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a b s t r a c t

We treat input-to-state stability-like (ISS-like) estimates for perturbed linear continuous-time sys-
tems with multiple time-scales, under the assumption that the averaged, unperturbed, system is
exponentially stable. Such systems contain rapidly-varying, piecewise continuous and almost periodic
coefficients with small parameters (time-scales). Our method relies on a novel delay-free system
transformation in conjunction with a new system presentation, where the rapidly-varying coefficients
are scalars that have zero average. We employ time-varying Lyapunov functions for ISS-like analysis.
The analysis yields LMI conditions, leading to explicit bounds on the small parameters, decay rate and
ISS-like gains. The novel system presentation plays a crucial role in the ISS-like analysis by allowing
to derive essentially less conservative upper bounds on terms containing the small parameters. The
obtained LMIs are accompanied by suitable feasibility guarantees. We further extend our approach to
rapidly-varying systems subject to either discrete (constant/fast-varying) or distributed delays, where
our approach decouples the effects of the delay and small parameters on the stability of the system, and
leads to LMI conditions for stability of systems with non-small delays. Extensive numerical examples
show that, compared to the existing results, our approach essentially enlarges the small parameter
and delay bounds for which the ISS-like/stability property of the original system is preserved.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

Systems with almost periodic signals and/or excitations are
entral to physics and engineering. Applications of such sys-
ems include vibrational control (Cheng, Tan, & Mareels, 2018),
ower systems (Sandberg & Möllerstedt, 2001) and time-delay
ystems (Xie & Lam, 2018) (see also the references therein). Such
ystems often include components evolving over multiple time-
cales (see e.g. Hek (2010) for applications to systems biology).
ence, it is not surprising that perturbation theory has played
n essential part in the analysis of systems with rapidly time-
arying coefficients and led to important results (Bogoliubov &
itropolskij, 1961; Khalil, 2001),
The method of averaging is an important perturbation-based

echnique for the study of stability of systems with oscillatory
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control inputs (Bullo, 2002; Krstić & Wang, 2000; Meerkov, 1980)
and switched systems (Caiazzo, Fridman, & Yang, 2023; Mostacci-
uolo, Trenn, & Vasca, 2022). The fundamental idea behind asymp-
totic averaging is that stability of the first-order averaged system
guarantees stability of the original rapidly-varying system for
small enough values of the time-scale parameter (see e.g. Mur-
dock (1999)). However, it is often the case that asymptotic av-
eraging provides only an existence result, without an efficient
and explicit bound on the small parameter for which the stabil-
ity of the original system is preserved. For singularly perturbed
systems, such bounds were derived in, e.g., Kokotovic and Khalil
(1986) and Fridman (2002) via a direct Lyapunov approach.

Recently, the first efficient quantitative methods for stability
by averaging were suggested. A constructive time-delay approach
to periodic averaging of a system with a single rapid time-scale
was suggested in Fridman and Zhang (2020). The approach relies
on backward integration of the system, which yields a neutral-
type system presentation, where the delay magnitude is equal
to the time-scale parameter. The stability and ISS of the delayed
system were shown to guarantee the stability and ISS of the
original system. Stability of the delayed system was analyzed via
a direct Lyapunov–Krasovskii method, leading to LMI conditions
which yield an efficient upper bound on the small parameter that
preserves the stability of the original system. This method is also
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ell suited for averaging of systems with time-varying delays,
here the delay magnitude is of equal order to the time-scale pa-
ameter. These results were extended to L2-gain analysis for pe-
iodic averaging and to stochastic systems in Zhang and Fridman
2022). However, the results of Fridman and Zhang (2020) were
airly conservative. Moreover, the Lyapunov–Krasovskii analysis
or systems without delays was valid only for times greater than
he small parameter. Hence, additional solution bounds on the
irst delay interval, where the time-delay model is invalid, are
eeded to complete the Lypunov analysis for times larger than
he small parameter. Finally, the results of Fridman and Zhang
2020) were confined to one time-scale. The objective of the
resent paper is to present simpler analysis tools (i.e., Lyapunov
unctions that do not require additional bounding of solutions
n the first interval, having length equal to the small parameter)
ith significantly improved results, as well as the extension to
ulti-scale systems.
We study ISS-like property of rapidly time-varying systems

ith multiple time-scales, under the assumption that the aver-
ges system satisfies an ISS-like property. We employ a novel
resentation of the system, in conjunction with a novel delay-
ree transformation. The new presentation relies on two key
ngredients: first, inspired by a similar presentation for systems
ith distributed delays and variable kernels (Solomon & Fridman,
013), we present the rapidly-varying system matrices as linear
ombinations of constant matrices with rapidly-varying scalar
oefficients. Second, we force the latter coefficients to have zero
verages. We then employ a transformation leading to a system
ith stable nominal (averaged) part and time-varying perturba-
ions of the order of the small parameters. The ISS-like property
f the transformed system guarantees the ISS-like property of the
riginal system. The ISS-like property of the transformed system
s studied by employing time-varying Lyapunov functions and
ight bounds on the scalar time-varying coefficients. The resulting
MIs are backed by theoretical feasibility guarantees.
We further extend the presented approach to rapidly-varying

ystems subject to delays. Classical results on averaging of time-
elay systems can be found in Hale and Lunel (2002) and Lehman
nd Weibel (1999), whereas stability of linear systems with pe-
iodic coefficients and subject to constant or periodic delays was
nalyzed numerically in Butcher and Mann (2009) and Insperger
nd Stépán (2011). An eigenvalue-based method for stability
nalysis of such systems was presented in Michiels and Niculescu
2014). Complete Lyapunov–Krasovskii functionals were further
mployed for stability analysis of linear systems with continuous
eriodic coefficients and constant delays in Gomez, Ochoa, and
ondié (2016) and Letyagina and Zhabko (2009). Results on strict
yapunov functions for rapidly time-varying nonlinear systems
ere presented in Mazenc and Malisoff (2017), Mazenc, Malisoff,
nd De Queiroz (2006). For rapidly-varying systems subject to
ast-varying delays, the constructive approach in Fridman and
hang (2020) is suitable for stability analysis provided the delay
ound is of the order of the small parameter. The time-delay
o averaging was recently extended to systems with non-small
elays (Caiazzo et al., 2023), where the delayed state was multi-
lied by the constant matrix. Distributed delays with a constant
ernel were treated in Griñó, Ortega, Fridman, Zhang, and Mazenc
2021) in the case of scalar systems. Our novel system presenta-
ion, together with the delay-free transformation lead to a unified
onstructive methodology for stability analysis of rapidly-varying
ystems subject to either discrete (i.e., constant/fast-varying) or
istributed delays. Our approach decouples the effects of the
elay and small parameters on the stability of the system and
eads to LMI conditions for stability of systems with non-small
elays, relative to the time-scale parameter. Extensive numeri-

al examples show that, compared to the existing results, our

2

pproach significantly enlarges the small parameter and delay
ounds for which the ISS-like/stability property of the original
ystem is preserved.
Initial results on averaging via a delay free transformation,

ithout the new system presentation were presented in IFAC
C 2023 (Katz, Mazenc, & Fridman, 2023), where results in

he numerical examples are significantly more conservative than
hose of Fridman and Zhang (2020). Preliminary results with
ew system presentation confined to non-delayed systems were
resented in the 62nd IEEE CDC conference 2023 (Katz, Fridman,
Mazenc, 2023).

otations. Throughout the paper Rn denotes the n-dimensional
uclidean space with the vector norm |·|, Rn×m is the set of all

n × m real matrices with the induced matrix norm ∥·∥. We also
denote Z+ = {0, 1, 2, . . . } and R≥0 = [0,∞). The superscript
⊤ denotes matrix transposition, and the notation P > 0, for
P ∈ Rn×n means that P is symmetric and positive definite. The
symmetric elements of the symmetric matrix are denoted by ∗.
For 0 < P ∈ Rn×n and x ∈ Rn, we write |x|2P = x⊤Px. ⊗ denotes
the Kronecker product. The standard lexicographic order on Rn

is denoted by ≤lex. We denote by W ([−h, 0]) the Banach space
of a.e differentiable functions φ : [−h, 0] → Rn with square
integrable derivative. The norm on W ([−h, 0]) is given by the
norm ∥φ∥W = ∥φ∥W +

φ′

L2 .

2. ISS-like estimates of rapidly time-varying systems

2.1. Problem formulation

The recent paper (Fridman & Zhang, 2020) considered the
system with rapidly-varying coefficients

ẋ(t) = A
( t
ϵ

)
x(t) + B

( t
ϵ

)
d(t), t ≥ 0 (2.1)

here x(t) ∈ Rn for t ≥ 0, ϵ > 0 is a small parameter defining
rapid time-scale, d is a piecewise continuous disturbance and

A : R → Rn×n and B : R → Rn×nd are piecewise continuous
matrix functions, which are norm-bounded uniformly for t ∈

[0,∞). Under the assumption that there exist 0 < T and matrices
Aav, Bav , such that

T−1
∫ t+T
t B(s)ds = Bav +∆B(t),

T−1
∫ t+T
t A(s)ds = Aav +∆A(t), ∀t ∈ R

(2.2)

ith ∆A,∆B : R → Rn×n sufficiently small in norm, Fridman
nd Zhang (2020) proposed a novel time-delay transformation,
eading to quantitative estimate on ϵ for which ISS of (2.1) is
reserved.
Here we consider the generalized system with scalar time-

arying zero average coefficients (see Assumption 1 below)

ẋ(t) =

[
Aav +

∑N
i=1 ai

(
t
ϵi

)
Ai

]
x(t)

+

[
Bav +

∑Nd
i=1 bi

(
t
ϵd,i

)
Bi

]
d(t), t ≥ 0

(2.3)

here x(t) ∈ Rn for t ≥ 0, d ∈ C1([0,∞)), N,Nd ∈ N,
ϵi}

N
i=1 and

{
ϵd,i
}Nd
i=1 are positive small parameters, {Ai}

N
i=1 ⊆

Rn×n, {Bi}
Nd
i=1 ⊆ Rn×nd are constant matrices, and {ai}Ni=1, {bi}

Nd
i=1

are piecewise continuous scalar functions which are uniformly
bounded on [0,∞). The arguments of the scalar functions may
depend on independent time-scales. The matrices in (2.1) can be
expanded in any two bases of Rn×n and Rn×nd , thereby yielding
the presentation (2.3) with a single time-scale.

For simplicity of the presentation, we will proceed with the
case N = Nd = 2. The general case follows the same arguments
(see Remark 2.6).
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ssumption 1. The matrix Aav is Hurwitz, whereas for {ai}2i=1 and
bj
}2
j=1 there exist positive constants {Ti}2i=1,

{
Td,j
}2
j=1 such that

T−1
i

∫ t+Ti
t ai(s)ds =: ∆ai(t),

T−1
d,j

∫ t+Td,j
t bj(s)ds =: ∆bj(t), ∀t ∈ R

(2.4)

with {∆ai}2i=1 ,
{
∆bj

}2
j=1 satisfying

supτ∈R
⏐⏐∆ξj(τ )⏐⏐2 ≤ ∆ξj,M , 1 ≤ j ≤ 2, ξ ∈ {a, b} , (2.5)

for some positive constants
{
∆ai,M

}2
i=1 ,

{
∆bj,M

}2
j=1

.

Remark 2.1. System (2.1) can be presented as (2.3) by fixing
ϵi = ϵd,j = ϵ, 1 ≤ i ≤ N, 1 ≤ j ≤ Nd and presenting A

( t
ϵ

)
, B
( t
ϵ

)
s linear combinations of constant matrices with time-varying
oefficients. In this case N,Nd ≤ n2.

We aim to derive efficient and constructive conditions which
uarantee ISS-like estimates for (2.3), with respect to d and ḋ (see
heorem 2.1).

.2. System transformation and Lyapunov analysis

For clarity we begin with stability analysis of (2.3) with d(t) ≡

. Inspired by Mazenc et al. (2006), for t ≥ 0, 1 ≤ i ≤ 2, let

ϱϵ,i(t) = −
1
ϵiTi

∫ t+ϵiTi
t (t + ϵiTi − s) ai

(
s
ϵi

)
ds (2.6)

or which a simple computation yields

supt∈R

⏐⏐ϱϵ,i(t)⏐⏐ ≤ ϵiTi supt∈R |ai(t)| . (2.7)

Differentiating (2.6), we further have for t ≥ 0

ϱ̇ϵ,i(t) = ai
(

t
ϵi

)
−∆ai

(
t
ϵi

)
. (2.8)

We introduce the following transformation

(t) = x(t) −

2∑
i=1

ϱϵ,i(t)Aix(t) (2.9)

nd the following assumption:

ssumption 2. In −
∑2

i=1 ϱϵ,i(t)Ai is invertible for all t ≥ 0 with

sup
t≥0


(
In −

2∑
i=1

ϱϵ,i(t)Ai

)−1
 ≤ δ1,x < ∞.

Assumption 2 imposes a constraint on ϵ. Indeed, by (2.7),
Assumption 2 holds if

∑2
i=1 ϵiTiai,M ∥Ai∥ < 2, where ai,M :=

supτ∈R |ai(τ )|. In this case, we have

supt≥0

∑2
i=1 ϱϵ,i(t)Ai

 ≤

∑2
i=1 ϵiTiai,M∥Ai∥

2 =: δ2,x < 1. (2.10)

By a Neumann series, the latter implies that we can take

δ1,x =
(
1 − δ2,x

)−1
. (2.11)

Using (2.3) we obtain the following for ż(t), t ≥ 0:

ż(t) = Aavz(t) +
∑2

i=1∆ai
(

t
ϵi

)
Aix(t)

+
∑2

i=1 ϱϵ,i(t)Wix(t)
−
∑2

i,j=1 ϱϵ,i(t)aj
(

t
ϵj

)
AiAjx(t),

Wi = AavAi − AiAav, i = 1, 2.

(2.12)

Considering (2.9), (2.12) is a system in the form of the averaged
system perturbed by O(ϵ) and O(∆a ) terms. This makes (2.12)
i,M

3

amenable to Lyapunov analysis, which yields efficient estimates
on ϵi that preserve stability.

Next, we aim to vectorize (2.12). For that purpose, recall that
≤lex is the lexicographic order on Rn ((i, j) ≤lex (k, l) iff i < k or
i = k, j ≤ l) and introduce the notations

Υϱ(t) = col
{
ϱϵ,i(t)x(t)

}2
i=1 ,

Υϱ,a(t) = col
{
ϱϵ,i(t)ak

(
t
ϵk

)
x(t)

}
{(i,k)}≤lex

,

Υ∆a(t) = col
{
∆ai

(
t
ϵi

)
x(t)

}2
i=1
,

A =
[
A1 A2

]
, W =

[
W1 W2

]
,

A1 = [A2
1 A1A2 A2A1 A2

2].

(2.13)

Employing (2.12) and (2.13), we obtain for t ≥ 0:

ż(t) = Aavz(t) + AΥ∆a(t) + WΥϱ(t) − A1Υϱ,a(t). (2.14)

For stability analysis of (2.14), let α > 0 be a desired decay
rate and 0 < P ∈ Rn×n. Introduce the Lyapunov function

V (t) = |z(t)|2P (2.15)

and the notation

Qα := PAav + A⊤

avP + 2αP . (2.16)

Differentiating V along the solution to (2.14), we obtain

V̇ + 2αV = |z(t)|2Qα + 2z⊤(t)P
[
AΥ∆a(t) + WΥϱ(t)

]
− 2z⊤(t)PA1Υϱ,a(t).

(2.17)

Substituting (2.9) and recalling (2.13), we have

|z(t)|2Qα = |x(t)|2Qα +
⏐⏐Υϱ(t)⏐⏐2A⊤QαA

− 2x⊤(t)QαAΥϱ(t). (2.18)

Similarly,

z⊤(t)P
[
AΥ∆a(t) + WΥϱ(t) − A1Υϱ,a(t)

]
=
[
z(t) − AΥρ(t)

]⊤ P
[
AΥ∆a(t) + WΥϱ(t) − A1Υϱ,a(t)

]
.

(2.19)

To compensate Υϱ(t),Υϱ,a(t) and Υ∆a(t) in the Lyapunov analysis,
we will employ the S-procedure (Fridman, 2014). Let

Hϱ = col
{
h(i)ϱ
}2
i=1
, Hϱ,a = col

{
h
(i,k)
ϱ,a

}
{(i,k)}≤lex

(2.20)

with nonnegative entries such that ∀i, k = 1, 2, t ≥ 0

(I) ϱ2
ϵ,i(t) ≤ h(i)ϱ , (II) ϱ2

ϵ,i(t)a
2
k

(
t
ϵk

)
≤ h

(i,k)
ϱ,a . (2.21)

Uniformly for (small) ϵi, ϵk > 0. The terms on the left-hand side
of (2.21) are scalar-valued and can be efficiently bounded using
tools from calculus. This is in contrast with Katz, Mazenc, and
Fridman (2023), where bounds were derived on matrix-valued
functions, using Jensen’s inequalities, which result in much more
conservative estimates.

Remark 2.2. Assuming that the averages of ai, i = 1, 2 are zero is
an important component of the system presentation and leads to
essentially less conservative LMI conditions (see Remark 2.8 be-
low). Note that this assumption poses no loss of generality, since
we can always subtract the averages from the corresponding
functions, while retaining ∆ai on the right-hand side of (2.5) and
modifying the matrix Aav . This assumption leads to

{
ai, ϱϵ,i

}2
i=1

having smaller L∞ norms (whence the upper bounds in (2.21)
will be of smaller magnitude) and plays a key role in achieving
the less conservative LMIs (2.40) via the Lyapunov analysis.
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By (2.21), let ΛΥϱ ,ΛΥ∆a ∈ R2×2 and ΛΥϱ,a ∈ R4×4 be positive
diagonal matrices. We have

Υ ⊤
ϱ (t)

(
ΛΥϱ ⊗ In

)
Υϱ(t) ≤

⏐⏐ΛΥϱHϱ
⏐⏐
1
|x(t)|2 ,

Υ ⊤
ϱ,a(t)

(
ΛΥϱ,a ⊗ In

)
Υϱ,a(t) ≤

⏐⏐ΛΥϱ,aHϱ,a
⏐⏐
1
|x(t)|2 ,

Υ ⊤

∆a(t)
(
ΛΥ∆a ⊗ In

)
Υ∆a(t) ≤

⏐⏐ΛΥ∆a∆a,M
⏐⏐
1 |x(t)|2 ,

(2.22)

where ∆a,M = col
{
∆ai,M

}2
i=1. The matrices ΛΥϱ ,ΛΥ∆a and ΛΥϱ,a

are decision variables in the LMI (2.26) below. Denoting

η(t) = col
{
x(t),Υϱ(t),Υϱ,a(t),Υ∆a(t)

}
(2.23)

(2.22) implies

0 ≤ W = η⊤(t) [Λ0 −Λ1] η(t),
Λ0 = diag

{
Λ

(1)
0 , 0, 0, 0

}
, Λ1 = diag

{
0,Λ(1)

1

}
,

Λ
(1)
0 =

(⏐⏐ΛΥϱHϱ
⏐⏐
1 +

⏐⏐ΛΥϱ,aHϱ,a
⏐⏐
1 +

⏐⏐ΛΥ∆a∆a,M
⏐⏐
1

)
In,

Λ
(1)
1 = diag

{
ΛΥϱ ⊗ In,ΛΥϱ,a ⊗ In,ΛΥ∆a ⊗ In

}
.

(2.24)

By (2.17)–(2.24) and the S-procedure (see e.g. Fridman (2014))

V̇ + 2αV + W ≤ η⊤(t)Ψϵη(t) ≤ 0, (2.25)

provided

Ψϵ =

⎡⎣ Qα +Λ
(1)
0 −QαA + PW Ψ (1)

ϵ

∗ Ψ (2)
ϵ Ψ (3)

ϵ

∗ ∗ Ψ (4)
ϵ

⎤⎦ < 0,

Ψ (1)
ϵ =

[
−PA1 PA

]
, Ψ (3)

ϵ =
[
A⊤PA1 −A⊤PA

]
Ψ (2)
ϵ = −

(
ΛΥϱ ⊗ In

)
+ A⊤QαA − A⊤PW − W⊤PA,

Ψ (4)
ϵ =

[
−
(
ΛΥϱ,a ⊗ In

)
0

0 −
(
ΛΥ∆a ⊗ In

)] .
(2.26)

e now modify the analysis for ISS-like estimates where d ∈
1([0,∞)). First, introduce

ωϵd,j (t) = −
1

ϵd,jTd,j

×
∫ t+ϵd,jTd,j
t

(
t + ϵd,jTd,j − s

)
bj
(

s
ϵd,j

)
ds.

(2.27)

By arguments of (2.7), supt∈R

⏐⏐ωϵd,j (t)⏐⏐ = O(ϵj). We will further
employ the notation

δd := supt≥0

∑n
i=1 ωϵd,i(t)Bi

 . (2.28)

Analogously to (2.10), we have

δd ≤
1
2

2∑
i=1

ϵiTibi,M ∥Bi∥ , bi,M := sup
τ∈R

|bi(τ )| . (2.29)

Differentiating (2.27), we have for t ≥ 0

ω̇ϵd,j (t) = bj
(

t
ϵd,j

)
−∆bj

(
t
ϵd,j

)
. (2.30)

For ISS-like estimates, the system transformation is

z(t) = x(t) −

2∑
i=1

ϱϵ,i(t)Aix(t) −

2∑
j=1

ωϵ,j(t)Bjd(t). (2.31)

Note that d ∈ C1([0,∞)) implies that z ∈ C1([0,∞)).

Remark 2.3. For the case of (2.1) with a single time-scale,
the time-delay transformation employed in Fridman and Zhang
(2020) has the form

z(t) = x(t) − G(t),
G(t) =

1
ϵT

∫ t
t−ϵT (τ − t + ϵT ) [A(s)x(ϵs) + B(s)d(ϵs)] ds,

which leads to a neutral-type system. This transformation allows
for ISS analysis which employs averaging of B

( t
ϵ

)
for measur-

ble functions d, whereas (2.31) allows ISS for non differentiable
4

d without averaging of B
( t
ϵ

)
only, which may be restrictive.

Compared to Fridman and Zhang (2020), here we consider mul-
tiple rapid time-scales and unify the transformation in Katz,
Mazenc, and Fridman (2023) with a novel system presentation.
The non-delayed transformation (2.31) simplifies the Lyapunov-
based analysis whereas the new system presentation (2.3) sig-
nificantly improves the results in the numerical examples (see
Section 2.3).

Let

Zω(t) = col
{
ωϵd,j (t)d(t)

}2
j=1
,

Zϱ(t) = col
{
ϱϵ,i(t)d(t)

}2
i=1 ,

Ξω(t) = col
{
ωϵd,j (t)ḋ(t)

}2
j=1
,

Zϱ,b(t) = col
{
ϱϵ,i(t)bj

(
t
ϵd,j

)
d(t)

}
{(i,j)}≤lex

,

Z∆b(t) = col
{
∆bj

(
t
ϵd,j

)
d(t)

}2
j=1
,

A2 = [A1B1 A1B2 A2B1 A2B2], B =
[
B1 B2

]
.

(2.32)

hen, the new expression for ż(t), t ≥ 0 is

ż(t) = Aavz(t) + Bavd(t) + AΥ∆a(t) + BZ∆b(t)
−A (I2 ⊗ Bav)Zϱ(t) + WΥϱ(t) − BΞω(t)
+ AavBZω(t) − A1Υϱ,a(t) − A2Zϱ,b(t).

(2.33)

For Lyapunov ISS-like analysis we use (2.15) and arguments
similar to (2.17)–(2.24). To employ the S-procedure, denote

Hω = col
{
h(j)ω
}2
j=1 , Hϱ,b = col

{
h
(i,k)
ϱ,b

}
{(i,k)}≤lex

(2.34)

be vectors with nonnegative entries such that

(III) ω2
ϵd,j

(t) ≤ h(j)ω , (IV ) ϱ2
ϵ,i(t)b

2
j

(
t
ϵd,j

)
≤ h

(i,j)
ϱ,b (2.35)

∀i, j = 1, 2, t ≥ 0, uniformly for (small) ϵd,j > 0. Let ΛZϱ ,ΛZω ,

ΛΞω ,ΛZ∆b ∈ R2×2 and ΛZϱ,b ∈ R4×4 be positive diagonal
matrices (decision variables). We then have

Z⊤
ϱ (t)

(
ΛZϱ ⊗ Ind

)
Zϱ(t) ≤

⏐⏐ΛZϱHϱ
⏐⏐
1
|d(t)|2 ,

Z⊤
ω (t)

(
ΛZω ⊗ Ind

)
Zω(t) ≤

⏐⏐ΛZωHω
⏐⏐
1 |d(t)|2 ,

Ξ⊤
ω (t)

(
ΛΞω ⊗ Ind

)
Ξω(t) ≤

⏐⏐ΛΞωHω
⏐⏐
1

⏐⏐ḋ(t)⏐⏐2 ,
Z⊤

ϱ,b(t)
(
ΛZϱ,b ⊗ Ind

)
Zϱ,b(t) ≤

⏐⏐ΛZϱ,bHϱ,b
⏐⏐
1
|d(t)|2 ,

Z⊤

∆b(t)
(
ΛZ∆b ⊗ Ind

)
Z∆b(t) ≤

⏐⏐ΛZ∆b∆b,M
⏐⏐
1 |d(t)|2

(2.36)

where ∆b,M = col
{
∆bj,M

}2
j=1

. Denoting

η(t) = col
{
x(t), d(t), ḋ(t),Υϱ(t),Υϱ,a(t),Υ∆a(t)

Zϱ(t),Zϱ,b(t),Z∆b(t),Zω(t),Ξω(t)
}
,

(2.37)

we have the following upper bound

0 ≤ W = η⊤(t) [Λ0 −Λ1] η(t),
Λ0 = diag

{
Λ

(1)
0 ,Λ

(2)
0 ,Λ

(3)
0 , 0, 0, 0, 0, 0, 0, 0, 0

}
,

Λ1 = diag
{
0, 0, 0,Λ(1)

1

}
, Λ

(3)
0 =

⏐⏐ΛΞωHω
⏐⏐
1 Ind ,

Λ
(1)
0 =

(⏐⏐ΛΥϱHϱ
⏐⏐
1 +

⏐⏐ΛΥϱ,aHϱ,a
⏐⏐
1 +

⏐⏐ΛΥ∆a∆a,M
⏐⏐
1

)
In,

Λ
(2)
0 =

(⏐⏐ΛZϱHϱ
⏐⏐
1 +

⏐⏐ΛZωHω
⏐⏐
1 +

⏐⏐ΛZϱ,bHϱ,b
⏐⏐
1

+
⏐⏐ΛZ∆b∆b,M

⏐⏐
1

)
Ind ,

Λ
(1)
1 = diag

{
ΛΥϱ ⊗ In,ΛΥϱ,a ⊗ In,ΛΥ∆a ⊗ In,ΛZϱ

⊗Ind ,ΛZϱ,b ⊗ Ind ,ΛZ∆b ⊗ Ind ,ΛZω ⊗ Ind ,ΛΞω ⊗ Ind
}
.

(2.38)

Letting γ1, γ2 ∈ R be tuning parameters, we obtain

V̇ + 2αV − γ 2
1 |d(t)|2 − γ 2

2

⏐⏐ḋ(t)⏐⏐2 + W
⊤

(2.39)

≤ η (t)Ψϵ,ϵdη(t) ≤ 0,
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Ψϵ,ϵd =

⎡⎢⎢⎣
Ψ (1)
ϵ,ϵd

Ψ (2)
ϵ,ϵd

Ψ (3)
ϵ,ϵd

Ψ (4)
ϵ,ϵd

∗ Ψ (5)
ϵ,ϵd

Ψ (6)
ϵ,ϵd

Ψ (7)
ϵ,ϵd

∗ ∗ Ψ (8)
ϵ,ϵd

Ψ (9)
ϵ,ϵd

∗ ∗ ∗ Ψ (10)
ϵ,ϵd

⎤⎥⎥⎦ < 0 (2.40)

with

Ψ (1)
ϵ,ϵd

=

⎡⎣Qα +Λ
(1)
0 PBav 0

∗ −γ 2
1 Ind +Λ

(2)
0 0

∗ ∗ −γ 2
2 Ind +Λ

(3)
0

⎤⎦ ,
Ψ (2)
ϵ,ϵd

=

[
−QαA + PW −PA1 PA

−B⊤
avPA 0 0
0 0 0

]
,

Ψ (3)
ϵ,ϵd

=

[
−PA (I2 ⊗ Bav) −PA2 PB

0 0 0
0 0 0

]
,

Ψ (4)
ϵ,ϵd

=

[
−QαB + PAavB −PB

−B⊤
avPB 0
0 0

]
,

Ψ (5)
ϵ,ϵd

=

⎡⎣ψ (1)
ϵ,ϵd

A⊤PA1 −A⊤PA
∗ −

(
ΛΥϱ,a ⊗ In

)
0

∗ ∗ −
(
ΛΥ∆a ⊗ In

)
⎤⎦ ,

Ψ (6)
ϵ,ϵd

=

⎡⎣ψ (4)
ϵ,ϵd

A⊤PA2 −A⊤PB
0 0 0
0 0 0

⎤⎦ ,
Ψ (7)
ϵ,ϵd

=

⎡⎣ ψ (2)
ϵ,ϵd

A⊤PB
A⊤

1 PB 0
−A⊤PB 0

⎤⎦ , Ψ (9)
ϵ,ϵd

=

⎡⎣ ψ (3)
ϵ,ϵd

0
A⊤

2 PB 0
−B⊤PB 0

⎤⎦ ,
Ψ (8)
ϵ,ϵd

= − diag
{
ΛZϱ ,ΛZϱ,b ,ΛZ∆b

}
⊗ In,

Ψ (10)
ϵ,ϵd

=

[
−
(
ΛZω ⊗ In

)
+ 2αB⊤PB B⊤PB

∗ −
(
ΛΞω ⊗ In

)] ,
ψ (1)
ϵ,ϵd

= −
(
ΛΥϱ ⊗ In

)
+ A⊤QαA − A⊤PW − W⊤PA,

ψ (2)
ϵ,ϵd

= A⊤QαB − W⊤PB − A⊤PAavB,

ψ (3)
ϵ,ϵd

= (I2 ⊗ Bav)
⊤ A⊤PB, ψ (4)

ϵ,ϵd
= A⊤PA (I2 ⊗ Bav) .

emark 2.4. Differently from the preliminary analysis in Katz,
azenc, and Fridman (2023), where η(t) in (2.37) contained z(t)

instead of x(t) and the inversion of the transformation (2.31) was
used in the S-procedure, here the analysis is presented in terms
of x(t). This approach significantly reduces the conservatism of
the derived LMIs (see examples below) and improves the derived
bound on the small parameter.

Summarizing, we arrive at:

Theorem 2.1. Consider (2.3) subject to Assumptions 1 and 2.
et Hϱ,Hω,Hϱ,a,Hϱ,b be given by (2.20) and (2.34). Given positive
uning parameters α,

{
ϵ∗

i

}2
i=1 ,

{
ϵ∗

d,j

}2
j=1

,
{
∆ai,M

}2
i=1 ,

{
∆bj,M

}2
j=1

let
there exist 0 < P ∈ Rn×n, positive diagonal matrices ΛΥϱ ,ΛZϱ ,

ΛΥ∆a ∈ R2×2, ΛZω ,ΛΞω ,ΛZ∆b ∈ R2×2 and ΛΥϱ,a ,ΛZϱ,b ∈ R4×4,
and positive scalars γ 2

1 , γ
2
2 such that Ψϵ∗,ϵ∗d < 0, with Ψϵ,ϵd given by

(2.40). Then for all ϵ ≤ ϵ∗ and ϵd ≤ ϵ∗

d , the solutions of (2.3) satisfy
the ISS-like estimate

|x(t)|2 ≤ β2
1e

−2αt |x(0)|2 + β2
2 maxs∈[0,t] |d(s)|2

+β2
3 maxs∈[0,t]

⏐⏐ḋ(s)⏐⏐2 , t ≥ 0
(2.41)

for some βi, i = 1, 2, 3. The LMI Ψϵ,ϵd < 0 is feasible for small
enough α, ϵi, ϵd,i, ∆ai,M ,∆bi,M , i = 1, 2 and large enough γ 2

i , i =

1, 2.
5

Proof. The fact that feasibility of (2.40) for some α,
{
ϵ∗

i

}2
i=1 ,{

ϵ∗

d,j

}2
j=1

implies its feasibility for all ϵi < ϵ∗

i , i = 1, 2 and
ϵd,j < ϵ∗

d,j, j = 1, 2 and the same α, γi, i = 1, 2 follows from
monotonicity of (2.40) with respect to ϵi < ϵ∗

i , i = 1, 2 and
ϵd,j < ϵ∗

d,j, j = 1, 2 (meaning that as the small parameters
decrease, the eigenvalues of Ψϵ,ϵd are non-increasing).

Fix τ > 0. Feasibility of (2.40) implies that for all t ∈ [0, τ ]

V̇ + 2αV − γ 2
1 |d(t)|2 − γ 2

2

⏐⏐ωϵd (t)ḋ(t)⏐⏐2 ≤ 0
⇒ V (t) ≤ e−2αtV (0)

+
∫ t
0 e−2α(t−s)

(
γ 2
1 |d(s)|2 + γ 2

2

⏐⏐ḋ(s)⏐⏐2) ds.
Since λmin(P) |z(t)|2 ≤ V (t) ≤ λmax(P) |z(t)|2 for all t ≥ 0, we have

|z(t)|2 ≤
λmax(P)
λmin(P)

e−2αt |z(0)|2 +
γ 2
1

2αλmin(P)

× maxs∈[0,τ ] |d(s)|2 +
γ 2
2

2αλmin(P)
maxs∈[0,τ ]

⏐⏐ḋ(s)⏐⏐2 , (2.42)

meaning that (2.33) satisfies ISS-like estimates with respect to
d and ḋ. To obtain ISS-like estimates for (2.3), we employ the
transformation (2.31). By Assumption 2, (2.10), (2.28), Young’s
inequality and the triangle inequality

|z(0)|2 ≤ 2δ22,x |x(0)|2 + 2δ2d maxs∈[0,τ ] |d(s)|2

|x(t)|2 ≤ δ21,x

⏐⏐⏐z(t) +
∑2

i=1 ωϵd,i (t)Bid(t)
⏐⏐⏐2

≤ 2δ21,x |z(t)|2 + 2δ21,xδ
2
d maxs∈[0,τ ] |d(s)|2 .

By combining the latter with (2.42), we obtain (2.41) with

β2
1 =

4δ21,xδ
2
2,xλmax(P)
λmin(P)

, β2
3 =

2δ21,xγ
2
2

2αλmin(P)
,

β2
2 = 2δ21,x

[
δ2d

2λmax(P)+λmin(P)
λmin(P)

+
γ 2
1

2αλmin(P)

]
.

For LMI feasibility guarantees, it is enough to consider the
case when the small parameters satisfy ϵi = ϵd,j = ϵ, i, j =

, 2. Recall (2.21) and (2.35). It can be easily verified that there
exists a constant K > 0 large enough, such that both hold when
all entries of (2.20) and (2.34) are equal to Kϵ2. Next, choose
ΛΥϱ ,ΛZϱ ,ΛΥ∆a ,ΛZω ,ΛΞω ,ΛZ∆b = λI2 and ΛΥϱ,a ,ΛZϱ,b = λI4,
here λ > 0. Henceforth, we fix these choices. We begin by
hoosing α = 0, 0 < P ∈ Rn such that Qα < 0 (see (2.16)).
Fixing P and ϵ < 1 we look at the LMI (2.40). Considering the
bottom-right 3 × 3 block submatrix (which we will henceforth
denote as Ξϵ,ϵd ) we see that Ξϵ,ϵd < 0 for λ > λ∗ with λ∗ > 0
arge enough (the diagonal elements are linear and negative in λ).
ext, we apply Schur complement with respect to Ξϵ,ϵd , to obtain
he equivalent matrix inequality

Ψ (1)
ϵ,ϵd

−
1
λ

[
Ψ (2)
ϵ,ϵd

Ψ (3)
ϵ,ϵd

Ψ (4)
ϵ,ϵd

] (
λ−1Ξϵ,ϵd

)−1

×
[
Ψ (2)
ϵ,ϵd

Ψ (3)
ϵ,ϵd

Ψ (4)
ϵ,ϵd

]⊤
< 0.

(2.43)

Note that
(
λ−1Ξϵ,ϵd

)−1 is bounded as λ → ∞ (converges to the
identity matrix), whereas

[
Ψ (2)
ϵ,ϵd

Ψ (3)
ϵ,ϵd

Ψ (4)
ϵ,ϵd

]
is independent of

λ. On the other hand, for any λ > 0, we can always find ϵ > 0
small enough and γi > 0, i = 1, 2 large enough so that Ψ (1)

ϵ,ϵd
< 0.

Indeed, by choosing γi = λ2, i = 1, 2, ϵ =
1
λ2
, we obtain that

(2.43) holds for λ > 0 large enough, whence feasibility of (2.40)
follows. □

Remark 2.5. Recall (2.21) and (2.35). In the Lyapunov analy-
sis above we assume the scalar bounds on the right-hand side
of both are identical for all t ≥ 0. Assume that there exists
a partition of [0,∞) into intervals such that every interval in
the partition belongs to one of finitely many classes (types),
denoted by

{
I
}ζ . As an example, consider Example 3.1 below,
j j=1
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here we treat a switched system with two functioning modes.
n this case ζ = 2 and I1 corresponds to subintervals where
(τ ) ≡ A1, whereas I2 corresponds to subintervals where A(τ ) ≡

2. Assume that for each 1 ≤ j ≤ ζ , there exist vectors
ϱ,j,Hω,j,Hϱ,a,j,Hϱ,b,j whose entries serve as upper bounds in
2.21) and (2.35) whenever t ≥ 0 belongs to an interval of
ype Ij (the vectors may vary between classes). In this case
ur proposed approach can be applied to each of the classes
eparately and will yield ζ LMIs of the form (2.40) (one for each
lass). Feasibility of the LMIs can then be verified simultaneously
ith the same P and γi, i = 1, 2. Note that the decision ma-
rices ΛΥϱ ,ΛZϱ ,ΛΥ∆a ,ΛZω ,ΛΞω ,ΛZ∆b ,ΛΥϱ,a ,ΛZϱ,b may differ
etween LMIs corresponding to different classes. This approach is
xpected to yield less conservative results than choosing bounds
n (2.21) and (2.35) which hold uniformly for all t ≥ 0, and
erifying feasibility of a single LMI (2.40).

emark 2.6. For general N,Nd ∈ N, the proposed approach
equires only minor modifications, which are related to the di-
ensions of the matrices. In particular, in (2.13) and (2.32) the
imensions of the vectors require changing, whereas the matrices
ow having the form

A =
[
A1 . . . AN

]
, B =

[
B1 . . . BNd

]
,

A1 = [A2
1 . . . A1AN . . . ANA1 . . . A2

N ],

A2 = [A1B1 . . . A1BNd . . . ANB1 . . . ANBNd ],

W =
[
W1 . . . WN

]
,

Wi = AavAi − AiAav, 1 ≤ i ≤ N.

(2.44)

The system (2.33) (and derived LMIs) will have the same form
with I2 replaced by INd . Thus, the Lyapunov analysis and LMIs of
Section 2.3, subject to the changes in (2.44) and I2 replaced by INd ,
ill guarantee (2.41) for (2.3).

emark 2.7. Instead of the ISS-like estimates (2.41), we are also
able to obtain standard ISS bounds (i.e., with respect to d only)
or (2.3). Consider the system (2.3). In order to avoid introducing
he disturbance derivative one can simply not use averaging for∑2

i=1 bi
(

t
ϵd,i

)
Bi

]
d(t). Instead, one can treat this term as a norm

ounded time-varying matrix-valued function which multiplies
he disturbance. In this case the presentation of this matrix valued
unction as a linear combination is obviously not needed and
2.31) will be replaced with z(t) = x(t) −

∑2
i=1 ϱϵ,i(t)Aix(t).

The norm bound on
∑2

i=1 bi
(

t
ϵd,i

)
Bi will be employed in a stan-

ard ISS analysis. This approach is expected to result in larger
stimates on the ISS gains.

.3. Numerical examples

xample 2.1 (Stabilization by Fast Switching I). We consider a
witched linear system with two unstable modes (see Fridman
nd Zhang (2020, Example 2.2)), defined by

A1 =

[
0.1 0.3
0.6 −0.2

]
, A2 =

[
−0.13 −0.16
−0.33 0.03

]
. (2.45)

Given τ ∈ [k, k + 1), k ∈ Z+, let

A (τ ) = χ[k,k+0.4) (τ ) A1 +
[
1 − χ[k+0.4,k+1) (τ )

]
A2, (2.46)

where χ[k,k+0.4) is the indicator function of the interval [k, k+0.4).
Note that A (τ ) is 1-periodic.

We present the switched system ẋ(t) = A
( t
ϵ

)
x(t) as (2.3) with

ϵi = ϵ > 0, Ti = 1, i = 1, 2, Bav = B1 = B2 = 0,

Aav =

[
−0.038 0.024

]
, (2.47)
0.042 −0.062

6

Table 1
Switched I - maximum value ϵ∗ preserving LMI feasibility.

α = 0 α =
1

200 α =
1

100

Zhang and Fridman (2022) 0.192 0.13 Unchecked
Katz, Mazenc, and Fridman (2023) 0.061 0.037 Unchecked
No zero avg. 0.156 0.105 0.041
Theorem 2.1 0.433 0.3 0.166

Table 2
Switched I - ISS gains: (β1, β2).

ϵ = 0.002 ϵ = 0.16

α = 0.005 (0.0054, 73.503) (0.5147, 99.266)
α = 0.01 (0.006, 76.48) (0.7126, 389.89)

which is Hurwitz, and

a1(τ ) =

{
0.6, τ ∈ [k, k + 0.4), k ∈ Z+

−0.4, τ ∈ [k + 0.4, k + 1), k ∈ Z+,

a2(τ ) = −a1(τ ).
(2.48)

Note that the latter functions are 1-periodic, meaning that∆ai,M =

0, i = 1, 2. Let t ∈ [mϵ, (m + 1)ϵ), m ∈ Z+ and denote
w = t − mϵ ∈ [0, ϵ), m ∈ Z+. An explicit computation
of ϱϵ,i(t), i = 1, 2 yields the bounds ϱ2

ϵ,1(t) ≤ 0.0144ϵ2 and
2
ϵ,2(t) ≤ 0.0144ϵ2. We then use the fact that a1(τ ), a2(τ ) are

indicator functions to separate the analysis into two cases

a1
( t
ϵ

)
ϱϵj (t) =

{
0.6ϱϵ,j(t), w ∈ [0, 0.4ϵ)
−0.4ϱϵ,j(t), w ∈ [0.4ϵ, ϵ)

a2
( t
ϵ

)
ϱϵ,j(t) = −a1

( t
ϵ

)
ϱϵj (t)

nd obtain tight upper bounds in (2.21) for each of the cases.
hus, we separate the analysis into the two subintervals 0 ≤

w < 0.4ϵ and 0.4ϵ ≤ w < ϵ. For each subinterval (and its
corresponding bounds (2.21)) we obtain an LMI of the form (2.40)
(see Remark 2.5). We verify feasibility for both LMIs with the
same α and P .

We consider α ∈ {0, 0.005, 0.01} and verify the LMIs of
Theorem 2.1 to obtain the maximal value ϵ∗ which preserves fea-
sibility of the LMIs. Note that ϵ∗ guarantees internal exponential
stability (and thus the ISS-like bounds) of (2.3). The values of ϵ∗

are given in Table 1, where we further compare our results to the
bounds in the recent work (Zhang & Fridman, 2022). We further
check the proposed approach without ensuring zero average of
ai, i = 1, 2, as well as compare it to results of Katz, Mazenc,
and Fridman (2023), where the transformation was used with
matrix averaging (i.e., without the new system presentation). It is
seen that our results essentially improve the results of Zhang and
Fridman (2022) with a value of ϵ∗ larger by 2.5 times. Moreover,
guaranteeing that ai, i = 1, 2 have zero average has significant
impact on the conservatism of the results.

Next, we set Bav = [0 1]⊤ and B1 = B2 = 02×1 and verify
feasibility of (2.40) in order to guarantee (2.41). Note that in this
case the transformation (2.31) will not result in terms involving
ḋ. Hence, we obtain classical ISS estimates (i.e., we have γ2 = 0
in (2.39) β3 = 0 in (2.41)). Table 2 presents several pairs (β1, β2)
(see proof of Eq. (2.41)) for different choices of α and ϵ. Note that
in this case δ1,x and δ2,x were computed using the bounds (2.10)
and (2.11).

Example 2.2 (Stabilization by Fast Switching II). We consider a
switched linear system with three unstable modes (see Albea and
Seuret (2021) and Caiazzo et al. (2023)), defined by the matrices

A1 =

[
0 0.5

]
, A2 =

[
0.1 0

]
, A3 =

[
0 1

]
. (2.49)
0 −1 −1 −1 −1 0
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Table 3
Switched II - maximum value ϵ∗ preserving LMI feasibility.

α = 0 α = 0.005 α = 0.25

Theorem 2.1 0.4341 0.4177 0.0591

Set

A(τ ) =

⎧⎨⎩
A1, τ ∈ [k, k + 0.4), k ∈ Z+

A2, τ ∈ [k + 0.4, k + 0.87),
A3, τ ∈ [k + 0.87, k + 1)..

(2.50)

ote that A (τ ) is 1-periodic and can be presented as a linear
ombination of Ai, i = 1, 2, 3 with indicator coefficients, similarly
o (2.46).

We present the switched system ẋ(t) = A
( t
ϵ

)
x(t) as (2.3) with

ϵi = ϵ > 0, Ti = 1, i = 1, 2, 3, Bav = B1 = B2 = B3 = 0,

Aav =

[
0.047 0.33
−0.6 −0.87

]
, (2.51)

which is Hurwitz, and
a1 (τ ) = χ[k,k+0.4)(τ ) − 0.4, k ∈ Z+,

a2(τ ) = χ[k+0.4,k+0.87)(τ ) − 0.47,
a3(τ ) = χ[k+0.87,k+1)(τ ) − 0.13.

ote that the latter functions are 1-periodic, meaning that∆ai,M =

, i = 1, 2, 3. Similarly to Example 2.1, an explicit computation
f ϱϵ,i(t), i = 1, 2 yields the bounds ϱ2

ϵ,1(t) ≤ 0.0144ϵ2, ϱ2
ϵ,2(t) ≤

.0155127ϵ2 and ϱ2
ϵ,3(t) ≤ 0.0031979ϵ2. We then use the fact

hat a1(τ ), a2(τ ) and a3(τ ) are indicator functions to separate
he analysis into three cases, corresponding to the subintervals
n (2.50). For each subinterval (and corresponding bounds (2.21))
e obtain an LMI of the form (2.40) (see Remarks 2.5, 2.6). We
erify feasibility for both LMIs with the same α and P .
We consider α ∈ {0, 0.005, 0.25} and verify the LMIs of

heorem 2.1 to obtain the maximal value ϵ∗ which preserves
easibility of the LMI. Note that ϵ∗ guarantees internal exponential
tability (and thus ISS-like bounds) of (2.3). The values of ϵ∗ are
iven in Table 3.

emark 2.8. In examples 2.1 and 2.2, presenting the systems as
2.3) with Aav = 0 and

Example 2.1: a1 (τ ) = χ[k,k+0.4)(τ ),
a2(τ ) = χ[k+0.4,k+1)(τ ),

Example 2.2: a1 (τ ) = χ[k,k+0.4)(τ ),
a2(τ ) = χ[k+0.4,k+0.87)(τ ),
a3(τ ) = χ[k+0.87,k+1)(τ ).

ith non-zero averages of ai(τ ) leads to essentially smaller ϵ∗.
or example, for α = 0 we find ϵ∗

= 0.1566 (compared to
.4332) in Example 2.1 and ϵ∗

= 0.141 (compared to 0.4341)
n Example 2.1. The reason for the significantly improved results
s that ϱϵ,i become essentially smaller when the averages aav,i are
ero, thereby decreasing the bounds required on the right-hand
ide of (2.21).

xample 2.3 (Control of a Pendulum). We consider a suspended
endulum with the suspension point that is subject to vertical
ibrations of small amplitude and high frequency (see Khalil
2001, Example 10.10) and Fridman and Zhang (2020, Example
.1)). The model linearized at the upper equilibrium position is
iven by ẋ(t) = A

( t
ϵ

)
x(t) with ϵ > 0 and

A(τ ) =

[
cos(τ ) 1

0.04 − cos2(τ ) −0.2 − cos(τ )

]
, τ =

t
ϵ
. (2.52)

Note that A(τ ) is 2π periodic. Employing the identity 2 cos2(τ ) =

+ cos(2τ ), we present the system as (2.3) with ϵ = ϵ, T =
i i N

7

Table 4
Pendulum - maximum value ϵ∗ preserving LMI feasibility.

α = 0 α = (10π )−1

Zhang and Fridman (2022) 0.0074 0.005
Theorem 2.1 0.0457 0.0321

Table 5
Pendulum - maximum value ϵ∗ preserving LMI feasibility.

α = 0 α = (10π )−1

Zhang and Fridman (2022) 0.0058 0.0034
Theorem 2.1 0.0204 0.0146

2π, i = 1, 2, Bav = B1 = B2 = 0 and

Aav =

[
0 1

−0.46 −0.2

]
, A1 =

[
1 0
0 −1

]
,

A2 =

[
0 0

−0.5 0

]
, a1 (τ ) = cos(τ ), a2(τ ) = cos(2τ ).

Note that ai(τ ), i = 1, 2 are 2π-periodic, whence ∆ai,M = 0, i =

1, 2. An explicit computation of ϱϵ,i(t), i = 1, 2 yields

ϱϵ,1(t) = ϵ sin (τ ) , a2 (τ ) ϱϵ,2(t) =
ϵ
4 sin (4τ) ,

ϱϵ,2(t) = a1 (τ ) ϱϵ,1(t) = ϵ cos (τ ) sin (τ ) ,
a2 (τ ) ϱϵ,1(t) = (2 cos2 (τ )− 1)ϱϵ,1(t),
a1 (τ ) ϱϵ,2(t) = cos2 (τ ) ϱϵ,1(t), τ =

t
ϵ

which are used to derive the upper bounds in (2.21). Differently
from the previous examples, here we obtain only one LMI of the
form (2.40).

We consider α ∈
{
0, 1

10π

}
and verify the LMIs of Theorem 2.1

o obtain the maximal value ϵ∗ which preserves the LMI feasi-
bility. Note that ϵ∗ guarantees internal exponential stability (and
thus the ISS-like bounds) of (2.3). The values of ϵ∗ are given in
Table 4, where we further compare our results to the bounds in
the recent work (Zhang & Fridman, 2022). Finally, we consider
this example subject to uncertainty. For that purpose, we replace
a2(τ ) = cos(2τ ) with a2(τ ) = cos(2τ ) + 0.4g(τ ), where ∥g∥∞ ≤

0.1. In this case we obtain a nonzero ∆a2(t) in (2.4), satisfying
∥∆a2∥∞ ≤ 0.04 =: ∆a2,M . We consider α ∈

{
0, 1

10π

}
and verify

the LMIs of Theorem 2.1 to obtain the maximal value ϵ∗ which
preserves feasibility of the LMI. The results are given in Table 5.
Our results essentially improve the results of Zhang and Fridman
(2022).

3. Rapidly-varying systems with discrete delays

3.1. Systems with constant delay

In this section we consider the system

ẋ(t) = A0x(t) +

[
Ah +

∑2
i=1 ai

( t
ϵ

)
Ai

]
x(t − h), t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0]
(3.1)

here x(t) ∈ Rn for t ≥ 0, Ah, A0, A1, A2 ∈ Rn×n, h, ϵ > 0 and
φ ∈ W ([−h, 0],Rn) (see Fridman (2014)). Note that the delayed
term x(t − h) is multiplied by a linear combination of constant
matrices, with the rapidly-varying coefficients ai (t/ϵ) , i = 1, 2.
The coefficients are assumed to satisfy Assumptions 1 and 2,
where now ϵ1 = ϵ2 = ϵ, T1 = T2 = T , and Aav := A0 + Ah is
ssumed to be Hurwitz.
Recall ϱϵ,i(t), i = 1, 2 in (2.6), where now we set ϵ1 = ϵ2 = ϵ

nd T1 = T2 = T . Introduce the following transformation

z(t) = x(t) −
∑2

i=1 ϱϵ,i(t)Aix(t − h), t ≥ h. (3.2)

ote that z(t) is differentiable for t ≥ h.
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emark 3.1. For simplicity only in sections 3 and 4 we consider
one small parameter ϵ. We can easily consider the more general
ystem

ẋ(t) = A0x(t) +

[∑2
i=1 ai

(
t
ϵi

)
Ai

]
x(t)

+

[
Ah +

∑2
i=1 a

h
i

(
t
ϵi,h

)
Ah
i

]
x(t − h), t ≥ 0

with different small parameters ϵi, ϵi,h > 0, i = 1, 2. In this case,
the transformation below will be replaced by

z(t) = x(t) −
∑2

i=1 ϱϵ,i(t)Aix(t) −
∑2

i=1 ϱ
h
ϵ,i(t)A

h
i x(t − h).

Differentiating z(t) we obtain for ż(t), t ≥ h:

ż(t) = Aavz(t) − Ahξh(t) +
∑2

i=1 Ai∆ai
( t
ϵ

)
x(t − h)

+
∑n

i=1 W iϱϵ,i(t)x(t − h) −
∑2

i=1 ϱϵ,i(t)AiAhx(t − 2h)

−
∑2

i,j=1 AiAjϱϵ,i(t)aj
( t−h
ϵ

)
x(t − 2h)

(3.3)

ith ξh(t) and W i, i = 1, 2 given by

ξh(t) = x(t) − x(t − h), W i = AavAi − AiA0, i = 1, 2.

Note that x(t − 2h) is obtained by differentiating x(t − h).
In order to vectorize (3.3) (cf. (2.32)) we first introduce

Υ h
ϱ (t) = col

{
ϱϵ,i(t)x(t − h)

}2
i=1 ,

Υ 2h
ϱ (t) = col

{
ϱϵ,i(t)x(t − 2h)

}2
i=1 ,

Υ h
∆a(t) = col

{
∆ai

( t
ϵ

)
x(t − h)

}2
i=1 ,

Υ h
ϱ,a(t) = col

{
ϱϵ,i(t)ak

( t−h
ϵ

)
x(t − 2h)

}
{(i,k)}≤lex

,

Υ h
a (t) = col

{
ai
( t
ϵ

)
x(t − h)

}2
i=1 ,

W :=
[
W 1 W 2

]
, Ah =

[
A1Ah A2Ah

]
.

(3.4)

ecalling (2.32), (3.3) can be presented as

ż(t) = Aavz(t) − Ahξh(t) + AΥ h
∆a(t)

+WΥ h
ϱ (t) − AhΥ

2h
ϱ (t) − A1Υ

h
ϱ,a(t), t ≥ h.

(3.5)

For exponential stability of (3.5), let 0 < P, Si ∈ Rn×n, i = 1, 2
nd 0 < α ∈ R. We introduce the Lyapunov functional

(t) = |z(t)|2P +

2∑
i=1

VSi (t) + VR1 (t),

where

VSi (t) =
∫ t
t−ih e

−2α(t−s) |x(s)|2Si ds, i = 1, 2

VR1 (t) = h
∫ 0

−h

∫ t
t+θ e

−2α(t−s) |ẋ(s)|2R1 dsdθ

will compensate the delayed terms x(t − h) and x(t − 2h). Using
2.16) and differentiating |z(t)|2P along (3.5), we find

d
dt |z(t)|2P + 2α |z(t)|2P = |z(t)|2Qα − 2z⊤(t)PAhξh(t)

+ 2z⊤(t)PWΥ h
ϱ (t) + 2z⊤(t)PAΥ h

∆a(t)

− 2z⊤(t)PAhΥ
2h
ϱ (t) − 2z⊤(t)PA1Υ

h
ϱ,a(t).

(3.6)

Similarly to (2.17)–(2.24), we have

|z(t)|2Qα =
⏐⏐x(t) − AΥ h

ϱ (t)
⏐⏐2
Qα

= |x(t)|2Qα
+
⏐⏐Υ h
ϱ (t)

⏐⏐2
A⊤QαA

− 2x⊤(t)QαAΥ h
ϱ (t)

(3.7)

and

z⊤(t)P
[
−Ahξh(t) + WΥ h

ϱ (t) + AΥ h
∆a(t) − A1Υ

h
ϱ,a(t)

−AhΥ
2h
ϱ (t)

]
=
[
x(t) − AΥ h

ϱ (t)
]⊤ P [−Ahξh(t)

h h h 2h
] (3.8)
+WΥϱ (t) + AΥ∆a(t) − A1Υϱ,a(t) − AhΥϱ (t) .
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Differentiating VSi (t), i = 1, 2 we have

V̇S1 + 2αVS1 =
(
1 − e−2αh

)
|x(t)|2S1 − e−2αh |ξh(t)|2S1

+2e−2αhx⊤(t)S1ξh(t),

V̇S2 + 2αVS2 = |x(t)|2S2 − e−4αh |x(t − 2h)|2S2 .

(3.9)

or VR1 (t) we employ Jensen’s inequality (Fridman, 2014) to ob-
ain

V̇R1 + 2αVR1 ≤ h2 |ẋ(t)|2R1 − e−2αh |ξh(t)|2R1 . (3.10)

e now employ the S-procedure. Let

Hh
ϱ = col

{
h
(i)
ϱ,h

}2
i=1
, Hh

ϱ,a = col
{
h
(i,k)
ϱ,a,h

}
{(i,k)}≤lex

,

Hh
a = col

{
h
(i)
a,h

}2
i=1

(3.11)

with nonnegative entries such that ∀1 ≤ i, k ≤ 2, t ≥ h and
(small) ϵ > 0 the following conditions hold

(I) ϱ2
ϵ,i(t) ≤ h

(i)
ϱ,h, (II) ϱ2

ϵ,i(t)a
2
k

( t−h
ϵ

)
≤ h

(i,k)
ϱ,a,h,

(III) a2i
( t
ϵ

)
≤ h

(i)
a,h.

(3.12)

ote that all the inequalities involve scalar functions. Let ΛΥ h
ϱ
,

ΛΥ 2h
ϱ
,ΛΥ h

∆a
,ΛΥ h

a
∈ R2×2 and ΛΥ h

ϱ,a
∈ R4×4 be positive diagonal

matrices and recall (3.4). By (2.5) and (3.12) we have(
Υ h
ϱ (t)

)⊤ (
ΛΥ h

ϱ
⊗ In

)
Υ h
ϱ (t) ≤

⏐⏐⏐ΛΥ h
ϱ
Hh
ϱ

⏐⏐⏐
1
|x(t − h)|2 ,(

Υ h
ϱ,a(t)

)⊤ (
ΛΥ h

ϱ,a
⊗ In

)
Υ h
ϱ,a(t)

≤

⏐⏐⏐ΛΥ h
ϱ,a

Hh
ϱ,a

⏐⏐⏐
1
|x(t − 2h)|2 ,

(3.13)

(
Υ 2h
ϱ (t)

)⊤ (
ΛΥ 2h

ϱ
⊗ In

)
Υ 2h
ϱ (t) ≤

⏐⏐⏐ΛΥ 2h
ϱ
Hh
ϱ

⏐⏐⏐
1
|x(t − 2h)|2 ,(

Υ h
∆a(t)

)⊤ (
ΛΥ h

∆a
⊗ In

)
Υ h
∆a(t)

≤

⏐⏐⏐ΛΥ h
∆a
∆a,M

⏐⏐⏐
1
|x(t − h)|2 ,(

Υ h
a (t)

)⊤ (
ΛΥ h

a
⊗ In

)
Υ h

a (t)

≤

⏐⏐⏐ΛΥ h
a
Hh

a

⏐⏐⏐
1
|x(t − h)|2

where ∆a,M = col
{
∆ai,M

}2
i=1. Let

η(t) = col
{
x(t), ξh(t), x(t − 2h),Υ h

ϱ (t),
Υ 2h
ϱ (t),Υ h

a (t),Υ
h
∆a(t),Υ

h
ϱ,a(t)

}
.

(3.14)

Then

|ẋ(t)|2R1 =
⏐⏐Aavx(t) − Ahξh(t) + AΥ h

a (t)
⏐⏐2
R1

= η⊤(t)L⊤R1Lη(t),
L =

[
Aav −Ah 0 0 0 A 0 0

]
.

(3.15)

By employing (3.13), we obtain

0 ≤ W1 = −η⊤(t)Πη(t) +

[⏐⏐⏐ΛΥ 2h
ϱ
Hh
ϱ

⏐⏐⏐
1
+

⏐⏐⏐ΛΥ h
ϱ,a

Hh
ϱ,a

⏐⏐⏐
1

]
× |x(t − 2h)|2 +

[⏐⏐⏐ΛΥ h
ϱ
Hh
ϱ

⏐⏐⏐
1
+

⏐⏐⏐ΛΥ h
∆a
∆a,M

⏐⏐⏐
1

+

⏐⏐⏐ΛΥ h
a
Hh

a

⏐⏐⏐
1

]
|x(t) − ξh(t)|2

Π = diag
{
0, 0, 0,Π (1)

}
,

Π (1)
= diag

{
ΛΥ h

ϱ
,ΛΥ 2h

ϱ
,ΛΥ h

a
,ΛΥ h

∆a
,ΛΥ h

ϱ,a

}
⊗ In

(3.16)

By (3.6)–(3.16) and the S-procedure (see Fridman (2014))

˙ ⊤ (3.17)
V + 2αV + W1 ≤ η (t)Θϵ,hη(t) ≤ 0,
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rovided

Θϵ,h =

[
Θ

(1)
ϵ,h Θ

(2)
ϵ,h

∗ Θ
(3)
ϵ,h

]
+ h2L⊤R1L < 0 (3.18)

ith

Θ
(1)
ϵ,h =

⎡⎣ϕ e−2αhS1 − PAh − λhIn 0
∗ −e−2αh(S1 + R1) + λhIn 0
∗ ∗ −e−4αhS2 + λ2hIn

⎤⎦ ,
Θ

(2)
ϵ,h =

[
−QαA + PW −PAh 0 PA −PA1

A⊤

h PA 0 0 0 0

]
,

(3.19)

Θ
(3)
ϵ,h = −Π (1)

+ diag {θ, 0, 0, 0, 0} ,

+

⎡⎢⎢⎢⎣
0 A⊤PAh 0 −A⊤PA A⊤PA1
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

⎤⎥⎥⎥⎦ ,
ϕ = Qα +

(
1 − e−2αh

)
S1 + S2 + λhIn,

λh =

⏐⏐⏐ΛΥ h
ϱ
Hh
ϱ

⏐⏐⏐
1
+

⏐⏐⏐ΛΥ h
∆a
∆a,M

⏐⏐⏐
1
+

⏐⏐⏐ΛΥ h
a
Hh

a

⏐⏐⏐
1
,

λ2h =

⏐⏐⏐ΛΥ 2h
ϱ
Hh
ϱ

⏐⏐⏐
1
+

⏐⏐⏐ΛΥ h
ϱ,a

Hh
ϱ,a

⏐⏐⏐
1
,

θ = −A⊤PW − W⊤PA + A⊤QαA.
ummarizing, we arrive at:

heorem 3.1. Consider (3.1) subject to Assumptions 1 and 2.
et Hh

ϱ,H
h
ϱ,a,H

h
a be given by (3.11) and satisfying (3.12). Given

0, A1, A2, Ah ∈ Rn×n such that Aav = A0 + Ah is Hurwitz, and
positive tuning parameters α, ϵ∗, h∗ and ∆ai,M , i = 1, 2 let there
exist 0 < P, Si, R1 ∈ Rn×n, i = 1, 2 and positive diagonal matrices
Υ h
ϱ
,ΛΥ 2h

ϱ
,ΛΥ h

∆a
,ΛΥ h

a
∈ R2×2 and ΛΥ h

ϱ,a
∈ R4×4 such that (3.18),

here ϵ = ϵ∗, h = h∗, and δ2,x < e−αh∗

(see (2.10)) hold. Then, for
ll ϵ ≤ ϵ∗ and h ≤ h∗ the system (3.1) is exponentially stable with
ecay rate α > 0. The LMI (3.18) and δ2,x < e−αh are feasible for
mall enough α, ϵ, h and ∆ai,M , i = 1, 2.

roof. Feasibility of the LMI (3.18) implies

V̇ + 2αV ≤ 0 ⇒ V (t) ≤ e−2α(t−h)V (h), t ≥ h.

Now,

V (h) = |z(h)|2 +
∫ h
0 e−2α(h−s) |x(s)|2S1+S2 ds

+
∫ 0

−h e
−2α(h−s) |φ(s)|2S2 ds

whereas

V (t) ≥ σmin(P) |z(t)|2 , t ≥ h.

Using variation of constants and (3.2), it can be easily verified that
there exists a constant 0 < M such that Mφ := M ∥φ∥C([−h,0])
satisfies

|z(t)| ≤ Mφe−α(t−h), t ≥ h. (3.20)

To conclude the same for the solution x(t) of the system (3.1), for
any k ∈ N, we denote Xk = supτ∈[kh,(k+1)h) |x(τ )|. From (2.10), (3.2)
and (3.20), we find that Xk+1 ≤ Mφe−αkh

+δ2,xXk, k ∈ N. Consider
the linear difference equation

Yk+1 = Mφe−αkh
+ δ2,xYk, k ∈ N. (3.21)

By using induction, we have Xk ≤ Yk for all k ∈ N, provided
Y1 ≥ X1 ≥ 0. Setting Y1 = X1, it can be easily verified that
the solution of (3.21) with initial condition Y = X is given by
1 1

9

Yk = (X1 − µh) δ
k−1
2,x + µhe−α(k−1)h, k ∈ N, where µh =

Mφe−αh

e−αh−δ2,x
.

et t ≥ h and k ∈ N such that t ∈ [kh, (k + 1)h). Then

|x(t)| ≤ Xk ≤

(
X1−µh
δ2,x

+ µheαh
)
e−α(t−h)

where the last step follows from the assumption δ2,x < e−αh.
pplying the step method and variation of constants on t ∈

0, 2h] there clearly exists a constant M1 > 0 such that |x(t)| ≤

M1 ∥φ∥C([−h,0]) ≤ M1e2αh ∥φ∥C([−h,0]) e−αt , the exponential stabil-
ity of (3.1) follows. Proof of feasibility of (3.18) and δ2,x < e−αh

ollows by arguments similar to Theorem 2.1 and is omitted due
o space limitations. □

.2. Systems with fast-varying delay

In this section we consider the system for t ≥ 0

ẋ(t) = A0x(t) +

[
Ah +

∑2
i=1 ai

( t
ϵ

)
Ai

]
x(t − h(t)),

x(θ ) = φ(θ ), θ ∈ [−hM , 0].
(3.22)

Here x(t) ∈ Rn for t ≥ 0, ϵ > 0, A0, A1, A2, Ah ∈ Rn. Furthermore,
h : [0,∞) → R is a piecewise-continuous time-varying delay,
which is unknown and satisfies

h(t) ≤ hM , t ≥ 0 (3.23)

for some known 0 < hM , whereas φ ∈ W ([−hM , 0]). Let
ai
( t
ϵ

)
, i = 1, 2 satisfy Assumptions 1 and 2, whereas Aav =

A0 + Ah is assumed to be Hurwitz.
We begin by presenting the system (3.22) as

ẋ(t) = Aavx(t) +
∑2

i=1 ai
( t
ϵ

)
Aix(t) + Ahξ (t),

+
∑2

i=1 ai
( t
ϵ

)
Aiξ (t), t ≥ 0,

ξ (t) = x(t − h(t)) − x(t).

(3.24)

Recalling ϱϵi (t), i = 1, 2 in (2.6) and subject to (2.8), we introduce
the transformation

z(t) = x(t) −
∑2

i=1 ϱϵ,i(t)Aix(t). (3.25)

Remark 3.2. Differently from (3.2), we do not employ here the
transformation

z(t) = x(t) −

2∑
i=1

ϱϵ,i(t)Aix(t − h(t)).

The latter transformation cannot be differentiated, since the delay
h(t) is assumed to only be piecewise continuous.

Employing (2.8) and (3.25), we obtain the following:

ż(t) = Aavz(t) +
∑2

i=1 AavAiϱϵ,i(t)x(t) + Ahξ (t)

+
∑2

i=1 ai
( t
ϵ

)
Aiξ (t) +

∑2
i=1∆ai

( t
ϵ

)
Aiξ (t)

−
[
ϱϵ,1(t)A1 + ϱϵ,2(t)A2

]
ẋ(t), t ≥ τM .

(3.26)

o vectorize (3.26), recall Υϱ(t), Υϱ,a(t), Υ∆a(t), A, A1 and W in
2.13), where we set ϵ1 = ϵ2 = ϵ. We introduce

Zϱ(t) = col
{
ϱϵ,i(t)ξ (t)

}2
i=1 , Ah =

[
A1Ah A2Ah

]
,

Zϱ,a(t) = col
{
ϱϵ,i(t)ak

( t
ϵ

)
ξ (t)

}
{(i,k)}≤lex

,

Υa(t) = col
{
ai
( t
ϵ

)
x(t)

}2
i=1 ,

Za(t) = col
{
ai
( t
ϵ

)
ξ (t)

}2
i=1 ,

Z∆a(t) = col
{
∆aj

( t
ϵ

)
ξ (t)

}2
j=1 .

(3.27)

Then, (3.25) and (3.26) can be presented as

z(t) = x(t) − AΥϱ(t),
ż(t) = Aavz(t) + Ahξ (t) + WΥϱ(t) − AhZϱ(t) (3.28)

−A1Υϱ,a(t) − A1Zϱ,a(t) + AZa(t) + AΥ∆a(t), t ≥ τM ,
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hereas by (3.24) we have

˙(t) = Aavx(t) + Ahξ (t) + AΥa(t) + AZa(t), t ≥ 0. (3.29)

For exponential stability analysis of (3.28), let 0 < P, S, R ∈ Rn

and 0 < α ∈ R. We introduce the following Lyapunov functional
for t ≥ hM :

V (t) = |z(t)|2P + VR(t) + VS(t),

VR(t) = hM
∫ 0

−hM

∫ t
t+θ e

−2α(t−τ ) |ẋ(τ )|2R dτdθ,

VS(t) =
∫ t
t−hM

e−2α(t−τ ) |x(τ )|2S dτ

(3.30)

where VS(t) and VR(t) will compensate the delay error ξ (t).
Differentiating |z(t)|2P along the solution to (3.28), we have

d
dt |z(t)|2P + 2α |z(t)|2P = |z(t)|2Qα + 2z⊤(t)P [Ahξ (t)

+WΥϱ(t) − AhZϱ(t) − A1Υϱ,a(t) − A1Zϱ,a(t)
+AZa(t) + AΥ∆a(t)] , t ≥ hM

(3.31)

where Qα is given in (2.16). Employing (3.28), we then have

|z(t)|2Qα = |x(t)|2Qα +
⏐⏐Υϱ(t)⏐⏐2A⊤QαA

− 2x⊤(t)QαAΥϱ(t) (3.32)

and

2z⊤(t)P
[
Ahξ (t) + WΥϱ(t) − AhZϱ(t) − A1Υϱ,a(t)

−A1Zϱ,a(t) + AZa(t) + AΥ∆a(t)
]

= 2
[
x(t) − AΥρ(t)

]⊤
× P

[
Ahξ (t) + WΥϱ(t) − AhZϱ(t) − A1Υϱ,a(t)

−A1Zϱ,a(t) + AZa(t) + AΥ∆a(t)
]
.

(3.33)

Differentiating VS(t) along the solution to (3.28), we have

d
dt VS(t) + 2αVS(t) = |x(t)|2S − e−2αhM |x(t) + ξ (t) + ν(t)|2S ,
ν(t) = x(t − hM ) − x(t − h(t)).

(3.34)

Let G ∈ Rn satisfy[
R G
∗ R

]
≥ 0. (3.35)

Differentiating VR(t) along the solution to (3.28) and employing
the Jensen and Park inequalities (see Fridman (2014))

d
dt VR(t) + 2αVR(t) ≤ −e−2αhM

[
ξ (t)
ν(t)

]⊤ [
R G
∗ R

][
ξ (t)
ν(t)

]
+h2

M |Aavx(t) + Ahξ (t) + AΥa(t) + AZa(t)|2R .

(3.36)

To employ the S-procedure, recall Hϱ and Hϱ,a in (2.20) and

ntroduce Ha = col
{
h
(k)
a

}2
k=1

. Let Ha have nonnegative entries
uch that (2.35) and

2
k (t/ϵ) ≤ h(k)a (3.37)

old for all 1 ≤ i, k ≤ 2 and t ≥ 0, uniformly in (small)
> 0. Let ΛΥϱ ,ΛZϱ ,ΛΥ∆a ∈ R2×2, ΛZ∆a ,ΛΥa ,ΛZa ∈ R2×2

nd ΛΥϱ,a ,ΛZϱ,a ∈ R4×4 be positive diagonal matrices (decision
ariables). By (2.5), (2.35) and (3.37), we have

Υ ⊤
ϱ (t)

(
ΛΥϱ ⊗ In

)
Υϱ(t) ≤

⏐⏐ΛΥϱHϱ
⏐⏐
1
|x(t)|2 ,

Z⊤
ϱ (t)

(
ΛZϱ ⊗ In

)
Zϱ(t) ≤

⏐⏐ΛZϱHϱ
⏐⏐
1
|ξ (t)|2 ,

Υ ⊤
a (t)

(
ΛΥa ⊗ In

)
Υa(t) ≤

⏐⏐ΛΥaHa
⏐⏐
1 |x(t)|2 ,

Z⊤(t)
(
Λ ⊗ I

)
Z (t) ≤

⏐⏐Λ H
⏐⏐ |ξ (t)|2 ,
a Za n a Za a 1 S

10
Υ ⊤
ϱ,a(t)

(
ΛΥϱ,a ⊗ In

)
Υϱ,a(t) ≤

⏐⏐ΛΥϱ,aHϱ,a
⏐⏐
1
|x(t)|2 ,

Z⊤
ϱ,a(t)

(
ΛZϱ,a ⊗ In

)
Zϱ,a(t) ≤

⏐⏐ΛZϱ,aHϱ,a
⏐⏐
1
|ξ (t)|2 ,

Υ ⊤

∆a(t)
(
ΛΥ∆a ⊗ In

)
Υ∆a(t) ≤

⏐⏐ΛΥ∆a∆a,M
⏐⏐
1 |x(t)|2 ,

Z⊤

∆a(t)
(
ΛZ∆a ⊗ In

)
Z∆a(t) ≤

⏐⏐ΛZ∆a∆a,M
⏐⏐
1 |ξ (t)|2 .

(3.38)

Let
η(t) = col

{
x(t), ξ (t), ν(t),Υϱ(t),Υa(t),Υ∆a(t),

Υϱ,a(t),Zϱ(t),Za(t),Z∆a(t),Zϱ,a(t)
}
.

(3.39)

Recalling (3.38), we have

0 ≤ W3 = η⊤(t) [Σ0 −Σ1] η(t)
Σ1 = diag

{
0, 0, 0,−ΛΥϱ ,−ΛΥa ,−ΛΥ∆a ,−ΛΥϱ,a

,−ΛZϱ ,−ΛZa ,−ΛZ∆a ,−ΛZϱ,a
}

⊗ In,

Σ0 = diag
{
Σ

(1)
0 ,Σ

(2)
0 , 0, 0, 0, 0, 0, 0, 0, 0, 0

}
,

(3.40)

Σ
(1)
0 =

(⏐⏐ΛΥϱHϱ
⏐⏐
1 +

⏐⏐ΛΥaHa
⏐⏐
1 +

⏐⏐ΛΥϱ,aHϱ,a
⏐⏐
1 ,⏐⏐ΛΥ∆a∆a,M

⏐⏐
1

)
In,

Σ
(2)
0 =

(⏐⏐ΛZϱHϱ
⏐⏐
1 +

⏐⏐ΛZaHa
⏐⏐
1 +

⏐⏐ΛZϱ,aHϱ,a
⏐⏐
1 ,⏐⏐ΛZ∆a∆a,M

⏐⏐
1

)
In.

By (3.31)–(3.40) and the S-procedure (Fridman, 2014)

V̇ + 2αV ≤ V̇ + 2αV + W3 ≤ η⊤(t)Φϵ,hη(t) ≤ 0, (3.41)

provided

Φϵ,h =

⎡⎢⎣ Φ
(1)
ϵ,h Φ

(2)
ϵ,h Φ

(3)
ϵ,h

∗ Φ
(4)
ϵ,h Φ

(5)
ϵ,h

∗ ∗ Φ
(6)
ϵ,h

⎤⎥⎦+ h2
ML⊤RL < 0 (3.42)

where

Φ
(1)
ϵ,h =

⎡⎢⎣Qα PAh − ϵMS −ϵMS
∗ −ϵM (S + R) −ϵM (S + G)
∗ ∗ −ϵM (S + R)

⎤⎥⎦
+ diag

{
Σ

(1)
0 ,Σ

(2)
0 , 0

}
+ diag {(1 − ϵM) S, 0, 0} ,

Φ
(2)
ϵ,h =

⎡⎢⎣−QαA + PW 0 PA −PA1

−A⊤

h PA 0 0 0
0 0 0 0

⎤⎥⎦ ,
Φ

(3)
ϵ,h =

⎡⎢⎣−PAh PA 0 −PA1

0 0 0 0
0 0 0 0

⎤⎥⎦ ,

Φ
(4)
ϵ,h =

⎡⎢⎢⎢⎣
A⊤QαA − A⊤PW − W⊤PA 0 −A⊤PA A⊤PA1

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤⎥⎥⎥⎦
+ diag

{
−ΛΥϱ ⊗ In,−ΛΥa ⊗ In,

−ΛΥ∆a ⊗ In,−ΛΥϱ,a ⊗ In
}
,

Φ
(6)
ϵ,h = diag

{
−ΛZϱ ⊗ In,−ΛZa ⊗ In,

−ΛZ∆a ⊗ In,−ΛZϱ,a ⊗ In
}
,

Φ
(5)
ϵ,h =

⎡⎢⎢⎢⎣
A⊤PAh −A⊤PA 0 A⊤PA1

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ ,
L = [Aav Ah 0 0 A 0 0 0 A 0 0] , ϵM = e−2αhM .

(3.43)

ummarizing, we arrive at:
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Fig. 1. Theorem 3.1 - max constant delay h which preserves the exponential
tability of the switched delayed system with decay rate α = 0.005.

heorem 3.2. Consider (3.22) where ϵ > 0, A0, A1, A2, Ah ∈ Rn

and h(t) is a piecewise continuous delay, subject to (3.23). Let the
rapidly-varying coefficients ai

( t
ϵ

)
, i = 1, 2 satisfy Assumptions 1

and 2 for some T > 0. Assume further that Aav := A0 + Ah is
Hurwitz. Let Hϱ , Hϱ,a and Ha be vectors with nonnegative entries
such that (2.35) and (3.37) hold. Given positive tuning parame-
ters α, ϵ∗, h∗

M ,∆a1,M ,∆a2,M , let there exist 0 < P, R, S ∈ Rn,
G ∈ Rn and positive diagonal matrices ΛΥϱ ,ΛZϱ ,ΛΥ∆a ∈ R2×2,
ΛZ∆a ,ΛΥa ,ΛZa ∈ R2×2 and ΛΥϱ,a ,ΛZϱ,a ∈ R4×4 such that (3.35)
and (3.42) hold with ϵ = ϵ∗ and hM = h∗

M . Then, for all ϵ ≤ ϵ∗

and hM ≤ h∗

M system 3.2 is exponentially stable with decay rate
α > 0. The LMIs (3.35) and (3.42) are feasible for small enough
α, ϵ, hM ,∆ai,M , i = 1, 2.

Proof. The proof is similar to the proof of Theorem 3.1 and
is omitted due to space constraints. Note that (2.10) implies
invertibility of (3.25) (see Assumption 2). Hence, exponential
stability of (3.22) follows from exponential decay of z(t) (which
is guaranteed by (3.35) and (3.42)). □

3.3. Numerical example

Delayed stabilization by fast switching
We consider the delayed Example 2.1 of the previous section

ẋ(t) = A( t
ϵ
)x(t − h) with A given by (2.45) and (2.46). This

system can be presented as (3.1) with A0 = 02×2, A1 and A2
iven in (2.45) and ai defined in (2.48). We further set Ah = Aav ,
here Aav is given in (2.47). The upper bounds in (3.12) are

obtained using the explicit description of ai(τ ), i = 1, 2 and
the bounds on ϱ2

ϵ,i(t), i = 1, 2 appearing in Example 2.3.1. We
consider both constant delay and general time-varying delays. For
the case of constant delay, we fix α = 0.0075, and verify the
feasibility of (3.18) and δ2,x < e−αh, given in Theorem 3.1, for
ϵ ∈ [0.005, 0.0165]. For each ϵ in the latter range, the conditions
of Theorem 3.1 were verified to obtain the largest delay h which
preserves feasibility of (3.18) and δ2,x < e−αh. The results are
given in Fig. 1. Note that decreasing ϵ leads to an increase of
max h.

Next, we consider the case of fast-varying delays and compare
our approach with the results of Fridman and Zhang (2020, Ex-
ample 5.1). Let α ∈ {0, 0.005, 0.01} and ϵ = 0.05. We verify the
MIs of Theorem 3.2 to obtain the maximal value of the delay
11
Table 6
Switched system with fast-varying delay - maximum hM
preserving LMI feasibility.
ϵ = 0.05 α = 0 α =

1
200 α =

1
100

Fridman and Zhang (2020) 0.0516 0.0259 Unchecked
Theorem 3.2 0.054 0.0349 0.0161

Table 7
Switched system with fast-varying delay - maximum hM
preserving LMI feasibility.
ϵ = 0.25 α = 0 α = 0.0025 α = 0.005

Theorem 3.2 0.0252 0.0161 0.0069

bound τM which preserves feasibility of the LMIs. The results are
given in Table 6. Our results improve the results of Fridman and
Zhang (2020). In particular, the results for α = 0.005 present an
improvement of 34.75% over the corresponding case in Fridman
and Zhang (2020). We further consider the case ϵ = 0.25 for
which the method of Fridman and Zhang (2020) fails. The results
are given in Table 7.

4. Rapidly-varying systems with distributed delays

In this section we consider the system

ẋ(t) = A0x(t) + AD
( t
ϵ

) ∫ 0
−hϖ (θ )x(t + θ )dθ, t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0]
(4.1)

where x(t) ∈ Rn for t ≥ 0, AD (τ ) = Ah + a1(τ )A1, τ ∈ R,
Ah, A0, A1 ∈ Rn×n, h, ϵ > 0 and φ ∈ W ([−h, 0],Rn). The weight
function ϖ ∈ L1([−h, 0]) satisfies ϖ (t) > 0 a.e. in [−h, 0]. The
rapidly-varying coefficient a1

( t
ϵ

)
satisfies Assumptions 1 and 2.

We assume that either A0 or Aav := A0 + ∥ϖ∥L1 · Ah is Hurwitz
(see Fridman (2014, Section 3)).

Recalling ϱϵ1 (t) in (2.6) and (2.8), we introduce the transfor-
mation

z(t) = x(t) − ϱϵ,1(t)A1ξ (t) − ∥ϖ∥L1 · ϱϵ,1(t)A1x(t) (4.2)

where

ξ (t) =

∫ 0

−h
ϖ (θ ) [x(t + θ ) − x(t)] dθ. (4.3)

Employing (2.6) and (4.2), we obtain the following expression for
ż(t), t ≥ h:

ż(t) = Aavx(t) + Ahξ (t) +∆a1
( t
ϵ

)
A1ξ (t)

+ ∥ϖ∥L1 ∆a1
( t
ϵ

)
A1x(t) − ϱϵ,1(t)A1Ξ (t),

Ξ (t) =
∫ 0

−hϖ (θ )ẋ(t + θ )dθ.
(4.4)

o further vectorize (4.4), we introduce

Υϱ(t) = ϱϵ,1(t) col {x(t), ξ (t)} ,
Υ∆a1 (t) = ∆a1

( t
ϵ

)
col {x(t), ξ (t)} ,

Υa1 (t) = a1
( t
ϵ

)
col {x(t), ξ (t)} , A1 =

[
∥ϖ∥L1 · A1 A1

]
.

(4.5)

Then, (4.2)–(4.4) can be presented as

z(t) = x(t) − A1Υρ(t),
ż(t) = Aavz(t) + Ahξ (t) + A1Υ∆a(t)

+AavA1Υϱ(t) − ϱϵ,1(t)A1Ξ (t), t ≥ h.
(4.6)

For stability analysis of (4.6), let 0 < P, Rξ , RΞ , Zξ ∈ Rn and
decay rate 0 < α ∈ R. We introduce the following Lyapunov
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unctional for t ≥ h (cf. Fridman (2014, Section 4.5)):

V (t) = |z(t)|2P + VRξ (t) + VZξ (t) + VRΞ (t),
VRξ (t) = h

∫ 0
−h

∫ t
t+θ ϖ (θ )e−2α(t−τ ) |x(τ )|2Rξ dτdθ,

VZξ (t) =
h2
2

∫ 0
−h

∫ 0
θ

∫ t
t+λϖ (θ )e−2α(t−τ ) |ẋ(τ )|2Zξ dτdλdθ,

VRΞ (t) = h
∫ 0

−h

∫ t
t+θ ϖ (θ )e−2α(t−τ ) |ẋ(τ )|2RΞ dτdθ

(4.7)

where we recall that ϖ ∈ L1([−h, 0]) is positive a.e. in [−h, 0].
The components VRξ (t), VZξ (t) and VRΞ (t) are introduced to com-
pensate ξ (t) and Ξ (t) in (4.6).

Differentiating |z(t)|2P along the solution to (4.6), we have

d
dt |z(t)|2P + 2α |z(t)|2P = |z(t)|2Qα + 2z⊤(t)P

[
Ahξ (t)

+AavA1Υϱ(t) + A1Υ∆a(t) − ϱϵ,1(t)A1Ξ (t)
] (4.8)

where Qα is given in (2.16). Employing (4.6), we then have

|z(t)|2Qα = |x(t)|2Qα
+
⏐⏐Υϱ(t)⏐⏐2A⊤

1 QαA1
− 2x⊤(t)QαA1Υϱ(t)

(4.9)

and

2z⊤(t)P
[
Ahξ (t) + A1Υ∆a(t) − ϱϵ,1(t)A1Ξ (t)

]
= 2

[
x(t) − A1Υρ(t)

]⊤ P [Ahξ (t) + A1Υ∆a(t)
−ϱϵ,1(t)A1Ξ (t) + AavA1Υϱ(t)

]
.

(4.10)

Differentiating VRξ (t) along the solution to (4.6) and employing
Jensen’s inequality, we have

d
dt VRξ (t) + 2αVRξ (t) ≤ h ∥ϖ∥L1 · |x(t)|2Rξ
− e−2αhh

∫ 0
−hϖ (θ ) |x(t + θ )|2Rξ dθ ≤ −

e−2αhh
∥ϖ∥L1

|ξ (t)|2Rξ
− 2e−2αhhx⊤(t)Rξ ξ (t) + h ∥ϖ∥L1

(
1 − e−2αh

)
|x(t)|2Rξ .

(4.11)

By applying similar arguments to VRΞ (t), we have

d
dt VRΞ (t) + 2αVRΞ (t) ≤ −

e−2αhh
∥ϖ∥L1

|Ξ (t)|2RΞ
+ h ∥ϖ∥L1 ·

⏐⏐Aavx(t) + Ahξ (t) + A1Υa1 (t)
⏐⏐2
RΞ
.

(4.12)

Differentiating VZξ (t) along the solution to (4.6) and employing
Jensen’s inequality, we have

d
dt VZΞ (t) + 2αVZΞ (t) ≤

h2
2 ϕϖ |ẋ(t)|2Zξ

−
e−2αhh2

2

∫ 0
−h

∫ t
t+θ ϖ (θ ) |ẋ(τ )|2Zξ dτdθ ≤ −

e−2αhh2
2ϕϖ

|ξ (t)|2Zξ
+

h2
2 ϕϖ

⏐⏐Aavx(t) + Ahξ (t) + A1Υa1 (t)
⏐⏐2
Zξ
,

ϕϖ = −
∫ 0

−h θϖ (θ )dθ.

(4.13)

emark 4.1. The normalizing constants appearing prior to the
ntegrals in VRξ (t), VRΞ (t) and VZξ (t) in (4.7) were chosen so that
or the caseϖ (θ ) ≡ 1, we have ∥ϖ∥L1 = h and ϕϖ =

h2
2 , whence

the compensating negative terms in the bounds (4.11) and (4.13)
are multiplied by e−2αh.

To employ the S-procedure, let hϱ, ha1 > 0 be positive scalars
uch that ∀t ≥ h and (small) ϵ > 0:

(I) ϱ2
ϵ,1(t) ≤ hϱ, (II) a21 (t/ϵ) ≤ ha1 . (4.14)

Let ΛΥϱ ,ΛΥ∆a1
,ΛΥa1

∈ R2×2 be positive diagonal matrices (deci-
sion variables) and recall (4.5). By (2.5) and (4.14), we
12
have(
Υϱ(t)

)⊤ (
ΛΥϱ ⊗ In

)
Υϱ(t)

≤ hϱ

[
x(t)
ξ (t)

]⊤ (
ΛΥϱ ⊗ In

) [x(t)
ξ (t)

]
,(

Υ∆a1 (t)
)⊤ (

ΛΥ∆a1
⊗ In

)
Υ∆a1 (t)

≤ ∆a1,M

[
x(t)
ξ (t)

]⊤ (
ΛΥ∆a1

⊗ In
)[x(t)
ξ (t)

]
,(

Υa1 (t)
)⊤ (

ΛΥa1
⊗ In

)
Υa1 (t)

≤ ha1

[
x(t)
ξ (t)

]⊤ (
ΛΥa1

⊗ In
)[x(t)
ξ (t)

]
.

(4.15)

Define

η(t) = col
{
x(t), ξ (t),Ξ (t),Υϱ(t),Υa1 (t),
Υ∆a1 (t), ϱϵ,1Ξ (t)

}
.

(4.16)

Recalling (4.15) and letting 0 < µ ∈ R, we have

0 ≤ W2 = η⊤(t) [Γ0 − Γ1] η(t)
Γ1 = diag

{
0, 0, 0,−ΛΥϱ ⊗ In,−ΛΥa1

⊗ In

−ΛΥ∆a1
⊗ In,−µIn

}
,

Γ0 = diag
{
Γ

(1)
0 , µhϱIn, 0, 0, 0, 0

}
,

Γ
(1)
0 = hϱ

(
ΛΥϱ ⊗ In

)
+∆a1,M

(
ΛΥ∆a1

⊗ In
)

+ha1

(
ΛΥa1

⊗ In
)
.

(4.17)

By (4.8)–(4.17) and the S-procedure (Fridman, 2014)

V̇ + 2αV ≤ V̇ + 2αV + W2 ≤ η⊤(t)Ωϵ,hη(t) ≤ 0, (4.18)

provided

Ωϵ,h =

⎡⎢⎢⎣
Ω

(1)
ϵ,h

0
0 Ω

(2)
ϵ,h

∗ −
e−2αhh
∥ϖ∥L1

RΞ + µhϱIn 0

∗ ∗ Ω
(3)
ϵ,h

⎤⎥⎥⎦ < 0 (4.19)

where

Ω
(1)
ϵ,h =

[
ω1 PAh − e−2αhhRξ + A⊤

avMξ,ΞAh
∗ ω2 + A⊤

h Mξ,ΞAh

]
+ Γ

(1)
0 ,

Ω
(2)
ϵ,h =

[
−QαA1 + PAavA1 A⊤

avMξ,ΞA1 PA1 −PA1
−A⊤

h PA1 A⊤

h Mξ,ΞA1 0 0

]
,

Ω
(3)
ϵ,h =

⎡⎢⎣2αA⊤

1 PA1 0 −A⊤

1 PA1 A⊤

1 PA1
∗ A⊤

1 Mξ,ΞA1 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤⎥⎦
− diag

{
ΛΥϱ ⊗ In,ΛΥa1

⊗ In,ΛΥ∆a1
⊗ In, µIn

}
,

ω1 = Qα + h ∥ϖ∥L1 ·
(
1 − e−2αh

)
Rξ + A⊤

avMξ,ΞAav,

ω2 = −
e−2αhh
∥ϖ∥L1

Rξ −
e−2αhh2
2ϕϖ

Zξ ,

Mξ,Ξ = h ∥ϖ∥L1 · RΞ +
h2
2 ϕϖ Zξ .

(4.20)

Summarizing, we arrive at:

Theorem 4.1. Consider the system (4.1) where AD (τ ) = Ah +

a1(τ )A1, Ah, A0, A1 ∈ Rn×n and ϖ ∈ L1([−h, 0]) satisfying ϖ (t) >
0 a.e. in [−h, 0]. Let the rapidly-varying coefficient a1

( t
ϵ

)
satisfies

Assumptions 1 and 2 for some T > 0. Assume further that either A
0
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r Aav := A0 + ∥ϖ∥L1 · Ah is Hurwitz. Let hϱ, ha1 > 0 be positive
calars such that for any t ≥ h and ϵ > 0 (4.14) holds. Given tuning
arameters ϵ∗, h∗,∆a1,M > 0, let there exist 0 < P, Rξ , RΞ , Zξ ∈

Rn, positive diagonal matrices ΛΥϱ ,ΛΥ∆a1
,ΛΥa1

∈ R2×2, and 0 <
µ ∈ R such that (4.19) and δ2,x ∥ϖ∥L1 < e−αh hold with ϵ = ϵ∗

nd h = h∗, where δ2,x is defined by (2.10). Then, for all ϵ ≤ ϵ∗ and
≤ h∗ system (4.1) is exponentially stable with decay rate α > 0.

The LMI (4.19) and δ2,x ∥ϖ∥L1 < e−αh are feasible for small enough
ϵ, h,∆a1,M .

Proof. The proof is similar to the proof of Theorem 3.1 and is
omitted due to space constraints. □

Example 4.1: Single phase AC system
In Griñó et al. (2021), the authors considered the following

scalar system:

ẋ(t) = −
ki
h v

2(t)
∫ t
t−h x(θ )dθ, v(t) =

√
2V sin

( 2π
h t
)
,

hich can be rewritten as

ẋ(t) =

[
−

kiV2

h +
kiV2

h cos
( 4π t

h

)] ∫ t
t−h x(θ )dθ.

ote that in the latter, h > 0 appears in the denominator of the
cosine. In order to apply our results to this system, we modify it
as follows:

ẋ(t) =

[
−

kiV2

h +
kiV2

h cos
( 4π t
ϵ

)] ∫ t
t−h x(θ )dθ,

decoupling ϵ > 0 and h. Here V = 230 is the RMS value of
the voltage and the stabilizing gain ki > 0 is to be maximized.
his system can be presented as (4.1) with T = 0.5, A0 = 0,
h = −

ki
h V

2, A1 =
ki
h V

2, ϖ (θ ) ≡ 1 and a1(τ ) = cos(4πτ ), which
leads to ∆ai(t) ≡ 0. In particular, note that A0 +∥ϖ∥L1 Ah < 0 for
ll h > 0 and ki > 0.
We set α = 0 and verify the feasibility of Theorem 4.1

onditions (i.e., inequalities (4.19) and δ2,x ∥ϖ∥L1 < e−αh) for two
ases. Note that feasibility of the strict inequalities of Theorem 4.1
ith α = 0 imply their feasibility with some α > 0, meaning
hat the system is exponentially stable with a small enough decay
ate. First, we set ki = 3.1077 · 10−4, ϵ = 0.02 and obtain the
argest value of h which preserves the stability. The result is given
y max h = 0.0627. Second, to apply our results to the setting
f Griñó et al. (2021), we fix ϵ = 0.02, h = 0.02 and verify the
onditions of Theorem 4.1 to maximize ki which preserves the
tability. The result is max ki = 6.96 · 10−4, which is 2.24 times
arger than max ki = 3.1077·10−4, obtained in Griñó et al. (2021).

. Conclusions

We introduced a novel quantitative methodology for deriving
SS-like/stability properties for linear continuous-time systems.
he presented methodology relies on a new system presenta-
ion, in conjunction with a delay-free system transformation.
ompared to the recent time-delay approach to averaging, the
ew method presents a simpler ISS analysis of the transformed
on-delayed system that employs Lyapunov functions and does
ot need additional solution bounds for times smaller than the
ime-scale parameter, and significantly improve the results in
he numerical examples. However, the time-delay approach is
pplicable not just to classical averaging as considered in the
resent paper, but also to Lie-brackets-based averaging (Zhang &
ridman, 2023), Zhu and Fridman (2022) where application of the
on-delay transformation seems to be questionable. Future work
ay include applications of the method to control problems that
mploy averaging.
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