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Keywords: In this paper, we study the unbiased extremum seeking (ES) algorithm for n-dimensional uncertain quadratic
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Time-varying delays analysis of the unbiased ES. We consider delays with a large known constant part and a small time-varying
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uncertainty. Such delays may arise when measurements together with a time stamp are transmitted to ES
controller via communication network. For the quantitative bounds, we assume that the Hessian is uncertain
from a known range. By applying a delay-free transformation, explicit quantitative conditions in terms of
simple scalar inequalities depending on the tuning parameters are established which ensure the exponential
unbiased convergence of the ES system. Moreover, the corresponding results for the classical ES are presented.
For globally quadratic maps, our results are semi-global, whereas for locally quadratic static maps, we provide
a bound for the region of convergence. Appropriate ES parameters can be found for any large known delay
and small enough delay uncertainty. Two numerical examples from the literature illustrate the efficiency of
the proposed method.

1. Introduction the best of authors’ knowledge, there are no ready to be used (even
qualitative) results on averaging that can be employed for the stability

Extremum Seeking (ES) is a model-free adaptive control method for analysis of the ES algorithms in the presence of fast-varying delay
optimizing an unknown non-linear output map in real time under the uncertainties (which may be piecewise continuous and without any
premise of the existence of extremum value [1]. In [2], the rigorous constraints on the delay derivatives). Such delays appear e.g. in the case
stability analysis of extremum seeking was shown by using averaging of discrete-time delayed measurements (via time-delay modeling [14]).
theory and singular perturbations. Since then, various ES theoretical Recent constructive methods for periodic averaging that are based on

results and applications have emerged including semi-global and global
ES control [3,4], time-varying ES control [5], ES in the presence of
known delays with delay compensation, ES for PDE systems [6-9] and
ES by using delay [10]. A detailed survey on ES control can be found
in [11]. All the above results are qualitative that work for the static
maps provided the dithers are fast enough, but the quantitative bounds
on the ES controller parameters are missing.

The existing methods for ES in the presence of delays mostly treat
known time-invariant (constant or distributed) delays and employ the
known qualitative results on averaging for the time-delay systems
(referring to [12] applicable to time-invariant delays). Robustness with proach was extended to sampled-data ES of static quadratic maps [20]
respect to constant small delay uncertainties in the output of static and to non-quadratic maps [21]. Bounded extremum seeking of static
quadratic scalar maps was studied in [13] by using [12] as well. To

time-delay [15] or delay-free transformations [16] give important tools
for robustness of ES algorithms with respect to unavoidable fast-varying
delay uncertainties along with quantitative bounds on the controller
parameters.

The first constructive methods for ES with quantitative bounds
on the tuning parameters (dither frequencies and amplitudes) were
suggested in [17-19] for the quadratic static maps under approximate
knowledge of the Hessian by using the time-delay approach (based
on time-delay transformation) to averaging [15]. The time-delay ap-
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quadratic maps with small uncertain measurement delays and quan-
titative bounds was studied in [22] via the time-delay approach and
in [23] via a delay-free transformation and strict Lyapunov functions.

In the present paper we extend the new constructive method to
averaging based on delay-free transformation [16,24] to the suggested
in [25,26] unbiased ES with exponential unbiased convergence. Our ob-
jective is the first constructive unbiased ES algorithm for the quadratic
static maps with numerical bounds on the controller tuning parameters
in the presence of time-varying measurement delays. We consider the
unbiased ES of static nD quadratic map in the presence of measurement
delays with a large known constant part and a small time-varying
uncertainty. Such delays may arise when measurements together with
a time stamp are transmitted to ES controller via communication
network. Due to uncertain delay, accurate estimate of the Hessian
seems to be not possible. To achieve efficient quantitative results,
we assume that uncertain Hessian is from a known range. Explicit
quantitative conditions in terms of simple scalar inequalities are es-
tablished which ensure the exponential unbiased convergence of the
ES system. For globally quadratic maps, our results are semi-global,
whereas for locally quadratic static maps, we provide a bound on the
region of convergence. Appropriate ES parameters can be found for
any large known delay and small enough delay uncertainty. We also
present the corresponding results for the classical ES. Two numerical
examples illustrate the efficiency of the suggested approach, whereas
our results for the classical ES are favorably compared to the existing
ones [17-19].

A conference version for 1D static maps in the presence of large
known constant delay via a delay-free transformation was presented
in [27].

Notation: The notation used in this paper is fairly standard. N
refers to the set of positive integers. R” denotes the n-dimensional
Euclidean space with vector norm | - |, R™" is the set of all n x m real
matrices with the induced matrix norm || - ||. The notation ¢; € R”",
(i=1,2,...,n) denotes the column vector with a 1 in the ith coordinate
and 0’s elsewhere. The notation P > 0 for P € R™" means that P
is symmetric and positive definite. The superscript 7" denotes matrix
transposition. For 0 < P € R™" and x € R", we write |x|§, =x"Px.

Consider a multi-variable quadratic map Q(0(r))

00() = 0" + 3160~ 0"}, 01 €R, &)

where 0(r) € R" is the vector input, §* € R” and Q* € R are uncertain,
and H is an unknown Hessian matrix. Without loss of generality, we
consider a minimum seeking with H > 0, where (1) has a minimum
value Q(r) = O* at 0 = 6*. The delayed measurements are given by

, t € [0, D(0)),
@) =
Q0@ — D)), t= D(0).

where D(¢) is a time-varying delay.

For simplicity we adopt a quadratic output map following seminal
literature [8,9], but our results (as well as results of [8,9]) can be
applied to any output map that is a C3 function in the vicinity of its
extremum points, as any such function can be locally approximated
by the quadratic one. Differently from the globally quadratic case,
where we provide semi-global results in Theorem 1 below, in the locally
quadratic we present regional results with a bound on the domain of
convergence (see Remark 6 below).

We will employ the unbiased ES algorithm as introduced for the
non-delayed case in [25,26]. By using the measurements only, this
algorithm constructs an input 6(¢) that exponentially converges to 6*.

In this paper we consider an uncertain time-varying delay D(r)
subject to the following assumption:

(2

Assumption 1. We consider uncertain piecewise-continuous delay of
the form

D) = Dy + 4,0, 4,0 <eu, 120, 3

with the known D, > 0 (that may be large) and small 4 > 0 and € > 0.
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The delay uncertainty may appear e.g. due to sampling and delays
if the measurements are transmitted to the controller by using commu-
nication network [14]. The upper bound on the delay D(r) is given by
Dy = Dy + eu, where Dy, — Dy as ey — 0.

We assume

Assumption 2. The extremum point 6* to be sought is uncertain from
a known ball B with radius o, where its elements satisfy 6 € [Q;‘,E:],
i=1,...,nwith ZLI(@j —Q;*)2 = aé. The extremum value Q* is uncertain
subject to |0* — Q| < 4, with known Q, and 4, > 0.

Remark 1. Note that if the delay D(¢) is known (constant or contin-
uously differentiable with D(f) < d < 1), an ES algorithm for finding
extremum point of a quadratic map is not needed, since 6* can be easily
found in the finite time as follows. Consider for simplicity a known
constant delay D,. Fix any € > 0 and denote w;, = % with /; € N
satisfying

1
i L5+ 100+ 201+ £ L), 0)
for all distinct i, j, k and m. Define the vector functions

Sy() = [sin(w; ob), ..., sin(w, oNIT,  My(t) = [2sin(w; g1), ..., 2sin(w, )7,

and matrix function N(¢) with elements
N, i(6) = 16(sin* (@, 0) = 3), N, () = 4sin(@,of) sin@; o), i #j. (5)
Choose any 6(0) € R". Apply the input

0(t) = 0(0) + So(t + Dy), t € [0, Dy + 2].

According to [28], the unknown Hessian and gradient can be found in
the finite time D, + 2¢ as follows:

l Dy+e _
- /p, N(s)y(s)ds = H,

G = é/j{’)‘fj‘ My(s)y(s)ds = H(H0) — 6%).

Then, the extremum point is given by
0" =00)- H™'G.

We thank the anonymous reviewer for bringing this idea to our at-
tention. Note that a similar idea of the Hessian and gradient estimate
on the initial time interval (for D(r) = 0) was suggested in [29],
whereas the estimate of the Hessian only and known constant delay
was suggested in [27].

1.1. Unbiased ES in the presence of uncertain delay

Define the perturbation and demodulation signals as

S(t) = [ay sin(@, 1), ..., a, sin(w,)]7,
M) = [% sin(w, 1), ..., ai sin(w, )],

©

where amplitudes g; are non-zero real numbers and the frequencies
have a form

,:%, £>0,i=1,...n %
It is worth noting that Assumption 1 dictates that the unknown delay
term 4,,(r) should be much smaller than the periods of S(r) and
M (t). Without this condition, the influence of the delay would be-
come too significant to preserve the robustness of the performance
under ES controller considered below. For the network-based imple-
mentation this means that maximum transmission interval (sampling)
should be essentially smaller than the dither period whereas the sum of
network-induced and computational delays should be almost constant
to preserve the performance.
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1.1.1. Unbiased ES algorithm
Inspired by [25,26], we employ an unbiased ES algorithm. Define
an exponentially decaying function a() as

a) =age™, 0<teR, (8)

where ¢, and A are tuning positive parameters. Choose a scalar adap-
tation gain k > 0. Given & > 0 (its numerical value will be found later
from conditions of Theorem 1) and the corresponding frequencies w;
given by (7), define the input 6(s) with a real-time estimate d(¢) of §*
as follows:

0 <1< Dy,
t> Dy,

0(0),
=14 ©
0(t) + a(t + Dy)S(t + Dy),
with S(¢) and a(r) given by (6) and (8), respectively.
As illustrated in Fig. 1, the unbiased ES algorithm has the following
form
Bt = —~29 31y — (1)), 12Dy,
A( ) w0 —n( M 10
0@t) = 0(0)—aDy; +Dy)SMDys +Dy), t € [0, Dyl,

where the high-pass filter state 5(r) is governed by

7(t) = —wun(t) + w, (1),
n(Dy) = Oy,

with some w,, > 0.

Our objective is to derive constructive quantitative conditions for
the semi-global exponential convergence in the presence of the time-
varying delays: given an uncertain time-varying delay D(r) and a ball
for the initial state 6(0), find appropriate exponentially decaying gains,
high-pass filters and perturbation frequencies that guarantee the ex-
ponential convergence of the estimation error. The results presented
below establish conditions (in terms of simple scalar inequalities) which
ensure exponential stability of the estimation error and provide quan-
titative bounds on the controller parameters.

t> Dy, an

Remark 2. When the Hessian H is unknown, an alternative version
of the unbiased ES algorithm with a delay compensator of the known
part D, of the delay (similar to [30] with constant delay) can be
used. Let frequencies w;, subject to (4), vector functions M(t), Sy()
and matrix function N(r) be defined as in Remark 1. Consider 6() =
(1) + a(t + Dy)Sy(t + D) for t > Dy, and 6(r) = 6(0) for ¢ € [0, Dy ]. The
unbiased ES has a form

A@ = 210 —n(),

(1) = =00 13y — p(0)] - kKA DOG) — 0t — Dy,

a() (12)

delay compensation term
1) = —wun(t) + wpy(@).

Here H is an estimator of the Hessian H. Our stability analysis pre-
sented below can be applied here leading to new qualitative result -
exponential convergence of 6 to 6* for appropriate a;, k, w,, A and
small enough ¢ and u. However, the delay compensation term with A (r)
causes additional perturbations to be bounded and leads to very small
quantitative bounds on .

Note that our constructive method for finding e (related to the
dither frequencies according to (7)) leads to 4, of the order of O(eu)
(similarly to [13] for constant delay uncertainty and our preliminary
result [31] via the time-delay approach). Since the upper bound of ¢
depends on H, estimation of H from the measurements on the initial
interval similar to Remark 1 below seems to be not possible in the
presence of delay uncertainty. Therefore, to have efficient quantitative
bounds on ¢, we assume that uncertain H is from the known range:

Assumption 3. The Hessian H is uncertain and subject to H,,] < H <
Hy, I, where H,, and H,, are two known positive scalars.
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Quadratic Map

4H Q(6(t))}—Delay D(1))

o(t)

Fig. 1. Unbiased ES algorithm with time-varying measurement delay D(r).

Following [26,30,32] (see Lemma 2 in the Appendix), given a
desirable decay rate A > 0, we choose positive tuning parameters k
and w,, that satisfy the following inequalities:

kH,, > 2, @, >24, ¢! >kHyDy. 13)

The first two inequalities mean that adaptation (learning) rate should
surpass the decay rate A of the perturbation (exploration) signal. The
third inequality yields that for given H,, and H,, and a larger D,, a
smaller k should be chosen, which leads to a smaller decay rate A.

Remark 3. In contrast to the conventional ES design [2], the unbiased
ES algorithm (10), (11) is equipped with high-pass filter, and exponen-
tially decaying perturbation and growing demodulation signals. Despite
the exponentially growing signal in the algorithm, the high-pass filter
has a crucial role in guaranteeing the unbiased convergence by ensuring
the exponential decay of y(r) — n(r) to zero at the rate of 24 (see (67)
below).

Define the estimation errors 6(¢) and #j(¢) as

6 =06 —-6*, >0,

i) = - 0" 120, s
We will further present (10) as
60 = =129 [ 113 — D) + at = Ay, )
S = 8, =70 |, 12 Dy, as
6(1) = 6(0) — 6* — a(Dyy + D)S(Dypy + Dy), 1 €[0,D,],
and
i(t) = —w,i(1) + @u[y(H) — O*], 12 Dy, a6)
iit) = Qyp — 0%, t=Dy
Taking into account
8t = D(1) = 8t = Dy) = [t b(s) ds.
alt = 8, (OISt = A (1) = aOSO) = [L, ) & a(s)S(s)ds.
system (15), (16) can be further expressed as
) = =52 3106 = Do) + «@S @I, ~i0] + w0, 12Dy,
7i(t) = —w,fi(t) + wy[y(0) — Q*1, 1> Dy,
where
w(t) = =3 LT O ~ 55106 ~ Do) +a)SOF HI @),
ro=- [ by as - /  (Lawse) ds. as)
1-D(s) =4, N dS
—_——— . _

OW)=0en) N
o )=ou
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The order of I'(r) follows from S(s) = O(e) and §(s) = O(1). One can
easily show that

LT Mds=0, L[ M)ST(s)ds =1,

19)
L[ M(5)ST(s)HS(s)ds = 0.

Thus, from (19), (17) and (18), the averaged system corresponding to
(15) with u — 0 is given by

0,,(t) = —kHb,,(t — Dy), (20)

which is exponentially stable for kH subject to (13) (see Lemma 2 in
the Appendix).

Remark 4. Compared to the classical ES, high-pass filter and exponen-
tial perturbation/demodulation signals in the unbiased ES lead to more
challenging averaging-based stability analysis. Additional restrictions
(13) on the tuning parameters are needed along with the convergence
proof of the additional error term #(r). To manage with the exponential
convergence we assume and later prove that |A(r)| < ce™* (see (65))
for some ¢ > 0 instead of |0(t)| < o for the classical ES.

1.1.2. Stability analysis
We will perform stability analysis of (15), (16) (also (17)) via a
delay-free transformation inspired by [16]. Define

() 1= =1 [Tt + & = $)[—kM(5)ST (s)H + kH]ds,
po(0) 1= =1 [T+ e = kM (5)]ds,

Py ==L [ te—s) [—%kM(s)ST(s)HS(s)] ds, (21)

pa(t) 1= =1 [ 4 e =) [—%kM(s)] ds.

The following Lemma provides accurate upper-bounds on each function
in (21):

Lemma 1. The functions p,(¢), ..., p4(t) are bounded as follows for t > 0:

_ o _ekHy [ 1n 1 a4 (1 1
ool <epy o= K [ 13 Lap 2 (s + ) |

[p2(D] < €py 1= % (Z?:] %) ;
1
15O < €7y 1= ekH ), [27=1 ajz,] <2;’=1 1 (é + [1 + ﬁ] ) ; >
lo4(D| < epy 1= % (Z?:l %) :
(22)
Proof. See Appendix. [J
Differentiating (21), we have
p1(0)=—kM®OSTOH + kH, py(t) = kM), 23)
P3(0) = =3 kMWSTOHS(). p(t) = ~5kM (D).
Introduce the delay-free transformation z(¢) as in (25) where
0, t€[0,Dy,],
G(1) = 491 (0B(t = Do) + pr(Na™ (D(1) (24)
+p3(0)a(t) + p4 (a6t — Dy)l3y, 1> Dy
Consider the following transformation
2() =0 - G@), t>0. (25)
By employing (25) and (17), we obtain
z(t) = —kHz(t — Do) + Y (1) + w(t), t > Dy, 26)

z(t) = 6(0) — 0% — a(D; + Dy)S(Dyy + Dy), 1 € [0, Dy,
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where

_ 5 da'() —1ng
Y() = ~kHG(1 = Dy) = py (0t = Do) = pa(0) (L2710 + o 1))
—~p3(O&(t) ~ pa )X D At ~ DY)} ~ 2p4()a~ O (t — Do) HO(t — Dy).
27)

The terms G(r), Y(r) and w(¢) are of the order of O(max{e, u}) provided
0@), §(t) and 7j(t),#(t) are of the order of O(1). Hence, (26) can be
regarded as an O(e) perturbation of the averaged system (20) for small
enough e.

The bound on z will be found by utilizing the variation of constants
formula for the time-delay system (26). Then the bound on § will
be found by employing (25). We are in a position to formulate our
main result on semi-global exponential stability of the estimation error
system (15):

Theorem 1. Let Assumptions 1-3 hold. Given any D, > 0, let w;, A and k
satisfy (13). Consider the estimation error system (15), (16) with uncertain
delay D(t). The functions M(t), S(t) and a(t) are defined by (6), (8) with
tuning parameters « and a;. Let p;, j = 1,2,3,4 are the bounds defined in
(22). Given any o, > 0, let the tuning parameter ¢ is subject to

[6g + age™2*Po i al.z]

(28)
X [¢247nD0 -+ max (K H yy Dye¥4P0, 2t ekuDofettinDo — 11| < o.

Let there exist ¢* and u* that satisfy

[60 + age Ao+ f3 a,.z] FHn@Do+e H®) 4 g* A

1
+(e* Ay + u*A,) [DU + m] Do 4

—A@Dy+e* p* no2
00 + ageH@Do+e ) Zi=lai]

H -
Xmax{kHMDOel(3D0+s*y*)’ H_Meka(ZDOJrE u )[ekaDO -1]} <o,
m

(29)
where
_ _ o _ _ o’H
Ag = poetlo + ﬂzi + Py + Py Z aoM e?4Do,
— wp(Do+e* u*) Oy®h
0, = Ape®ht20 + o2’
" 2
— M M Do+ p* Ae* p* n 2
"y‘T<Ge( PR+ aget e Zi:lai> '
Ay = kHy Age*Po + 5, 4e*Po + ﬁza(;] Ao, + ﬁzaalwh(an +0y)

+p3004 + py H ' 0?2024 + o),

2% i
=2 [oy + 0, /2 2

>N
Il

1
a
i

- - X -
e AMP0TE I 4 e¥ hagy [ Y| @Pe T 4 2 [ DI (ia) et

(30)

w “:_OMAI' [ WA +2 <°'ew° +ag\/ X, ”?) ] X3

Ar

Then, for all € € (0,&*], u € [0, u*) and 6(0) < o, the following inequalities
hold for D(t) subject to (3):

0] < oe™, |7()] <o,e™H, 12> Dy, 31

i.e. meaning that the estimation error system (15), (16) is exponentially
stable with a decay rate A. Moreover, for any D, and o, (28) and (29) are
always feasible for small enough A,k > 0, £*, u* and appropriate ¢ > o,.

Proof. See Appendix. []
Remark 5. The conditions of Theorem 1 impose clear restrictions on

the decay rate A. More precisely, larger delay D, and larger u place
a limitation on the decay rate A, and lead to smaller £*, i.e. slower
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convergence and higher dither frequency. The same holds true for the
classical ES and conditions of Corollary 1 in the next section.

Remark 6. In cases where the map is non-quadratic, but is C3
function, it can be approximated as the quadratic one (1) in a vicinity
of 6* (i.e. for |0(t) — 6*| < o, with some known o). Then the results

of Theorem 1 hold true with ¢ = o, — ayy/ X, a*. By arguments of
Theorem 1, it can be shown that if (28), (29) hold, then for all € < £*,
u < p* and D(r) subject to (3) all the solutions of (15), (16) with
|6(0)| < o, satisfy (31) (meaning regional exponential stability). Similar
results hold true for the classical ES in the next section.

1.2. Classical ES: uncertain time-varying delay

In this subsection, we consider the classical ES algorithm in the
presence of uncertain time-varying delay. Consider the ES algorithm
(9)-(10) with a(r) = 1 and #(t) = 0 for + > 0, which results in the

following equation for the real-time estimate 6(t) of 6(r):

A — _ * 1140 _p* 2
0= ~kM @) ((©" + 5100~ D@) =0 + SO, ). 12Dy, (g0
0(t) = 0(0) — S(Dy, + Dy), t€[0,Dy,],

where S(1), M (1) are defined in (6) and k is a positive gain. Then, the
estimation error 8(r) = (1) — 6* is governed by

6y = —kM@ ((Q"+ 116G = DU+ SOF, ). 12 Dy,

~ (33)
0(t) = 6(0) — 6" — S(Dys + D), t€[0,Dy].

Note that (33) with D(¢) = 0 is the estimation error in the classical ES
algorithm which was analyzed in [18,19] via the time-delay approach.
The following corollary follows by arguments of Theorem 1:

Corollary 1. Let Assumptions 1-3 hold, and k satisfy e~' > kH,D,.
Consider the estimation error system (33) with uncertain delay D(t). Let p I
j = 1,2,3,4 are the bounds defined in (22). The functions M (t) and S(t)
are defined by (6) with tuning parameters a;. Given any o, > 0, let the
tuning parameter o satisfy

[og + \/ Ziy a1 HnPo 4 2L 2kt Do [k Do — 1]} < . (349

Let there exist ¢* and u* that satisfy

- H
[60 + / " 2]k Hn @Dyt )(1 + M [kH, Dy _ 1])
0 2171 i H, (35)

+ " A + (6% Ay + u*A,) [DO n #] <o,
where

Ag =516+ p2(Qp + Ap) + b3 + pa0  Hy,
2
o, = HTM <0'+ V2 al.2> , Ay =kHyAg+ p1A+2p5,H)y Ao,
n 1

i1 z

* 1
A, =kHyAr [,4 Ap+2 <o‘+ \/Zf=10?> ] Yo

Ap = €A+ 2mq/ 20 (ia,)?.

Then, for all ¢ € (0,*], u € [0, u*) and 6(0) < o, the solutions of (33)
satisfy |6(1)| < o, t > D, provided that D(t) satisfies (3). Furthermore,
these solutions are exponentially attracted to the set

A=2k[Q+ 4y + 0,

(36)

O={0neR": |6 <4},
4 4y 37)
Ae=6(AG+kTYm+DAY)+ﬂ<ﬁ+DAw)’

with a decay rate kH,,. Moreover, for any D, and o, (34) and (35) are
always feasible for small enough €*, u* and k and appropriate ¢ > o,
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2. Examples

To illustrate the efficiency of our approach, we will consider below
two examples from the literature [9,33].

2.1. GPS-denied 2D autonomous vehicle

Consider an autonomous vehicle in an environment without GPS
orientation. The vehicle has a velocity-controlled model (single inte-
grator)

0@) = u(r), (38)

where 6(f) € R? is the state (position of the vehicle), u(f) € R? is the
control input, and the measurement y(¢) is defined by (2) with Q given
by (1) and delay D(r) of the form (3). Let Assumptions 1-3 hold. By
using the measurements only, our objective is to design a control law
u(t) that drives the position 0(¢) to the extremum point 6* for 1 — co.

To construct u(¢), we differentiate (9). It is seen that the unbiased
ES algorithm leads to the exponential convergence of 6(r) to 6*:
0(1) = = 2L 1y(1) = n(0)] + a(t + Dg)S(t + Dy)

+a(t + Dy)S(t + Dy),

t € [0, Dy,

12Dy, (39
6(t) = 6(0),

with the high-pass filter (11).
Following [17-19], we consider the 2D quadratic map (1) with

0* =10,01", Q, =0, H = diag{2,2}. (40)

We assume that Q* and H are uncertain satisfying Assumptions 2, 3,
and we consider the following cases:

Case: 45=0, H, =2, Hy =2 41)
Case II: AQ =01, H,=19, H, =2.1. 42)
CaseIII: 45 =1, H,=11, Hy =3 43)

We choose the following tuning parameters for all ES algorithms:

4r
201 =wy = —,
£

a=a, =02,
whereas ¢ is tuned to achieve a larger £*.

Let D(r) be an uncertain time-varying delay satisfying (13). Choose
D(0) = Dy, and Dy, pu, k will be selected later.

ES with exponential stability: Consider the unbiased ES algorithm
(10), (11) with ¢y = 1 and w,, = 0.03. For ¢ = \/5, the maximum values
of * that follow from Theorem 1 are shown in Table 1. Note that for
D, — o the decay rate approaches zero. Thus, for (42) with D, = 50
from (13) we obtain that maximum A should be less than 0.00212.

We further provide simulation of the unbiased ES algorithm (10),
(11) for case III (43), with time-varying delay D(t) = 2 + e sin(r), and
A =0.007, e =3.4-1073, y = 1073, and initial condition 6(0) = [1,1]7.
The plot of |6(7)| is presented in Fig. 2. It is seen that |0(r)| exponentially
converges to zero, which demonstrates the efficiency of the method.

We also present a 3D plot with color mapping to visualize the
sensitivity of ¢* with respect to uncertainties in 4 and H,,, with fixed
parameters Dy =2, 4 = 1, H,, = 1.1, 6 = 3 and k = A = 0.01. The plot
of ¢* and its 2D contour plot are presented in Fig. 3.

Let us consider the scenario where y(f) is not quadratic map, but
can be approximated as a quadratic map (1) with (40) in a vicinity of
0* given by |0(r) — 6*| < 6, = 1.2. We apply unbiased ES (15), (16) to
Case III (see (43)) and D, = 2, w, = 0.03, k = 2 = 0.001. By using
Remark 6, we find 6, = 0.33, e* = 1.69- 1072 and y* = 5- 10~* meaning
that for £ <1.69-1072 and 4 < 5-107%, all solutions of (15), (16) with
|6(0)| < o, = 0.33 satisfy |(1)] < 0.92e=0001 for ¢ > 2.

ES with practical stability: Consider the classical ES algorithm (32). In
this case the solutions converge to a small attractive ball with a decay
rate A = kH,,. The maximum values of ¢* that follow from Corollary 1
are shown in Table 2. It is seen that our results essentially enlarge the
value of £* (decrease the dither frequency) compared to the previous
constructive results via time-delay transformation [17,19].
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Table 1
Example 2.1: maximum &* for ¢, = V2.
Unbiased ES: Uncertain delay D, u o k A £*
Theorem 1, 4, =0, H, = Hy =2 0 0 2.7 0.01 0.01 2.6-1072
Theorem 1, 4, =0.1, H, =19, Hy =2.1 2 1073 3.1 0.01 0.01 1.43.1072
Theorem 1, 4y =1, H,, = 1.1, Hy =3 2 1073 3.1 0.01 0.01 0.34-1072
Theorem 1, 4y =1, H,, = 1.1, Hy, =3 50 1073 4.9 0.002 0.002 0.95-1072
Table 2
Example 2.1: maximum &* for ¢, = Va.
Classical ES: Uncertain delay D, u c k A=kH,, £*
[19], 4y =0, H, = Hy =2 0 0 2v2 0.01 0.02 0.17 - 107!
[17], 4 =0, H, = Hy, =2 0 0 2v2 0.01 0.02 042107
Corollary 1, 4y =0, H, = Hy =2 0 0 3 0.01 0.02 1.09- 107!
Corollary 1, 4, =0.1, H,, = 1.9, Hy, =2.1, 2 1073 3.2 0.01 0.019 0.634 - 107!
Corollary 1, 4y =1, H,, = 1.1, Hy, =3, 2 1073 3.4 0.01 0.011 0.148 - 107!
Corollary 1, 4y =1, H, = 1.1, Hy, =3, 50 1073 5 0.002 0.0022 0.377-107!
2
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Fig. 2. Section 2.1, Unbiased ES (10), (11): plot of |0(r)|.

2.2. Source seeking

The goal of the source seeking is to guide a vehicle (we consider
here the single integrator model (38)) in the GPS denied environment to
a source, which is located in the extremum of the map. Following [6,9],
we consider the 2D quadratic map (1) with

2 2
*=10,117 =1, H= .
0" =[0,11", Qp=1, [2 4] (44)
Note that the eigenvalues of H are 0.7639 and 5.2361. As explained
in 1.1, we assume Q* and H are uncertain satisfying Assumptions 2, 3,
and we consider the following cases:

Case I 4, =0.1, H, =061, Hy =538 (45)
Case II: 40=1, H,=05 Hy="1 (46)
We select the parameters as follows:
ay=ay,=05, 20 =w,= 4?”, (47)

whereas ¢ is tuned to achieve a larger £*.

ES with exponential stability: Consider the unbiased ES algorithm
(10), (11) with &y = 1 and @, = 0.03. The maximum values of ¢* that
follow from Theorem 1 are shown in Table 3. Note that here for (46)
with D, = 40 we obtain from (13) that 1 < 0.00065.

We further provide simulation of the unbiased ES algorithm (10),
(11) for case II (46), with time-varying delay D(t) = 2 + eusin(?),
and 4 = 0.007, € = 0.76 - 10™*, u = 0.1 - 107, and initial condition
6(0) = [1,1]". The plot of |6(t) — *| is presented in Fig. 4. It is seen

25 35

Hy

1

(b) 2D Contour plot of the above 3D plot.

Fig. 3. Section 2.1, visualization of £* as a function of delay uncertainties and
the Hessian’s upper bound. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

that |6(¢) — 0*| exponentially converges to zero, which demonstrates the
efficiency of the method.

We also present a 3D plot with color mapping to visualize the
sensitivity of e* with respect to uncertainties in y and H,,, with fixed
parameters Dy = 2, 45 = 1, H,, = 0.5, k = 0.015, 6 = 3.8 and 4 = 0.007.
The plot of £* and its 2D contour plot are shown in Fig. 5.
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Table 3
Example 2.2: maximum &* for ¢, = 1.
Unbiased ES: Uncertain delay D, u o k A £*
Theorem 1, 4, =0.1, H, =0.61, H,, =538 2 0.01-1073 3.5 0.015 0.007 0.743 - 1073
Theorem 1, 4p=1, H,=05, Hy =7 2 0.01-1073 4 0.015 0.007 0.076 - 1073
Theorem 1, 4y =1, H,, =05, Hy, =7 40 0.01-1073 4.1 0.0013 0.0006 1-1073
Table 4
Example 2.2: maximum &* for o, = 1.
Classical ES: Uncertain delay D, u c k A=kH, e
[18], 45 =0, H, =061, Hy =538 2 0 2 - 0.0115 0.53-1072
[18], 4o =1, H, =0.61, H), =538 2 0 2 - 0.0115 0.19-1072
Corollary 1, 4y =0, H,, =061, Hy =5.38, 2 0 3.4 0.0188 0.0115 0.71-1072
Corollary 1, 4, =1, H,, =0.61, Hy, =5.38, 2 0 3.4 0.0188 0.0115 0.69 - 1072
Corollary 1, 4, =1, H, =05, Hy, =7 2 1073 9.3 0.0188 0.0094 0.0267 - 1072
Corollary 1, 45 =1, H,, =05, Hy, =7 40 1073 9.4 0.0013 0.0006 0.32-1072
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Fig. 4. Section 2.2, Unbiased ES (10), (11): plot of |0(r) — 6*|.

Let us consider the scenario where y(t) is not quadratic map, but can
be approximated as a quadratic map (1) with (44) in a vicinity of 6*
given by |0(r) — 6*| < 5, = 2.5. We apply unbiased ES (15), (16) to Case
II (see (46)) and D, = 2, w, = 0.03, k = 0.0015, 4 = 0.0001. By using
Remark 6, we find 6, = 0.32, ¢* = 2.3 - 1073 and yx* = 10~* meaning
that for all € <2.3-1073 and u < 1074, all solutions of (15), (16) with
16(0)| < 6 = 0.32 satisfy |8(r)| < 1.8¢=09%01 for ¢ > 2.

ES with practical stability: Consider the classical ES algorithm (32).
Maximum values of &* that follow from Corollary 1 are shown in Table
4. Also in this example our results are favorably compared with the
existing ones [18] based on time-delay transformation.

From Tables 1-4, it is seen that larger delay, decay rate A and
uncertainty A, lead to a smaller &, i.e. higher dither frequencies.
Furthermore, the obtained values of £* by the unbiased ES algorithm
are smaller than the ones obtained by the classical ES. The latter
can be explained by the additional constraints and terms in (28)-(30)
compared to their counterparts in (34)—(36). Also from simulations,
&* by the unbiased ES algorithm are smaller. Additionally, the delay
uncertainty decreases the bound on £*.

3. Conclusion

This paper studied the unbiased ES algorithm for uncertain n-
dimensional quadratic maps in the presence of uncertain time-varying
delays via a delay-free transformation. The explicit quantitative con-
ditions in terms of scalar linear inequalities were established which
guarantee the exponential stability of the ES control system. In ad-
dition, improved practical stability conditions for classical ES were
provided that essentially improved the existing results. The results are
semi-global for globally quadratic maps. For locally quadratic static

(a) 3D plot of £* with respect to p and H)y.

4
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Hy
(b) 2D Contour plot of the above 3D plot.

Fig. 5. Section 2.2, visualization of ¢* as a function of delay uncertainties
and the Hessian’s upper bound. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

maps, we provide a bound on the region of convergence. Appropriate
ES parameters can be chosen for any large known part of constant delay
to achieve practical/exponential convergence. Future work may include
constructive methods for unbiased ES of non-quadratic and dynamic
maps in the presence of time-varying delays.
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Appendix

Proof of Lemma 1. The function p, () can be rewritten as

P =k (é L@+ e - 9IM(5)ST(s) - I]ds> H. (48)
with
L[ 4 € = )M (5)ST (5) - Tds
= -3 (L e - ) cosops)ds el “)

2a 1 pt+ . .
+let¢j5n a_,j (Z /t (t + & — s) sin(w;s) sm(cojs)ds> e,-ejr.

Using trigonometric identities and integration by parts we obtain

I 745t + e = )M ()ST () - 1Nds]|

(50)
£ n 1 £ aj 1 1
S 5 Zim 7T 5 Disitisn o (m + ;)
Thus, from (48)-(50), we get
oyl <epy, 120, (G20)]

with g, defined in (22). Also, the function p,(r) can be rewritten as

n 2%k 1 t+e
(D) = Z = [_- / (t+e—ys) sin(a)is)ds] e;. (52)
a; €
i=1 i 4
Using integration by parts, we have
=1 [T+ e = s)sin(E 5)ds = —5= cos(Z). (53)
Thus, from (52) and (53), we get
() <€py, 120, 54

with p, defined in (22). An upper bound on p,(r) can be derived
similarly to the bound on p,(?).
The function p;(f) can be rewritten as

pH)= 3"k [ L re—s) sin(a),-s)ST(s)HS(s)ds] e (55)

i=1 g
Using Cauchy-Schwarz inequality, we obtain
|§ L1+ € = ) sin(w;)ST (s)H S(s)ds|

1 1 (56)
<@t e 9P sinf(@s)ds| | ST () HS(s)ds| .

Repeated integration by parts yields the following bound for the first
term on the right side of (56):

1 rtte 2 .2 €2 £2 1
1L +e—s) sm(a)is)ds|§€+m[l+m]. (57)

The second term on the right side of (56) can be bounded as

2

1L [ ST () HS(s)ds| < H?, [2;;] af] . (58)
Finally, from (55)-(58) we have |p;(1)] < ep; with p; defined in
(22). O

For the exponential stability analysis of unbiased ES (10) and (11),
the following Lemma will be used:

Systems & Control Letters 205 (2025) 106256

Lemma 2. Consider the delayed differential equation
x(t) = —kHx(t — Dy), x(t) € R", (59)

where k > 0, Dy > 0 is a constant delay, and H is a positive matrix that
satisfies 0 < H,,I < H < Hy,I with scalars H,, and H,. Let X(t) be the
n X n fundamental matrix of (59), meaning that it satisfies (59) for t > 0
and its initial condition is defined by X(0) = [ and X(t) = 0, t < 0. If
kH Dy < e”!, then the following holds:

L
Xl < {e_ka<,_D0)

Proof of Lemma 2. Since H > 0, there exists an orthogonal matrix
U € R™" (obviously, ||U|| = 1) such that

0<1< Dy,
t> D,

(60)

UHU™" = diag{hy,... .h,} 2 H > 0. (61)
Denote e(t) = Ux(t), t > Dy + €. Then from (59) we get
é(t) = kHe(t — Dy), t>Dy+e, (62)

where kH = diag{kh, ..., kh,}. Let X(¢) be the fundamental matrix of
system (62). Then X (¢) has the following form

X(@1) = diag{X,(0), X,(1), ..., X,,()}
with X;(t), (i = 1,...,n) being solutions of
é.(t) = khye,(t — Dy),

e;(1)=0, 1<0, ¢(0)=1

Moreover, we have || X(1)]| = [IX()|. By using Theorem 2.7 and
Corollary 2.14 in [32], if kH, D, < e~! then the following holds

0< X,(n < L O<i< Do
i = e—ka(t—Do)’ > DO’
implying
IXol = 1xol < { " 0=1<Do g (63
= = e_ka(l—Dg), > DO-

Proof of Theorem 1. Given o, > 0, let ¢ be subject to (28). From (15)
we have
16(1)] < 0 + age™PorPr)\ [3L | a?
< e Pu <geH, 1E€[0,Dy] (64)
——
(29)

We assume (and further prove) that
16(t)] < oe™, > Dy,. (65)
Then, from (64) and (65), we have
1) <oe™, t>0. (66)
By using (66), it follows from (1) and (2) that
ly@®) - Q*| =10¢ - D)) — O%|
= %lé(t — D) + alt — 4,,())S(t = A, ()3,

—2At
< oye s

——
(30)

67)
t> D,y

We apply the variation of constants formula to Eq. (16):
ii(t) = e n=PMR(Dy) + @y [y eI [p(s) = Q*ds, 12 Dy (68)

Employing the conditions w, > 24, |0* — Qy| < 4, in Assumption 2,
and (67)-(68), we have

O] < e =PI FDy| + @y [, e y(s) - O*|ds

< em@nt=Da, + —:)”?A e < t> Dy, (69)
= ——
(30)

o’,,e_z’“,

which implies the second inequality in (31).
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In addition, via (24), (27), (66), (67) and (69), we obtain

[Y(0)] < edye™, |6(D)| < Ae™,
lw(®)]| < ud,e=,

|G(1)| < edge™,

70)
IT(0)] < udpe™,

t> Dy,

where Ag, Ay, A, Ap and 4,, are defined in (30).
By variation of constants formula (see Lemma 9.1 in Agarwal
et al. [32]), the solution to (26) can be presented as

2(1) = X(t = Dp)z(Dy) + [ X (1 = $)[Y(s) + w(s)lds
. M 71)
+/DM X(t = s)[—kHw(s — Dy)lds, t> Dy,
where y(s — Dy) = 0 if s > Dy + Dy, and w(s — Dy) = z(s — Dy) if
Dy < s < Dy + Dy,. Then it follows from (71) that
|z@)] < 1 X = Dyl - |2(Dpp)] + kH fISM IX@ =9l - lw(s — D)lds
+ [p, IXG =9I -[Y ()] + ws)1ds, 1> Dy
(72)
We will further employ bounds on || X || given in Lemma 2. We consider
three intervals [D,, Dy, + Dyl, (Dp+ Dy, Dy +2Dg] and (D, 42D, o0).
For 1 € [Dy;, Dy; + Dyl, by using (60), (70) and (72) we find
12001 < 12(Dap)l + kH g [ |25 = Do)lds + [ 1Y ()] + |w(s)[] ds
< (0p + ape M Po+Da) /30 a2)[1 + kHpy Do)
+edy Dye™*Pm + yA, Dye=*Pm .

(73)
By using (25), we further have

161 < (0 + age*PotPa) 3" a)[1 + kHy; Dyl
+[edy + ud, 1Dge*Pum + gAge=H 74)
< ge M, Dy <t < Dy + Dy
——
9
For t € (D), + Dy, Dys +2Dy], by using (60), (70) and (72) we find
[z()] < e~*Hn(=Da=Do) . |z(Dy))|
D D,
+kHyg [, P IX (= ) - |25 = Do)lds
+ /i, 1IX(@ =9I - 1Y (5)] + lw(s)]1ds 75)
< (op + ape M PotDa)y /30 g2)[e FHmt=Dy=Do) 4 kH Dy

1 ] o—At=Dy)_

+Hedy + ud,) [DO +

By using (25), we further have

16 < (00 + age*PotPa)y [3 a2 [e=kHn(=Du=Do) 4 k), D]
+edge™ + (edy + ud,) [ Dy + m] o—A1-Dy) 76
\;o‘e’“, Dy + Dy <t < Dy +2D,,.
9)
For ¢t > Dy, + 2Dy, by using (60), (70) and (72), we obtain
|20 < e Hnt=Du=Do) . |z2(Dy )|
HhH g [y PO 11X = 9)lllz(s = Do)lds

+ [y, IXE =9I UY )] + ()1 ds

—A(Dg+Dyp) er}:] aiz)

X[I:I_M[ekaDo _ 1] 4 l]e’ka(T’DM’DO)

@7
< (oy + age

+(edy + ud,) [DO ap— ] e~At=Do),

(kHy—1)
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we further have
0 —A(Dy+D n 2
16O < +og + age™*PorPrdy [ | a?)

X [BL [P0 — 1] 4 1] e MHn=Peu=D0) 1 g A~
m

1 —Hi- (78)
+(edy + ud,) [DO + T —/1)] e~4=Do)
m
< g, t > Dy +2Dy.
——
(29)

We prove further that inequalities (28) and (29) guarantee the
bound (65). From (64) the inequality |6(t)| < ce~* holds for ¢ € [0, D,,].
Then |A(t)] < se™ holds also for some ¢+ > D,, due to continuity
of 4(t). We assume by contradiction that there exists ¢t > D,, such
that (65) does not hold. Namely, there exists the smallest t* > D,
such that |6(*)] = ce™*" and |0(1)] < se™* when ¢ € [D,,,r*). Thus
|6(?)] < se™* holds for all ¢+ € [D,,,t*]. There are three possibilities:
t* € [Dyy» Dyg + Dyl or (Dyy + Dy, Dy +2Dg] or (D + 2D, o).

If t* € [Dy, D), + Dy, then under the non-strict inequality |6(r)| <
oce~* we find that the non-strict version of inequality (73) holds for
t € [Dyy,1*]. Then, by using (29), we have

16()] < (0g + age™*PotPa)y /3 a?)[1 + kH Dyl
+[edy + ud, 1Dge *Pum + gAge™H (79)
<ge™H, t € [Dyy,17],
which contradicts to |6(t*)| = ce™4".
If t* € (Dy; + Dy, Dys + 2Dy, then under the non-strict inequality
|6(1)| < oe~* we find that the non-strict version of inequality (75) holds
for t € (D), + Dy, t*]. Then, by using (29), we have

10()] < (00 + age ™ PotPa)y [3 | a2) [e*Hn(=Dyu=D0) 4 kH\, Dy
+edge™ + (edy + ud,,) [DO + (kHl —/1)] e—A=Dg)  (80)
m
<oe™, t € (Dy + Dy, 1*],

which contradicts to |6(t*)| = ce~4".
If t* € (D) + 2Dy, ), then under the non-strict inequality |6(t)| <
ce " we find that the non-strict version of inequality (77) holds for

t € (Dyy + 2Dy, t*]. Then, by using (29), we have

Xlia)

x [’Z,—M[ekﬂmf’o -1+ 1] eKHn(=Dy=Do) 4 ¢ A e™H

10| < (o0 + age™*PotDu)

(81)

+Hedy + udy) [Do + ] ¢ 41-Dy)

kH,—%)
<oe™M, t € (Dy + 2Dy, 171,

which contradicts to |§(t*)| = ce=*" and completes the proof of (31).

Finally, given any D, and o, there always exist small enough &*, u
and 4, k, w;, subject to (13) that satisfy (28), (29) for some ¢ > o since
for k = £* = 4 = 0 these inequalities are reduced to ¢ > o). [
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