and d∗ that ensure the
stability.

Remark 1. Note that if one follows the transformation,23 the resulting time-delay system will include the
ḋ(t)-terms (i.e., the disturbances should be differentiable). In addition, an assumption on the derivative of
d(t) (which should be small) should be imposed such that the ḋ(t)-terms are small perturbations. Clearly, our
transformation allows the disturbances to be discontinuous and remove the assumption on the derivative of
d(t).

To end this section, we present the relation between solutions of systems (8) and (12):

Proposition 1. If x(t) is a solution to system (8), then it satisfies the time-delay system (12) with notations (9)
and (13), where ẋ(t) is defined by (8).

From Proposition 1 it follows that if solutions x(t) of the time-delay system (12) for t ≥ 𝜀 + 𝜀𝜏M satisfy some bound
(e.g., ISS bound given by (21) below), then the same bound holds for solutions of system (8) for t ≥ 𝜀 + 𝜀𝜏M .

3 MAIN RESULTS

In this section, we employ variation of constants formula to derive explicit conditions in terms of simple inequalities that
guarantee the ISS of the original system. To proceed, inspired by References 24 and 29 we firstly denote

z(t) = x(t) + G(t). (14)

Then system (12) can be further rewritten as

ż(t) = [Aav + ΔA(t)](z(t) − G(t)) +
2∑

i=1
(Yi(t) + Y𝜏i(t)) +

5∑

i=1
Ydi(t) + Yv(t) + v(t), t ≥ 𝜀 + 𝜀𝜏M . (15)
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6 ZHANG and FRIDMAN

It is clear that using (14) allows to explicitly present (12) in the form of ODE with delayed perturbations. Thus, one
can employ variation of constants formula in the later stability analysis. This method will essentially simplify the stabil-
ity analysis (that avoids L-K method) leading to simpler conditions, and greatly improve the robustness (including the
uncertainties ΔA(t) and ΔB(t)) comparatively to L-K method (see e.g., References 22 and 23).

For the sake of simplicity, we denote

𝜗1 =
√

2𝜋𝛼|B0|, 𝜗2 = k + 2k2
𝜎

2
, 𝜗3 = a𝜎 +

√
2𝜋𝛼Δb, 𝜗4 =

√
2𝜋𝛼Δb. (16)

We are in a position to formulate the following main results proven in Appendix B:

Theorem 1. Consider system (8) subject to A1 and A2 under the initial condition ||𝜙||C[−𝜀𝜏M ,0] ≤ 𝜎0. Let 𝛼 and k
lead to Hurwitz Aav given by (11). Given a tuning parameter 𝛿 > 0, let there exist n × n matrix P > 0 and scalar
p ≥ 1, 𝜆 > 0 that satisfy the following inequalities:

P − I ≥ 0, pI − P ≥ 0, (17)

Ξ =

[
PAav + AT

avP + 2𝛿P + 𝜆(Δa)2 P
∗ −𝜆I

]

≤ 0. (18)

If additionally, given tuning parameters Δa ≥ 0, Δb ≥ 0, 𝜀∗ > 0, 𝜏M > 0, d∗ > 0, and 0 < 𝜎0 < 𝜎, the following
inequality

p

[

ea𝜀∗(1+𝜏M )
(

𝜎0 +
(√

𝜀∗𝜗1 + 𝜀∗
√

2𝜋𝛼Δb
)

(1 + 𝜏M)
)

+
√
𝜀∗

2
𝜗1

+ 1
𝛿

(

𝜗1

(√
𝜀∗𝜅0 + 𝜀∗𝜅1 + 2𝜏M𝜎

(

𝜅2 +
√
𝜀∗𝜅3 + 𝜀∗𝜅4

)

+d∗
(

𝜅5 +
√
𝜀∗𝜅6 + 𝜀∗𝜅7 + d∗𝜅8

)

+ 𝜅9

)

+ 𝜗4

)
]2

<

(

𝜎 −
√
𝜀∗

2
𝜗1

)2

, (19)

is valid, where

𝜅0 =
1
2
(||Aav|| + Δa) + 1

3
𝜗

2
1𝜗2 + k𝜎𝜗3, 𝜅1 =

1
3
𝜗1𝜗2𝜗3, 𝜅2 = k𝜗1,

𝜅3 = 𝜎k2
𝜗

2
1 + k𝜗3, 𝜅4 = 𝜎k2

𝜗1𝜗3, 𝜅5 = k𝜗1(4𝜎2k + 2𝜏M + 1),

𝜅6 = 2𝜎k2
𝜗

2
1

(

𝜏M + 1
3

)

+ k𝜗3(2𝜏M + 1), 𝜅7 = 2𝜎k2
𝜗1𝜗3

(

𝜏M + 1
3

)

,

𝜅8 = 2𝜎k2
𝜗1, 𝜅9 = −2𝜎k2

𝜗1|d0|(2𝜎 + |d0|) (20)

with a defined in (7) and 𝜗i (i = 1, … , 4) defined in (16), then for all 𝜀 ∈ (0, 𝜀∗] the solution of (8) starting from
the initial condition ||𝜙||C[−𝜀𝜏M ,0] ≤ 𝜎0 satisfies

|x(t)| ≤ eat
(

||𝜙||C[−𝜀𝜏M ,0] +
(√

𝜀𝜗1 + 𝜀𝜗4

)

(1 + 𝜏M)
)

< 𝜎, t ∈ [0, 𝜀 + 𝜀𝜏M],

|x(t)| <
√

pe−𝛿(t−𝜀−𝜀𝜏M )

[

ea(𝜀+𝜀𝜏M )
(

||𝜙||C[−𝜀𝜏M ,0] + (
√
𝜀𝜗1 + 𝜀𝜗4)(1 + 𝜏M)

)

+
√
𝜀

2
𝜗1

]

+
√

p
𝛿

[

𝜗1

(√
𝜀𝜅0 + 𝜀𝜅1 + 2𝜏M𝜎

(

𝜅2 +
√
𝜀𝜅3 + 𝜀𝜅4 + d∗

(

𝜅5 +
√
𝜀𝜅6

+ 𝜀𝜅7 + d∗𝜅8

)

+ 𝜅9

)

+ 𝜗4

]

+
√
𝜀

2
𝜗1 < 𝜎, t ≥ 𝜀 + 𝜀𝜏M . (21)

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7221 by T

el A
viv U

niversity, W
iley O

nline L
ibrary on [26/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHANG and FRIDMAN 7

Moreover, for all initial conditions ||𝜙||C[−𝜀𝜏M ,0] ≤ 𝜎0 the ball

𝔛 =

{

x ∈ R
n ∶ |x| ≤

√
p
𝛿

[

𝜗1

(√
𝜀𝜅0 + 𝜀𝜅1 + 2𝜏M𝜎

(

𝜅2 +
√
𝜀𝜅3 + 𝜀𝜅4

)

+d∗
(

𝜅5 +
√
𝜀𝜅6 + 𝜀𝜅7 + d∗𝜅8

)

+ 𝜅9

)

+ 𝜗4

]

+
√
𝜀

2
𝜗1

}

(22)

is exponentially attractive with a decay rate 𝛿.

Remark 2. Note that inequalities (17) and (18) always hold provided matrix Aav is Hurwitz. Moreover, given
any 𝜎0 > 0 and 𝜎 >

√
p𝜎0, inequality (19) is always feasible for small enough Δa > 0, Δb > 0, 𝜀∗ > 0, 𝜏M > 0

and d∗ > 0. Therefore, the result is semi-global.

Remark 3. From (22) with notations (16) and (20), it follows that the ultimate bound depends upon 𝛼 and k
for small enough 𝜏M > 0 and d∗ > 0. A possible choice is 𝛼 = O(

√
𝜀) and k = O( 1

√
𝜀

) that leads to the decay rate

𝛿 = O(1) and, thus, the ultimate bound is of the order of O(𝜀
1
4 ) for small enough 𝜏M > 0 and d∗ > 0. Moreover,

it is easy to see that the larger 𝜏M > 0 and d∗ > 0 (i.e., larger measurement delays and disturbances) result in
a larger ultimate bound.

Remark 4. In Reference 29, using (14) system (12) was transformed to

ż(t) = Aavz(t) + ΔA(t)x(t) − AavG(t) +
2∑

i=1
(Yi(t) + Y𝜏i(t)) +

5∑

i=1
Ydi(t) + Yv(t) + v(t), t ≥ 𝜀 + 𝜀𝜏M . (23)

In its corresponding stability analysis, the term ΔA(t)x(t) in (23) was treated as a “disturbance” that brings in
the conservativeness. Clearly, in the current paper we have avoided this, which will lead to better results in
the examples than in Reference 29.

We next consider that quadratic norm of the state is measured subject to a disturbance leading to the following
bounded ES controller

u(t) =
√
𝛼𝜔 cos

(

𝜔t + k
(
|
|
|
x
(

t − 2𝜋
𝜔

𝜏(t)
)
|
|
|

2
+ d(t)

))

, (24)

where d(t) ∈ R satisfies (4). The resulting closed-loop system (1), (24) has the form

ẋ(t) = A(t)x(t) +
√

2𝜋𝛼
√
𝜀

B(t) cos
(2𝜋t
𝜀

+ k
(
|x(t − 𝜀𝜏(t))|2 + d(t)

))

= A(t)x(t) + v(t) +
√

2𝜋𝛼
√
𝜀

B0 cos
(2𝜋t
𝜀

+ k
(
|x(t − 𝜀𝜏(t))|2 + d(t)

))

, t ≥ 0, (25)

where

v(t) =
√

2𝜋𝛼ΔB(t) cos
(2𝜋t
𝜀

+ k
(
|x(t − 𝜀𝜏(t))|2 + d(t)

))

. (26)

Assume also that A1 and A2 hold. By following the aforementioned time-delay approach to Lie-brackets-based averaging,
we transform system (25) to the following time-delay system

d
dt
[x(t) + G(t)] = [Aav + ΔA(t)]x(t) +

2∑

i=1
(Yi(t) + Y𝜏i(t)) + Yd(t) + Yv(t) + v(t), t ≥ 𝜀 + 𝜀𝜏M , (27)
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8 ZHANG and FRIDMAN

where ẋ(t) satisfies (25), Aav is defined by (11), and

G(t) = −
√

2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
(s − t + 𝜀)B0 cos

(2𝜋s
𝜀

+ k(|x(s)|2 + d(t))
)

ds,

Y1(t) =
2
√

2𝜋𝛼k
𝜀

√
𝜀
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k(|x(𝜃)|2 + d(t))
)

B0xT(𝜃)A(𝜃)x(𝜃)d𝜃ds,

Y2(t) = −
4𝜋𝛼k
𝜀2 ∫

t

t−𝜀∫

t

s ∫

t

𝜃

[

2k cos
(2𝜋
𝜀

(s + 𝜃) + 2k|x(𝜉)|2 + 2d(t)
)

x(𝜃)xT(𝜉)

+ sin
(2𝜋s
𝜀

+ k|x(t)|2 + d(t)
)

cos
(2𝜋𝜃
𝜀

+ k|x(t)|2 + d(t)
)]

B0BT
0 ẋ(𝜉)d𝜉d𝜃ds,

Y𝜏1(t) =
2
√

2𝜋𝛼k
√
𝜀
∫

t

t−𝜀𝜏(t)
sin

(2𝜋t
𝜀

+ k|x(s)|2 + d(t)
)

B0xT(s)ẋ(s)ds,

Y𝜏2(t) =
8𝜋𝛼k2

𝜀2 ∫

t

t−𝜀∫

t

s ∫

𝜃

𝜃−𝜀𝜏(𝜃)
sin

(2𝜋s
𝜀

+ k|x(𝜃)|2 + d(t)
)

sin
(2𝜋𝜃
𝜀

+ k|x(𝜉)|2 + d(𝜃)
)

B0BT
0 x(𝜃)xT(𝜉)ẋ(𝜉)d𝜉d𝜃ds,

Yd(t) =
4𝜋𝛼k2

𝜀2 ∫

t

t−𝜀∫

t

s ∫

d(t)

d(𝜃)
sin

(2𝜋s
𝜀

+ k|x(𝜃)|2 + d(t)
)

sin
(2𝜋𝜃
𝜀

+ k|x(𝜃)|2 + k𝜉
)

B0BT
0 x(𝜃)d𝜉d𝜃ds,

Yv(t) =
4𝜋𝛼k
𝜀

√
𝜀
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃)|2 + d(t)
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃 − 𝜀𝜏(𝜃))|2 + d(𝜃)
)

B0ΔBT(𝜃)x(𝜃)d𝜃ds. (28)

Following arguments of Theorem 1, we present the following results.

Theorem 2. Consider system (25) subject to A1 and A2 under the initial condition ||𝜙||C[−𝜀𝜏M ,0] ≤ 𝜎0. Let 𝛼 and
k lead to Hurwitz Aav given by (11). Given a tuning parameter 𝛿 > 0, let there exist n × n matrix P > 0 and scalar
p ≥ 1, 𝜆 > 0 that satisfy (17) and (18). If additionally, given tuning parameters Δa ≥ 0, Δb ≥ 0, 𝜀∗ > 0, 𝜏M > 0,
Δd∗ > 0, and 0 < 𝜎0 < 𝜎, inequality (19) is valid, where

d∗ is changed by Δd∗, 𝜅i (i = 0, … , 4) are from (20), 𝜅5 = 2𝜎k2
𝜗1, 𝜅i = 0 (i = 6, … , 9) (29)

with𝜗1 defined in (16), then for all 𝜀 ∈ (0, 𝜀∗] the solution of (25) starting from the initial condition ||𝜙||C[−𝜀𝜏M ,0] ≤

𝜎0 satisfies (21) with notation (29). Moreover, for all initial conditions ||𝜙||C[−𝜀𝜏M ,0] ≤ 𝜎0 the ball (22) with
notation (29) is exponentially attractive with a decay rate 𝛿.

Remark 5. It is clear that the conditions of Theorem 2 depend on Δd∗ (that may model the errors due to the
quantization) only and are independent of |d0|. Thus, if one uses controller (24) to stabilize system (1), |d0| can
be arbitrary large as in References 4,20,27 (to be compared with that |d0| is small when using the controller
(3) to stabilize system (1)).

Remark 6. Note that in the stability analysis of systems (15) and (27), we employed variation of constants
formula, where the perturbation terms are treated as disturbances by using the direct upper bounding. The
latter may introduce some conservativeness (see the comparisons in Example 1 below). In the future, the
results may be improved for example, by advanced Lyapunov-based method with appropriate L-K functionals.

4 NUMERICAL EXAMPLES

In this section, we present two numerical examples to illustrate the efficiency of the proposed method.

Example 1. Consider the scalar system (1) with

|A(t)| = |ΔA(t)| ≤ Δa, B0 ∈ {−1, 1}, ΔB(t) = 0. (30)

It is clear that a = Δa, Δb = 0 and |B0| = 1.
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ZHANG and FRIDMAN 9

T A B L E 1 Solutions via different methods.

Reference 23 Reference 29 Theorem 1

𝚫a 𝚫b 𝜺
∗

𝝉M UB 𝜺
∗

𝝉M UB 𝜺
∗

𝝉M UB

Example 1 0 0 0.53 ⋅ 10−4 – 1.2572 0.20 ⋅ 10−4 – 0.9836 0.20 ⋅ 10−4 – 0.9838

0.1 0 0.28 ⋅ 10−4 – 1.2589 0.07 ⋅ 10−4 – 0.9959 0.19 ⋅ 10−4 – 0.9847

0.19 0 – – – 0.01 ⋅ 10−4 – 0.9921 0.18 ⋅ 10−4 – 0.9828

Example 2 0 0 0.10 ⋅ 10−4 0.0045 1.3176 0.30 ⋅ 10−4 0.0050 1.4963 0.30 ⋅ 10−4 0.0050 1.4964

0.002 0.002 0.10 ⋅ 10−4 0.0037 1.3523 0.18 ⋅ 10−4 0.0041 1.4960 0.30 ⋅ 10−4 0.0048 1.4940

0.032 0.05 – – – 0.02 ⋅ 10−4 0.0008 1.4992 0.30 ⋅ 10−4 0.0020 1.4960

0.032 0.1 – – – – – – 0.25 ⋅ 10−4 0.0008 1.4958

time(s)

0

1

2

3

4

5

6

7

8

9

10

x(
t)

F I G U R E 2 Example 1: state responseunder the bounded ES controller (3).

Consider first system (1), (30) under the bounded ES controller (3) with 𝛼 = 0.1 and k = 9. Then we have
Aav = −0.9. Let the desired decay rate be 𝛿 = 0.5, 𝜎0 = 1 and 𝜎 = 2. We consider the following two cases:

i) d(t) = 0 (i.e., d∗ = 0). We verify the inequalities of Theorem 1 with 𝜏M = 0 and different values of Δathat
lead to upper bound on 𝜀

∗ (that preserves the ISS for all 𝜀 ∈ (0, 𝜀∗]) and the resulting ultimate bound
(UB), see lines 3–5 in Table 1. Clearly, Theorem 1 improves the results of Reference 29 and, however,
leads to more conservative upper bounds on 𝜀∗ than in Reference 23. The latter may be due to that the
perturbation terms are treated as disturbances by using the direct upper bounding. However, Theorem 1
allows larger uncertainty |ΔA(t)| ≤ Δa than in Reference 23.

ii) d(t) ≠ 0 (that was not considered in Reference 23 and 29). By verifying Theorem 1 with Δa = 0.19, 𝜀∗ =
0.1 ⋅ 10−4, 𝜏M = 0.004 and |d0| = 0.002, we find a quantitative upper bound Δd∗ = 0.3 ⋅ 10−4.

Consider next system (1), (30) under the bounded ES controller (24) with the same 𝛼 = 0.1 and k = 9
leading to Aav = −0.9. For 𝛿 = 0.5, 𝜎0 = 1, 𝜎 = 2, Δa = 0.19, 𝜀∗ = 0.1 ⋅ 10−4, 𝜏M = 0.004 and any d0 ∈ R, by
verifying Theorem 2 we find a quantitative upper bound Δd∗ = 1.9 ⋅ 10−4.

For the numerical simulations, under the initial condition 𝜙(t) = 10 for t ≤ 0, A(t) = 0.19 sin(t), 𝜀 = 0.1 ⋅
10−4, 𝜏(t) = 0.004, 𝛼 = 0.1, k = 9 and B0 = 1, Figure 2 plots the state responses of system (1), (30) under the
bounded ES controller (3) with d(t) = 0.002 + 0.3 cos(t) ⋅ 10−4. Note that the averaged |x(t)| for t ∈ [5.998, 6]
is 0.0437. Thus, we obtain the practical decay rate as 1

6
ln( 10

0.0437
) = 0.9053 that is larger than the theoretical

decay rate 0.5 illustrating the conservatism of the proposed method.
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10 ZHANG and FRIDMAN

0 5 10 15 20 25 30 35 40 45 50

time(s)

-6

-4

-2

0

2

4

6

x(
t)

F I G U R E 3 Example 2: state responses under the bounded ES controller (24).

Example 2. Consider system (1), where

A0 =

[
0 0.1

0.1 0

]

, B0 ∈

{[
− 1
− 1

]

,

[
1
1

]}

, (31)

and

||ΔA(t)|| ≤ Δa, ΔB(t) =
[

Δb1(t) Δb2(t)
]T
,

2∑

i=1
|Δbi(t)|2 ≤ (Δb)2, t ≥ 0. (32)

It is clear that a = Δa + 0.1 and |B0| =
√

2.
Consider first system (1), (31), (32) under the bounded ES controller (3) with 𝛼 = 0.01 and k = 10. Here

(11) has the form Aav = −0.1I. Let the desired decay rate be 𝛿 = 0.067, 𝜎0 = 0.5 and 𝜎 = 2. We consider the
following two cases:

i) d(t) = 0 (i.e., d∗ = 0). The solutions via Theorem 1 are shown in lines 6–9 of Table 1 for different values
of Δa and Δb. Comparatively to Reference 23 and 29, Theorem 1 provides larger upper bounds on 𝜀∗ and
𝜏M , which allows larger parameter uncertainties ||ΔA(t)|| ≤ Δa and |ΔB(t)| ≤ Δb.

ii) d(t) ≠ 0 (that was not considered in Reference 23 and 29). ForΔa = 0.032,Δb = 0.05, 𝜀∗ = 0.2 ⋅ 10−4, 𝜏M =
0.003 and |d0| = 3 ⋅ 10−4, by verifying Theorem 1 we find a quantitative upper bound Δd∗ = 0.4 ⋅ 10−4.

Consider next system (1), (31), (32) under the bounded ES controller (24) with 𝛼 = 0.01 and k = 10 leading
to Aav = −0.1I. For 𝛿 = 0.067, 𝜎0 = 0.5, 𝜎 = 2,Δa = 0.032,Δb = 0.05, 𝜀∗ = 0.2 ⋅ 10−4, 𝜏M = 0.003 and any d0 ∈
R, by verifying Theorem 2 we find a quantitative upper bound Δd∗ = 1.8 ⋅ 10−4.

For the numerical simulations, under the initial condition 𝜙(t) = [5,−5]T for t ≤ 0, ΔA(t) = 0.032 sin(t)I,
ΔB(t) = [0.05 sin(t), 0]T , 𝜀 = 0.2 ⋅ 10−4, 𝜏(t) = 0.003, 𝛼 = 0.1, k = 9 and B0 = [1, 1]T , Figure 3 plots the state
responses of system (1), (30) under the bounded ES controller (24) with any constant d0 ∈ R and d(t) =
1.8 cos(t) ⋅ 10−4. Note that the averaged |x(t)| for t ∈ [59.99, 60] is 0.0676. Thus, we obtain the practical decay
rate as 1

50
ln( 5

√
2

0.0676
) = 0.093 that is larger than the theoretical decay rate 0.067 illustrating the conservatism of

the proposed method.

5 CONCLUSIONS

This paper has studied stabilization of linear uncertain systems under unknown control directions using a bounded ES
controller with a time-varying measurement delay. We have considered two types of measurements, that is, the state
measurements and the state quadratic norm ones, subject to discontinuous disturbances, where as a main novelty the
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ZHANG and FRIDMAN 11

disturbances possess not only the constant part but also small discontinuous part that may appear due to quantization.
Simple ISS analysis in terms of explicit simple inequalities with less conservativeness has been presented via a time-delay
approach to ES controller. Future work will focus on consideration of applications to the practical engineering.31
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APPENDIX A. NOVEL TRANSFORMATION VIA TIME-DELAY APPROACH

First, similar to Reference 23 we present
√

2𝜋𝛼
√
𝜀

B0 cos
(2𝜋t
𝜀

+ k|x(t − 𝜀𝜏(t)) + d(t)|2
)

=
√

2𝜋𝛼
√
𝜀

B0

[

cos
(2𝜋t
𝜀

+ k|x(t − 𝜀𝜏(t)) + d(t)|2
)

± cos
(2𝜋t
𝜀

+ k|x(t) + d(t)|2
)]

=
√

2𝜋𝛼
√
𝜀

B0

[

cos
(2𝜋t
𝜀

+ k|x(t) + d(t)|2
)

+ 2k
∫

t

t−𝜀𝜏(t)
sin

(2𝜋t
𝜀

+ k|x(s) + d(t)|2
)

(xT(s) + dT(t))ẋ(s)ds
]

.

Using Y𝜏1(t) and Yd1(t) defined in (13), we rewrite system (8) as

ẋ(t) = A(t)x(t) + Y𝜏1(t) + Yd1(t) + v(t) +
√

2𝜋𝛼
√
𝜀

B0 cos
(2𝜋t
𝜀

+ k|x(t) + d(t)|2
)

, t ≥ 0. (A1)

Inspired by References 16 and 19, we integrate both sides of system (A1) over [t − 𝜀, t] for t ≥ 𝜀 + 𝜀𝜏M , that is,

x(t) − x(t − 𝜀)
𝜀

= 1
𝜀∫

t

t−𝜀

[

A(s)x(s) + Y𝜏1(s) + Yd1(s) + v(s)

+
√

2𝜋𝛼
√
𝜀

B0 cos
(2𝜋s
𝜀

+ k|x(s) + d(s)|2
)
]

ds, t ≥ 𝜀 + 𝜀𝜏M . (A2)

If we follow the existing time-delay transformation,19,27,32 we can present the left-hand side of (A2) as

x(t) − x(t − 𝜀)
𝜀

= d
dt

[

x(t) + G̃(t)] − A(t)x(t) − Y𝜏1(t) − Yd1(t) − v(t)

+ 1
𝜀∫

t

t−𝜀
[A(s)x(s) + Y𝜏1(s) + Yd1(s) + v(s)

]

ds, t ≥ 𝜀 + 𝜀𝜏M , (A3)
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ZHANG and FRIDMAN 13

where

G̃(t) = −
√

2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
(s − t + 𝜀)B0 cos

(2𝜋s
𝜀

+ k|x(s) + d(s)|2
)

ds. (A4)

This choice of G̃(t) leads to ḋ in the analysis. Indeed, using (A2) and (A3) one obtains

d
dt
[x(t) + G̃(t)] = A(t)x(t) +

√
2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
B0 cos

(2𝜋s
𝜀

+ k|x(s) + d(s)|2
)

ds

+ Y𝜏1(t) + Yd1(t) + v(t), t ≥ 𝜀 + 𝜀𝜏M . (A5)

It is clear that when using G̃(t) defined by (A4), one will get the second term on the right-hand side of (A5). For this term,
similar to Reference 27 one may further present

√
2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
B0 cos

(2𝜋s
𝜀

+ k|x(s) + d(s)|2
)

ds

=
√

2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
B0

[

cos
(2𝜋s
𝜀

+ k|x(s) + d(s)|2
)

± cos
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)]

ds

=
2
√

2𝜋𝛼k
𝜀

√
𝜀
∫

t

t−𝜀∫

t

s
B0 sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(𝜃)|2
)(

xT(𝜃) + dT(𝜃)
)(

ẋ(𝜃) + ḋ(𝜃)
)

d𝜃ds. (A6)

Thus, as in References 26 and 27 one needs to impose an additional assumption on the derivative of d(t) (which should
be small) such that the ḋ(t)-perturbation does not ruin the stability.

To avoid ḋ in the stability analysis, we modify G̃(t)with d(s) inside of integral to G(t) in (13) with d(t) inside of integral.
By simple calculations, we obtain

d
dt
[x(t) + G̃(t)] = d

dt
[x(t) + G̃(t) ± G(t)]

= d
dt
[x(t) + G(t)] +

√
2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
B0

[

cos
(2𝜋s
𝜀

+ k|x(s) + d(s)|2
)

− cos
(2𝜋s
𝜀

+ k|x(s) + d(t)|2
)]

ds.

The latter together with (A5) yields

d
dt
[x(t) + G(t)] = A(t)x(t) +

√
2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
B0(s) cos

(2𝜋s
𝜀

+ k|x(s) + d(t)|2
)

ds

+ Y𝜏1(t) + Yd1(t) + v(t), t ≥ 𝜀 + 𝜀𝜏M . (A7)

It is seen that using the novel term G(t) leads to the second term on the right-hand side of (A7) (and thus, (A8) below)
with no terms depending on the derivative of d(⋅) (to be compared the ḋ-terms in (A6) when using G̃(t)).

We next present
√

2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
B0 cos

(2𝜋s
𝜀

+ k|x(s) + d(t)|2
)

ds

=
√

2𝜋𝛼
𝜀

√
𝜀
∫

t

t−𝜀
B0

[

cos
(2𝜋s
𝜀

+ k|x(s) + d(t)|2
)

± cos
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)]

ds

=
2
√

2𝜋𝛼k
𝜀

√
𝜀
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

B0xT(𝜃)ẋ(𝜃)d𝜃ds + Yd2(t)

= 4𝜋𝛼k
𝜀2 ∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃) + d(𝜃)|2
)

× B0BT
0 x(𝜃)d𝜃ds + Y1(t) + Y𝜏2(t) + Yd2(t) + Yd3(t) + Yv(t), (A8)

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7221 by T

el A
viv U

niversity, W
iley O

nline L
ibrary on [26/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 ZHANG and FRIDMAN

where in the third equality we used ∫ t
t−𝜀 cos( 2𝜋s

𝜀
+ k|x(t) + d(t)|2)ds = 0 and in the fourth equality we substituted the

right-hand side of (A1) for ẋ(t).
We have

4𝜋𝛼k
𝜀2 ∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃) + d(𝜃)|2
)

B0BT
0 x(𝜃)d𝜃ds

= 4𝜋𝛼k
𝜀2 ∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)[

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃) + d(𝜃)|2
)

± cos
(2𝜋𝜃
𝜀

+ k|x(𝜃) + d(t)|2
)]

B0BT
0 x(𝜃)d𝜃ds

= 4𝜋𝛼k
𝜀2 ∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃) + d(t)|2
)

B0BT
0 x(𝜃)d𝜃ds + Yd4(t), (A9)

where Yd4(t) is given in (13). Note that the following holds:

sin
(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃) + d(t)|2
)

= sin
(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃) + d(t)|2
)

± sin
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(t) + d(t)|2
)

= sin
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(t) + d(t)|2
)

− 2k
∫

t

𝜃

[

cos
(2𝜋s
𝜀

+ k|x(𝜉) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜉) + d(t)|2
)

− sin
(2𝜋s
𝜀

+ k|x(𝜉) + d(t)|2
)

sin
(2𝜋𝜃
𝜀

+ k|x(𝜉) + d(t)|2
)]

(xT(𝜉) + dT(t))ẋ(𝜉)d𝜉

= sin
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(t) + d(t)|2
)

− 2k
∫

t

𝜃

cos
(2𝜋
𝜀

(s + 𝜃) + 2k|x(𝜉) + d(t)|2
)

(xT(𝜉) + dT(t))ẋ(𝜉)d𝜉, (A10)

x(𝜃) = x(𝜃) ± x(t) = x(t) −
∫

t

𝜃

ẋ(𝜉)d𝜉, (A11)

4𝜋
𝜀2 ∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(t) + d(t)|2
)

d𝜃ds

= 2
𝜀∫

t

t−𝜀
sin

(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)[

sin
(2𝜋t
𝜀

+ k|x(t) + d(t)|2
)

− sin
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)]

ds

= −2
𝜀∫

t

t−𝜀
sin2

(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

ds

= −1
𝜀∫

t

t−𝜀

(

1 − cos
(4𝜋s
𝜀

+ 2k|x(t) + d(t)|2
)

ds = −1. (A12)

Then, using Y2(t) and Yd5(t) given in (13) we further present the first term in the last equality of (A9) as

4𝜋𝛼k
𝜀2 ∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃) + d(t)|2
)

B0BT
0 x(𝜃)d𝜃ds

(A10)
= 4𝜋𝛼k

𝜀2 ∫

t

t−𝜀∫

t

s
B0BT

0 x(𝜃)
[

sin
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(t) + d(t)|2
)

− 2k
∫

t

𝜃

cos
(2𝜋
𝜀

(s + 𝜃) + 2k|x(𝜉) + d(t)|2
)

xT(𝜉)ẋ(𝜉)d𝜉
]

d𝜃ds + Yd5(t)
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ZHANG and FRIDMAN 15

(A11)
= −8𝜋𝛼k2

𝜀2 ∫

t

t−𝜀∫

t

s ∫

t

𝜃

cos
(2𝜋
𝜀

(s + 𝜃) + 2k|x(𝜉) + d(t)|2
)

B0BT
0 x(𝜃)xT(𝜉)ẋ(𝜉)d𝜉d𝜃ds

+ 4𝜋𝛼k
𝜀2 ∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(t) + d(t)|2
)

B0BT
0

[

x(t) −
∫

t

𝜃

ẋ(𝜉)d𝜉
]

d𝜃ds + Yd5(t)

(A12)
= −𝛼kB0BT

0 x(t) + Y2(t) + Yd5(t). (A13)

Substituting (A13), into (A9), into (A8) and further into (A7), we transform (8) to the time-delay system (12).

APPENDIX B. PROOF OF THEOREM 1

Assume as in References 20 and 23 that

|x(t)| < 𝜎 ∀t ≥ 0 (B1)

holds for solutions of system (8). Denote xt(𝜃) = x(t + 𝜃), 𝜃 ∈ [−𝜀𝜏M , 0]. From (8), it follows that

xt(𝜃) =

{
𝜙(t + 𝜃), t + 𝜃 < 0,
𝜙(0) + ∫ t+𝜃

0 [A(s)x(s) +
√

2𝜋𝛼
√
𝜀

B(s) cos( 2𝜋s
𝜀
+ k|x(s − 𝜀𝜏(s)) + d(s)|2)ds, t + 𝜃 ≥ 0.

The latter together with (6), (7) and (16) implies

||xt||C[−𝜀𝜏M ,0] ≤ ||𝜙||C[−𝜀𝜏M ,0] +

(

1
√
𝜀

𝜗1 + 𝜗4

)

t + a
∫

t

0
|x(s)|ds

≤ ||𝜙||C[−𝜀𝜏M ,0] + (
√
𝜀𝜗1 + 𝜀𝜗4)(1 + 𝜏M) + a

∫

t

0
||xs||C[−𝜀𝜏M ,0]ds, t ∈ [0, 𝜀 + 𝜀𝜏M],

which by Gronwall’s inequality yields

|x(t)| ≤ ||xt||C[−𝜀𝜏M ,0] ≤ eat[||𝜙||C[−𝜀𝜏M ,0] + (
√
𝜀𝜗1 + 𝜀𝜗4)(1 + 𝜏M)], t ∈ [0, 𝜀 + 𝜀𝜏M]. (B2)

Then under the initial condition ||𝜙||C[−𝜀𝜏M ,0] ≤ 𝜎0, inequality (21) follows from (B2) since (19) implies

ea𝜀(1+𝜏M )[𝜎0 + (
√
𝜀𝜗1 + 𝜀𝜗4)(1 + 𝜏M)] < 𝜎

for all 𝜀 ∈ (0, 𝜀∗].
We next prove the first inequality of (21). The solution of system (15) is given by

z(t) = e∫
t
𝜀+𝜀𝜏M

(Aav+ΔA(𝜃))d𝜃z(𝜀 + 𝜀𝜏M) +
∫

t

𝜀+𝜀𝜏M

e∫
t

s (Aav+ΔA(𝜃))d𝜃

[

− (Aav + ΔA(s))G(s)

+
2∑

i=1
(Yi(s) + Y𝜏i(s)) +

5∑

i=1
Ydi(s) + Yv(s) + v(s)

]

ds, t ≥ 𝜀 + 𝜀𝜏M

leading to

|z(t)| ≤ ||e∫
t
𝜀+𝜀𝜏M

(Aav+ΔA(𝜃))d𝜃
|||z(𝜀 + 𝜀𝜏M)| +

∫

t

𝜀+𝜀𝜏M

||e∫
t

s (Aav+ΔA(𝜃))d𝜃||

[

|(Aav + ΔA(s))G(s)|

+
2∑

i=1
(|Yi(s)| + |Y𝜏i(s)|) +

5∑

i=1
|Ydi(s)| + |Yv(s)| + |v(s)|

]

ds, t ≥ 𝜀 + 𝜀𝜏M . (B3)
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16 ZHANG and FRIDMAN

Note that from (6)–(8), (16) and (B1), it follows that

|ẋ(t)| =
|
|
|
|
|
|

A(t)x(t) +
√

2𝜋𝛼
√
𝜀

B(t) cos
(2𝜋t
𝜀

+ k|x(t − 𝜀𝜏(t))|2
)||
|
|
|
|

< a𝜎 +
√

2𝜋𝛼
√
𝜀

(|B0| +
√
𝜀Δb)

= 1
√
𝜀

𝜗1 + 𝜗3, t ≥ 0. (B4)

By using (5)–(7), (9), (13), (16), (B1), and (B4), we obtain for all t ≥ 𝜀 + 𝜀𝜏M

|(Aav + ΔA(t))G(t)| =
√

2𝜋𝛼
𝜀

√
𝜀

|
|
|
|
|
∫

t

t−𝜀
(s − t + 𝜀)(Aav + ΔA(t))B0 cos

(2𝜋s
𝜀

+ k|x(s) + d(t)|2
)

ds
|
|
|
|
|

≤

√
2𝜋𝛼
𝜀

√
𝜀

(||Aav|| + Δa)|B0|
∫

t

t−𝜀
(s − t + 𝜀)ds

=
√
𝜀

2
𝜗1(||Aav|| + Δa), (B5)

|Y1(t)| =
2
√

2𝜋𝛼k
𝜀

√
𝜀

|
|
|
|
|
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

B0xT(𝜃)A(𝜃)x(𝜃)d𝜃ds
|
|
|
|
|

<

2
√

2𝜋𝛼ka𝜎2

𝜀

√
𝜀

|B0|
∫

t

t−𝜀∫

t

s
d𝜃ds

=
√
𝜀ka𝜎2

𝜗1, (B6)

|Y2(t)| =
4𝜋𝛼k
𝜀2

|
|
|
|
|
∫

t

t−𝜀∫

t

s ∫

t

𝜃

[

2k cos
(2𝜋
𝜀

(s + 𝜃) + 2k|x(𝜉) + d(t)|2
)

x(𝜃)xT(𝜉)

+ sin
(2𝜋s
𝜀

+ k|x(t) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(t) + d(t)|2
)]

B0BT
0 ẋ(𝜉)d𝜉d𝜃ds

|
|
|
|

<
4𝜋𝛼k
𝜀2
√
𝜀

|B0|
2(1 + 2k𝜎2)(𝜗1 +

√
𝜀𝜗3)
∫

t

t−𝜀∫

t

s ∫

t

𝜃

d𝜉d𝜃ds

=
√
𝜀

3
𝜗

2
1𝜗2(𝜗1 +

√
𝜀𝜗3), (B7)

|Y𝜏1(t)| =
2
√

2𝜋𝛼k
√
𝜀

|
|
|
|
|
∫

t

t−𝜀𝜏(t)
sin

(2𝜋t
𝜀

+ k|x(s) + d(t)|2
)

B0xT(s)ẋ(s)ds
|
|
|
|
|

<

2
√

2𝜋𝛼k𝜎
𝜀

|B0|(𝜗1 +
√
𝜀𝜗3)
∫

t

t−𝜀𝜏M

ds

= 2𝜏Mk𝜎𝜗1(𝜗1 +
√
𝜀𝜗3), (B8)

|Y𝜏2(t)| =
8𝜋𝛼k2

𝜀2

|
|
|
|
|
∫

t

t−𝜀∫

t

s ∫

𝜃

𝜃−𝜀𝜏(𝜃)
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

sin
(2𝜋𝜃
𝜀

+ k|x(𝜉) + d(𝜃)|2
)

B0BT
0 x(𝜃)xT(𝜉)ẋ(𝜉)d𝜉d𝜃ds

|
|
|
|
|

<
8𝜋𝛼k2

𝜎
2

𝜀2
√
𝜀

|B0|
2(𝜗1 +

√
𝜀𝜗3)
∫

t

t−𝜀∫

t

s ∫

𝜃

𝜃−𝜀𝜏M

d𝜉d𝜃ds

= 2
√
𝜀𝜏Mk2

𝜎
2
𝜗

2
1(𝜗1 +

√
𝜀𝜗3), (B9)

|Yd1(t)| =
2
√

2𝜋𝛼k
√
𝜀

|
|
|
|
|
∫

t

t−𝜀𝜏(t)
sin

(2𝜋t
𝜀

+ k|x(s) + d(t)|2
)

B0dT(t)ẋ(s)ds
|
|
|
|
|
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ZHANG and FRIDMAN 17

<

2d∗
√

2𝜋𝛼k
𝜀

|B0|(𝜗1 +
√
𝜀𝜗3)
∫

t

t−𝜀𝜏M

ds

= 2𝜏Md∗k𝜗1(𝜗1 +
√
𝜀𝜗3), (B10)

|Yd2(t)| =
2
√

2𝜋𝛼k
𝜀

√
𝜀

|
|
|
|
|
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

B0dT(t)ẋ(𝜃)d𝜃ds
|
|
|
|
|

<
2d∗k
𝜀2 𝜗1

(

𝜗1 +
√
𝜀𝜗3

)

∫

t

t−𝜀∫

t

s
dsd𝜃

= d∗k𝜗1

(

𝜗1 +
√
𝜀𝜗3

)

, (B11)

|Yd3(t)| =
8𝜋𝛼k2

𝜀2

|
|
|
|
|
∫

t

t−𝜀∫

t

s ∫

𝜃

𝜃−𝜀𝜏(𝜃)
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

sin
(2𝜋𝜃
𝜀

+ k|x(𝜉) + d(𝜃)|2
)

B0BT
0 x(𝜃)dT(𝜃)ẋ(𝜉)d𝜉d𝜃ds

|
|
|
|
|

<
4d∗𝜎k2

𝜀2
√
𝜀

𝜗
2
1

(

𝜗1 +
√
𝜀𝜗3

)

∫

t

t−𝜀∫

t

s ∫

𝜃

𝜃−𝜀𝜏M

d𝜉d𝜃ds

= 2
√
𝜀𝜏Md∗𝜎k2

𝜗
2
1

(

𝜗1 +
√
𝜀𝜗3

)

, (B12)

|Yd4(t)| =
4𝜋𝛼k2

𝜀2

|
|
|
|
|
∫

t

t−𝜀∫

t

s ∫

|x(𝜃)+d(t)|2

|x(𝜃)+d(𝜃)|2
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

sin
(2𝜋𝜃
𝜀

+ k𝜉
)

B0BT
0 x(𝜃)d𝜉d𝜃ds

|
|
|
|
|

<
4𝜋𝛼𝜎k2

𝜀2 |B0|
2
|
|
|
|
|
∫

t

t−𝜀∫

t

s ∫

|x(𝜃)+d(t)|2

|x(𝜃)+d(𝜃)|2
d𝜉d𝜃ds

|
|
|
|
|

< 2𝜎k2
𝜗

2
1(d

∗ − |d0|)(2𝜎 + |d0| + d∗), (B13)

|Yd5(t)| =
8𝜋𝛼k2

𝜀2

|
|
|
|
|
∫

t

t−𝜀∫

t

s ∫

t

𝜃

cos
(2𝜋
𝜀

(s + 𝜃) + 2k|x(𝜉) + d(t)|2
)

B0BT
0 x(𝜃)dT(t)ẋ(𝜉)d𝜉d𝜃ds

|
|
|
|
|

<
8d∗𝜋𝛼𝜎k2

𝜀2
√
𝜀

|B0|
2
(

𝜗1 +
√
𝜀𝜗3

)

∫

t

t−𝜀∫

t

s ∫

t

𝜃

d𝜉d𝜃ds

=
2
√
𝜀d∗𝜎k2

3
𝜗

2
1(𝜗1 +

√
𝜀𝜗3), (B14)

|Yv(t)| =
4𝜋𝛼k
𝜀

√
𝜀

|
|
|
|
|
∫

t

t−𝜀∫

t

s
sin

(2𝜋s
𝜀

+ k|x(𝜃) + d(t)|2
)

cos
(2𝜋𝜃
𝜀

+ k|x(𝜃 − 𝜀𝜏(𝜃)) + d(𝜃)|2
)

B0ΔBT(𝜃)x(𝜃)d𝜃ds
|
|
|
|
|

<
4𝜋𝛼k𝜎Δb
𝜀

√
𝜀

|B0| ×
∫

t

t−𝜀∫

t

s
d𝜃ds

=
√
𝜀k𝜎𝜗1𝜗4, (B15)

|v(t)| =
√

2𝜋𝛼
|
|
|
|
ΔB(t) cos

(2𝜋t
𝜀

+ k|x(t − 𝜀𝜏(t)) + d(t)|2
)|
|
|
|
≤ 𝜗4. (B16)

By using (B3), (B5)–(B16), we obtain

|z(t)| < ||e∫
t
𝜀+𝜀𝜏M

(Aav+ΔA(𝜃))d𝜃
|||z(𝜀 + 𝜀𝜏M)| + [𝜗1(

√
𝜀𝜅0 + 𝜀𝜅1 + 2𝜏M𝜎(𝜅2 +

√
𝜀𝜅3 + 𝜀𝜅4)

+ d∗(𝜅5 +
√
𝜀𝜅6 + 𝜀𝜅7 + d∗𝜅8) + 𝜅9) + 𝜗4]

∫

t

𝜀+𝜀𝜏M

||e∫
t

s (Aav+ΔA(𝜃))d𝜃||ds, t ≥ 𝜀 + 𝜀𝜏M (B17)

where 𝜅i (i = 0, … , 10) are given by (20). Assuming as in Reference 24 that there exist scalars 𝛿 > 0 and p > 1
satisfying

||e∫
t

s (Aav+ΔA(𝜃))d𝜃|| ≤
√

pe−𝛿(t−s) ∀t ≥ s ≥ 𝜀 + 𝜀𝜏M , (B18)
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18 ZHANG and FRIDMAN

from (B17) we obtain

|z(t)| <
√

pe−𝛿(t−𝜀−𝜀𝜏M )|z(𝜀 + 𝜀𝜏M)| +
[

𝜗1

(√
𝜀𝜅0 + 𝜀𝜅1 + 2𝜏M𝜎

(

𝜅2 +
√
𝜀𝜅3

+ 𝜀𝜅4) + d∗
(

𝜅5 +
√
𝜀𝜅6 + 𝜀𝜅7 + d∗𝜅8

)

+ 𝜅9

)

+ 𝜗4

]

∫

t

𝜀+𝜀𝜏M

√
pe−𝛿(t−s)ds

≤
√

pe−𝛿(t−𝜀−𝜀𝜏M )|z(𝜀 + 𝜀𝜏M)| +
√

p
𝛿

[

𝜗1

(√
𝜀𝜅0 + 𝜀𝜅1 + 2𝜏M𝜎(𝜅2

+
√
𝜀𝜅3 + 𝜀𝜅4

)

+ d∗
(

𝜅5 +
√
𝜀𝜅6 + 𝜀𝜅7 + d∗𝜅8

)

+ 𝜅9

)

+ 𝜗4

]

, t ≥ 𝜀 + 𝜀𝜏M . (B19)

Moreover, the following holds:

|x(t)|
(14)
= |z(t) − G(t)| ≤ |z(t)| + |G(t)| ≤ |z(t)| +

√
𝜀

2
𝜗1, t ≥ 𝜀 + 𝜀𝜏M , (B20)

|z(t)|
(14)
= |x(t) + G(t)| ≤ |x(t)| + |G(t)| ≤ |x(t)| +

√
𝜀

2
𝜗1, t ≥ 𝜀 + 𝜀𝜏M . (B21)

Thus, we arrive at

|x(t)|
(B20)
<

√
pe−𝛿(t−𝜀−𝜀𝜏M )|z(𝜀 + 𝜀𝜏M)| +

√
p
𝛿

[

𝜗1

(√
𝜀𝜅0 + 𝜀𝜅1 + 2𝜏M𝜎(𝜅2

+
√
𝜀𝜅3 + 𝜀𝜅4

)

+ d∗
(

𝜅5 +
√
𝜀𝜅6 + 𝜀𝜅7 + d∗𝜅8

)

+ 𝜅9

)

+ 𝜗4

]

+
√
𝜀

2
𝜗1

(B21)
<

√
pe−𝛿(t−𝜀−𝜀𝜏M )

(

|x(𝜀 + 𝜀𝜏M)| +
√
𝜀

2
𝜗1

)

+
√

p
𝛿

[

𝜗1

(√
𝜀𝜅0 + 𝜀𝜅1 + 2𝜏M𝜎(𝜅2

+
√
𝜀𝜅3 + 𝜀𝜅4

)

+ d∗
(

𝜅5 +
√
𝜀𝜅6 + 𝜀𝜅7 + d∗𝜅8

)

+ 𝜅9

)

+ 𝜗4

]

+
√
𝜀

2
𝜗1

(B2)
<

√
pe−𝛿(t−𝜀−𝜀𝜏M )

[

ea𝜀(1+𝜏M )
(

||𝜙||C[−𝜀𝜏M ,0] +
(√

𝜀𝜗1 + 𝜀
√

2𝜋𝛼Δb
)

(1 + 𝜏M)
)

+
√
𝜀

2
𝜗1

]

+
√

p
𝛿

[

𝜗1

(√
𝜀𝜅0 + 𝜀𝜅1 + 2𝜏M𝜎

(

𝜅2 +
√
𝜀𝜅3 + 𝜀𝜅4

)

+ d∗
(

𝜅5 +
√
𝜀𝜅6 + 𝜀𝜅7

+ d∗𝜅8) + 𝜅9) + 𝜗4
]
+
√
𝜀

2
𝜗1, t ≥ 𝜀 + 𝜀𝜏M . (B22)

This implies the second inequality of (21) for all 𝜀 ∈ (0, 𝜀∗] if under the initial condition ||𝜙||C[−𝜀𝜏M ,0] ≤ 𝜎0 the following
holds

√
p

[

ea𝜀∗(1+𝜏M )
(

𝜎0 +
(√

𝜀∗𝜗1 + 𝜀∗𝜗4

)

(𝜏M + 1)
)

+
√
𝜀∗

2
𝜗1

+ 1
𝛿

(

𝜗1

(√
𝜀∗𝜅0 + 𝜀∗𝜅1 + 2𝜏M𝜎

(

𝜅2 +
√
𝜀∗𝜅3 + 𝜀∗𝜅4

)

+ d∗
(

𝜅5 +
√
𝜀∗𝜅6 + 𝜀∗𝜅7 + d∗𝜅8

)

+ 𝜅9

)

+ 𝜗4

)
]

< 𝜎 −
√
𝜀∗

2
𝜗1.

The latter, by squaring both sides, is equivalent to (19).
To prove (B18), we consider the following system

ż(t) = [Aav + ΔA(t)]z(t), t ≥ 𝜀 + 𝜀𝜏M . (B23)
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ZHANG and FRIDMAN 19

Choose a Lyapunov function

V(t) = zT(t)Pz(t), t ≥ 𝜀 + 𝜀𝜏M , (B24)

where matrix P satisfies (17). Differentiating V(t) along (B23) we obtain

V̇(t) = zT(t)P[Aav + ΔA(t)]z(t), t ≥ 𝜀 + 𝜀𝜏M . (B25)

To compensate ΔA(t)z(t) in (B25) we apply S-procedure: we add to V̇(t) the left-hand part of

𝜆[(Δa)2|z(t)|2 − |ΔA(t)z(t)|2] > 0 (B26)

with some 𝜆 > 0. Then we have

V̇(t) + 2𝛿V(t) ≤ 𝜁T(t)Ξ𝜁(t) ≤ 0, t ≥ 𝜀 + 𝜀𝜏M , (B27)

where 𝜁(t) = [zT(t), zT(t)ΔAT(t)]T and Ξ is given by (18). Thus, V(t) ≤ e−2𝛿(t−s)V(s) for t ≥ s ≥ 𝜀 + 𝜀𝜏M . Using the fact
|z(t)|2 ≤ V(t) ≤ p|z(t)|2 for t ≥ 𝜀 + 𝜀𝜏M , we obtain

|z(t)| ≤
√

pe−𝛿(t−s)|z(s)|, t ≥ s ≥ 𝜀 + 𝜀𝜏M .

In addition, from (B23) it follows that z(t) = e∫
t

s (Aav+ΔA(𝜃))d𝜃z(s), t ≥ s ≥ 𝜀 + 𝜀𝜏M leading to

|z(t)| = |e∫
t

s (Aav+ΔA(𝜃))d𝜃z(s)|, t ≥ s ≥ 𝜀 + 𝜀𝜏M . (B28)

By the norm’s definition, we obtain

||e∫
t

s (Aav+ΔA(𝜃))d𝜃|| = max
|z(s)|=1

|e∫
t

s (Aav+ΔA(𝜃))d𝜃z(s)| = max
|z(s)|=1

|z(t)| ≤
√

pe−𝛿(t−s)
, t ≥ s ≥ 𝜀 + 𝜀𝜏M ,

that is, (B18) holds.
Finally, by following the contradiction-based arguments in Reference 20, it can be proved that inequality (19) results

in (B1). This completes the proof.
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