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 A B S T R A C T

In this paper, we study the unbiased extremum seeking (ES) algorithm for n-dimensional uncertain quadratic 
static maps in the presence of time-varying measurement delays. For the first time, we present a quantitative 
analysis of the unbiased ES. We consider delays with a large known constant part and a small time-varying 
uncertainty. Such delays may arise when measurements together with a time stamp are transmitted to ES 
controller via communication network. For the quantitative bounds, we assume that the Hessian is uncertain 
from a known range. By applying a delay-free transformation, explicit quantitative conditions in terms of 
simple scalar inequalities depending on the tuning parameters are established which ensure the exponential 
unbiased convergence of the ES system. Moreover, the corresponding results for the classical ES are presented. 
For globally quadratic maps, our results are semi-global, whereas for locally quadratic static maps, we provide 
a bound for the region of convergence. Appropriate ES parameters can be found for any large known delay 
and small enough delay uncertainty. Two numerical examples from the literature illustrate the efficiency of 
the proposed method.
1. Introduction

Extremum Seeking (ES) is a model-free adaptive control method for 
optimizing an unknown non-linear output map in real time under the 
premise of the existence of extremum value [1]. In [2], the rigorous 
stability analysis of extremum seeking was shown by using averaging 
theory and singular perturbations. Since then, various ES theoretical 
results and applications have emerged including semi-global and global 
ES control [3,4], time-varying ES control [5], ES in the presence of 
known delays with delay compensation, ES for PDE systems [6–9] and 
ES by using delay [10]. A detailed survey on ES control can be found 
in [11]. All the above results are qualitative that work for the static 
maps provided the dithers are fast enough, but the quantitative bounds 
on the ES controller parameters are missing.

The existing methods for ES in the presence of delays mostly treat 
known time-invariant (constant or distributed) delays and employ the 
known qualitative results on averaging for the time-delay systems 
(referring to [12] applicable to time-invariant delays). Robustness with 
respect to constant small delay uncertainties in the output of static 
quadratic scalar maps was studied in [13] by using [12] as well. To 
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the best of authors’ knowledge, there are no ready to be used (even 
qualitative) results on averaging that can be employed for the stability 
analysis of the ES algorithms in the presence of fast-varying delay 
uncertainties (which may be piecewise continuous and without any 
constraints on the delay derivatives). Such delays appear e.g. in the case 
of discrete-time delayed measurements (via time-delay modeling [14]). 
Recent constructive methods for periodic averaging that are based on 
time-delay [15] or delay-free transformations [16] give important tools 
for robustness of ES algorithms with respect to unavoidable fast-varying 
delay uncertainties along with quantitative bounds on the controller 
parameters.

The first constructive methods for ES with quantitative bounds 
on the tuning parameters (dither frequencies and amplitudes) were 
suggested in [17–19] for the quadratic static maps under approximate 
knowledge of the Hessian by using the time-delay approach (based 
on time-delay transformation) to averaging [15]. The time-delay ap-
proach was extended to sampled-data ES of static quadratic maps [20] 
and to non-quadratic maps [21]. Bounded extremum seeking of static 
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quadratic maps with small uncertain measurement delays and quan-
titative bounds was studied in [22] via the time-delay approach and 
in [23] via a delay-free transformation and strict Lyapunov functions.

In the present paper we extend the new constructive method to 
averaging based on delay-free transformation [16,24] to the suggested 
in [25,26] unbiased ES with exponential unbiased convergence. Our ob-
jective is the first constructive unbiased ES algorithm for the quadratic 
static maps with numerical bounds on the controller tuning parameters 
in the presence of time-varying measurement delays. We consider the 
unbiased ES of static 𝑛D quadratic map in the presence of measurement 
delays with a large known constant part and a small time-varying 
uncertainty. Such delays may arise when measurements together with 
a time stamp are transmitted to ES controller via communication 
network. Due to uncertain delay, accurate estimate of the Hessian 
seems to be not possible. To achieve efficient quantitative results, 
we assume that uncertain Hessian is from a known range. Explicit 
quantitative conditions in terms of simple scalar inequalities are es-
tablished which ensure the exponential unbiased convergence of the 
ES system. For globally quadratic maps, our results are semi-global, 
whereas for locally quadratic static maps, we provide a bound on the 
region of convergence. Appropriate ES parameters can be found for 
any large known delay and small enough delay uncertainty. We also 
present the corresponding results for the classical ES. Two numerical 
examples illustrate the efficiency of the suggested approach, whereas 
our results for the classical ES are favorably compared to the existing 
ones [17–19].

A conference version for 1D static maps in the presence of large 
known constant delay via a delay-free transformation was presented 
in [27].

Notation: The notation used in this paper is fairly standard. N
refers to the set of positive integers. R𝑛 denotes the 𝑛-dimensional 
Euclidean space with vector norm | ⋅ |, R𝑛×𝑚 is the set of all 𝑛 × 𝑚 real 
matrices with the induced matrix norm ‖ ⋅ ‖. The notation 𝑒𝑖 ∈ R𝑛, 
(𝑖 = 1, 2,… , 𝑛) denotes the column vector with a 1 in the 𝑖th coordinate 
and 0’s elsewhere. The notation 𝑃 > 0 for 𝑃 ∈ R𝑛×𝑛 means that 𝑃
is symmetric and positive definite. The superscript 𝑇  denotes matrix 
transposition. For 0 < 𝑃 ∈ R𝑛×𝑛 and 𝑥 ∈ R𝑛, we write |𝑥|2𝑃 = 𝑥𝑇 𝑃𝑥.

Consider a multi-variable quadratic map 𝑄(𝜃(𝑡))

𝑄(𝜃(𝑡)) = 𝑄∗ + 1
2
|𝜃(𝑡) − 𝜃∗|2𝐻 , 0 ≤ 𝑡 ∈ R, (1)

where 𝜃(𝑡) ∈ R𝑛 is the vector input, 𝜃∗ ∈ R𝑛 and 𝑄∗ ∈ R are uncertain, 
and 𝐻 is an unknown Hessian matrix. Without loss of generality, we 
consider a minimum seeking with 𝐻 > 0, where (1) has a minimum 
value 𝑄(𝑡) = 𝑄∗ at 𝜃 = 𝜃∗.  The delayed measurements are given by 

𝑦(𝑡) =

{

0, 𝑡 ∈ [0, 𝐷(0)),
𝑄(𝜃(𝑡 −𝐷(𝑡))), 𝑡 ≥ 𝐷(0).

(2)

where 𝐷(𝑡) is a time-varying delay.
For simplicity we adopt a quadratic output map following seminal 

literature [8,9], but our results (as well as results of [8,9]) can be 
applied to any output map that is a 𝐶3 function in the vicinity of its 
extremum points, as any such function can be locally approximated 
by the quadratic one. Differently from the globally quadratic case, 
where we provide semi-global results in Theorem  1 below, in the locally 
quadratic we present regional results with a bound on the domain of 
convergence (see Remark  6 below).

We will employ the unbiased ES algorithm as introduced for the 
non-delayed case in [25,26]. By using the measurements only, this 
algorithm constructs an input 𝜃(𝑡) that exponentially converges to 𝜃∗.

In this paper we consider an uncertain time-varying delay 𝐷(𝑡)
subject to the following assumption: 

Assumption 1.  We consider uncertain piecewise-continuous delay of 
the form 

𝐷(𝑡) = 𝐷0 + 𝛥𝜀𝜇(𝑡), |𝛥𝜀𝜇(𝑡)| ≤ 𝜀𝜇, 𝑡 ≥ 0, (3)

with the known 𝐷 ≥ 0 (that may be large) and small 𝜇 > 0 and 𝜀 > 0.
0

2 
The delay uncertainty may appear e.g. due to sampling and delays 
if the measurements are transmitted to the controller by using commu-
nication network [14]. The upper bound on the delay 𝐷(𝑡) is given by 
𝐷𝑀 = 𝐷0 + 𝜀𝜇, where 𝐷𝑀 → 𝐷0 as 𝜀𝜇 → 0.

We assume 

Assumption 2.  The extremum point 𝜃∗ to be sought is uncertain from 
a known ball 𝐵 with radius 𝜎0 where its elements satisfy 𝜃∗𝑖 ∈ [𝜃∗𝑖 , 𝜃

∗
𝑖 ], 

𝑖 = 1,… , 𝑛 with ∑𝑛
𝑖=1(𝜃

∗
𝑖 −𝜃

∗
𝑖 )

2 = 𝜎20 . The extremum value 𝑄∗ is uncertain 
subject to |𝑄∗ −𝑄0| ≤ 𝛥𝑄 with known 𝑄0 and 𝛥𝑄 > 0.

Remark 1.  Note that if the delay 𝐷(𝑡) is known (constant or contin-
uously differentiable with 𝐷̇(𝑡) ≤ 𝑑 < 1), an ES algorithm for finding 
extremum point of a quadratic map is not needed, since 𝜃∗ can be easily 
found in the finite time as follows. Consider for simplicity a known 
constant delay 𝐷0. Fix any 𝜀 > 0 and denote 𝜔𝑖,0 = 2𝜋𝑙𝑖

𝜀  with 𝑙𝑖 ∈ N
satisfying 

𝑙𝑖 ∉ {𝑙𝑗 ,
1
2
(𝑙𝑗 + 𝑙𝑘), 𝑙𝑗 + 2𝑙𝑘, 𝑙𝑗 + 𝑙𝑘 ± 𝑙𝑚}, (4)

for all distinct 𝑖, 𝑗, 𝑘 and 𝑚. Define the vector functions

𝑆0(𝑡) = [sin(𝜔1,0𝑡),… , sin(𝜔𝑛,0𝑡)]𝑇 , 𝑀0(𝑡) = [2 sin(𝜔1,0𝑡),… , 2 sin(𝜔𝑛,0)]𝑇 ,

and matrix function 𝑁(𝑡) with elements 

𝑁𝑖,𝑖(𝑡) = 16(sin2(𝜔𝑖,0𝑡) −
1
2 ), 𝑁𝑖,𝑗 (𝑡) = 4 sin(𝜔𝑖,0𝑡) sin(𝜔𝑗,0𝑡), 𝑖 ≠ 𝑗. (5)

Choose any 𝜃(0) ∈ R𝑛. Apply the input

𝜃(𝑡) = 𝜃(0) + 𝑆0(𝑡 +𝐷0), 𝑡 ∈ [0, 𝐷0 + 2𝜀].

According to [28], the unknown Hessian and gradient can be found in 
the finite time 𝐷0 + 2𝜀 as follows:

1
𝜀 ∫

𝐷0+𝜀
𝐷0

𝑁(𝑠)𝑦(𝑠) 𝑑𝑠 = 𝐻,

𝐺 ∶= 1
𝜀 ∫

𝐷0+2𝜀
𝐷0+𝜀

𝑀0(𝑠)𝑦(𝑠) 𝑑𝑠 = 𝐻(𝜃(0) − 𝜃∗).

Then, the extremum point is given by

𝜃∗ = 𝜃(0) −𝐻−1𝐺.

We thank the anonymous reviewer for bringing this idea to our at-
tention. Note that a similar idea of the Hessian and gradient estimate 
on the initial time interval (for 𝐷(𝑡) = 0) was suggested in [29], 
whereas the estimate of the Hessian only and known constant delay 
was suggested in [27].

1.1. Unbiased ES in the presence of uncertain delay

Define the perturbation and demodulation signals as 
𝑆(𝑡) = [𝑎1 sin(𝜔1𝑡),… , 𝑎𝑛 sin(𝜔𝑛𝑡)]𝑇 ,
𝑀(𝑡) = [ 2

𝑎1
sin(𝜔1𝑡),… , 2

𝑎𝑛
sin(𝜔𝑛𝑡)]𝑇 ,

(6)

where amplitudes 𝑎𝑖 are non-zero real numbers and the frequencies 
have a form 

𝜔𝑖 =
2𝜋𝑖
𝜀
, 𝜀 > 0, 𝑖 = 1,… , 𝑛. (7)

It is worth noting that Assumption 1 dictates that the unknown delay 
term 𝛥𝜀𝜇(𝑡) should be much smaller than the periods of 𝑆(𝑡) and 
𝑀(𝑡). Without this condition, the influence of the delay would be-
come too significant to preserve the robustness of the performance 
under ES controller considered below. For the network-based imple-
mentation this means that maximum transmission interval (sampling) 
should be essentially smaller than the dither period whereas the sum of 
network-induced and computational delays should be almost constant 
to preserve the performance.
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1.1.1. Unbiased ES algorithm
Inspired by [25,26], we employ an unbiased ES algorithm. Define 

an exponentially decaying function 𝛼(𝑡) as 
𝛼(𝑡) = 𝛼0𝑒

−𝜆𝑡, 0 ≤ 𝑡 ∈ R, (8)

where 𝛼0 and 𝜆 are tuning positive parameters. Choose a scalar adap-
tation gain 𝑘 > 0. Given 𝜀 > 0 (its numerical value will be found later 
from conditions of Theorem  1) and the corresponding frequencies 𝜔𝑖
given by (7), define the input 𝜃(𝑡) with a real-time estimate 𝜃̂(𝑡) of 𝜃∗
as follows: 

𝜃(𝑡) =

{

𝜃(0), 0 ≤ 𝑡 < 𝐷𝑀 ,
𝜃̂(𝑡) + 𝛼(𝑡 +𝐷0)𝑆(𝑡 +𝐷0), 𝑡 ≥ 𝐷𝑀 ,

(9)

with 𝑆(𝑡) and 𝛼(𝑡) given by (6) and (8), respectively.
As illustrated in Fig.  1, the unbiased ES algorithm has the following 

form 
̇̂𝜃(𝑡) = − 𝑘𝑀(𝑡)

𝛼(𝑡) [𝑦(𝑡) − 𝜂(𝑡)], 𝑡 ≥ 𝐷𝑀 ,

𝜃̂(𝑡) = 𝜃(0)−𝛼(𝐷𝑀 +𝐷0)𝑆(𝐷𝑀 +𝐷0), 𝑡 ∈ [0, 𝐷𝑀 ],
(10)

where the high-pass filter state 𝜂(𝑡) is governed by 
𝜂̇(𝑡) = −𝜔ℎ𝜂(𝑡) + 𝜔ℎ𝑦(𝑡), 𝑡 ≥ 𝐷𝑀 ,
𝜂(𝐷𝑀 ) = 𝑄0,

(11)

with some 𝜔ℎ > 0.
Our objective is to derive constructive quantitative conditions for 

the semi-global exponential convergence in the presence of the time-
varying delays: given an uncertain time-varying delay 𝐷(𝑡) and a ball 
for the initial state 𝜃(0), find appropriate exponentially decaying gains, 
high-pass filters and perturbation frequencies that guarantee the ex-
ponential convergence of the estimation error. The results presented 
below establish conditions (in terms of simple scalar inequalities) which 
ensure exponential stability of the estimation error and provide quan-
titative bounds on the controller parameters.

Remark 2.  When the Hessian 𝐻 is unknown, an alternative version 
of the unbiased ES algorithm with a delay compensator of the known 
part 𝐷0 of the delay (similar to [30] with constant delay) can be 
used. Let frequencies 𝜔𝑖,0 subject to (4), vector functions 𝑀0(𝑡), 𝑆0(𝑡)
and matrix function 𝑁(𝑡) be defined as in Remark  1. Consider 𝜃(𝑡) =
𝜃̂(𝑡) + 𝛼(𝑡+𝐷0)𝑆0(𝑡+𝐷0) for 𝑡 ≥ 𝐷𝑀  and 𝜃(𝑡) = 𝜃(0) for 𝑡 ∈ [0, 𝐷𝑀 ]. The 
unbiased ES has a form 

𝐻̂(𝑡) = 𝑁(𝑡)
𝛼(𝑡) [𝑦(𝑡) − 𝜂(𝑡)],

̇̂𝜃(𝑡) = − 𝑘𝑀0(𝑡)
𝛼(𝑡) [𝑦(𝑡) − 𝜂(𝑡)] − 𝑘𝐻̂(𝑡)[𝜃̂(𝑡) − 𝜃̂(𝑡 −𝐷0)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑑𝑒𝑙𝑎𝑦 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

,

𝜂̇(𝑡) = −𝜔ℎ𝜂(𝑡) + 𝜔ℎ𝑦(𝑡).

(12)

Here 𝐻̂ is an estimator of the Hessian 𝐻 . Our stability analysis pre-
sented below can be applied here leading to new qualitative result - 
exponential convergence of 𝜃 to 𝜃∗ for appropriate 𝑎𝑖, 𝑘, 𝜔ℎ, 𝜆 and 
small enough 𝜀 and 𝜇. However, the delay compensation term with 𝐻̂(𝑡)
causes additional perturbations to be bounded and leads to very small 
quantitative bounds on 𝜀.

Note that our constructive method for finding 𝜀 (related to the 
dither frequencies according to (7)) leads to 𝛥𝜀𝜇 of the order of 𝑂(𝜀𝜇)
(similarly to [13] for constant delay uncertainty and our preliminary 
result [31] via the time-delay approach).  Since the upper bound of 𝜀
depends on 𝐻 , estimation of 𝐻 from the measurements on the initial 
interval similar to Remark  1 below seems to be not possible in the 
presence of delay uncertainty. Therefore, to have efficient quantitative 
bounds on 𝜀, we assume that uncertain 𝐻 is from the known range: 

Assumption 3.  The Hessian 𝐻 is uncertain and subject to 𝐻𝑚𝐼 ≤ 𝐻 ≤
𝐻 𝐼 , where 𝐻  and 𝐻  are two known positive scalars.
𝑀 𝑚 𝑀

3 
Fig. 1. Unbiased ES algorithm with time-varying measurement delay 𝐷(𝑡).

Following [26,30,32] (see Lemma  2 in the Appendix), given a 
desirable decay rate 𝜆 > 0, we choose positive tuning parameters 𝑘
and 𝜔ℎ that satisfy the following inequalities: 

𝑘𝐻𝑚 > 𝜆, 𝜔ℎ > 2𝜆, 𝑒−1 ≥ 𝑘𝐻𝑀𝐷0. (13)

The first two inequalities mean that adaptation (learning) rate should 
surpass the decay rate 𝜆 of the perturbation (exploration) signal. The 
third inequality yields that for given 𝐻𝑚 and 𝐻𝑀  and a larger 𝐷0, a 
smaller 𝑘 should be chosen, which leads to a smaller decay rate 𝜆.

Remark 3.  In contrast to the conventional ES design [2], the unbiased 
ES algorithm (10), (11) is equipped with high-pass filter, and exponen-
tially decaying perturbation and growing demodulation signals. Despite 
the exponentially growing signal in the algorithm, the high-pass filter 
has a crucial role in guaranteeing the unbiased convergence by ensuring 
the exponential decay of 𝑦(𝑡) − 𝜂(𝑡) to zero at the rate of 2𝜆 (see (67) 
below).

Define the estimation errors 𝜃(𝑡) and 𝜂̃(𝑡) as 
𝜃(𝑡) = 𝜃̂(𝑡) − 𝜃∗, 𝑡 ≥ 0,
𝜂̃(𝑡) = 𝜂(𝑡) −𝑄∗, 𝑡 ≥ 0.

(14)

We will further present (10) as 
̇̃𝜃(𝑡) = − 𝑘𝑀(𝑡)

𝛼(𝑡)

[

1
2 |𝜃(𝑡 −𝐷(𝑡)) + 𝛼(𝑡 − 𝛥𝜀𝜇(𝑡))×

𝑆(𝑡 − 𝛥𝜀𝜇(𝑡))|2𝐻 − 𝜂̃(𝑡)
]

, 𝑡 ≥ 𝐷𝑀 ,

𝜃(𝑡) = 𝜃(0) − 𝜃∗ − 𝛼(𝐷𝑀 +𝐷0)𝑆(𝐷𝑀 +𝐷0), 𝑡 ∈ [0, 𝐷𝑀 ],

(15)

and 
̇̃𝜂(𝑡) = −𝜔ℎ𝜂̃(𝑡) + 𝜔ℎ[𝑦(𝑡) −𝑄∗], 𝑡 ≥ 𝐷𝑀 ,

𝜂̃(𝑡) = 𝑄0 −𝑄∗, 𝑡 = 𝐷𝑀 .
(16)

Taking into account
𝜃(𝑡 −𝐷(𝑡)) = 𝜃(𝑡 −𝐷0) − ∫ 𝑡−𝐷0

𝑡−𝐷(𝑡)
̇̃𝜃(𝑠) 𝑑𝑠,

𝛼(𝑡 − 𝛥𝜀𝜇(𝑡))𝑆(𝑡 − 𝛥𝜀𝜇(𝑡)) = 𝛼(𝑡)𝑆(𝑡) − ∫ 𝑡𝑡−𝛥𝜀𝜇 (𝑡)
𝑑
𝑑𝑠𝛼(𝑠)𝑆(𝑠) 𝑑𝑠,

system (15), (16) can be further expressed as 
̇̃𝜃(𝑡) = − 𝑘𝑀(𝑡)

𝛼(𝑡)

[

1
2 |𝜃(𝑡 −𝐷0) + 𝛼(𝑡)𝑆(𝑡)|

2
𝐻 − 𝜂̃(𝑡)

]

+𝑤(𝑡), 𝑡 ≥ 𝐷𝑀 ,
̇̃𝜂(𝑡) = −𝜔ℎ𝜂̃(𝑡) + 𝜔ℎ[𝑦(𝑡) −𝑄∗], 𝑡 ≥ 𝐷𝑀 ,

(17)

where 
𝑤(𝑡) = − 1

2
𝑘𝑀(𝑡)
𝛼(𝑡) |𝛤 (𝑡)|2𝐻 − 𝑘𝑀(𝑡)

𝛼(𝑡) [𝜃(𝑡 −𝐷0) + 𝛼(𝑡)𝑆(𝑡)]𝑇𝐻𝛤 (𝑡),

𝛤 (𝑡) = −∫

𝑡−𝐷0

𝑡−𝐷(𝑡)

̇̃𝜃(𝑠) 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑂(𝑑)=𝑂(𝜀𝜇)

−∫

𝑡

𝑡−𝛥𝜀𝜇 (𝑡)

( 𝑑
𝑑𝑠
𝛼(𝑠)𝑆(𝑠)

)

𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑑

. (18)
𝑂( 𝜀 )=𝑂(𝜇)
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The order of 𝛤 (𝑡) follows from 𝑆̇(𝑠) = 𝑂(𝜀) and ̇̃𝜃(𝑠) = 𝑂(1). One can 
easily show that 

1
𝜀 ∫

𝑡+𝜀
𝑡 𝑀(𝑠)𝑑𝑠 = 0, 1

𝜀 ∫
𝑡+𝜀
𝑡 𝑀(𝑠)𝑆𝑇 (𝑠)𝑑𝑠 = 𝐼𝑛,

1
𝜀 ∫

𝑡+𝜀
𝑡 𝑀(𝑠)𝑆𝑇 (𝑠)𝐻𝑆(𝑠)𝑑𝑠 = 0.

(19)

Thus, from (19), (17) and (18), the averaged system corresponding to 
(15) with 𝜇 → 0 is given by 

̇̃𝜃𝑎𝑣(𝑡) = −𝑘𝐻𝜃𝑎𝑣(𝑡 −𝐷0), (20)

which is exponentially stable for 𝑘𝐻 subject to (13) (see Lemma  2 in 
the Appendix).

Remark 4.  Compared to the classical ES, high-pass filter and exponen-
tial perturbation/demodulation signals in the unbiased ES lead to more 
challenging averaging-based stability analysis. Additional restrictions 
(13) on the tuning parameters are needed along with the convergence 
proof of the additional error term 𝜂̃(𝑡). To manage with the exponential 
convergence we assume and later prove that |𝜃(𝑡)| ≤ 𝜎𝑒−𝜆𝑡 (see (65)) 
for some 𝜎 > 0 instead of |𝜃(𝑡)| ≤ 𝜎 for the classical ES.

1.1.2. Stability analysis
We will perform stability analysis of (15), (16) (also (17)) via a 

delay-free transformation inspired by [16]. Define 
𝜌1(𝑡) ∶= − 1

𝜀 ∫
𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)[−𝑘𝑀(𝑠)𝑆𝑇 (𝑠)𝐻 + 𝑘𝐻]𝑑𝑠,

𝜌2(𝑡) ∶= − 1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)[𝑘𝑀(𝑠)]𝑑𝑠,

𝜌3(𝑡) ∶= − 1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)

[

− 1
2𝑘𝑀(𝑠)𝑆𝑇 (𝑠)𝐻𝑆(𝑠)

]

𝑑𝑠,

𝜌4(𝑡) ∶= − 1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)

[

− 1
2𝑘𝑀(𝑠)

]

𝑑𝑠.

(21)

The following Lemma provides accurate upper-bounds on each function 
in (21): 

Lemma 1.  The functions 𝜌1(𝑡),… , 𝜌4(𝑡) are bounded as follows for 𝑡 ≥ 0: 

‖𝜌1(𝑡)‖ ≤ 𝜀𝜌̄1 ∶=
𝜀𝑘𝐻𝑀
2𝜋

[

1
2
∑𝑛
𝑖=1

1
𝑖 +

∑

1≤𝑖≠𝑗≤𝑛
𝑎𝑗
𝑎𝑖

(

1
|𝑖−𝑗| +

1
𝑖+𝑗

) ]

,

|𝜌2(𝑡)| ≤ 𝜀𝜌̄2 ∶=
𝜀𝑘
𝜋

(

∑𝑛
𝑖=1

1
𝑖𝑎𝑖

)

,

|𝜌3(𝑡)| ≤ 𝜀𝜌̄3 ∶= 𝜀𝑘𝐻𝑀

[

∑𝑛
𝑗=1 𝑎

2
𝑗

]

(

∑𝑛
𝑖=1

1
𝑎𝑖

(

1
6 + 1

8𝜋𝑖

[

1 + 1
4𝜋𝑖

])
1
2

)

,

|𝜌4(𝑡)| ≤ 𝜀𝜌̄4 ∶=
𝜀𝑘
2𝜋

(

∑𝑛
𝑖=1

1
𝑖𝑎𝑖

)

.

(22)

Proof.  See Appendix. □

Differentiating (21), we have 
𝜌̇1(𝑡) = −𝑘𝑀(𝑡)𝑆𝑇 (𝑡)𝐻 + 𝑘𝐻, 𝜌̇2(𝑡) = 𝑘𝑀(𝑡),

𝜌̇3(𝑡) = − 1
2𝑘𝑀(𝑡)𝑆𝑇 (𝑡)𝐻𝑆(𝑡), 𝜌̇4(𝑡) = − 1

2𝑘𝑀(𝑡).
(23)

Introduce the delay-free transformation 𝑧(𝑡) as in (25) where 

𝐺(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑡 ∈ [0, 𝐷𝑀 ],

𝜌1(𝑡)𝜃(𝑡 −𝐷0) + 𝜌2(𝑡)𝛼−1(𝑡)𝜂̃(𝑡)

+𝜌3(𝑡)𝛼(𝑡) + 𝜌4(𝑡)𝛼−1(𝑡)|𝜃(𝑡 −𝐷0)|
2
𝐻 , 𝑡 > 𝐷𝑀 .

(24)

Consider the following transformation 
𝑧(𝑡) = 𝜃(𝑡) − 𝐺(𝑡), 𝑡 ≥ 0. (25)

By employing (25) and (17), we obtain 
𝑧̇(𝑡) = −𝑘𝐻𝑧(𝑡 −𝐷0) + 𝑌 (𝑡) +𝑤(𝑡), 𝑡 ≥ 𝐷𝑀 ,

∗ (26)

𝑧(𝑡) = 𝜃(0) − 𝜃 − 𝛼(𝐷𝑀 +𝐷0)𝑆(𝐷𝑀 +𝐷0), 𝑡 ∈ [0, 𝐷𝑀 ],

4 
where 

(𝑡) = −𝑘𝐻𝐺(𝑡 −𝐷0) − 𝜌1(𝑡) ̇̃𝜃(𝑡 −𝐷0) − 𝜌2(𝑡)
(

𝑑𝛼−1(𝑡)
𝑑𝑡 𝜂̃(𝑡) + 𝛼−1(𝑡) ̇̃𝜂(𝑡)

)

𝜌3(𝑡)𝛼̇(𝑡) − 𝜌4(𝑡)
𝑑𝛼−1(𝑡)
𝑑𝑡 |𝜃(𝑡 −𝐷0)|

2
𝐻 − 2𝜌4(𝑡)𝛼−1(𝑡)𝜃𝑇 (𝑡 −𝐷0)𝐻 ̇̃𝜃(𝑡 −𝐷0).

(27)

The terms 𝐺(𝑡), 𝑌 (𝑡) and 𝑤(𝑡) are of the order of 𝑂(max{𝜀, 𝜇}) provided 
𝜃(𝑡), ̇̃𝜃(𝑡) and 𝜂̃(𝑡), ̇̃𝜂(𝑡) are of the order of 𝑂(1). Hence, (26) can be 
regarded as an 𝑂(𝜀) perturbation of the averaged system (20) for small 
enough 𝜀.

The bound on 𝑧 will be found by utilizing the variation of constants 
formula for the time-delay system (26). Then the bound on 𝜃 will 
be found by employing (25). We are in a position to formulate our 
main result on semi-global exponential stability of the estimation error 
system (15):

Theorem 1.  Let Assumptions  1–3 hold. Given any 𝐷0 > 0, let 𝜔ℎ, 𝜆 and 𝑘
satisfy (13). Consider the estimation error system (15), (16) with uncertain 
delay 𝐷(𝑡). The functions 𝑀(𝑡), 𝑆(𝑡) and 𝛼(𝑡) are defined by (6), (8) with 
tuning parameters 𝛼0 and 𝑎𝑖. Let 𝜌̄𝑗 , 𝑗 = 1, 2, 3, 4 are the bounds defined in 
(22). Given any 𝜎0 > 0, let the tuning parameter 𝜎 is subject to 

[𝜎0 + 𝛼0𝑒−2𝜆𝐷0
√

∑𝑛
𝑖=1 𝑎

2
𝑖 ]

×
[

𝑒2𝑘𝐻𝑚𝐷0 + max{𝑘𝐻𝑀𝐷0𝑒3𝜆𝐷0 , 𝐻𝑀
𝐻𝑚

𝑒2𝑘𝐻𝑚𝐷0 [𝑒𝑘𝐻𝑚𝐷0 − 1]}
]

< 𝜎.
(28)

Let there exist 𝜀∗ and 𝜇∗ that satisfy 

𝜎0 + 𝛼0𝑒−𝜆(2𝐷0+𝜀∗𝜇∗)
√

∑𝑛
𝑖=1 𝑎

2
𝑖

]

𝑒𝑘𝐻𝑚(2𝐷0+𝜀∗𝜇∗) + 𝜀∗𝛥𝐺

(𝜀∗𝛥𝑌 + 𝜇∗𝛥𝑤)
[

𝐷0 +
1

(𝑘𝐻𝑚−𝜆)

]

𝑒𝜆𝐷0 +
[

𝜎0 + 𝛼0𝑒−𝜆(2𝐷0+𝜀∗𝜇∗)
√

∑𝑛
𝑖=1 𝑎

2
𝑖

]

max{𝑘𝐻𝑀𝐷0𝑒𝜆(3𝐷0+𝜀∗𝜇∗), 𝐻𝑀
𝐻𝑚

𝑒𝑘𝐻𝑚(2𝐷0+𝜀∗𝜇∗)[𝑒𝑘𝐻𝑚𝐷0 − 1]} < 𝜎,

(29)

where 

𝛥𝐺 = 𝜌̄1𝜎𝑒𝜆𝐷0 + 𝜌̄2
𝜎𝜂
𝛼0

+ 𝜌̄3𝛼0 + 𝜌̄4
𝜎2𝐻𝑀
𝛼0

𝑒2𝜆𝐷0 ,

𝜎𝜂 = 𝛥𝑄𝑒𝜔ℎ(𝐷0+𝜀∗𝜇∗) + 𝜎𝑦𝜔ℎ
𝜔ℎ−2𝜆

,

𝜎𝑦 =
𝐻𝑀
2

(

𝜎𝑒𝜆(𝐷0+𝜀∗𝜇∗) + 𝛼0𝑒𝜆𝜀
∗𝜇∗

√

∑𝑛
𝑖=1 𝑎

2
𝑖

)2
,

𝛥𝑌 = 𝑘𝐻𝑀𝛥𝐺𝑒𝜆𝐷0 + 𝜌̄1𝛥𝑒𝜆𝐷0 + 𝜌̄2𝛼−10 𝜆𝜎𝜂 + 𝜌̄2𝛼−10 𝜔ℎ(𝜎𝜂 + 𝜎𝑦)

+𝜌̄3𝛼0𝜆 + 𝜌̄4𝐻𝑀𝛼−10 𝜎𝑒2𝜆𝐷0 (2𝛥 + 𝜆𝜎),

𝛥 = 2𝑘
𝛼0

[

𝜎𝜂 + 𝜎𝑦
]

√

∑𝑛
𝑖=1

1
𝑎2𝑖
,

𝛥𝑤 = 𝑘𝐻𝑀
𝛼0

𝛥𝛤
[

𝜇∗𝛥𝛤 + 2
(

𝜎𝑒𝜆𝐷0 + 𝛼0
√

∑𝑛
𝑖=1 𝑎

2
𝑖

)

]

√

∑𝑛
𝑖=1

1
𝑎2𝑖
,

𝛥𝛤 = 𝜀∗𝛥𝑒𝜆(𝐷0+𝜀∗𝜇∗) + 𝜀∗𝜆𝛼0
√

∑𝑛
𝑖=1 𝑎

2
𝑖 𝑒
𝜆𝜀∗𝜇∗ + 2𝜋𝛼0

√

∑𝑛
𝑖=1(𝑖𝑎𝑖)2𝑒

𝜆𝜀∗𝜇∗ .

(30)

Then, for all 𝜀 ∈ (0, 𝜀∗], 𝜇 ∈ [0, 𝜇∗) and 𝜃(0) ≤ 𝜎0 the following inequalities 
hold for 𝐷(𝑡) subject to (3): 

|𝜃(𝑡)| < 𝜎𝑒−𝜆𝑡, |𝜂̃(𝑡)| ≤ 𝜎𝜂𝑒
−2𝜆𝑡, 𝑡 ≥ 𝐷𝑀 , (31)

i.e. meaning that the estimation error system (15), (16) is exponentially 
stable with a decay rate 𝜆. Moreover, for any 𝐷0 and 𝜎0, (28) and (29) are 
always feasible for small enough 𝜆, 𝑘 > 0, 𝜀∗, 𝜇∗ and appropriate 𝜎 > 𝜎0.

Proof.  See Appendix. □

Remark 5.  The conditions of Theorem  1 impose clear restrictions on 
the decay rate 𝜆. More precisely, larger delay 𝐷0 and larger 𝜇 place 
a limitation on the decay rate 𝜆, and lead to smaller 𝜀∗, i.e. slower 
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convergence and higher dither frequency. The same holds true for the 
classical ES and conditions of Corollary  1 in the next section.

Remark 6.  In cases where the map is non-quadratic, but is 𝐶3

function, it can be approximated as the quadratic one (1) in a vicinity 
of 𝜃∗ (i.e. for |𝜃(𝑡) − 𝜃∗| ≤ 𝜎1 with some known 𝜎1). Then the results 
of Theorem  1 hold true with 𝜎 = 𝜎1 − 𝛼0

√

∑𝑛
𝑖=1 𝑎

2
𝑖 . By arguments of 

Theorem  1, it can be shown that if (28), (29) hold, then for all 𝜀 ≤ 𝜀∗, 
𝜇 ≤ 𝜇∗ and 𝐷(𝑡) subject to (3) all the solutions of (15), (16) with 
|𝜃(0)| ≤ 𝜎0 satisfy (31) (meaning regional exponential stability). Similar 
results hold true for the classical ES in the next section.

1.2. Classical ES: uncertain time-varying delay

In this subsection, we consider the classical ES algorithm in the 
presence of uncertain time-varying delay. Consider the ES algorithm 
(9)–(10) with 𝛼(𝑡) ≡ 1 and 𝜂(𝑡) ≡ 0 for 𝑡 ≥ 0, which results in the 
following equation for the real-time estimate 𝜃̂(𝑡) of 𝜃(𝑡): 

̇̂𝜃(𝑡) = −𝑘𝑀(𝑡)
(

𝑄∗ + 1
2 |𝜃̂(𝑡 −𝐷(𝑡)) − 𝜃∗ + 𝑆(𝑡)|2𝐻

)

, 𝑡 ≥ 𝐷𝑀 ,
𝜃̂(𝑡) = 𝜃(0) − 𝑆(𝐷𝑀 +𝐷0), 𝑡 ∈ [0, 𝐷𝑀 ],

(32)

where 𝑆(𝑡), 𝑀(𝑡) are defined in (6) and 𝑘 is a positive gain. Then, the 
estimation error 𝜃(𝑡) = 𝜃̂(𝑡) − 𝜃∗ is governed by 

̇̃𝜃(𝑡) = −𝑘𝑀(𝑡)
(

𝑄∗ + 1
2 |𝜃(𝑡 −𝐷(𝑡)) + 𝑆(𝑡)|2𝐻

)

, 𝑡 ≥ 𝐷𝑀 ,
𝜃(𝑡) = 𝜃(0) − 𝜃∗ − 𝑆(𝐷𝑀 +𝐷0), 𝑡 ∈ [0, 𝐷𝑀 ].

(33)

Note that (33) with 𝐷(𝑡) = 0 is the estimation error in the classical ES 
algorithm which was analyzed in [18,19] via the time-delay approach. 
The following corollary follows by arguments of Theorem  1:

Corollary 1.  Let Assumptions  1–3 hold, and 𝑘 satisfy 𝑒−1 ≥ 𝑘𝐻𝑀𝐷0. 
Consider the estimation error system (33) with uncertain delay 𝐷(𝑡). Let 𝜌̄𝑗 , 
𝑗 = 1, 2, 3, 4 are the bounds defined in (22). The functions 𝑀(𝑡) and 𝑆(𝑡)
are defined by (6) with tuning parameters 𝑎𝑖. Given any 𝜎0 > 0, let the 
tuning parameter 𝜎 satisfy 

[𝜎0 +
√

∑𝑛
𝑖=1 𝑎

2
𝑖 ][𝑒

2𝑘𝐻𝑚𝐷0 + 𝐻𝑀
𝐻𝑚

𝑒2𝑘𝐻𝑚𝐷0 [𝑒𝑘𝐻𝑚𝐷0 − 1]] < 𝜎. (34)

Let there exist 𝜀∗ and 𝜇∗ that satisfy 

[𝜎0 +
√

∑𝑛
𝑖=1 𝑎

2
𝑖 ]𝑒

𝑘𝐻𝑚(2𝐷0+𝜀∗𝜇∗)
(

1 + 𝐻𝑀
𝐻𝑚

[𝑒𝑘𝐻𝑚𝐷0 − 1]
)

+ 𝜀∗𝛥𝐺 + (𝜀∗𝛥𝑌 + 𝜇∗𝛥𝑤)
[

𝐷0 +
1

𝑘𝐻𝑚

]

< 𝜎,
(35)

where 
𝛥𝐺 = 𝜌̄1𝜎 + 𝜌̄2(𝑄0 + 𝛥𝑄) + 𝜌̄3 + 𝜌̄4𝜎2𝐻𝑀 ,

𝜎𝑦 =
𝐻𝑀
2

(

𝜎 +
√

∑𝑛
𝑖=1 𝑎

2
𝑖

)2
, 𝛥𝑌 = 𝑘𝐻𝑀𝛥𝐺 + 𝜌̄1𝛥 + 2𝜌̄4𝐻𝑀𝛥𝜎,

𝛥 = 2𝑘
[

𝑄0 + 𝛥𝑄 + 𝜎𝑦
]

√

∑𝑛
𝑖=1

1
𝑎2𝑖
,

𝛥𝑤 = 𝑘𝐻𝑀𝛥𝛤
[

𝜇∗𝛥𝛤 + 2
(

𝜎 +
√

∑𝑛
𝑖=1 𝑎

2
𝑖

)

]

√

∑𝑛
𝑖=1

1
𝑎2𝑖
,

𝛥𝛤 = 𝜀∗𝛥 + 2𝜋
√

∑𝑛
𝑖=1(𝑖𝑎𝑖)2.

(36)

Then, for all 𝜀 ∈ (0, 𝜀∗], 𝜇 ∈ [0, 𝜇∗) and 𝜃(0) ≤ 𝜎0 the solutions of (33) 
satisfy |𝜃(𝑡)| < 𝜎, 𝑡 ≥ 𝐷𝑀 , provided that 𝐷(𝑡) satisfies (3). Furthermore, 
these solutions are exponentially attracted to the set 

𝛩 =
{

𝜃(𝑡) ∈ R𝑛 ∶ |𝜃(𝑡)| < 𝛥𝜃
}

,

𝛥𝜃 = 𝜀
(

𝛥𝐺 + 𝛥𝑌
𝑘𝐻𝑚

+𝐷𝛥𝑌
)

+ 𝜇
(

𝛥𝑤
𝑘𝐻𝑚

+𝐷𝛥𝑤
)

,
(37)

with a decay rate 𝑘𝐻𝑚. Moreover, for any 𝐷0 and 𝜎0, (34) and (35) are 
always feasible for small enough 𝜀∗, 𝜇∗ and 𝑘 and appropriate 𝜎 > 𝜎 .
0

5 
2. Examples

To illustrate the efficiency of our approach, we will consider below 
two examples from the literature [9,33].

2.1. GPS-denied 2𝐷 autonomous vehicle

Consider an autonomous vehicle in an environment without GPS 
orientation. The vehicle has a velocity-controlled model (single inte-
grator) 
𝜃̇(𝑡) = 𝑢(𝑡), (38)

where 𝜃(𝑡) ∈ R2 is the state (position of the vehicle), 𝑢(𝑡) ∈ R2 is the 
control input, and the measurement 𝑦(𝑡) is defined by (2) with 𝑄 given 
by (1) and delay 𝐷(𝑡) of the form (3). Let Assumptions  1–3 hold. By 
using the measurements only, our objective is to design a control law 
𝑢(𝑡) that drives the position 𝜃(𝑡) to the extremum point 𝜃∗ for 𝑡→ ∞.

To construct 𝑢(𝑡), we differentiate (9). It is seen that the unbiased 
ES algorithm leads to the exponential convergence of 𝜃(𝑡) to 𝜃∗: 
𝜃̇(𝑡) = − 𝑘𝑀(𝑡)

𝛼(𝑡) [𝑦(𝑡) − 𝜂(𝑡)] + 𝛼̇(𝑡 +𝐷0)𝑆(𝑡 +𝐷0)

+𝛼(𝑡 +𝐷0)𝑆̇(𝑡 +𝐷0), 𝑡 ≥ 𝐷𝑀 ,

𝜃(𝑡) = 𝜃(0), 𝑡 ∈ [0, 𝐷𝑀 ],

(39)

with the high-pass filter (11).
Following [17–19], we consider the 2𝐷 quadratic map (1) with 

𝜃∗ = [0, 0]𝑇 , 𝑄0 = 0, 𝐻 = 𝑑𝑖𝑎𝑔{2, 2}. (40)

We assume that 𝑄∗ and 𝐻 are uncertain satisfying Assumptions  2, 3, 
and we consider the following cases:

 Case I: 𝛥𝑄 = 0, 𝐻𝑚 = 2, 𝐻𝑀 = 2. (41)

 Case II: 𝛥𝑄 = 0.1, 𝐻𝑚 = 1.9, 𝐻𝑀 = 2.1. (42)

 Case III: 𝛥𝑄 = 1, 𝐻𝑚 = 1.1, 𝐻𝑀 = 3. (43)

We choose the following tuning parameters for all ES algorithms:

𝑎1 = 𝑎2 = 0.2, 2𝜔1 = 𝜔2 =
4𝜋
𝜀
,

whereas 𝜎 is tuned to achieve a larger 𝜀∗.
Let 𝐷(𝑡) be an uncertain time-varying delay satisfying (13). Choose 

𝐷(0) = 𝐷0, and 𝐷0, 𝜇, 𝑘 will be selected later.
ES with exponential stability: Consider the unbiased ES algorithm 

(10), (11) with 𝛼0 = 1 and 𝜔ℎ = 0.03. For 𝜎0 =
√

2, the maximum values 
of 𝜀∗ that follow from Theorem  1 are shown in Table  1. Note that for 
𝐷0 → ∞ the decay rate approaches zero. Thus, for (42) with 𝐷0 = 50
from (13) we obtain that maximum 𝜆 should be less than 0.00212.

We further provide simulation of the unbiased ES algorithm (10), 
(11) for case III (43), with time-varying delay 𝐷(𝑡) = 2 + 𝜀𝜇 sin(𝑡), and 
𝜆 = 0.007, 𝜀 = 3.4 ⋅ 10−3, 𝜇 = 10−3, and initial condition 𝜃(0) = [1, 1]𝑇 . 
The plot of |𝜃(𝑡)| is presented in Fig.  2. It is seen that |𝜃(𝑡)| exponentially 
converges to zero, which demonstrates the efficiency of the method.

We also present a 3𝐷 plot with color mapping to visualize the 
sensitivity of 𝜀∗ with respect to uncertainties in 𝜇 and 𝐻𝑀 , with fixed 
parameters 𝐷0 = 2, 𝛥𝑄 = 1, 𝐻𝑚 = 1.1, 𝜎 = 3 and 𝑘 = 𝜆 = 0.01. The plot 
of 𝜀∗ and its 2D contour plot are presented in Fig.  3.

Let us consider the scenario where 𝑦(𝑡) is not quadratic map, but 
can be approximated as a quadratic map (1) with (40) in a vicinity of 
𝜃∗ given by |𝜃(𝑡) − 𝜃∗| ≤ 𝜎1 = 1.2. We apply unbiased ES (15), (16) to 
Case III (see (43)) and 𝐷0 = 2, 𝜔ℎ = 0.03, 𝑘 = 𝜆 = 0.001. By using 
Remark  6, we find 𝜎0 = 0.33, 𝜀∗ = 1.69 ⋅ 10−2 and 𝜇∗ = 5 ⋅ 10−4 meaning 
that for 𝜀 ≤ 1.69 ⋅ 10−2 and 𝜇 ≤ 5 ⋅ 10−4, all solutions of (15), (16) with 
|𝜃(0)| ≤ 𝜎0 = 0.33 satisfy |𝜃(𝑡)| < 0.92𝑒−0.001𝑡 for 𝑡 > 2.

ES with practical stability: Consider the classical ES algorithm (32). In 
this case the solutions converge to a small attractive ball with a decay 
rate 𝜆 = 𝑘𝐻𝑚. The maximum values of 𝜀∗ that follow from Corollary  1 
are shown in Table  2. It is seen that our results essentially enlarge the 
value of 𝜀∗ (decrease the dither frequency) compared to the previous 
constructive results via time-delay transformation [17,19].
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Table 1
Example 2.1: maximum 𝜀∗ for 𝜎0 =

√

2.
 Unbiased ES: Uncertain delay 𝐷0 𝜇 𝜎 𝑘 𝜆 𝜀∗  
 Theorem  1, 𝛥𝑄 = 0, 𝐻𝑚 = 𝐻𝑀 = 2 0 0 2.7 0.01 0.01 2.6 ⋅ 10−2  
 Theorem  1, 𝛥𝑄 = 0.1, 𝐻𝑚 = 1.9, 𝐻𝑀 = 2.1 2 10−3 3.1 0.01 0.01 1.43 ⋅ 10−2 
 Theorem  1, 𝛥𝑄 = 1, 𝐻𝑚 = 1.1, 𝐻𝑀 = 3 2 10−3 3.1 0.01 0.01 0.34 ⋅ 10−2 
 Theorem  1, 𝛥𝑄 = 1, 𝐻𝑚 = 1.1, 𝐻𝑀 = 3 50 10−3 4.9 0.002 0.002 0.95 ⋅ 10−2 
Table 2
Example 2.1: maximum 𝜀∗ for 𝜎0 =

√

2.
 Classical ES: Uncertain delay 𝐷0 𝜇 𝜎 𝑘 𝜆 = 𝑘𝐻𝑚 𝜀∗  
 [19], 𝛥𝑄 = 0, 𝐻𝑚 = 𝐻𝑀 = 2 0 0 2

√

2 0.01 0.02 0.17 ⋅ 10−1  
 [17], 𝛥𝑄 = 0, 𝐻𝑚 = 𝐻𝑀 = 2 0 0 2

√

2 0.01 0.02 0.42 ⋅ 10−1  
 Corollary  1, 𝛥𝑄 = 0, 𝐻𝑚 = 𝐻𝑀 = 2 0 0 3 0.01 0.02 1.09 ⋅ 10−1  
 Corollary  1, 𝛥𝑄 = 0.1, 𝐻𝑚 = 1.9, 𝐻𝑀 = 2.1, 2 10−3 3.2 0.01 0.019 0.634 ⋅ 10−1 
 Corollary  1, 𝛥𝑄 = 1, 𝐻𝑚 = 1.1, 𝐻𝑀 = 3, 2 10−3 3.4 0.01 0.011 0.148 ⋅ 10−1 
 Corollary  1, 𝛥𝑄 = 1, 𝐻𝑚 = 1.1, 𝐻𝑀 = 3, 50 10−3 5 0.002 0.0022 0.377 ⋅ 10−1 
Fig. 2. Section 2.1, Unbiased ES (10), (11): plot of |𝜃(𝑡)|.

2.2. Source seeking

The goal of the source seeking is to guide a vehicle (we consider 
here the single integrator model (38)) in the GPS denied environment to 
a source, which is located in the extremum of the map. Following [6,9], 
we consider the 2𝐷 quadratic map (1) with 

𝜃∗ = [0, 1]𝑇 , 𝑄0 = 1, 𝐻 =
[

2 2
2 4

]

. (44)

Note that the eigenvalues of 𝐻 are 0.7639 and 5.2361. As explained 
in 1.1, we assume 𝑄∗ and 𝐻 are uncertain satisfying Assumptions  2, 3, 
and we consider the following cases:

 Case I: 𝛥𝑄 = 0.1, 𝐻𝑚 = 0.61, 𝐻𝑀 = 5.38. (45)

 Case II: 𝛥𝑄 = 1, 𝐻𝑚 = 0.5, 𝐻𝑀 = 7. (46)

We select the parameters as follows: 

𝑎1 = 𝑎2 = 0.5, 2𝜔1 = 𝜔2 =
4𝜋
𝜀
, (47)

whereas 𝜎 is tuned to achieve a larger 𝜀∗.
ES with exponential stability: Consider the unbiased ES algorithm 

(10), (11) with 𝛼0 = 1 and 𝜔ℎ = 0.03. The maximum values of 𝜀∗ that 
follow from Theorem  1 are shown in Table  3. Note that here for (46) 
with 𝐷0 = 40 we obtain from (13) that 𝜆 < 0.00065.

We further provide simulation of the unbiased ES algorithm (10), 
(11) for case II (46), with time-varying delay 𝐷(𝑡) = 2 + 𝜀𝜇 sin(𝑡), 
and 𝜆 = 0.007, 𝜀 = 0.76 ⋅ 10−4, 𝜇 = 0.1 ⋅ 10−4, and initial condition 
𝜃(0) = [1, 1]𝑇 . The plot of |𝜃(𝑡) − 𝜃∗| is presented in Fig.  4. It is seen 
6 
Fig. 3. Section 2.1, visualization of 𝜀∗ as a function of delay uncertainties and 
the Hessian’s upper bound.  (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

that |𝜃(𝑡) − 𝜃∗| exponentially converges to zero, which demonstrates the 
efficiency of the method.

We also present a 3𝐷 plot with color mapping to visualize the 
sensitivity of 𝜀∗ with respect to uncertainties in 𝜇 and 𝐻𝑀 , with fixed 
parameters 𝐷0 = 2, 𝛥𝑄 = 1, 𝐻𝑚 = 0.5, 𝑘 = 0.015, 𝜎 = 3.8 and 𝜆 = 0.007. 
The plot of 𝜀∗ and its 2D contour plot are shown in Fig.  5.
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Table 3
Example 2.2: maximum 𝜀∗ for 𝜎0 = 1.
 Unbiased ES: Uncertain delay 𝐷0 𝜇 𝜎 𝑘 𝜆 𝜀∗  
 Theorem  1, 𝛥𝑄 = 0.1, 𝐻𝑚 = 0.61, 𝐻𝑀 = 5.38 2 0.01 ⋅ 10−3 3.5 0.015 0.007 0.743 ⋅ 10−3 
 Theorem  1, 𝛥𝑄 = 1, 𝐻𝑚 = 0.5, 𝐻𝑀 = 7 2 0.01 ⋅ 10−3 4 0.015 0.007 0.076 ⋅ 10−3 
 Theorem  1, 𝛥𝑄 = 1, 𝐻𝑚 = 0.5, 𝐻𝑀 = 7 40 0.01 ⋅ 10−3 4.1 0.0013 0.0006 1 ⋅ 10−3  
Table 4
Example 2.2: maximum 𝜀∗ for 𝜎0 = 1.
 Classical ES: Uncertain delay 𝐷0 𝜇 𝜎 𝑘 𝜆 = 𝑘𝐻𝑚 𝜀∗  
 [18], 𝛥𝑄 = 0, 𝐻𝑚 = 0.61, 𝐻𝑀 = 5.38 2 0 2 – 0.0115 0.53 ⋅ 10−2  
 [18], 𝛥𝑄 = 1, 𝐻𝑚 = 0.61, 𝐻𝑀 = 5.38 2 0 2 – 0.0115 0.19 ⋅ 10−2  
 Corollary  1, 𝛥𝑄 = 0, 𝐻𝑚 = 0.61, 𝐻𝑀 = 5.38, 2 0 3.4 0.0188 0.0115 0.71 ⋅ 10−2  
 Corollary  1, 𝛥𝑄 = 1, 𝐻𝑚 = 0.61, 𝐻𝑀 = 5.38, 2 0 3.4 0.0188 0.0115 0.69 ⋅ 10−2  
 Corollary  1, 𝛥𝑄 = 1, 𝐻𝑚 = 0.5, 𝐻𝑀 = 7 2 10−3 9.3 0.0188 0.0094 0.0267 ⋅ 10−2 
 Corollary  1, 𝛥𝑄 = 1, 𝐻𝑚 = 0.5, 𝐻𝑀 = 7 40 10−3 9.4 0.0013 0.0006 0.32 ⋅ 10−2  
Fig. 4. Section 2.2, Unbiased ES (10), (11): plot of |𝜃(𝑡) − 𝜃∗|.

Let us consider the scenario where 𝑦(𝑡) is not quadratic map, but can 
be approximated as a quadratic map (1) with (44) in a vicinity of 𝜃∗
given by |𝜃(𝑡) − 𝜃∗| ≤ 𝜎1 = 2.5. We apply unbiased ES (15), (16) to Case 
II (see (46)) and 𝐷0 = 2, 𝜔ℎ = 0.03, 𝑘 = 0.0015, 𝜆 = 0.0001. By using 
Remark  6, we find 𝜎0 = 0.32, 𝜀∗ = 2.3 ⋅ 10−3 and 𝜇∗ = 10−4 meaning 
that for all 𝜀 ≤ 2.3 ⋅ 10−3 and 𝜇 ≤ 10−4, all solutions of (15), (16) with 
|𝜃(0)| ≤ 𝜎0 = 0.32 satisfy |𝜃(𝑡)| < 1.8𝑒−0.0001𝑡 for 𝑡 > 2.

 ES with practical stability: Consider the classical ES algorithm (32). 
Maximum values of 𝜀∗ that follow from Corollary  1 are shown in Table 
4. Also in this example our results are favorably compared with the 
existing ones [18] based on time-delay transformation.

From Tables  1–4, it is seen that larger delay, decay rate 𝜆 and 
uncertainty 𝛥𝑄 lead to a smaller 𝜀, i.e. higher dither frequencies. 
Furthermore, the obtained values of 𝜀∗ by the unbiased ES algorithm 
are smaller than the ones obtained by the classical ES. The latter 
can be explained by the additional constraints and terms in (28)–(30) 
compared to their counterparts in (34)–(36). Also from simulations, 
𝜀∗ by the unbiased ES algorithm are smaller. Additionally, the delay 
uncertainty decreases the bound on 𝜀∗.

3. Conclusion

This paper studied the unbiased ES algorithm for uncertain 𝑛-
dimensional quadratic maps in the presence of uncertain time-varying 
delays via a delay-free transformation. The explicit quantitative con-
ditions in terms of scalar linear inequalities were established which 
guarantee the exponential stability of the ES control system. In ad-
dition, improved practical stability conditions for classical ES were 
provided that essentially improved the existing results. The results are 
semi-global for globally quadratic maps. For locally quadratic static 
7 
Fig. 5.  Section 2.2, visualization of 𝜀∗ as a function of delay uncertainties 
and the Hessian’s upper bound.  (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

maps, we provide a bound on the region of convergence. Appropriate 
ES parameters can be chosen for any large known part of constant delay 
to achieve practical/exponential convergence. Future work may include 
constructive methods for unbiased ES of non-quadratic and dynamic 
maps in the presence of time-varying delays.
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Appendix

Proof of Lemma  1.  The function 𝜌1(𝑡) can be rewritten as 

𝜌1(𝑡) = 𝑘
(

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)[𝑀(𝑠)𝑆𝑇 (𝑠) − 𝐼]𝑑𝑠

)

𝐻, (48)

with 
1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)[𝑀(𝑠)𝑆𝑇 (𝑠) − 𝐼]𝑑𝑠

= −
∑𝑛
𝑖=1

(

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠) cos(2𝜔𝑖𝑠)𝑑𝑠

)

𝑒𝑖𝑒𝑇𝑖

+
∑

1≤𝑖≠𝑗≤𝑛
2𝑎𝑗
𝑎𝑖

(

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠) sin(𝜔𝑖𝑠) sin(𝜔𝑗𝑠)𝑑𝑠

)

𝑒𝑖𝑒𝑇𝑗 .

(49)

Using trigonometric identities and integration by parts we obtain 
‖

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)[𝑀(𝑠)𝑆𝑇 (𝑠) − 𝐼]𝑑𝑠‖

≤ 𝜀
4𝜋

∑𝑛
𝑖=1

1
𝑖 +

𝜀
2𝜋

∑

1≤𝑖≠𝑗≤𝑛
𝑎𝑗
𝑎𝑖

(

1
|𝑖−𝑗| +

1
𝑖+𝑗

)

.
(50)

Thus, from (48)–(50), we get 
‖𝜌1(𝑡)‖ ≤ 𝜀𝜌̄1, 𝑡 ≥ 0, (51)

with 𝜌̄1 defined in (22). Also, the function 𝜌2(𝑡) can be rewritten as 

𝜌2(𝑡) =
𝑛
∑

𝑖=1

2𝑘
𝑎𝑖

[

−1
𝜀 ∫

𝑡+𝜀

𝑡
(𝑡 + 𝜀 − 𝑠) sin(𝜔𝑖𝑠)𝑑𝑠

]

𝑒𝑖. (52)

Using integration by parts, we have 
− 1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠) sin( 2𝜋𝑖𝜀 𝑠) 𝑑𝑠 = − 𝜀

2𝜋𝑖 cos(
2𝜋𝑖
𝜀 𝑡). (53)

Thus, from (52) and (53), we get 
|𝜌2(𝑡)| ≤ 𝜀𝜌̄2, 𝑡 ≥ 0, (54)

with 𝜌̄2 defined in (22). An upper bound on 𝜌4(𝑡) can be derived 
similarly to the bound on 𝜌2(𝑡).

The function 𝜌3(𝑡) can be rewritten as 

𝜌3(𝑡) =
∑𝑛
𝑖=1

𝑘
𝑎𝑖

[

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠) sin(𝜔𝑖𝑠)𝑆𝑇 (𝑠)𝐻𝑆(𝑠)𝑑𝑠

]

𝑒𝑖. (55)

Using Cauchy–Schwarz inequality, we obtain 
|

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠) sin(𝜔𝑖𝑠)𝑆𝑇 (𝑠)𝐻𝑆(𝑠)𝑑𝑠|

≤| 1𝜀 ∫
𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)2 sin2(𝜔𝑖𝑠)𝑑𝑠|

1
2
|

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑆𝑇 (𝑠)𝐻𝑆(𝑠))2𝑑𝑠|

1
2 .

(56)

Repeated integration by parts yields the following bound for the first 
term on the right side of (56): 

|

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑡 + 𝜀 − 𝑠)2 sin2(𝜔𝑖𝑠)𝑑𝑠| ≤

𝜀2

6 + 𝜀2

8𝜋𝑙𝑖

[

1 + 1
4𝜋𝑙𝑖

]

. (57)

The second term on the right side of (56) can be bounded as 

|

1
𝜀 ∫

𝑡+𝜀
𝑡 (𝑆𝑇 (𝑠)𝐻𝑆(𝑠))2𝑑𝑠| ≤ 𝐻2

𝑀

[

∑𝑛
𝑗=1 𝑎

2
𝑗

]2
. (58)

Finally, from (55)–(58) we have |𝜌3(𝑡)| ≤ 𝜀𝜌̄3 with 𝜌̄3 defined in 
(22). □

For the exponential stability analysis of unbiased ES (10) and (11), 
the following Lemma will be used: 
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Lemma 2.  Consider the delayed differential equation 
𝑥̇(𝑡) = −𝑘𝐻𝑥(𝑡 −𝐷0), 𝑥(𝑡) ∈ R𝑛, (59)

where 𝑘 > 0, 𝐷0 > 0 is a constant delay, and 𝐻 is a positive matrix that 
satisfies 0 < 𝐻𝑚𝐼 ≤ 𝐻 ≤ 𝐻𝑀𝐼 with scalars 𝐻𝑚 and 𝐻𝑀 . Let 𝑋(𝑡) be the 
𝑛 × 𝑛 fundamental matrix of (59), meaning that it satisfies (59) for 𝑡 > 0
and its initial condition is defined by 𝑋(0) = 𝐼 and 𝑋(𝑡) = 0, 𝑡 < 0. If 
𝑘𝐻𝑀𝐷0 ≤ 𝑒−1, then the following holds: 

‖𝑋(𝑡)‖ ≤

{

1, 0 ≤ 𝑡 ≤ 𝐷0,
𝑒−𝑘𝐻𝑚(𝑡−𝐷0), 𝑡 > 𝐷0.

(60)

Proof of Lemma  2.  Since 𝐻 > 0, there exists an orthogonal matrix 
𝑈 ∈ R𝑛×𝑛 (obviously, ‖𝑈‖ = 1) such that 

𝑈𝐻𝑈−1 = 𝑑𝑖𝑎𝑔{ℎ1,… , ℎ𝑛} ≜  > 0. (61)

Denote 𝑒(𝑡) = 𝑈𝑥(𝑡), 𝑡 ≥ 𝐷0 + 𝜀. Then from (59) we get 
𝑒̇(𝑡) = 𝑘𝑒(𝑡 −𝐷0), 𝑡 > 𝐷0 + 𝜀, (62)

where 𝑘 = 𝑑𝑖𝑎𝑔{𝑘ℎ1,… , 𝑘ℎ𝑛}. Let 𝑋̄(𝑡) be the fundamental matrix of 
system (62). Then 𝑋̄(𝑡) has the following form

𝑋̄(𝑡) = 𝑑𝑖𝑎𝑔{𝑋̄1(𝑡), 𝑋̄2(𝑡),… , 𝑋̄𝑛(𝑡)}

with 𝑋̄𝑖(𝑡), (𝑖 = 1,… , 𝑛) being solutions of
𝑒̇𝑖(𝑡) = 𝑘ℎ𝑖𝑒𝑖(𝑡 −𝐷0), 𝑒𝑖(𝑡) = 0, 𝑡 < 0, 𝑒𝑖(0) = 1.

Moreover, we have ‖𝑋(𝑡)‖ = ‖𝑋̄(𝑡)‖. By using Theorem 2.7 and 
Corollary 2.14 in [32], if 𝑘𝐻𝑀𝐷0 ≤ 𝑒−1 then the following holds

0 < 𝑋̄𝑖(𝑡) ≤

{

1, 0 ≤ 𝑡 ≤ 𝐷0,
𝑒−𝑘𝐻𝑚(𝑡−𝐷0), 𝑡 > 𝐷0,

implying 

‖𝑋̄(𝑡)‖ = ‖𝑋(𝑡)‖ ≤

{

1, 0 ≤ 𝑡 ≤ 𝐷0,
𝑒−𝑘𝐻𝑚(𝑡−𝐷0), 𝑡 > 𝐷0.

□ (63)

Proof of Theorem  1. Given 𝜎0 > 0, let 𝜎 be subject to (28). From (15) 
we have 

|𝜃(𝑡)| ≤ 𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖

<
⏟⏟⏟
(29)

𝜎𝑒−𝜆𝐷𝑀 ≤ 𝜎𝑒−𝜆𝑡, 𝑡 ∈ [0, 𝐷𝑀 ]. (64)

 We assume (and further prove) that 
|𝜃(𝑡)| < 𝜎𝑒−𝜆𝑡, 𝑡 > 𝐷𝑀 . (65)

Then, from (64) and (65), we have 
|𝜃(𝑡)| < 𝜎𝑒−𝜆𝑡, 𝑡 ≥ 0. (66)

By using (66), it follows from (1) and (2) that 
|𝑦(𝑡) −𝑄∗

| = |𝑄(𝑡 −𝐷(𝑡)) −𝑄∗
|

= 1
2 |𝜃(𝑡 −𝐷(𝑡)) + 𝛼(𝑡 − 𝛥𝜀𝜇(𝑡))𝑆(𝑡 − 𝛥𝜀𝜇(𝑡))|2𝐻
≤

⏟⏟⏟
(30)

𝜎𝑦𝑒−2𝜆𝑡, 𝑡 ≥ 𝐷𝑀 .
(67)

We apply the variation of constants formula to Eq.  (16): 
𝜂̃(𝑡) = 𝑒−𝜔ℎ(𝑡−𝐷𝑀 )𝜂̃(𝐷𝑀 ) + 𝜔ℎ ∫

𝑡
𝐷𝑀

𝑒−𝜔ℎ(𝑡−𝑠)[𝑦(𝑠) −𝑄∗]𝑑𝑠, 𝑡 ≥ 𝐷𝑀 . (68)

Employing the conditions 𝜔ℎ > 2𝜆, |
|

𝑄∗ −𝑄0
|

|

≤ 𝛥𝑄 in Assumption  2, 
and (67)–(68), we have 
|𝜂̃(𝑡)| ≤ 𝑒−𝜔ℎ(𝑡−𝐷𝑀 )

|𝜂̃(𝐷𝑀 )| + 𝜔ℎ ∫
𝑡
𝐷𝑀

𝑒−𝜔ℎ(𝑡−𝑠)|𝑦(𝑠) −𝑄∗
|𝑑𝑠

≤ 𝑒−𝜔ℎ(𝑡−𝐷𝑀 )𝛥𝑄 + 𝜔ℎ𝜎𝑦
𝜔ℎ−2𝜆

𝑒−2𝜆𝑡 <
⏟⏟⏟
(30)

𝜎𝜂𝑒−2𝜆𝑡, 𝑡 ≥ 𝐷𝑀 , (69)

which implies the second inequality in (31).
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In addition, via (24), (27), (66), (67) and (69), we obtain 

|𝐺(𝑡)| < 𝜀𝛥𝐺𝑒−𝜆𝑡, |𝑌 (𝑡)| < 𝜀𝛥𝑌 𝑒−𝜆𝑡, |

̇̃𝜃(𝑡)| < 𝛥𝑒−𝜆𝑡,

|𝛤 (𝑡)| < 𝜇𝛥𝛤 𝑒−𝜆𝑡, |𝑤(𝑡)| < 𝜇𝛥𝑤𝑒−𝜆𝑡, 𝑡 ≥ 𝐷𝑀 ,
(70)

where 𝛥𝐺, 𝛥𝑌 , 𝛥, 𝛥𝛤  and 𝛥𝑤 are defined in (30).
By variation of constants formula (see Lemma 9.1 in Agarwal 

et al. [32]), the solution to (26) can be presented as 

𝑧(𝑡) = 𝑋(𝑡 −𝐷𝑀 )𝑧(𝐷𝑀 ) + ∫ 𝑡𝐷𝑀 𝑋(𝑡 − 𝑠)[𝑌 (𝑠) +𝑤(𝑠)]𝑑𝑠

+ ∫ 𝑡𝐷𝑀 𝑋(𝑡 − 𝑠)[−𝑘𝐻𝜓(𝑠 −𝐷0)]𝑑𝑠, 𝑡 > 𝐷𝑀 ,
(71)

where 𝜓(𝑠 − 𝐷0) = 0 if 𝑠 > 𝐷0 + 𝐷𝑀  and 𝜓(𝑠 − 𝐷0) = 𝑧(𝑠 − 𝐷0) if 
𝐷0 ≤ 𝑠 ≤ 𝐷0 +𝐷𝑀 . Then it follows from (71) that 

|𝑧(𝑡)| ≤ ‖𝑋(𝑡 −𝐷𝑀 )‖ ⋅ |𝑧(𝐷𝑀 )| + 𝑘𝐻𝑀 ∫ 𝑡𝐷𝑀 ‖𝑋(𝑡 − 𝑠)‖ ⋅ |𝜓(𝑠 −𝐷)|𝑑𝑠

+ ∫ 𝑡𝐷𝑀 ‖𝑋(𝑡 − 𝑠)‖ ⋅ [|𝑌 (𝑠)| + |𝑤(𝑠)|] 𝑑𝑠, 𝑡 > 𝐷𝑀 .

(72)

We will further employ bounds on ‖𝑋‖ given in Lemma  2. We consider 
three intervals [𝐷𝑀 , 𝐷𝑀 +𝐷0], (𝐷𝑀 +𝐷0, 𝐷𝑀 +2𝐷0] and (𝐷𝑀 +2𝐷0,∞).

For 𝑡 ∈ [𝐷𝑀 , 𝐷𝑀 +𝐷0], by using (60), (70) and (72) we find 

|𝑧(𝑡)| ≤ |𝑧(𝐷𝑀 )| + 𝑘𝐻𝑀 ∫ 𝐷𝑀+𝐷0
𝐷𝑀

|𝑧(𝑠 −𝐷0)|𝑑𝑠 + ∫ 𝑡𝐷𝑀 [|𝑌 (𝑠)| + |𝑤(𝑠)|] 𝑑𝑠

≤ (𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖 )[1 + 𝑘𝐻𝑀𝐷0]

+𝜀𝛥𝑌𝐷0𝑒−𝜆𝐷𝑀 + 𝜇𝛥𝑤𝐷0𝑒−𝜆𝐷𝑀 .

(73)

By using (25), we further have 

|𝜃(𝑡)| ≤ (𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖 )[1 + 𝑘𝐻𝑀𝐷0]

+[𝜀𝛥𝑌 + 𝜇𝛥𝑤]𝐷0𝑒−𝜆𝐷𝑀 + 𝜀𝛥𝐺𝑒−𝜆𝑡

<
⏟⏟⏟
(29)

𝜎𝑒−𝜆𝑡, 𝐷𝑀 ≤ 𝑡 ≤ 𝐷𝑀 +𝐷0.
(74)

For 𝑡 ∈ (𝐷𝑀 +𝐷0, 𝐷𝑀 + 2𝐷0], by using (60), (70) and (72) we find 

|𝑧(𝑡)| ≤ 𝑒−𝑘𝐻𝑚(𝑡−𝐷𝑀−𝐷0) ⋅ |𝑧(𝐷𝑀 )|

+𝑘𝐻𝑀 ∫ 𝐷𝑀+𝐷0
𝐷𝑀

‖𝑋(𝑡 − 𝑠)‖ ⋅ |𝑧(𝑠 −𝐷0)|𝑑𝑠

+ ∫ 𝑡𝐷𝑀 ‖𝑋(𝑡 − 𝑠)‖ ⋅ [|𝑌 (𝑠)| + |𝑤(𝑠)|] 𝑑𝑠

≤ (𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖 )[𝑒

−𝑘𝐻𝑚(𝑡−𝐷𝑀−𝐷0) + 𝑘𝐻𝑀𝐷0]

+(𝜀𝛥𝑌 + 𝜇𝛥𝑤)
[

𝐷0 +
1

(𝑘𝐻𝑚−𝜆)

]

𝑒−𝜆(𝑡−𝐷0).

(75)

By using (25), we further have 

|𝜃(𝑡)| ≤ (𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖 )[𝑒

−𝑘𝐻𝑚(𝑡−𝐷𝑀−𝐷0) + 𝑘𝐻𝑀𝐷0]

+𝜀𝛥𝐺𝑒−𝜆𝑡 + (𝜀𝛥𝑌 + 𝜇𝛥𝑤)
[

𝐷0 +
1

(𝑘𝐻𝑚−𝜆)

]

𝑒−𝜆(𝑡−𝐷0)

<
⏟⏟⏟
(29)

𝜎𝑒−𝜆𝑡, 𝐷𝑀 +𝐷0 ≤ 𝑡 ≤ 𝐷𝑀 + 2𝐷0.
(76)

For 𝑡 > 𝐷𝑀 + 2𝐷0, by using (60), (70) and (72), we obtain 

|𝑧(𝑡)| ≤ 𝑒−𝑘𝐻𝑚(𝑡−𝐷𝑀−𝐷0) ⋅ |𝑧(𝐷𝑀 )|

+𝑘𝐻𝑀 ∫ 𝐷𝑀+𝐷0
𝐷𝑀

‖𝑋(𝑡 − 𝑠)‖|𝑧(𝑠 −𝐷0)|𝑑𝑠

+ ∫ 𝑡𝐷𝑀 ‖𝑋(𝑡 − 𝑠)‖ ⋅ [|𝑌 (𝑠)| + |𝑤(𝑠)|] 𝑑𝑠

≤ (𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖 )

×[𝐻𝑀
𝐻𝑚

[𝑒𝑘𝐻𝑚𝐷0 − 1] + 1]𝑒−𝑘𝐻𝑚(𝑡−𝐷𝑀−𝐷0)

+(𝜀𝛥 + 𝜇𝛥 )
[

𝐷 + 1
]

𝑒−𝜆(𝑡−𝐷0),

(77)
𝑌 𝑤 0 (𝑘𝐻𝑚−𝜆)

9 
we further have 
|𝜃(𝑡)| ≤ +(𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )

√

∑𝑛
𝑖=1 𝑎

2
𝑖 )

×
[

𝐻𝑀
𝐻𝑚

[𝑒𝑘𝐻𝑚𝐷0 − 1] + 1
]

𝑒−𝑘𝐻𝑚(𝑡−𝐷𝜀𝜇−𝐷0) + 𝜀𝛥𝐺𝑒−𝜆𝑡

+(𝜀𝛥𝑌 + 𝜇𝛥𝑤)
[

𝐷0 +
1

(𝑘𝐻𝑚−𝜆)

]

𝑒−𝜆(𝑡−𝐷0)

<
⏟⏟⏟
(29)

𝜎𝑒−𝜆𝑡, 𝑡 ≥ 𝐷𝑀 + 2𝐷0.

(78)

We prove further that inequalities (28) and (29) guarantee the 
bound (65). From (64) the inequality |𝜃(𝑡)| < 𝜎𝑒−𝜆𝑡 holds for 𝑡 ∈ [0, 𝐷𝑀 ]. 
Then |𝜃(𝑡)| < 𝜎𝑒−𝜆𝑡 holds also for some 𝑡 > 𝐷𝑀  due to continuity 
of 𝜃(𝑡). We assume by contradiction that there exists 𝑡 > 𝐷𝑀  such 
that (65) does not hold. Namely, there exists the smallest 𝑡∗ > 𝐷𝑀
such that |𝜃(𝑡∗)| = 𝜎𝑒−𝜆𝑡∗  and |𝜃(𝑡)| < 𝜎𝑒−𝜆𝑡 when 𝑡 ∈ [𝐷𝑀 , 𝑡∗). Thus 
|𝜃(𝑡)| ≤ 𝜎𝑒−𝜆𝑡 holds for all 𝑡 ∈ [𝐷𝑀 , 𝑡∗]. There are three possibilities: 
𝑡∗ ∈ [𝐷𝑀 , 𝐷𝑀 +𝐷0] or (𝐷𝑀 +𝐷0, 𝐷𝑀 + 2𝐷0] or (𝐷𝑀 + 2𝐷0,∞).

If 𝑡∗ ∈ [𝐷𝑀 , 𝐷𝑀 +𝐷0], then under the non-strict inequality |𝜃(𝑡)| ≤
𝜎𝑒−𝜆𝑡 we find that the non-strict version of inequality (73) holds for 
𝑡 ∈ [𝐷𝑀 , 𝑡∗]. Then, by using (29), we have 

|𝜃(𝑡)| ≤ (𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖 )[1 + 𝑘𝐻𝑀𝐷0]

+[𝜀𝛥𝑌 + 𝜇𝛥𝑤]𝐷0𝑒−𝜆𝐷𝑀 + 𝜀𝛥𝐺𝑒−𝜆𝑡

< 𝜎𝑒−𝜆𝑡, 𝑡 ∈ [𝐷𝑀 , 𝑡∗],

(79)

which contradicts to |𝜃(𝑡∗)| = 𝜎𝑒−𝜆𝑡∗ .
If 𝑡∗ ∈ (𝐷𝑀 + 𝐷0, 𝐷𝑀 + 2𝐷0], then under the non-strict inequality 

|𝜃(𝑡)| ≤ 𝜎𝑒−𝜆𝑡 we find that the non-strict version of inequality (75) holds 
for 𝑡 ∈ (𝐷𝑀 +𝐷0, 𝑡∗]. Then, by using (29), we have 

|𝜃(𝑡)| ≤ (𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖 )
[

𝑒−𝑘𝐻𝑚(𝑡−𝐷𝑀−𝐷0) + 𝑘𝐻𝑀𝐷0
]

+𝜀𝛥𝐺𝑒−𝜆𝑡 + (𝜀𝛥𝑌 + 𝜇𝛥𝑤)
[

𝐷0 +
1

(𝑘𝐻𝑚−𝜆)

]

𝑒−𝜆(𝑡−𝐷0)

< 𝜎𝑒−𝜆𝑡, 𝑡 ∈ (𝐷𝑀 +𝐷0, 𝑡∗],

(80)

which contradicts to |𝜃(𝑡∗)| = 𝜎𝑒−𝜆𝑡∗ .
If 𝑡∗ ∈ (𝐷𝑀 + 2𝐷0,∞), then under the non-strict inequality |𝜃(𝑡)| ≤

𝜎𝑒−𝜆𝑡 we find that the non-strict version of inequality (77) holds for 
𝑡 ∈ (𝐷𝑀 + 2𝐷0, 𝑡∗]. Then, by using (29), we have 

|𝜃(𝑡)| ≤ (𝜎0 + 𝛼0𝑒−𝜆(𝐷0+𝐷𝑀 )
√

∑𝑛
𝑖=1 𝑎

2
𝑖 )

×
[

𝐻𝑀
𝐻𝑚

[𝑒𝑘𝐻𝑚𝐷0 − 1] + 1
]

𝑒−𝑘𝐻𝑚(𝑡−𝐷𝑀−𝐷0) + 𝜀𝛥𝐺𝑒−𝜆𝑡

+(𝜀𝛥𝑌 + 𝜇𝛥𝑤)
[

𝐷0 +
1

(𝑘𝐻𝑚−𝜆)

]

𝑒−𝜆(𝑡−𝐷0)

< 𝜎𝑒−𝜆𝑡, 𝑡 ∈ (𝐷𝑀 + 2𝐷0, 𝑡∗],

(81)

which contradicts to |𝜃(𝑡∗)| = 𝜎𝑒−𝜆𝑡∗  and completes the proof of (31).
Finally, given any 𝐷0 and 𝜎0, there always exist small enough 𝜀∗, 𝜇

and 𝜆, 𝑘, 𝜔ℎ subject to (13) that satisfy (28), (29) for some 𝜎 > 𝜎0 since 
for 𝑘 = 𝜀∗ = 𝜆 = 0 these inequalities are reduced to 𝜎 > 𝜎0. □
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