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 A B S T R A C T

This paper deals with nonlinear boundary stabilization of a 1D reaction–diffusion equation with input delay. 
Using the modal decomposition approach, we propose a homogeneous-based predictor feedback for stabilizing 
the unstable modes. We prove the stability of the closed-loop system via the construction of a suitable Lyapunov 
functional. We present numerical simulations to support the analytical results and compare our proposed 
controller to linear predictor feedback regarding closed-loop performance and peaking effect.
1. Introduction

Delay compensation in parabolic partial differential equations
(PDEs) has become a critical topic, as control actions in complex 
systems (see Christofides & Chow, 2002, Curtain & Zwart, 2012) 
arising in fields such as biology, chemistry, and spatial ecology, can be 
significantly delayed. The presence of delays increases mathematical 
complexity, necessitating specialized techniques for stability analysis, 
numerical implementation, and control design (see Fridman, 2014). 
Control design for complex systems modeled by PDEs becomes even 
more challenging with input delays.

The boundary stabilization of the one-dimensional reaction–diffusion 
equation with input delay was first introduced and solved in Krstic 
(2009) using the backstepping method. An alternative approach for sta-
bilizing parabolic PDEs is the modal decomposition approach (see Prieur 
& Trélat, 2019), which separates a finite-dimensional unstable com-
ponent from a stable infinite-dimensional part of the PDE (see Coron 
& Trélat, 2004; Russell, 1978) and then designs a controller based 
on the unstable modes. Following this approach and using Artstein’s 
transformation (Artstein, 1982), Prieur and Trélat (2019) proposed 
a predictor feedback based on the unstable modes and proved the 
stability of the entire system by constructing an appropriate Lyapunov 
function.

Notable extensions include, for example, Lhachemi, Prieur, and 
Trélat (2020), which addresses the output regulation of a one-
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dimensional reaction–diffusion equation with input delay. Observer-
based control for one-dimensional reaction–diffusion PDEs with in-
put/output delay has been investigated in Katz, Fridman, and Seliv-
anov (2020). In contrast, delay compensation has been studied using 
classical predictors and sub-predictors (Katz & Fridman, 2021), with 
sub-predictors extended to the semilinear heat equation in Katz and 
Fridman (2022).

In these contributions, linear controllers are preferred due to their 
simplicity in control application and closed-loop analysis. However, 
they also have notable drawbacks, including the peaking effect and 
large overshoot (see Izmailov, 1987; Polyak & Smirnov, 2016). Achiev-
ing better convergence in the closed-loop system with linear con-
trol often results in significant deviation during the initial stabiliza-
tion phase (peaking effect), leading to large overshoot—presenting 
practical challenges in real-world applications. A homogeneous con-
troller (Polyakov, 2020; Polyakov & Krstic, 2023, 2025) can address 
these issues, achieving fast convergence without peaking and with min-
imal overshoot (see Polyakov, 2020, Chapter 1 for finite-dimensional 
systems and Ayamou, Espitia, Polyakov, and Fridman (2024) in the 
context of infinite-dimensional systems).

In this paper, using the modal decomposition approach and Art-
stein’s transformation, we design a homogeneous predictor feedback 
from the unstable modes and prove the stability of the entire system by 
constructing an appropriate Lyapunov functional. Next, we investigate 
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numerically whether the use of a homogeneous controller results in 
a smaller overshoot than a linear controller for a one-dimensional 
reaction–diffusion equation with input delay. To the best of our knowl-
edge, the homogeneous predictor feedback  has never been designed for 
reaction–diffusion PDEs.

The paper is organized as follows: Section 2 presents preliminary 
results on homogeneity. Section 3 deals with the problem statement 
and modal decomposition. Section 4 gives the main result. Section 5 
presents numerical results.
Notation. |𝑧| =

√

𝑧⊤𝑧 is Euclidean norm of R𝑛; we write 𝑃 ≻ 0 if 
the symmetric matrix 𝑃 = 𝑃⊤ ∈ R𝑛×𝑛 is positive definite ; we denote 
‖𝑥‖𝑃 =

√

𝑥⊤𝑃𝑥 with the matrix 𝑃 ≻ 0; given 𝐿 > 0, ⟨⋅, ⋅⟩ is a scalar 
product on 𝐿2(0, 𝐿) such that ∀𝑓, 𝑔 ∈ 𝐿2(0, 𝐿), ⟨𝑓, 𝑔⟩ = ∫ 𝐿

0 𝑓 (𝑥)𝑔(𝑥)𝑑𝑥, 
𝐻𝑘(0, 𝐿) is Sobolev space having 𝑘 square integrable weak derivatives 
; 𝐻1

0 (0, 𝐿) is a subset of 𝐻1(0, 𝐿) composed of functions 𝑓 such that 
𝑓 (0) = 𝑓 (𝐿) = 0. 𝐶(R+) is a set of continuous function on R+. A function 
𝜎 ∶ R+ → R+ is said to be a class- function if it is continuous, zero 
at zero, and strictly increasing. A class- function 𝜎 ∶ R+ → R+ is 
said to be a class-∞ function if it is unbounded with its argument. 
A continuous function 𝛽 ∶ R+ × R+ → R+ belongs to the class-
if 𝛽(⋅, 𝑡) ∈  for each fixed 𝑡 ∈ R+, and 𝛽(𝑟, ⋅) is decreasing and 
lim

𝑡→+∞
𝛽(𝑟, 𝑡) = 0 for each fixed 𝑟 ∈ R+.

2. Preliminaries on homogeneity

A family of operators 𝐝(𝑠) ∶ R𝑛 ↦ R𝑛 with 𝑠 ∈ R is a continuous 
dilation in R𝑛 if it satisfies:

• group property : 𝐝(0)𝑥=𝑥, 𝐝(𝑠)◦𝐝(𝑡)𝑥 = 𝐝(𝑠 + 𝑡)𝑥, ∀𝑥 ∈ R𝑛,∀𝑠, 𝑡 ∈ R;
• continuity property : the mapping 𝑠 ↦ 𝐝(𝑠)𝑥 is continuous, ∀𝑥∈R𝑛;
• limit property : lim inf 𝑠→+∞ ‖𝐝(𝑠)𝑥‖ = +∞ and lim sup𝑠→−∞ ‖𝐝(𝑠)𝑥‖
= 0, ∀𝑥 ≠ 0𝑛×1, where ‖ ⋅ ‖ is a norm of R𝑛.

A dilation 𝐝 is linear if 𝐝(𝑠) ∈ R𝑛×𝑛 is linear. Any linear continuous 
dilation 𝐝 in R𝑛 admits the representation (Polyakov, 2019): 

𝐝(𝑠) = 𝑒𝑠𝐺𝐝 =
∞
∑

𝑗=0

𝑠𝑗𝐺𝑗
𝐝

𝑗! , 𝑠 ∈ R, (1)

where 𝐺𝐝 ∈ R𝑛×𝑛 is an anti-Hurwitz matrix called a generator of 𝐝. 

Definition 1.  A dilation 𝐝 is monotone if 𝑠 ↦ ‖𝐝(𝑠)𝑥‖ is a monotone 
increasing function for any 𝑥 ≠ 0.

Proposition 1 (Polyakov, 2020).  A linear continuous dilation in R𝑛 is 
monotone with respect to the weighted Euclidean norm ‖𝑥‖𝑃 , 0 ≺ 𝑃 =
𝑃⊤ ∈ R𝑛×𝑛 if and only if 
𝑃𝐺𝐝 + 𝐺⊤

𝐝 𝑃 ≻0, 𝑃 ≻0. (2)

Any linear continuous and monotone dilation in a normed vector 
space introduces also an alternative norm topology.

A function ‖ ⋅ ‖𝐝 ∶ R𝑛 ↦ [0,+∞) defined as follows: ‖0𝑛×1‖𝐝 = 0 and 

‖𝑥‖𝐝 = 𝑒𝑠𝑥 , where 𝑠𝑥 ∈ R ∶ ‖𝐝(−𝑠𝑥)𝑥‖𝑃 = 1, 𝑥 ≠ 0𝑛×1, (3)

is called a canonical 𝐝-homogeneous norm in R𝑛, where 𝐝 is a linear 
continuous dilation being monotone with respect to the norm ‖ ⋅ ‖𝑃
and 𝑃  is defined in (2). Note that for all 𝑥 ∈ R𝑛, one has: 
‖𝐝(− ln(‖𝑥‖𝐝))𝑥‖𝑃 = 1. (4)

Dilation symmetry of system is introduced by the following definition. 

Definition 2 (Kawski, 1991). Given a vector field 𝑓 ∶ R𝑛 ↦ R𝑛, a system 
𝑥̇ = 𝑓 (𝑥) is 𝐝-homogeneous of degree 𝜇 ∈ R if 
𝑓 (𝐝(𝑠)𝑥) = 𝑒𝜇𝑠𝐝(𝑠)𝑓 (𝑥), ∀𝑥 ∈ R𝑛, ∀𝑠 ∈ R. (5)
2 
3. Problem statement and modal decomposition

Let us consider the 1D reaction–diffusion equation
𝜕𝑡𝑧(𝑡, 𝑥) = 𝜕𝑥𝑥𝑧(𝑡, 𝑥) + 𝑞𝑧(𝑡, 𝑥), (6)
𝑧(𝑡, 0) = 0, (7)
𝑧(𝑡, 𝐿) = 𝑈 (𝑡 − 𝑟), (8)
𝑧(0, 𝑥) = 𝑧0(𝑥), (9)

(𝑡, 𝑥) ∈ R+×[0, 𝐿], 𝑧0 ∈ 𝐻1
0 (0, 𝐿) the initial condition, where 𝑧(𝑡, ⋅) is the 

reaction–diffusion PDE state at time 𝑡, 𝑞 > 0 is the reaction coefficient, 
𝑈 (𝑡 − 𝑟) ∈ R is the control input with 𝑟 > 0 a constant delay where 
𝑈 |[−𝑟,0] ≡ 0.

This paper aims to design a homogeneous-based predictor feedback 
for the system (6)–(9) using the modal decomposition approach (Prieur 
& Trélat, 2019) and to investigate numerically if the use of a homo-
geneous feedback results in a smaller peaking than a linear feedback. 
More precisely we consider the following control problem:  given initial 
state 𝑧0 ∈ 𝐻1

0 (0, 𝐿), a stabilization precision 𝜖 > 0 and a prescribed time 
𝑇𝑝 > 0, the closed-loop system has the desired stabilization precision: 

‖𝑧(𝑡, ⋅)‖𝐻1(0,𝐿) ≤ 𝜖, ∀𝑡 > 𝑇𝑝, (10)

with the restricted control magnitude 
sup
𝑡>0

|𝑈 (𝑡 − 𝑟)| ≤ 𝑈̄ , (11)

 for some maximal control amplitude 𝑈̄ > 0. It may happen that a high-
gain linear controller ensures that the solution of the closed-loop system 
meets the criteria specified in (10), but it does not fulfill the control 
constraint outlined in (11). In contrast, the homogeneous control meets 
both criteria (10) and (11). Another situation that can be considered 
is when both the linear controller and the homogeneous one exhibit 
a similar overshoot value e.g.,. while verifying (11), but the linear 
controller may violate condition (10) whereas the homogeneous one 
does not. The advantage of the homogeneous controller lies then in 
its ability to achieve faster convergence. These considerations can be 
assessed numerically.

3.1. Modal decomposition

We start by considering the following trigonometric change of 
variable (see e.g., Karafyllis, 2021; Katz & Fridman, 2023): 
𝑤(𝑡, 𝑥) = 𝑧(𝑡, 𝑥) − 𝜅(𝑥)𝑈 (𝑡 − 𝑟), 𝜅(𝑥) = sin(𝜎𝑥), (12)

with 𝜎 = 𝜋
2𝐿  to obtain the following equivalent PDE:

𝜕𝑡𝑤(𝑡, 𝑥) = 𝜕𝑥𝑥𝑤(𝑡, 𝑥) + 𝑞𝑤(𝑡, 𝑥) − 𝜅(𝑥)
[

𝑈̇ (𝑡 − 𝑟) −

(−𝜎2 + 𝑞)𝑈 (𝑡 − 𝑟)
]

, (13)

𝑤(𝑡, 0) = 𝑤(𝑡, 𝐿) = 0, (14)
𝑤(0, 𝑥) = 𝑧0(𝑥). (15)

By introducing a new control input 𝜉(𝑡) such that 𝜉|[−𝑟,0] ≡ 0 and 

𝜉(𝑡) = 𝑈̇ (𝑡) − (−𝜎2 + 𝑞)𝑈 (𝑡), ∀𝑡 ≥ 0, (16)

one obtains the following coupled ODE-PDE system:
𝑈̇ (𝑡 − 𝑟) = (−𝜎2 + 𝑞)𝑈 (𝑡 − 𝑟) + 𝜉(𝑡 − 𝑟), (17)
𝜕𝑡𝑤(𝑡, 𝑥) = 𝜕𝑥𝑥𝑤(𝑡, 𝑥) + 𝑞𝑤(𝑡, 𝑥) − 𝜅(𝑥)𝜉(𝑡 − 𝑟), (18)
𝑤(𝑡, 0) = 𝑤(𝑡, 𝐿) = 0,

𝑤(0, 𝑥) = 𝑧0(𝑥). (19)

The solution to (18) can be represented as follows: 

𝑤(𝑡, 𝑥) =
∞
∑

𝑤𝑛(𝑡)𝜙𝑛(𝑥), 𝑤𝑛(𝑡) = ⟨𝑤(𝑡, ⋅), 𝜙𝑛⟩, (20)

𝑛=1
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with 𝜙𝑛(𝑥) =
√

2
𝐿 sin( 𝑛𝜋𝑥𝐿 ), 𝑛 ≥ 1. Projecting onto the basis {𝜙𝑛}∞𝑛=1, one 

has

𝑈̇ (𝑡 − 𝑟)=(−𝜎2 + 𝑞)𝑈 (𝑡 − 𝑟) + 𝜉(𝑡 − 𝑟), (21)
𝑤̇𝑛(𝑡)=(−𝜆𝑛 + 𝑞)𝑤𝑛(𝑡) + 𝑏𝑛𝜉(𝑡 − 𝑟), (22)
𝑤𝑛(0)=⟨𝑧0, 𝜙𝑛⟩, 𝑛 ≥ 1, (23)

where 𝑛 ≥ 1, 𝜆𝑛 = 𝑛2𝜋2

𝐿2  is the eigenvalue of Sturm–Liouville eigenvalue 
problem 

𝜙′′(𝑥) + 𝜆𝜙(𝑥) = 0, 𝜙(0) = 𝜙(𝐿) = 0, (24)

corresponding to the eigenvector 𝜙𝑛, 

𝑏𝑛 = −∫

𝐿

0
𝜅(𝑥)𝜙𝑛(𝑥)𝑑𝑥 = (−1)𝑛+2

√

2𝐿
𝜋 ( 1

2𝑛−1 + 1
2𝑛+1 ). (25)

Since 𝜆𝑛 → +∞ when 𝑛 → +∞, then there exists an integer 𝑁 ≥ 1 such 
that 

− 𝜆𝑛 + 𝑞 < −𝛿, ∀𝑛 ≥ 𝑁 + 1, (26)

with 𝛿 > 0 some positive constant. We obtain from (21)–(23), the 
following system:

𝑊̇ (𝑡) = 𝐴𝑊 (𝑡) + 𝐵𝜉(𝑡 − 𝑟), (27)
𝑤̇𝑛(𝑡) = (−𝜆𝑛 + 𝑞)𝑤𝑛(𝑡) + 𝑏𝑛𝜉(𝑡 − 𝑟), 𝑛 > 𝑁, (28)
𝑤𝑛(0) = ⟨𝑧0, 𝜙𝑛⟩, 𝑛 ≥ 1, (29)

with 𝑊 (𝑡) = (𝑈 (𝑡 − 𝑟), 𝑤1(𝑡),… , 𝑤𝑁 (𝑡))⊤, 𝐵 = (1, 𝑏1,… , 𝑏𝑁 )⊤, 𝐴 =
(

−𝜎2+𝑞 01×𝑁
0𝑁×1 diag{−𝜆𝑛+𝑞}𝑁𝑛=1

)

.

By introducing the Artstein transformation (see Artstein (1982), 
Fridman (2014)) as follows 

𝑍(𝑡) = 𝑒𝐴𝑟𝑊 (𝑡) + ∫

𝑡

𝑡−𝑟
𝑒𝐴(𝑡−𝑠)𝐵𝜉(𝑠)𝑑𝑠, (30)

one derives 

𝑍̇(𝑡) = 𝐴𝑍(𝑡) + 𝐵𝜉(𝑡), 𝑍(0) = 𝑒𝐴𝑟𝑊 (0). (31)

4. Homogeneous stabilization of 1-D heat system by full-state 
feedback

In this part, we stabilize (31) using homogeneous control and next 
study the stability of the entire system (27)–(29).

4.1. Stabilization of the finite-dimensional part

Since {𝐴,𝐵} is controllable (see Katz & Fridman, 2023, Karafyllis, 
2021, Lemma 2.1) then according to Zimenko, Polyakov, Efimov, and 
Perruquetti (2020), Polyakov (2020), the linear algebraic equations 

𝐴𝐺0 − 𝐺0𝐴 + 𝐵𝑌0 = 𝐴, 𝐺0𝐵 = 0, (32)

have solutions 𝑌0 ∈ R1×(𝑁+1), 𝐺0 ∈ R(𝑁+1)×(𝑁+1) such that the matrix 
𝐺0−𝐼𝑁+1 is invertible, the matrix 𝐺𝐝 ∶= 𝐼𝑁+1+𝜇𝐺0 is anti-Hurwitz for 
any 𝜇 ∈ (−1, 0) and the matrix 𝐴0 = 𝐴+𝐵𝐾0 with 𝐾0 = 𝑌0(𝐺0−𝐼𝑁+1)−1

satisfies the identity 

𝐴0𝐺𝐝 = (𝐺𝐝 + 𝜇𝐼𝑁+1)𝐴0, 𝐺𝐝𝐵 = 𝐵. (33)

Moreover, the linear matrix inequalities 
(𝐴0+𝜌𝐺𝐝)𝑋+𝑋(𝐴0+𝜌𝐺𝐝)⊤+𝐵𝑌 +𝑌⊤𝐵⊤⪯0,
𝐺𝐝𝑋+𝑋𝐺⊤

𝐝 ≻2(1 + 𝜇)𝑋, 𝑋 = 𝑋⊤≻0, (34)

have solutions 𝑋, 𝑌  for any 𝜌 > 0. Recall that 𝐝 is the dilation generated 
by 𝐺 . 
𝐝

3 
Proposition 2 (Polyakov, 2020).  For the 𝐝-homogeneous norm ‖ ⋅ ‖𝐝
induced by the norm ‖ ⋅ ‖𝑋−1  one has for all 𝑥 ∈ R𝑛, 

‖𝑥‖𝜈𝐝 ≤ ‖𝑥‖𝑋−1 ≤ ‖𝑥‖𝜏𝐝, ‖𝑥‖𝑋−1 ≤ 1; (35)

‖𝑥‖𝜏𝐝 ≤ ‖𝑥‖𝑋−1 ≤ ‖𝑥‖𝜈𝐝, ‖𝑥‖𝑋−1 ≥ 1, (36)

with 

𝜈 =
𝜆max(𝑋−1∕2𝐺𝐝𝑋1∕2+𝑋1∕2𝐺⊤

𝐝𝑋
−1∕2)

2 ,

𝜏 =
𝜆min(𝑋−1∕2𝐺𝐝𝑋1∕2+𝑋1∕2𝐺⊤

𝐝𝑋
−1∕2)

2 .
(37)

Moreover, from (34) one has the following inequality 
1 + 𝜇 < 𝜏. (38)

Lemma 1.  Let the canonical homogeneous norm ‖𝑍(𝑡)‖𝐝 be induced by 
the weighted norm ‖𝑍(𝑡)‖𝑋−1 . Then the system (31) with the continuous 
feedback law 
𝜉(𝑍(𝑡)) = 𝐾0𝑍(𝑡) + (𝑍(𝑡)), (39)

 (𝑍(𝑡)) = ‖𝑍(𝑡)‖1+𝜇𝐝 𝐾𝐝(− ln(‖𝑍(𝑡)‖𝐝))𝑍(𝑡), (40)

where 𝐾 = 𝑌 𝑋−1, 𝑋, 𝑌  being solutions of (34) for some 𝜌 > 0 is 
𝐝-homogeneous of degree 𝜇 and globally finite-time stable 

𝑍(𝑡) = 0, ∀𝑡 ≥ 𝑇 ∶=
‖𝑍(0)‖−𝜇𝐝

−𝜌𝜇
. (41)

Proof.  The proof follows the same lines as in the proof of Zimenko 
et al. (2020, Lemma 5) showing that the canonical homogeneous norm 
‖ ⋅ ‖𝐝 is a Lyapunov functional and satisfies 
𝑑‖𝑍(𝑡)‖𝐝

𝑑𝑡
≤ −𝜌‖𝑍(𝑡)‖1+𝜇𝐝 , (42)

along the solution of closed-loop system (31) and (39). ■

Since the control system (31) is uncontrolled for 𝑡 ≤ 0, one considers 
the following feedback law 

𝜉(𝑡) =
{

0, if 𝑡 ≤ 0,
𝐾0𝑍(𝑡) + (𝑍(𝑡)) if 𝑡 > 0.

(43)

Then the closed-loop system (28),(29), (31) and (43) is: 

𝑍̇(𝑡) = 𝐴𝑍(𝑡) + 𝐵
(

𝐾0𝑍(𝑡) + (𝑍(𝑡))
)

,

𝑤̇𝑛(𝑡) = (−𝜆𝑛 + 𝑞)𝑤𝑛(𝑡) + 𝜒(𝑟,+∞)(𝑡)𝑏𝑛
(

𝐾0𝑍(𝑡 − 𝑟)+

 (𝑍(𝑡 − 𝑟))
)

, 𝑛 > 𝑁,
𝑍(0) = 𝑒𝐴𝑟𝑊 (0), 𝑤𝑛(0) = ⟨𝑧0, 𝜙𝑛⟩, 𝑛 > 𝑁,

(44)

with 𝜒(𝑟,+∞)(𝑡) = 0 for 𝑡 ≤ 𝑟 and 𝜒(𝑟,+∞)(𝑡) = 1 otherwise.

4.2. Stability of entire system

For 𝐻1 stability analysis of the closed-loop system (44), we define 
the following Lyapunov functional: 
𝑉 (𝑡) = 𝛾1𝛺(‖𝑍(𝑡)‖𝐝) + 𝛾2 ∫

𝑡
max{𝑡−𝑟,0} 𝛹 (‖𝑍(𝑠)‖𝐝)𝑑𝑠

+
∑

𝑛>𝑁 𝜆𝑛𝑤2
𝑛(𝑡), ∀𝑡 ≥ 0,

(45)

with 

𝛺(𝑠) =

⎧

⎪

⎨

⎪

⎩

1
2+𝜇 𝑠

2+𝜇 , if 𝑠 ≤ 1,
1

2𝜈−𝜇 𝑠
2𝜈−𝜇 − 1

2𝜈−𝜇 + 1
2+𝜇 , if 𝑠 ≥ 1,

𝛹 (𝑠) =

{

𝑠2(1+𝜇), if 𝑠 ≤ 1,

𝑠2𝜈 , if 𝑠 ≥ 1.

(46)

and 𝛾1, 𝛾2 > 0, 𝜈 is defined in (37). Note that 𝛹 ∈ ∞ and using 1+𝜇 < 𝜏
(from Proposition  2) then 2𝜈 − 𝜇 > 2 + 𝜇 and 𝛺 ∈  .
∞
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Lemma 2.  There exists 𝜂1 ∈ ∞ such that for all 𝑡 ≥ 0, 
𝜂1(𝑈2(𝑡 − 𝑟) + ‖𝑤(𝑡, ⋅)‖2

𝐻1(0,𝐿)
) ≤ 𝑉 (𝑡). (47)

Proof.  Since 𝑤(𝑡, ⋅) ∈ 𝐻1
0 (0, 𝐿) then there exists 𝐶1 > 0 such that 

‖𝑤(𝑡, ⋅)‖2
𝐻1(0,𝐿)

≤ 𝐶1

∞
∑

𝑛=1
𝜆𝑛𝑤

2
𝑛(𝑡), (48)

which implies that 

𝑈2(𝑡 − 𝑟) + ‖𝑤(𝑡, ⋅)‖2
𝐻1(0,𝐿)

≤ 𝐶2

(

|𝑊 (𝑡)|2 +
∞
∑

𝑛=𝑁+1
𝜆𝑛𝑤

2
𝑛(𝑡)

)

, (49)

with 𝐶2 = max{𝐶1, 𝐶1𝜆𝑁+1 + 1}. From (30), one has 

𝑊 (𝑡) = 𝑒−𝐴𝑟𝑍(𝑡) − ∫ 𝑡
max{𝑡−𝑟,0} 𝑒

𝐴(𝑡−𝑠−𝑟)𝐵
(

𝐾0𝑍(𝑠)

+ (𝑍(𝑠))
)

𝑑𝑠, ∀𝑡 ≥ 0.
(50)

From Proposition  2 (and using 1 + 𝜇 < 𝜏 < 𝜈), one has 

‖𝑍(𝑡)‖𝑋−1 ≤ 𝛹
1
2 (‖𝑍(𝑡)‖𝐝). (51)

Using (51) and the fact that ‖𝐝(− ln ‖𝑍(𝑡)‖𝐝)𝑍(𝑡)‖𝑋−1 = 1, one 
derives for all 𝑡 ≥ 0, 

|𝑊 (𝑡)|2 ≤ 𝑀1

(

𝛹 (‖𝑍(𝑡)‖𝐝) + ∫

𝑡

max{𝑡−𝑟,0}
𝛹 (‖𝑍(𝑠)‖𝐝)𝑑𝑠

)

, (52)

with 𝑀1 = 2𝑒2|𝐴|𝑟𝜆𝑚𝑖𝑛(𝑋−1)−1 max{1, 𝑟|𝐵|2𝑀2} and 𝑀2 = 4max{|𝐾⊤
0 |

2,
|𝐾⊤

|

2}. This means for all 𝑡 ≥ 0, 
|𝑊 (𝑡)|2 ≤ 𝑀1

(

𝛹◦𝛺−1( 1
𝛾1
𝑉 (𝑡)) + 1

𝛾2
𝑉 (𝑡)

)

. (53)

Using (49) and (53), the proof is complete. ■

Let for all 𝑡 ≥ 0,

𝑉1(𝑡) = ‖𝑍(𝑡)‖𝐝, 𝑉2(𝑡) =
∑

𝑛>𝑁
𝜆𝑛𝑤

2
𝑛(𝑡), (54)

𝑉3(𝑡) = 𝜒(𝑟,+∞)(𝑡)‖𝑍(𝑡 − 𝑟)‖𝐝. (55)

Computing the time-derivatives along the solutions of closed-loop sys-
tem (44), for all 𝑡 > 𝑟, one has from (42) and (46)
𝑑𝛺(𝑉1(𝑡))

𝑑𝑡 ≤ −𝜌𝛹 (𝑉1(𝑡)), (56)

and 
𝑑
𝑑𝑡 ∫

𝑡

𝑡−𝑟
𝛹 (𝑉1(𝑠))𝑑𝑠 = 𝛹 (𝑉1(𝑡)) − 𝛹 (𝑉3(𝑡)). (57)

On other hand, along solution of closed-loop system (44) for all 𝑡 > 𝑟, 

𝑉̇2(𝑡) = 2
∑

𝑛>𝑁
𝜆𝑛𝑤𝑛(𝑡)

(

(−𝜆𝑛 + 𝑞)𝑤𝑛(𝑡) + 𝑏𝑛𝜉(𝑡 − 𝑟)
)

. (58)

Using the Young inequality, for all 𝛾3 > 𝜆𝑁+1
2(𝜆𝑁+1−𝑞)

 the equality (58) 
implies for all 𝑡 > 𝑟, 
𝑉̇2(𝑡) ≤ 2

∑

𝑛>𝑁 𝜆𝑛
(

(−1 + 1
2𝛾3

)𝜆𝑛 + 𝑞
)

𝑤2
𝑛(𝑡)

+𝛾3𝑀3𝛹 (𝑉3(𝑡)),
(59)

with 𝑀3 = 𝜆𝑚𝑖𝑛(𝑋−1)−1𝑀2

(

∑

𝑛>𝑁 |𝑏𝑛|
2
)

.
Using (52), one derives for all 𝑡 > 𝑟, 

𝑉̇2(𝑡) ≤ −2𝜃𝑁,1𝑉2(𝑡) + 𝛾3𝑀3𝛹 (𝑉3(𝑡)), (60)

with 
𝜃𝑁,1 = (1 − 1

2𝛾3
)𝜆𝑁+1 − 𝑞 > 0. (61)

From (45), along the solution of closed loop system (44), one has for 
all 𝑡 > 𝑟, 

𝑉̇ (𝑡) = 𝛾1
𝑑𝛺(𝑉1(𝑡))

𝑑𝑡 + 𝛾2
𝑑
𝑑𝑡 ∫

𝑡
𝛹 (𝑉1(𝑠))𝑑𝑠 + 𝑉̇2(𝑡). (62)
𝑡−𝑟

4 
Then using (56),(57) and (60) one derives for all 𝑡 > 𝑟, 
𝑉̇ (𝑡) ≤ −2𝜃𝑁,1𝑉2(𝑡) + (𝛾3𝑀3 − 𝛾2)𝛹 (𝑉3(𝑡))

+(𝛾2 − 𝛾1𝜌)𝛹 (𝑉1(𝑡)).
(63)

Since from (42) the map 𝑡 ↦ 𝑉1(𝑡) is decreasing on [0,+∞) then for all 
𝑡 > 𝑟, and for all 𝑠 ∈ [𝑡 − 𝑟, 𝑡], 
𝛹 (𝑉1(𝑡)) ≤ 𝛹 (𝑉1(𝑠)) ≤ 𝛹 (𝑉3(𝑡)). (64)

This implies that for all 𝑡 > 𝑟

𝛹 (𝑉3(𝑡)) ≥
1
𝑟 ∫

𝑡

𝑡−𝑟
𝛹 (𝑉1(𝑠))𝑑𝑠. (65)

In addition, for 𝛾2 > 𝛾3𝑀3 and 𝛾1 > 𝛾2
𝜌 , one has 

𝜌̃ = min{2𝜃𝑁,1, 𝛾1𝜌 − 𝛾2,
𝛾2−𝛾3𝑀3

𝑟 } > 0, (66)

and then the inequality (63) implies that for all 𝑡 > 𝑟

𝑉̇ (𝑡) ≤ −𝜌̃
(

𝑉2(𝑡) + 𝛹 (𝑉1(𝑡)) + ∫

𝑡

𝑡−𝑟
𝛹 (𝑉1(𝑠))𝑑𝑠

)

. (67)

By using Lemma  3 (in the Appendix), one has the following inequality 

∫

𝑡

𝑡−𝑟
𝛹 (𝑉1(𝑠))𝑑𝑠 + 𝑉2(𝑡) + 𝛹◦𝛺−1(𝛺(𝑉1(𝑡))) ≥ 𝜂2(𝑉 (𝑡)), (68)

where 𝜂2 is the ∞ function given by 

𝜂2(𝑠) = min{ 𝑠
3 , 𝛹◦𝛺−1

(

𝑠
3𝛾1

)

, 𝑠
3𝛾2

}, ∀𝑠 ≥ 0. (69)

Finally, one concludes that, for all 𝑡 > 𝑟, 
𝑉̇ (𝑡) ≤ −𝜌̃𝜂2(𝑉 (𝑡)), (70)

and then there exists 𝛽1 ∈  such that, for all 𝑡 ≥ 𝑟

𝑉 (𝑡) ≤ 𝛽1(𝑉 (𝑟), 𝑡 − 𝑟). (71)

Consider now the case 𝑡 < 𝑟. Along the solution of closed-loop 
system (44), for all 𝑡 ∈ [0, 𝑟) one has: 
𝑉̇ (𝑡) ≤ (−𝜌𝛾1 + 𝛾2)𝛹 (𝑉1(𝑡)) + 2(−𝜆𝑁+1 + 𝑞)

∑

𝑛>𝑁
𝜆𝑛𝑤

2
𝑛(𝑡). (72)

Since from (66) 𝜌𝛾1 > 𝛾2, one derives, for all 𝑡 ∈ [0, 𝑟)

𝑉̇ (𝑡) ≤ 0, (73)

which implies that for all 𝑡 ∈ [0, 𝑟], 
𝑉 (𝑡) ≤ 𝛾1𝛺(‖𝑍(0)‖𝐝) +

∑

𝑛>𝑁
𝜆𝑛𝑤

2
𝑛(0). (74)

Since 𝛺 ∈ ∞, using Proposition  2 and the fact that 𝑍(0) = 𝑒𝐴𝑟𝑊 (0)
there exists 𝜂3 ∈ ∞ such that for all 𝑡 ∈ [0, 𝑟]

𝑉 (𝑡) ≤ 𝜂3(|𝑊 (0)|2 +
∑

𝑛>𝑁
𝜆𝑛𝑤

2
𝑛(0)). (75)

Using the fact that 𝑧0 ∈ 𝐻1
0 (0, 𝐿) and 𝑈 (−𝑟) = 0, one has 

min{𝜆1, 1}
(

|𝑊 (0)|2 +
∑

𝑛>𝑁
𝜆𝑛𝑤

2
𝑛(0)

)

≤ ‖𝑧0‖
2
𝐻1(0,𝐿)

. (76)

One concludes that there exists 𝜂4 ∈ ∞ such that 
∀𝑡 ∈ [0, 𝑟], 𝑉 (𝑡) ≤ 𝜂4(‖𝑧0‖2𝐻1(0,𝐿)

). (77)

From (71) and (77), there exists 𝛽2 ∈  such that 
∀𝑡 ≥ 0, 𝑉 (𝑡) ≤ 𝛽2(‖𝑧0‖2𝐻1(0,𝐿)

, 𝑡). (78)

Summarizing, one arrives at the following main result: 

Theorem 1.  For any initial condition 𝑧0 ∈ 𝐻1
0 (0, 𝐿), there exists 𝛽 ∈ 

such that the solution of closed-loop system (6)–(8) with the homogeneous 
feedback law (17) and (43) where 𝑍 is given by (27) and (30) satisfies: 
‖𝑧(𝑡, ⋅)‖2 ≤ 𝛽(‖𝑧 ‖

2 , 𝑡), ∀𝑡 ≥ 0. (79)

𝐻1(0,𝐿) 0 𝐻1(0,𝐿)
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Moreover, for all 𝑡 ≥ 𝑇𝑟, the control input 𝑈 and 𝑧 satisfy 

𝑈 (𝑡 − 𝑟) = 0, ⟨𝑧(𝑡, ⋅), 𝜙𝑛⟩ = 0, 𝑛 = 1,… , 𝑁, (80)

‖𝑧(𝑡, ⋅)‖2
𝐻1(0,𝐿)

≤ 𝑀𝑒−2𝛿(𝑡−𝑇𝑟)‖𝑧(𝑇𝑟, ⋅)‖2𝐻1(0,𝐿)
, (81)

with 𝑇𝑟 ∶=
‖𝑒𝐴𝑟𝑧𝑁0 ‖

−𝜇
𝐝

−𝜌𝜇 + 𝑟, 𝑧𝑁0 = (0, ⟨𝑧0, 𝜙1⟩,… , ⟨𝑧0, 𝜙𝑁 ⟩)⊤, with some 
positive 𝑀 ≥ 1.

Proof.  The inequality (78) together with Lemma  2 imply that there 
exists 𝛽3 ∈  such that 

𝑈2(𝑡 − 𝑟) + ‖𝑤(𝑡, ⋅)‖2
𝐻1(0,𝐿)

≤ 𝛽3(‖𝑧0‖2𝐻1(0,𝐿)
, 𝑡),∀𝑡 ≥ 0. (82)

From (12), one has for all 𝑡 ≥ 0, 
‖𝑧(𝑡, ⋅)‖2

𝐻1(0,𝐿)
≤2max{1, ‖𝜅‖2

𝐻1(0,𝐿)
}

× (‖𝑤(𝑡, ⋅)‖2
𝐻1(0,𝐿)

+ 𝑈2(𝑡 − 𝑟)),
(83)

then one concludes that there exists 𝛽 ∈  such that 
‖𝑧(𝑡, ⋅)‖2

𝐻1(0,𝐿)
≤ 𝛽(‖𝑧0‖2𝐻1(0,𝐿)

, 𝑡), ∀𝑡 ≥ 0. (84)

Since from Lemma  1 for all 𝑡 ≥ 𝑇 , 𝑍(𝑡) = 0 then using (30) one 
obtains, 
𝑊 (𝑡) = 0, ∀𝑡 ≥ 𝑇𝑟 ∶= 𝑇 + 𝑟. (85)

Thus using (12), for all 𝑡 ≥ 𝑇𝑟, 
𝑈 (𝑡 − 𝑟) = 0, ⟨𝑧(𝑡, ⋅), 𝜙𝑛⟩ = 0, 𝑛 = 1,… , 𝑁
𝑑
𝑑𝑡 ⟨𝑧(𝑡, ⋅), 𝜙𝑛⟩ = (−𝜆𝑛 + 𝑞)⟨𝑧(𝑡, ⋅), 𝜙𝑛⟩, 𝑛 > 𝑁.

(86)

Using (26), one derives for all 𝑡 ≥ 𝑇𝑟, 
∑

𝑛>𝑁
𝜆𝑛|⟨𝑧(𝑡, ⋅), 𝜙𝑛⟩|

2 ≤ 𝑒−2𝛿(𝑡−𝑇𝑟)
∑

𝑛>𝑁
𝜆𝑛|⟨𝑧(𝑇𝑟, ⋅), 𝜙𝑛⟩|

2, (87)

which together the fact that for all 𝑡 ≥ 𝑇𝑟, 𝑧(𝑡, ⋅) ∈ 𝐻1
0 (0, 𝐿), the proof is 

complete. ■

Remark 1.  For 𝜇 = 0, the homogeneous feedback control 𝜉(𝑍(𝑡)) =
(𝐾0+𝐾)𝑍(𝑡) is a linear . In this case, 𝐝(𝑠) = 𝑒𝑠𝐼𝑁+1, 𝐺𝐝 = 𝐼𝑁+1 and then 
𝜈 = 𝜏 = 1. One recovers the classical Lyapunov functional considered 
in the linear case (Prieur & Trélat, 2019):
𝑉 (𝑡) = 𝛾1

2 𝑍(𝑡)⊤𝑋−1𝑍(𝑡) +
∑

𝑛>𝑁
𝜆𝑛𝑤

2
𝑛(𝑡) (88)

+ 𝛾2 ∫

𝑡

max{𝑡−𝑟,0}
𝑍(𝑠)⊤𝑋−1𝑍(𝑠)𝑑𝑠. (89)

5. Numerical simulations

We perform numerical simulations on the system (6)–(9), by using 
system (17)–(19) and transformation (12). The initial condition and 
parameters are: 𝐿 = 𝜋, 𝑧0(𝑥) = 𝑥

𝐿 (𝐿 − 𝑥), 𝑟 = 2, 𝑞 = 1.25 and 𝑁 = 1. We 
consider (20) with 𝑀 = 10 truncated basis. We use the control toolbox 
on Matlab to compute the linear control gains: 
𝐾𝑙1 = (−26.6667 − 17.3114),
𝐾𝑙2 = (−34.3467 − 23.4025),

(90)

with which we compute the linear control (Katz & Fridman, 2022) 
given by 

𝑈 (𝑡 − 𝑟) = 𝜒(𝑟,+∞)𝐾𝑙 ∫

𝑡−𝑟

0
𝑒(−𝜎

2+𝑞)(𝑡−𝑠−𝑟)𝑍(𝑠)𝑑𝑠. (91)

We use the Homogeneous Control Systems (HCS) Toolbox for MAT-
LAB (Polyakov, 2023) to compute ‖ ⋅ ‖𝐝, 𝐾0, 𝐾, 𝐺𝐝: 

𝜇 = −0.2, 𝜏 = 1, 𝜈 = 1.2, 𝐾0 = (−1.3333,−0.0783),

𝐾 = (−25.3333,−17.2331), 𝐺𝐝 =
(

0.9333 −0.0627
)

.
(92)
0.2837 1.2667

5 
Fig. 1. Evolution of ‖𝑧(𝑡, ⋅)‖𝐻1 (0,𝐿) in a logarithmic scale of the closed-loop system 
(6)–(8) with linear control (91) (blue and black dashed) and homogeneous control 
(17) and (43) (red).

Fig. 2. Time-evolution of the control signal 𝑈 (𝑡 − 𝑟) of the linear control (91) (black 
and blue line) and homogeneous control (17) and (43) (red line).

Fig.  1 shows the simulations in logarithmic scale of the norm
‖𝑧(𝑡, ⋅)‖𝐻1(0,𝐿) of closed-loop system (6)–(8) with linear control (91) 
(with 𝐾𝑙1 ) in blue line, with high-gain linear control (91) (with 𝐾𝑙2 ) 
in black dashed line and with homogeneous control (17) and (43) in 
red line. Fig.  4 shows the solution of closed-loop system (6)–(8) with 
homogeneous control (17) and (43).

We can observe the performance of the closed-loop system un-
der both a high-gain linear control and homogeneous control while 
achieving a prescribed precision,e.g., 
‖𝑧(𝑡, ⋅)‖𝐻1(0,𝐿) ≤ 𝜖 ∶= 4.10−3, ∀𝑡 ≥ 𝑇𝑝 ∶= 5.7. (93)

with the control restriction 
sup
𝑡>0

|𝑈 (𝑡 − 𝑟)| ≤ 𝑈̄ ∶= 3. (94)

However, from Fig.  2 we can observe that only the homogeneous 
predictor feedback allows to achieve (93) with the control restriction 
(94). Indeed, one can also observe in Fig.  3 and Fig.  2 the price to pay of 
using high-gain linear control: achieving (93) implies a large deviation 
of solution closed-loop system (a peaking) and an overshoot of the 
control signal during the initial phase of stabilization. Additionally we 
can observe in Fig.  2 that both the linear controller and the homoge-
neous one exhibit a similar overshoot value while verifying (94), but 
the linear controller violates condition (93) whereas the homogeneous 
one does not.
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Fig. 3. Evolution of ‖𝑧(𝑡, ⋅)‖𝐻1 (0,𝐿) of the closed-loop system (6)–(8) with linear control 
(91) (blue and black dashed) and homogeneous control (17) and (43) (red) during the 
initial phase of stabilization.

Fig. 4. The solution 𝑧(𝑡, 𝑥) of closed-loop system (6)–(8) with homogeneous control 
(17) and (43).

6. Conclusion

In this paper, we have designed a homogeneous boundary control 
for a 1D reaction–diffusion equation with input delay. We construct 
a suitable Lyapunov functional to prove the stability of the closed-
loop system. The simulations showed that the homogeneous controller 
makes it possible to obtain faster convergence without peaking and 
with less overshoot of the controller. Future work will involve de-
veloping a homogeneous output feedback controller for 1D reaction–
diffusion PDEs with input delay. Additionally, we aim to investigate 
the inversion of the Artstein transform (see Bresch-Pietri, Prieur, and 
Trélat (2018), Prieur and Trélat (2019) in the case of linear feedback) 
to express the constructed Lyapunov function 𝑉 (𝑡) in terms of 𝑊 (𝑡)
and the homogeneous stabilizing control 𝜉 defined in (43) directly as a 
feedback of 𝑊 (𝑡).
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Appendix

The following Lemma is similar to Postoyan, Tabuada, Nešić, and 
Anta (2014, Lemma 2) and is useful for lower bounding Lyapunov 
functions. 

Lemma 3.  For any 𝛼1, 𝛼2 and 𝛼3 ∈ ∞ one has 
𝛼1(𝑠1) + 𝛼2(𝑠2) + 𝛼3(𝑠3) ≥ 𝛼̄(𝑠1 + 𝑠2 + 𝑠3), (95)

for any 𝑠1, 𝑠2, 𝑠3 ≥ 0 where 𝛼̄ ∈ ∞ is given by 
𝛼̄(𝑠) = min{𝛼1(

𝑠
3 ), 𝛼2(

𝑠
3 ), 𝛼3(

𝑠
3 )}, (96)

for all 𝑠 ≥ 0.

Proof.  Let 𝑠1, 𝑠2, 𝑠3 ≥ 0. By using the fact that 𝛼̄ ∈ ∞ one has the 
following inequality 
𝛼̄(𝑠1 + 𝑠2 + 𝑠3) ≤ 𝛼̄(3𝑠1) + 𝛼̄(3𝑠2) + 𝛼̄(3𝑠3), (97)

which combined with (96) implies that

𝛼̄(𝑠1 + 𝑠2 + 𝑠3) ≤
3
∑

𝑖=1
min{𝛼1(𝑠𝑖), 𝛼2(𝑠𝑖), 𝛼3(𝑠𝑖)}

and then 
𝛼̄(𝑠1 + 𝑠2 + 𝑠3) ≤ 𝛼1(𝑠1) + 𝛼2(𝑠2) + 𝛼3(𝑠3). (98)

The proof is complete. ■
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