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form of LMIs for the same values of W1 = W2 = I we obtained a
larger value of � = 0:00008.

Applying Theorem 3.1 and choosing W0 = W1 = I , we find from
(38)–(40)

U0(0) =
4 1

1 1
U(0) =

7 2

2 3

Q =
42:8234 2:6938

2:6938 0:6103

and for � = 0:12 (41a) and (41b) are feasible. Hence, the system is
asymptotically stable for essentially larger interval [0:88; 1:12] for a
wider class of delays (which may be not differentiable).

By descriptor approach of [3], the resulting interval is wider: � (t) 2
[0:73; 1:27]with� = 0:27. By descriptor approach the system is stable
and thus conditions of [3] can be applied for h � 254. In this example,
the conditions of [8] and of Theorem 3.1 give reliable results till h �
22, while for greater values of hmatrix B becomes ill-conditioned and
the resulting U0(0) is not symmetric.

IV. CONCLUSION

A new Lyapunov–Krasovskii technique is developed for stability of
linear system with uncertain time-varying delay in the case when the
nominal value of the delay is constant and nonzero: To a “complete”
nominal LKF, which is appropriate to the system with the nominal
value of the delay, terms are added that correspond to the perturbed
system and that vanish when the delay perturbation approaches 0. The
nominal “complete” LKF is considered, the derivative of which along
the trajectories of the nominal system depends on both, the state and
the state derivative. Given matricesW0 andW1, the stability sufficient
conditions are reduced to linear algebraic operations, definite integral
and to LMIs. The new method is applied to the case of multiple un-
certain delays with one nonsmall delay. Similarly to “complete” LKF
of [8], the new “complete” LKF can be applied in the case where the
nondelayed system is not asymptotically stable, but it leads to simpler
and less conservative conditions. Feasibility of the latter conditions is
guaranteed for small perturbations of the delay.

The conditions derived are conservative since one have to choose
first W0 and W1 in order to verify their feasibility. Less conservative
conditionsmay be derived by choosing _Vn to be a general negative–def-
inite quadratic form of x(t) and _x(t).
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Descriptor Discretized Lyapunov Functional Method:
Analysis and Design

Emilia Fridman

Abstract—Stability and state-feedback stabilization of linear systems
with uncertain coefficients and uncertain time-varying delays are consid-
ered. The system under consideration may be unstable without delay, but
it becomes asymptotically stable for positive values of the delay. A new
descriptor discretized Lyapunov–Krasovskii functional (LKF) method is
introduced, which combines the application of the complete LKF and the
discretization method of K. Gu with the descriptor model transformation.
For the first time, the new method allows to apply the discretized LKF
method to synthesis problems. Moreover, the analysis of systems with
polytopic time-invariant uncertainties is less restrictive by the new dis-
cretized method. Sufficient conditions for robust stability and stabilization
of uncertain neutral type systems are derived in terms of linear matrix
inequalities (LMIs) via input–output approach to stability. Numerical
examples illustrate the efficiency of the new method.

Index Terms—Linear matrix inequality (LMI), Lyapunov–Krasovskii
functional (LKF), robust stability, stabilization, time-delay.

I. INTRODUCTION

It is well known that the choice of an appropriate Lya-
punov–Krasovskii functional (LKF) is crucial for deriving stability
criteria and for obtaining a solution to various robust control problems
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(see, e.g., [4] and [16]). The general (complete) form of this functional
for systems with constant delays, which corresponds to necessary
and sufficient stability conditions, was used by many authors (see
[10], [14], [15], [17], and the references therein). The complete LKF
leads to a complicated system of partial differential equations. Special
(reduced) forms of LKFs lead to simpler finite dimensional conditions
in terms of LMIs (see, e.g., [1], [10], [18], and [19]). The necessary
condition for the application of the reduced LKFs is the asymptotic
stability of the nondelayed system. If the latter conditions does not
hold, the complete LKF should be applied.

LMI stability conditions via complete LKF and discretization were
introduced by K. Gu [8] and appeared to be very efficient, leading in
some examples to results close to analytical ones. The discretised LKF
method of Gu has been applied to robust stability analysis of linear
retarded and neutral type systems [9]–[11]. No design problems have
been solved by this method. This is due to some terms in the LKF
derivative condition, which arise after substitution of _x(t) by the right
hand side of the system. These terms are the products of the systemma-
trices with the different decision variables of LMIs. Thus in the case of
state-feedback design, the closed-loop system matrices depend on the
unknown controller gain and the resulting matrix inequalities contain
the products of the unknown gain with different decision variables.

Another method for robust stability of uncertain systems via com-
plete LKF has been introduced in [14], [15]: Given a LKF derivative
condition, construct LKF by solving a boundary value problem for
linear ordinary differential equation, and use the resulting LKF for ro-
bust stability analysis. This method is not easy to apply even to analysis
of single delay systems (due to the choice of the matrices in the LKF
derivative condition) and has difficulties in treating the multiple delay
case. Robust stability of linear systems with norm-bounded uncertain-
ties and uncertain time-varying delays have been also analyzed in the
frequency domain via input–output approach to stability [5], [10], [12],
[13]. Therefore, the analysis of systems with polytopic type uncertain-
ties and the synthesis are the main objectives for LKF-based methods.
Robust design via complete LKF is an important problem, which can
provide tools for such challenging topics as stabilizing of systems by
inserting delays in the feedback [10], [19], [20]. The latter problem
cannot be solved via reduced LKFs, since the nondelayed closed-loop
system is unstable.

In this note, we introduce a new descriptor discretized LKF
method, which combines the application of the complete LKF and
the discretization procedure of Gu [8] with the descriptor model
transformation [1]. In the descriptor approach both x(t) and _x(t)
are the state variables, which allows to avoid the mentioned above
terms in the LKF derivative condition (since _x(t) is not substituted
everywhere by the right hand part of the system). The new method can
be easily adopted to design problems. Moreover, due to the absence
of the mentioned above terms, the new method has advantages in
the case of systems with polytopic time-invariant uncertainties. In
this note, we develop the discretized LKF method for systems with
a single constant delay. Robust stability of neutral type systems with
uncertain time-varying delays from given segments is studied next
via application of input–output approach to stability [10], [12], [22].
State-feedback stabilization is solved. An example of using delay
for static output-feedback stabilization of uncertain double integrator
illustrates the advantages of the new method.
Notation: Throughout this note, the superscript “T ” stands for ma-

trix transposition,Rn denotes the n-dimensional Euclidean space with
vector norm k � k, Rn�m is the set of all n � m real matrices, and
the notation P > 0, for P 2 Rn�n means that P is symmetric
and positive definite. The symmetric elements of the symmetric ma-
trix will be denoted by �.L2 is the space of square integrable functions
v : [0;1)! Cn with the norm kvkL =

1

0
kv(t)k2dt

1=2
.

II. DESCRIPTOR DISCRETIZED LKF METHOD: CONSTANT DELAY

CASE
A. Descriptor Complete LKF

Consider a linear system

_x(t) = A0x(t) + A1x(t� r) (1)

where x(t) 2 Rn, r > 0 is constant time-delay, and A0 and A1 are
constant matrices.

We apply a complete LKF of the same form as in [10]

V (xt) =x
T (t)P1x(t) + 2xT (t)

0

�r

Q(�)x(t+ �)d�

+
0

�r

0

�r

x
T (t+ s)R(s; �)dsx(t+ �)d�

+
0

�r

x
T (t+ �)S(�)x(t+ �)d�; P1 > 0 (2)

where Q(�) 2 Rn�n, R(�; �) = RT (�; �) 2 Rn�n, S(�) =
ST (�) 2 Rn�n, and Q, R, and S are continuous matrix-functions.

The novelty of our complete LKF is in the derivative condition

_V (xt) � �"0kx(t)k
2 � "1k _x(t)k

2 (3)

where "0 > 0 and "1 > 0 are some constants. The second term in the
right-hand side of (3) has been taken to be zero in the existing literature
(see, e.g., [10], [14], and [15]), but it is exactly this term that leads to
simple design algorithms. Such derivative condition appears naturally
if one applies to (1) the descriptor model transformation [1]

E
d

dt

x(t)

_x(t)
=

0 I

A0 �I

x(t)

_x(t)
+

0

A1

x(t� r);

E =
I 0

0 0
(4)

and the descriptor type LKF, where the first term of (2) is represented
in the form

x
T (t)P1x(t) =

x(t)

_x(t)

T

EP
x(t)

_x(t)
P =

P1 0

P2 P3

: (5)

The existence of descriptor complete LKF (with S � 0) is a necessary
and sufficient condition for the asymptotic stability of (1) [3].

Differentiating LKF (2) along (1), we have

_V (xt) = 2 _xT (t) P1x(t) +
0

�r

Q(�)x(t+ �)d�

+ 2xT (t)
0

�r

Q(�) _x(t+ �)d�

+ 2
0

�r

0

�r

_xT (t+ s)R(s; �)dsx(t+ �)d�

+ 2
0

�r

_xT (t+ �)S(�)x(t+ �)d�: (6)

Integrating by parts in (6) and representing the first term of (6) in the
form of (7), as shown at the bottom of the next page, we find

_V (xt) = �
T�� + 2 _xT (t)

0

�r

Q(�)x(t+ �)d�

�
0

�r

0

�r

x
T (t+ �)

@

@�
R(�; �) +

@

@�
R(�; �)

� x(t+ �)d�d�

+ 2xT (t)
0

�r

[� _Q(�) +R(0; �)]x(t+ �)d�

� 2xT (t� r)
0

�r

R(�r; �)x(t+ �)d�

�
0

�r

x
T (t+ �) _S(�)x(t+ �)d� (8)

where (9a) and (9b), as shown at the bottom of the next page, hold.
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B. Discretization and Stability Criterion

We apply the discretization of Gu [8]. Divide the delay interval
[�r; 0] into N segments [�p; �p�1], p = 1; . . . ; N of equal length
h = r=N , where �p = �ph. This divides the square [�r; 0]� [�r; 0]
into N �N small squares [�p; �p�1] � [�q; �q�1]. Each small square
is further divided into two triangles.

The continuous matrix functions Q(�) and S(�) are chosen to
be linear within each segment and the continuous matrix function
R(�; �) is chosen to be linear within each triangular, as shown in (10)
at the bottom of the page. Thus, the LKF is completely determined by
P1; Qp; Sp; Rpq; p; q = 0; 1; . . . ; N .

The LKF condition V (xt) � "kx(t)k2, " > 0 is satisfied ([10, p.
185]) if Sp > 0, p = 0; 1; . . . ; N and

P1 ~Q

� ~R+ ~S
> 0; (11)

where

~Q = [Q0 Q1 . . .QN ] ~S = diag
1

h
S0;

1

h
S1; . . . ;

1

h
SN

~R =

R00 R01 . . . R0N

R10 R11 . . . R1N

. . . . . . . . . . . .

RN0 RN1 . . . RNN

: (12)

To derive the LKF derivative condition, we note that

_S(�) =
1

h
(Sp�1 � Sp)

_Q(�) =
1

h
(Qp�1 �Qp)

@

@�
R(�; �) +

@

@�
R(�; �) =

1

h
(Rp�1;q�1 �Rpq): (13)

Thus

2 _xT (t)
0

�r

Q(�)x(t+ �)d�

= 2 _xT (t)

N

p=1

h
1

0

[(1� �)Qp + �Qp�1]x

� (t+ �p + �h)d�

= 2 _xT (t)

N

p=1

h
1

0

(1� �) Qs
p +Qa

p + � Qs
p �Qa

p x

� (t+ �p + �h)d� (14)

where Qs
p = (Qp�1 +Qp)=2,Qa

p = (Qp �Qp�1)=2.
Equations (8), (9), and (13) imply (cf. [10, (5.146)–(5.164)])

_V (xt) = �T ��� �
1

0

�T (�)Sd�(�)d�

�
1

0

1

0

�T (�)Rd�(�)d� d�

+ 2�T
1

0

[Ds + (1� 2�)Da]�(�)d� (15)

where � is given by (9a) and (16a)–(16i), as shown at the bottom of the
next page.

Applying [10, Prop. 5.21] to (15) we conclude that _V (xt) < 0 if the
following LMI holds:

�� Ds Da

� �Rd � Sd 0

� � �3Sd

< 0: (17)

Moreover, (17) implies that S0 > S1 > � � �SN > 0 (see [10, Prop.
5.22]). Hence, (17) guarantees V (xt) � "kx(t)k2, " > 0. We thus
proved

Theorem 2.1: System (1) is asymptotically stable if there exist n�
n matrices P1 > 0, P2, P3, Sp = STp , Qp, Rpq = RT

qp, p =
0; 1; . . . ; N , q = 0; 1; . . . ; N such that LMIs (11) and (17) are sat-
isfied with notations defined in (5), (12), and (16).

Remark 2.1: The descriptor complete LKF leads to LMIs, which
do not contain the terms AT

0 Qp and AT
1Qp, p = 1; . . . ; N . Such

terms appear inDs andDa of discretized LKF method of Gu (see [10,
(5.159)–(5.164)]).

• The latter terms essentially complicate the design procedure.
• In the case of system with A0 and A1 from the uncertain

time-invariant polytope


 =

M

j=1

fj
j for some 0 � fj � 1

M

j=1

fj = 1


j = [A
(j)
0 A

(j)
1 ] (18)

by the descriptor discretized method one have to solve the
LMIs (11) and (17) simultaneously for all the M vertices

j , applying the same matrices P2 and P3 and solving for
the M vertices. By the method of Gu not only P1, but also
Qp, p = 1; . . . ; N should be common for theM vertices.

2 _xT (t)P1x(t) = 2xT (t)P1 _x(t) = 2
x(t)

_x(t)

T

P TE
d

dt

x(t)

_x(t)

= 2
x(t)

_x(t)

T

P T 0 I

A0 �I

x(t)

_x(t)
+

0

A1
x(t� r) (7)

�T = [ xT (t) _xT (t) xT (t� r) ] (9a)

� =
P T 0 I

A0 �I
+

0 AT
0

I �I
P +

Q(0) +QT (0) + S(0) 0

0 0
P T 0

A1
�

Q(�r)

0
� �S(�r)

(9b)

Q(�p + �h) = (1� �)Qp + �Qp�1; S(�p + �h) = (1� �)Sp + �Sp�1; � 2 [0; 1];

R(�p + �h; �q + �h) =
(1� �)Rpq + �Rp�1;q�1 + (�� �)Rp�1;q; � � �,
(1� �)Rpq + �Rp�1;q�1 + (� � �)Rp;q�1; � < �

(10)
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Remark 2.2: Stability of linear system with multiple delays

_x(t) = A0x(t) +

2

i=1

Aix(t� ri); ri > 0

may be analyzed either via application of the corresponding complete
LKF (see [10, (7.30)]) or by the mixed complete-descriptor LKF

V (xt) =x
T (t)P1x(t) + 2xT (t)

0

�r

Q(�)x(t+ �)d�

+
0

�r

0

�r

x
T (t+ s)R(s; �)dsx(t+ �)d�

+
0

�r

x
T (t+ �)S(�)x(t+ �)d�

+
0

�r

t

t+�

_xT (s)R(2) _x(s)dsd�

+
t

t�r

x
T (s)S(2)x(s)ds ;

R
(2)

> 0; S
(2)

> 0; P1 > 0: (19)

The necessary condition for the application of the mixed LKF is the
asymptotic stability of the system with r2 = 0

_x(t) = (A0 +A2)x(t) + A1x(t� r1):

The case of multiple delays ri > 0 will not be considered in this note.
Example 2.1: Consider (1) withA0 andA1 from the uncertain poly-

tope (18) with the vertices given by

A
(1)
0 =

0 1

�2 0:1
; A

(1)
1 =

0 0

1 0
;

A
(2)
0 =

0 1

�2 �0:1
; A

(2)
1 =

0 0

2 0
: (20)

The system with the matrices from the first vertex has been considered
in ([10, pp. 288–289]). This system is unstable for r = 0. The system
in the second vertex is not asymptotically stable for r = 0. Therefore,
the reduced-order LKFs are not applicable in each vertex. We find es-
timates on the stability interval r 2 [rmin; rmax] for robust asymptotic
stability of (20) inside the polytope
 by applying two discretized LKF
methods: The method of Gu [9] and the descriptor method of Theorem

TABLE I
EXAMPLE 2.1

2.1 (see Remark 2.1). The resulting estimates by the descriptor method
are less restrictive (see Table I).

III. STABILITY OF UNCERTAIN NEUTRAL TYPE SYSTEMS

We consider the following linear system with uncertain coefficients
and uncertain delays:

_x(t)� C _x(t� g)

= (A0 +H�E0)x(t) + (A1 +H�E1)x(t� � (t)) (21)

where x(t) 2 Rn is the system state, Ai, Ej i = 0; 1; C and H are
constant matrices of appropriate dimensions and�(t) is a time-varying
uncertain n � n matrix that satisfies

�T (t)�(t) � In: (22)

The uncertain delay � (t) is piecewise-continuous function of the
form

� (t) = r + �(t); r > 0; j�(t)j � � � r (23)

with the known upper bound �.
Equation (21) is a neutral type system. Our results will be indepen-

dent on g and dependent on r and �. For e.g., g = � (t) = r one can
apply the results with � ! 0.

To guarantee the asymptotic stability of the difference equation
x(t) � Cx(t � g) = 0 we assume that the eigenvalues of C are
inside the unit circle. Similarly to the stability conditions via reduced
descriptor LKF [1], the feasibility of our LMIs for stability of (21)
will guarantee the stability of the difference equation.

Representing

x(t� � (t)) = x(t� r)�
t�r

t�r��(t)

_x(s)ds

�
T (�) = [xT (t� h+ �h) xT (t� 2h+ �h) . . . xT (t�Nh+ �h)] (16a)

�� =
P T 0 I

A0 �I
+

0 AT
0

I �I
P +

Q0 +QT
0 + S0 0

0 0
P T 0

A1
�

QN

0
� �SN

(16b)

Sd =diagfS0 � S1; S1 � S2; . . . ; SN�1 � SNg (16c)

Rd =

Rd11 Rd12 . . . Rd1N

Rd21 Rd22 . . . Rd2N

. . . . . . . . . . . .

RdN1 RdN2 . . . RdNN

(16d)

Rdpq =h(Rp�1;q�1 �Rpq) (16e)

D
s = [Ds

1 Ds
2 . . . Ds

N ] (16f)

D
a = [Da

1 Da
2 . . . Da

N ] (16g)

D
s
p =

(R0;p�1 +R0p)� (Qp�1 �Qp)
h

2
(Qp�1 +Qp)

�h

2
(RN;p�1 +RNp)

(16h)

D
a
p =

�h

2
(R0;p�1 �R0p)

�h

2
(Qp�1 �Qp)

h

2
(RN;p�1 �RNp)

(16i)
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and applying the input–output approach (see [10] and the references
therein), we consider the following forward system:

_x(t) =A0x(t) + A1x(t� r) + �A1v1(t)

+ Cv2(t) +Hv3(t) (24a)

y1(t) = _x(t) (24b)

y2(t) = _x(t) (24c)

y3(t) =E0x(t) +E1x(t� r) + �E1v1(t) (24d)

with the feedback of

v1(t) = � 1p
2�

�r

�r��(t)

y1(t+ s)ds;

v2(t) = y2(t� g);

v3(t) =�y3(t): (25)

Note that in the case of retarded system with C = 0 the input–output
model (24), (25) has been introduced in [5].

Let vT = [ vT1 vT2 vT3 ], yT = [ yT1 yT2 yT3 ]. Assume that
yi(t) = 0, 8t � 0, i = 1; 2; 3. The following holds for n�n matrices
Ra > 0, U > 0 and a scalar � > 0 [5], [10]:

k
p
Rav1kL �

p
2k
p
Ray1kL

k
p
Uv2kL = k

p
Uy2kL

k�v3kL �k�y3kL : (26)

Let V be LKF (2). Due to (26), the following condition along (24):

W _V (t) + 2�yT1 (t)Ray1(t) + y
T
2 (t)Uy2(t) + �y

T
3 (t)y3(t)

� �v
T
1 (t)Rav1(t)� v

T
2 (t)Uv2(t)� �v

T
3 (t)v3(t)

< � "(kx(t)k2 + k _x(t)k2 + kv(t)k2); " > 0 (27)

guarantees the asymptotic stability of (21) [10].
Differentiating V (xt) along the trajectories of (24) we obtain that _V

is given by (6), where

2 _xT (t)P1x(t) = 2
x(t)

_x(t)

T

� P
T 0 I

A0 �I
x(t)

_x(t)

+
0

A1
x(t� r) + �

0

A1
v1(t)

+
0

C
v2(t) +

0

H
v3(t) : (28)

Therefore, choosing Q, S and R to be piecewise-linear of the form
(10), we find similarly to the previous section that

W = �
T
v �v�v �

1

0

�
T (�)Sd�(�)d�

�
1

0

1

0

�
T (�)Rd�(�)d� d�

+ 2�T
1

0

[Ds + (1� 2�)Da]�(�)hd� (29)

with the notations defined in (16) and

�
T
v = [ xT (t) _xT (t) xT (t� r) vT1 (t) vT2 (t) vT3 (t) ]

�v =

��
�P T 0

A1

0

P T 0

C
0

P T 0

H
0

� ��Ra 0 0

� � �U 0

� � � ��In

+ �

ET
0

0

ET
1

�ET
1

0

0

ET
0

0

ET
1

�ET
1

0

0

T

+ 2� [ 0 In 0 0 0 0 ]T

�Ra [ 0 In 0 0 0 0 ]

+ [ 0 In 0 0 0 0 ]T U [ 0 In 0 0 0 0 ] :

Applying [10, Prop. 5.21] to (29) and Schur complements to the last
three terms of �v we conclude that _V (xt) < 0 if the LMI shown in
(30) at the bottom of the page holds.

Thus, we obtained the following.
Theorem 3.1: System (21) is asymptotically stable for all delays sat-

isfying (23), if there existn�nmatrices 0 < P1; P2; P3,Ra; U Sp =
ST
p , Qp, Rpq = RT

qp, p = 0; 1; . . . ; N , q = 0; 1; . . . ; N and a scalar
� > 0 such that LMIs (11), (30) are satisfied with notations defined in
(5), (12) and (16b)–(16i).

Remark 3.1: In the case when the delay � (t) of the form (23) satis-
fies the additional constraint _� (t) � 1, the following inequality holds
[5]:

k
p
Rau1kL � k

p
Ray1kL

which leads to LMIs (11), (30), where in the latter LMI the coefficient
2, multiplying �Ra, should be deleted.

�� Ds Da

�P T
2 A1

�P T
3 A1

0

P T
2 C

P T
3 C

0

0

2�Ra

0

0

U

0

P T
2 H

P T
3 H

0

�ET
0

0

�ET
1

� �Rd � Sd 0 0 0 0 0 0 0

� � �3Sd 0 0 0 0 0 0

� � � ��Ra 0 0 0 0 ��ET
1

� � � � �U 0 0 0 0

� � � � � �2�Ra 0 0 0

� � � � � � �U 0 0

� � � � � � � ��In 0

� � � � � � � � ��In

< 0 (30)
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Remark 3.2: Consider (21) with H = 0 and with A0, A1 and C
from the uncertain time-invariant polytope given by (18) where theM
vertices of the polytope are described by 
j = [A

(j)
0 A

(j)
1 C(j) ].

By the descriptor discretized method one have to solve the LMIs (11),
(30) (with the deleted sixth and ninth rows and columns) simultane-
ously for all the M vertices, applying the same matrices P2 and P3

and solving for the M vertices only.

IV. ROBUST STABILIZATION

Given the following system:

_x(t)� C _x(t� g) = (A0 +H�E0)x(t)

+(A1 +H�E1)x(t� � (t)) + (B +H�E2)u(t) (31)

where x(t) 2 Rn is the system state vector, u(t) 2 Rm is the control
input, Ai; C;H;B;Ei; E2; i = 0; 1 are constant matrices, time-delay
� (t) is a piecewise-continuous function, satisfying (23).We are looking
for a stabilizing state-feedback

u(t) = K0x(t) +K1x(t� � (t)): (32)

Note that for K1 = 0 the above state-feedback is instantaneous. For
K0 = 0 it is a delayed controller. The closed-loop system (31), (32)
has the form

_x(t)� C _x(t� g) = (A0 +BK0 +H�(E0 +E2K0))x(t)

+(A1 +BK1 +H�(E1 +E2K1))x(t� � (t)): (33)

Following [21] we choose P3 = �P2, � 2 R, where � is a tuning
scalar parameter (which may be restrictive). Note that P2 is nonsin-
gular due to the fact that the only matrix which can be negative def-
inite in the second block on the diagonal of (30) is �� P2 + P T

2 .
Defining (34), as shown at the bottom of the page, we multiply (11) by
diagf �P ; . . . ; �Pg and its transpose, from the right and the left, respec-
tively. Multiplying further (30) by diagf �P ; . . . ; �P ; ��In; ��Ing and its
transpose, from the right and the left we obtain the following.

Theorem 4.1: Consider (31) with a piecewise-continuous delay �
given by (23). Under the state-feedback law (32) the system is asymp-
totically stable if for some tuning scalar parameter � there exist n� n

matrices 0 < �P1, �P , �Ra, �U , �Sp = �STp , �Qp, �Rpq = �RT
qp, p =

0; 1; . . . ; N , q = 0; 1; . . . ; N , a scalar �� > 0 and m � n-matrices
Yi, i = 0, 1 such that the LMIs, shown in (35) and (36) at the bottom
of the page, are satisfied. where (37), as shown at the bottom of the
page, holds, and where ~R; ~Q; ~S andDs,Da,Rd, Sd are given by (12)
and (16) correspondingly with bars over Rpq , Qp, Sp, p = 1; . . . ; N ,
q = 1; . . . ; N .

The state-feedback gains are given by Ki = Yi �P
�1, i = 0; 1. To

design the state-feedback withKi = 0 for some i = 0, 1, one have to
set Yi = 0 in (36).

Remark 4.1: Consider (31) with H = 0 and with A0, A1,
C and B from the uncertainty polytope given by (18), where

j = [A

(j)
0 A

(j)
1 C(j) B(j) ]. To stabilize the system inside the

polytope one have to solve LMIs (35) and (36) simultaneously for all
theM vertices, applying the same matrices �P and Yi, i = 0; 1.

�P =P
�1
2 ;

[ �P1
�Qp

�Sp �Rpq
�Ra

�U ] = �P T [P1
�P Qp

�P Sp �P Rpq
�P Ra

�P U �P ]

Yi =Ki
�P ; i = 0; 1; p = 1; . . . ; N;

q =1; . . . ; N; �� =
1

�
(34)

�P1
~Q

� ~R+ ~S
> 0 (35)

�̂ Ds Da �

A1
�P +BY1

�(A1
�P +BY1)

0

C �P

�C �P

0

0

2� �Ra

0

0
�U

0

��H

���H

0

�P TET
0 + Y T

0 E
T
2

0
�P TET

1 + Y T
1 E

T
2

� �Rd � Sd 0 0 0 0 0 0 0

� � �3Sd 0 0 0 0 0 0

� � � �� �Ra 0 0 0 0 � �PET
1

� � � � � �U 0 0 0 0

� � � � � �2� �Ra 0 0 0

� � � � � � � �U 0 0

� � � � � � � ���In 0

� � � � � � � � ���In

< 0 (36)

�̂ =

A0
�P + �P TAT

0 +BY0 + Y T
0 B

T + �Q0 + �QT
0 + �S0 �P1 � �P + � �P TAT

0 + �Y T
0 B

T A1
�P +BY1 � �QN

� �� �P � � �P T �(A1
�P +BY1)

� � � �SN

(37)
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Example 4.1: [18] We address the problem of finding a state-feed-
back controller for (31) with known system matrices (H = 0), where

A0 =
0 0

0 1
; A1 =

�1 �1

0 �0:9
; B =

0

1
: (38)

We compare the results obtained by application of Theorem 4.1with the
existing results via reduced LKFs. Even forN = 1 the new results are
essentially less conservative.We give below the new results forN = 1,
noting that for N > 1 some further improvement can be achieved.

In the case of retarded-type system (C = 0) and constant
delay � (t) � r it was shown in [7] via reduced descriptor LKF
that the system is stabilizable by the instantaneous state-feedback
u(t) = K0x(t) for r 2 [0; 3:2]. By Theorem 4.1, where N = 1 and
� = 100, we find that the system is stabilizable for r 2 [0; 1500].
For higher values of r the controller becomes high-gain. Thus, for
r = 1500 the resulting gain isK0 = �109 � [1:6694 1:6696].

In the case of neutral type system with C = diagf�0:1; �0:2g
and constant delay � (t) � r it was found in [4] by reduced descriptor
LKF that the system is stabilizable by u(t) = K0x(t) for r � 1:2.
By applying Theorem 4.1 with N = 1 and � = 100 we find that the
system is stabilizable by u(t) = K0x(t) for r � 768.

Consider next the time-varying delay � (t) = r + �(t) and C =
0. For r = 2, it was found in [2] that the system is stabilizable by
u(t) = K0x(t) for all j�(t)j � 0:2, whereK0 = �[74:8 105:5]. Ap-
plying Theorem 4.1 with r = 2, N = 1 and � = 1, we find that
the system is stabilizable for all delays from a wider segment with
j�(t)j � 0:22 and the resulting controller has a lower gain: u(t) =
�[20:5108 34:6753]x(t). Note that the controllers obtained by the re-
duced-order descriptor LKF stabilizes the system for all r � 2, while
the controller designed by the descriptor discretized method stabilizes
the system for r = 2 only.

Example 4.2: Using delay for robust static output-feedback stabi-
lization. Given the following system:

_x(t) = A0x(t) +Bu(t); y(t) = [1 0]x(t); x(t) 2 R
2 (39)

with B = [0 1]T and A0 from the uncertain polytope (18), where


j =A
(j)
0 ; j = 1; 2

A
(1)
0 =

0 1

0 0
A

(2)
0 =

0 1

�1 0:1
: (40)

The system with A0 = A
(1)
0 is a double integrator. The system with

A0 = A
(2)
0 has been considered in ([10, p. 156]). Both systems

in the vertices are known to be not stabilizable by the nondelayed
output-feedback u(t) = K0y(t). Following [10], [19], and [20], we
are looking for a stabilizing time-delayed output-feedback

u(t) = K0y(t) +K1y(t� r); r > 0: (41)

The closed-loop system (39), (41) has the form

_x(t) = (A0 +BK0[1 0])x(t) +BK1[1 0]x(t� r): (42)

Since for r = 0 (42) is unstable, the existing LKF-based design
methods are not applicable.

Differently from the state-feedback case (cf. (34)), we have here
Yi = Ki[1 0] �P . Therefore, we assume that for some tuning param-
eter �1

�P =
P11 �1P11

P21 P22
; Yi = [Y1i �1Y1i]; i = 0; 1 (43)

where Y1i = KiP11. We thus verify LMIs of Theorem 4.1 simultane-
ously for two vertices, applying the samematrices �P and Yi of the form
(43). The output-feedback gains are given byKi = Y1iP

�1
11 , i = 0; 1.

The resulting LMIs have two tuning parameters � and �1.
Choosing (for simplicity) N = 1 and � = �1 = 1 we find that the

latter LMIs are feasible (and thus the uncertain system is robustly sta-
bilizable by the feedback of (41)) for all r 2 [0:1; 2:5]. Thus, for r = 1
the resulting gains are given by K0 = �0:7947,K1 = 0:3067. Con-
sidering further the closed-loop system (42) with the previous gains
and unknown r > 0, we verify for this system the conditions of The-
orem 2.1 (and Remark 2.1) with N = 3. We find that the feedback
u(t) = �0:7947y(t) + 0:3067y(t� r) robustly stabilizes (39), (40)
for all r 2 [0:34; 1:82].

V. CONCLUSION

Stability and state-feedback stabilization of linear neutral type sys-
tems with uncertain time-varying delays from given segments and ei-
ther norm-bounded or polytopic type uncertainties are studied. The
system under consideration may be unstable without delay, but it be-
comes asymptotically stable for positive values of the delay. Such sys-
tems can not be treated via the reduced LKFs (delay-independent or
delay-dependent, corresponding to different model transformations).
The new discretised LKF method is introduced, which combines the
discretized LKF method of Gu with the descriptor model transforma-
tion. The descriptor approach allows to solve for the first time the syn-
thesis problems via discretized LKF. The new method essentially im-
proves the existing design results. It leads to less restrictive results for
robust stability of time-delay systems with polytopic type uncertain-
ties.

The introduced method provide new tools for the important design
problems, such as stabilization of systems by using delays in the feed-
back, where the existing LMI methods are not applicable (since the
nondelayed closed-loop system is not stable). A simple example of
static output-feedback stabilization of uncertain second-order system
by using delay is given in this note. Stabilization of more general sys-
tems by using delays as well as different robust control problems for
time-delay systems are the topics for the future research.
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A Note on Spectral Conditions for Positive Realness
of Single-Input–Single-Output Systems With

Strictly Proper Transfer Functions

Ezra Zeheb and Robert Shorten

Abstract—Necessary and sufficient conditions for strict positive realness
and positive realness of strictly proper functions are derived. The condi-
tions are expressed in terms of eigenvalues of the state matrices representa-
tion of the system. Previous results rendered conditions which were signif-
icantly more complex than those for proper (but not strictly proper) func-
tions. The present conditions for strictly proper functions are simpler than
the ones for proper functions, which is consistent with intuition in this case.
Illustrative numerical examples are provided.

Index Terms—Circle criterion, eigenvalues locations, positive real (PR)
conditions, state–space representation, time varying systems.

I. INTRODUCTION

The concept of positive realness (PR) and strict positive realness
(SPR) of a rational function appears frequently in various aspects of
system theory. In particular, in control theory, positive realness plays
a central role in adaptive control [1], and in stability theory [2], [3].
Similarly, the passivity of electrical networks is also strongly related
to positive realness, as are other fundamental concepts in circuit and
VLSI design [4].

Roughly speaking, checking whether a dynamic system is positive
real amounts to testing whether a certain matrix valued function of a
frequency variable is positive definite for all frequencies. Exhaustive
numerical checking of such matrices for all frequencies is expensive
for large dimensional systems. Consequently, several authors over the
past two decades have sought to derive easily verifiable conditions for
checking whether a given transfer function is PR; see [4]–[6] and the
references therein for a review of some of this work. Recently, compact
conditions for checking whether a single-input–single-output (SISO)
transfer function is PR (or SPR) were derived [7]. These conditions,
which amount to checking whether or not a n-dimensional matrix has
an eigenvalue on the negative real axis, can be easily applied to deter-
mine the strict positive realness of n-dimensional SISO systems that
are described in state–space form. Unfortunately, while the conditions
derived in [7] for testing strict positive realness and positive realness
of a proper transfer function are simple and transparent, and also pro-
vide new insights into the meaning of strict positive realness, the sister
conditions for checking positive realness of a strictly proper transfer
function are more involved and rather less transparent. Our objective
in this paper is to revisit this problem and to derive more satisfactory
conditions for the case of strictly proper transfer functions.

II. DEFINITIONS

In the remainder of this note we use the following common defi-
nitions for PR and SPR, which appear in almost any textbook on the
synthesis of passive networks.
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