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Sampled-data Extremum Seeking with Constant Delay:
A Time-delay Approach
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Abstract—This paper proposes a constructive method for
sampled-data extremum seeking (ES) with square wave dithers
and constant delays, by using two time-delay approaches: one to
averaging and the other to sampled-data control. We consider
gradient-based ES for static maps which are of quadratic forms.
By transforming the ES system to the time-delay system, we have
developed a stability analysis via a Lyapunov-Krasovskii method.
We derive the practical stability conditions in terms of linear
matrix inequalities (LMIs) for the resulting time-delay system.
The time-delay approach offers a quantitative calculation on the
upper bound of the dither and sampling periods, constant delays
that the ES system is able to tolerate, as well as the ultimate
bound of the extremum seeking error. This is in the presence of
uncertainties of extremum value and extremum point.

I. INTRODUCTION
Extremum Seeking (ES) has proven itself as an effective

online optimization technique due to its model-free feature.
In 2000, Krstic and Wang introduced the first rigorous sta-
bility assessment of ES feedback in their publication [9], in
which the averaging-based theory was employed, becoming a
dominant tool for ES analysis in the literature. Since the 21
century, ES has seen its rapid growth both in terms of the
theoretical developments and applications: ES via Lie bracket
approximation [2], ES for PDE dynamics [12] and time-delay
systems [11], ES under deception [6], resilient cooperative
source seeking of multi-robot [5].

In parallel with continuous-time ES, sampled-data ES with
discontinuous dithers is more friendly implementable in prac-
tice [17], [18]. The existing analysis approach to sampled-
data ES models ES control systems as discrete-time systems
[7], [10], [15] or hybrid systems [13], [14], [19]. Delays,
that may stem from measurement or network communication,
are unavoidable in practical applications. The convergence
analyses based on the trajectory of discrete-time sequence or
hybrid dynamical systems do not take into account delays. The
existing theories of sampled-data ES cannot provide a quan-
titative analysis about how large the delays and the sampling
intervals that ES control systems are able to withstand.
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The recent publication [4] presents a novel constructive
approach to periodic averaging with efficient and quantitative
bounds on the small parameter that preserves the stability of
the original system provided the averaged system is stable.

Inspired by [4], an original time-delay approach for
continuous-time ES with continuous dither of sine wave was
proposed in [20]. In the present paper, we further expand the
time-delay approach to sampled-data ES with discontinuous
dither of square wave and constant delay which is important
for implementation. Concentrating on the gradient-based ES
of static quadratic maps, we transform the ES dynamics into a
model with time-delay. The stability of the original ES plant
is concluded from the stability of the resulting time-delay
system. To find sufficient practical stability conditions in the
form of LMIs, we construct a novel LKF which captures the
full states of the closed-loop system. This improves in the
examples the results of [20] that treated part of terms in the
time-delay model as disturbances. Through the solution of the
constructed LMIs, we find upper bounds on the dither period
that ensures the practical stability, as well as the maximum
sampling interval and delay that the ES control system is able
to tolerate.

Different from the conventional averaging method [1], [16]
and Lie bracket method [2], which are of “approximate” in
essence, the time-delay method gives a precise conversion
of the original ES system without any approximation. The
ultimate bound on the extremum seeking error is also given in
an explicitly quantitative way. It is important to see the impact
of delays and sampling on the performance of ES algorithms.
Moreover, our method suggests details for the selection of
designer-specified parameters.

II. A TIME-DELAY APPROACH TO SAMPLED-DATA ES
We study sampled-data delayed implementation of gradient-

based ES. We consider the periodic sampling with the constant
delay. To avoid notational complexity, we address the case
of two-input static map. The method can be extended to any
n > 2 inputs by using the same arguments, but derivations
are longer. For the results on one-input static map with square
wave dithers, both in the continuous and the delayed sampled-
data cases, see the companion conference paper [21].

A. ES System and a Time-delay Approach to Sampled-data
Consider the two-input static map Q(θ) given by

y(t) = Q(θ(t)) = Q∗+ 1
2

(
θ(t)−θ ∗

)T H
(
θ(t)−θ ∗

)
, (1)

where y(t) ∈ R, Q∗ ∈ R, and

θ(t) = [θ1(t),θ2(t)]
T , θ ∗ = [θ ∗1 ,θ

∗
2 ]

T , H =
[

h11 h12
∗ h22

]
.

(2)
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Fig. 1. The dither signal of the square wave

Fig. 2. The two-input sampled-data ES with discontinuous dither vectors
S(t) and M(t) and constant delay η , where u(t) = u(tk) = ξ (sk) = M(sk)y(sk)
for t ∈ [tk, tk+1).

It is seen that the output of the quadratic map has a maximum
(if H < 0) or minimum (if H > 0) value y(t) =Q∗ if the vector
input θ(t) = θ ∗. We define the real-time estimate θ̂(t) of θ ∗

with the estimation error

θ̃(t) = θ̂(t)−θ ∗. (3)

The target of ES is to guarantee that θ̂(t) converges towards
θ ∗ so that the output y(t) will converge to its optimal point
Q∗. Usually, Q∗, H, θ ∗ are unknown, whereas the sign of the
Hessian H is available. In the present paper, we assume the
extremum point θ ∗ to be sought is uncertain from a known
ball where each of its elements satisfies θ ∗i ∈

[
θ
∗
i ,θ
∗
i

]
, i = 1,2

with ∑
2
i=1

(
θ
∗
i −θ

∗
i

)2
= σ2

0 . The extremum value Q∗ and the
Hessian H are supposed to be known to derive efficient LMI
conditions (as explained below, Q∗ can be also uncertain).

As shown in Fig. 1, we introduce the square wave signal
sq(t) which is of the form

sq(t) =

{
1, t ∈

[
n,n+ 1

2

)
,

−1, t ∈
[
n+ 1

2 ,n+1
)
,

n ∈ Z+
0 . (4)

As revealed in Fig. 2, the gradient-based sampled-data ES
is given by

θ(t) = θ̂(t)+S(t),
˙̂
θ(t) = KM(sk)y(sk) = KM(sk)

[
Q∗+ 1

2

(
θ̂(sk)+S(sk)−θ ∗

)T

×H
(
θ̂(sk)+S(sk)−θ ∗

)]
, t ∈ [tk, tk+1),

(5)
where θ̂i(s) ∈

[
θ
∗
i ,θ
∗
i

]
,s≤ 0, i = 1,2,

K =
[

k1 0
0 k2

]
, S(t) =

[
a1sq

(
tl1
ε

)
,a2sq

(
tl2
ε

)]T
,

M(t) =
[

1
a1

sq
(

tl1
ε

)
, 1

a2
sq
(

tl2
ε

)]T
, l1 = 1, l2 = 2,

(6)

in which k1 > 0 and k2 > 0 if H < 0, or k1 < 0 and k2 < 0 if
H > 0, {sk} and {tk} denote the sampling and control update

instants, respectively, which satisfy

0 = s0 < s1 < ... < sk < ..., lim
k→∞

sk = ∞, k ∈ Z+
0 ,

sk+1− sk =
1
2

ε

l2
= 1

4
ε

l1
= ε

4 , tk = sk +η
(7)

with η being a constant delay. Note that in the case
of continuous-time ES with sine wave in [20], M(t) =[

2
a1

sin
(

2πl1
ε

t
)
, 2

a2
sin
(

2πl2
ε

t
)]T

and the convergence gain of
the time-delay system (44) in [20] is KH. In (6), if M(t) =[

2
a1

sq
(

tl1
ε

)
, 2

a2
sq
(

tl2
ε

)]T
, the convergence gain of (22) will

be 2KH. For notational simplicity, M(t) is chosen as (6) to
achieve the same convergence gain as that in [20].

Thus, the estimation error is governed by

˙̃
θ(t) = KM(sk)

[
Q∗+ 1

2

(
θ̃(sk)+S(sk)

)T H
(
θ̃(sk)+S(sk)

)]
= KM(sk)

[
Q∗+ 1

2 θ̃ T (sk)Hθ̃(sk)+ST (sk)Hθ̃(sk)

+ 1
2 ST (sk)HS(sk)

]
, t ∈ [tk, tk+1).

(8)
Following the time-delay approach to sampled-data control
(see [3, Chapter 7]), denote

h(t) = t− sk, t ∈ [tk, tk+1), η ≤ h(t)< η + ε

4 = hM.
(9)

Taking into account

sq
(

skli
ε

)
= sq

(
(t−η)li

ε

)
, t ∈ [tk, tk+1),

=⇒ M(sk) = M(t−η), S(sk) = S(t−η),
(10)

the dynamics (8) becomes

˙̃
θ(t) = KM(t−η)

[
ST (t−η)Hθ̃(t−h(t))

+ 1
2 θ̃ T (t−h(t))Hθ̃(t−h(t))

]
+ω(t),

(11)

where

ω(t) = KM(t−η)
[
Q∗+ 1

2 ST (t−η)HS(t−η)
]

(12)

which satisfies

|ω(t)| ≤ |KM(t−η)|
[
|Q∗|+ λ (H)

2 S2(t−η)
]

=

√(
k2

1
a2

1
+

k2
2

a2
2

)(
|Q∗|+ λ (H)

2

(
a2

1 +a2
2
))

= ω̄,
(13)

with λ (H) = max{|λmax(H)| , |λmin(H)|}.

B. A Time-delay Approach to Averaging

Based on [3, Chapter 7], the dynamics of ES under sampling
(8) has been modeled as a typical time-delay plant (11) in
which the time-varying delay h(t) of (9) consists of the
transmission delay η and sampling-induced delay bounded by
ε

4 . When there is no sampling and no delay, as well as the
dither is of the form of sine wave, the conventional method
for the stability analysis of (11) usually resorts to the averaged
system via the averaging theorem [8]. To be specific, setting
h(t) = η ≡ 0 and treating θ̃(t) as a “freeze” constant in the
averaging analysis, we derive the averaged system of (11) as
follows (see details in [20]):

˙̃
θav(t) = KHθ̃av(t), (14)
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which is exponentially stable since KH is Hurwitz. Without
losing of generality, assuming H > 0, the controller gain is
chosen as K < 0. Thus, det(λ I−KH) =

∣∣∣λ−k1h11 −k1h12
−k2h12 λ−k2h22

∣∣∣ =
λ 2−(k1h11 + k2h22)λ +k1k2

(
h11h22−h2

12
)
= 0. The eigenval-

ues satisfy

{
λ1 +λ2 = (k1h11 + k2h22)< 0
λ1λ2 = k1k2

(
h11h22−h2

12
)
> 0

⇒ λ1 < 0,λ2 <

0, which proves KH is Hurwitz.

As clarified in [8, Chapter 10.4], the essential problem in the
averaging method is to determine in what sense the behavior
of the averaged system (14) approximates the behavior of
the original system (11), which may not be intuitively clear.
Averaging results from [8] are restricted to systems described
by differential equations with continuous right-hand sides, that
are not applicable to discontinuous square wave dithers. There
are averaging results that are suitable for differential equations
with a discontinuous right-hand side (as in [13], [16]), but
they did not consider delays. What is more important, when
the sampling and the delays are taken into account, the time-
delay plant (11) is potentially unstable if the delay is large.
Considering (9), the existing methods for ES have not given
upper bounds on ε and η to ensure the stability of (11). Now
the designer has a chance to know how large the sampling
interval ε and the delay η that the ES control system is able
to withstand through our time-delay approach.

Fig. 3. The distinct square waves of two dithers.

Note that, the equation (11) is a system with time-varying
parameters and delays whose stability is hard to judge at this
stage. To overcome this difficulty, each element of (11) is
expanded as

˙̃
θi(t) = ki

(
hiiθ̃i(t−h(t))+hi jθ̃ j(t−h(t))

)
+

kia j
ai

sq
(
(t−η)li

ε

)
sq
(
(t−η)l j

ε

)
×
(
hi jθ̃i(t−h(t))+h j jθ̃ j(t−h(t))

)
+ ki

ai
sq
(
(t−η)li

ε

)
Q∗

+ ki
2ai

sq
(
(t−η)li

ε

)
θ̃ T (t−h(t))Hθ̃(t−h(t))

+ ki
2ai

sq
(
(t−η)li

ε

)
ST (t−η)HS(t−η), i, j = 1,2, i 6= j.

(15)
As illustrated in Fig. 3, the sampling is periodic with the
sampling interval in (7) equal to one half of the period of
the dither sq

(
tl2
ε

)
and one fourth of the period of the dither

sq
(

tl1
ε

)
. Thus we obtain∫ t

t−ε
sq
(
(τ−η)li

ε

)
dτ = 0,∫ t

t−ε
sq
(
(τ−η)li

ε

)
sq
(
(τ−η)l j

ε

)
dτ = 0,∫ t

t−ε
sq
(
(τ−η)li

ε

)
ST (τ−η)HS(τ−η)dτ

=
∫ t

t−ε

[
hiia2

i sq3
(
(τ−η)li

ε

)
+2hi ja1a2sq2

(
(τ−η)li

ε

)
× sq

(
(τ−η)l j

ε

)
+h j ja2

jsq
(
(τ−η)li

ε

)
sq2
(
(τ−η)l j

ε

)]
dτ = 0.

(16)
Following [4], we apply the time-delay method to averaging
of (15). Integrating (15) backward in t ≥ ε +η from t− ε to
t (by “backward”, we refer to the integral interval [t − ε, t]
rather than [t, t + ε] which was used in [8]), and taking into
account (16), we get

1
ε

∫ t
t−ε

˙̃
θi(τ)dτ = ki

ε

∫ t
t−ε

(
hiiθ̃i(τ−h(τ))+hi jθ̃ j(τ−h(τ))

)
dτ

+
kia j
aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)
sq
(
(τ−η)l j

ε

)
×
(
hi jθ̃i(τ−h(τ))+h j jθ̃ j(τ−h(τ))

)
dτ

+ ki
2aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)
θ̃ T (τ−h(τ))Hθ̃(τ−h(τ))dτ.

(17)
To handle the 1st term on the right-hand side of (17), we have

ki
ε

∫ t
t−ε

(
hiiθ̃i(τ−h(τ))+hi jθ̃ j(τ−h(τ))

)
dτ

= ki
ε

∫ t
t−ε

[(
hiiθ̃i(τ−h(τ))+hi jθ̃ j(τ−h(τ))

)
±
(
hiiθ̃i(t)+hi jθ̃ j(t)

)]
dτ

= ki
(
hiiθ̃i(t)+hi jθ̃ j(t)

)
− ki

ε

∫ t
t−ε

[(
hiiθ̃i(t)+hi jθ̃ j(t)

)
−
(
hiiθ̃i(τ−h(τ))+hi jθ̃ j(τ−h(τ))

)]
dτ

= ki
(
hiiθ̃i(t)+hi jθ̃ j(t)

)
− ki

ε

∫ t
t−ε

∫ t
τ−h(τ)

(
hii

˙̃
θi(s)+hi j

˙̃
θ j(s)

)
dsdτ.

(18)
To address the 2nd term on the right-hand side of (17), we get

kia j
aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)
sq
(
(τ−η)l j

ε

)
×
(
hi jθ̃i(τ−h(τ))+h j jθ̃ j(τ−h(τ))

)
dτ

=− kia j
aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)
sq
(
(τ−η)l j

ε

)[(
hi jθ̃i(t)+h j jθ̃ j(t)

)
−
(
hi jθ̃i(τ−h(τ))+h j jθ̃ j(τ−h(τ))

)]
dτ

=− kia j
aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)
sq
(
(τ−η)l j

ε

)
×
∫ t

τ−h(τ)

(
hi j

˙̃
θi(s)+h j j

˙̃
θ j(s)

)
dsdτ,

(19)
where we utilize (16). To handle the 3rd term on the right-hand
side of (17), we have

ki
2aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)
θ̃ T (τ−h(τ))Hθ̃(τ−h(τ))dτ

=− ki
2aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)[
θ̃ T (t)Hθ̃(t)

−θ̃ T (τ−h(τ))Hθ̃(τ−h(τ))
]

dτ

=− ki
aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)∫ t
τ−h(τ) θ̃ T (s)H ˙̃

θ(s)dsdτ.

(20)

Substituting (18), (19) and (20) into (17), we obtain
1
ε

∫ t
t−ε

˙̃
θi(τ)dτ = ki

(
hiiθ̃i(t)+hi jθ̃ j(t)

)
− ki

ε

∫ t
t−ε

∫ t
τ−h(τ)

(
hii

˙̃
θi(s)+hi j

˙̃
θ j(s)

)
dsdτ

− kia j
aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)
sq
(
(τ−η)l j

ε

)
×
∫ t

τ−h(τ)

(
hi j

˙̃
θi(s)+h j j

˙̃
θ j(s)

)
dsdτ

− ki
aiε

∫ t
t−ε

sq
(
(τ−η)li

ε

)∫ t
τ−h(τ) θ̃ T (s)H ˙̃

θ(s)dsdτ.

(21)

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on January 05,2022 at 12:57:05 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3140259, IEEE
Transactions on Automatic Control

Rearranging (21) into a vector form, we arrive at the closed-
loop system

d
dt

[
θ̃(t)−G(t)

]
= KHθ̃(t)−KHY1(t)− K̄HY0(t)− ¯̄KY2(t),

t ≥ ε +η ,
(22)

where

G(t) = 1
ε

∫ t
t−ε

(τ− t + ε) ˙̃
θ(τ)dτ,

Y1(t) = 1
ε

∫ t
t−ε

∫ t
τ−h(τ)

˙̃
θ(s)dsdτ

=
∫ 1

0
∫ t

t−εζ−h(t−εζ )
˙̃
θ(s)dsdζ ,

Y0(t) = 1
ε

∫ t
t−ε

∫ t
τ−h(τ) N1(τ)

˙̃
θ(s)dsdτ

=
∫ 1

0
∫ t

t−εζ−h(t−εζ ) N1(t− εζ ) ˙̃
θ(s)dsdζ ,

Y2(t) = 1
ε

∫ t
t−ε

∫ t
τ−h(τ) N2(τ)θ̃

T (s)H ˙̃
θ(s)dsdτ

=
∫ 1

0
∫ t

t−εζ−h(t−εζ ) N2(t− εζ )θ̃ T (s)H ˙̃
θ(s)dsdζ ,

(23)

with the change of variable εζ = t− τ and

K̄ =

[
0 k1a2

a1
k2a1

a2
0

]
, ¯̄K =

[
k1
a1

0

0 k2
a2

]
, N2(τ) =

[
sq
(
(τ−η)l1

ε

)
sq
(
(τ−η)l2

ε

)
]

N1(τ) = sq
(
(τ−η)l1

ε

)
sq
(
(τ−η)l2

ε

)
.

(24)

C. Closed-loop Solutions without Approximations

Note that ˙̃
θ(t) in (22)-(23) is given by (11). If we substitute

the right-hand side of (11) into (23), we arrive at a differential
equation with distributed delays. If θ̃(t) and ˙̃

θ(t) are of order
O(1), and the delay η is of order O(ε), then the integral terms
G(t),Y1(t),Y2(t) are of order O(ε) and are close to zero when ε

is chosen to be sufficiently small. At this stage, the ES system
(11) has been further transformed into the time-delay system
(22) with ˙̃

θ(t) defined by (11) when t ≥ ε +η .
Looking at the averaged system (14) of the original ES

system (11) and the transformed time-delay system (22), it is
apparent that the averaged system and the time-delay system
have the consistent dominant part d

dt θ̃(t) = KHθ̃(t) which is
stable (KH is Hurwitz) and delay-free. The differences are the
additional terms with distributed delays G(t),Y1(t),Y2(t) that
vanish for ε→ 0,η→ 0. That is to say, to describe the behavior
of the original ES system (11), the time-delay plant (22) is an
accurate model as an alternative to the stable averaged system
(14), with explicit perturbation terms G(t),Y1(t),Y2(t) in (23).
When the sampling interval ε and the delay η are large, the
perturbed impact of G(t),Y1(t),Y2(t) on the stability of (22) is
strong. Thus, to find the upper bounds on ε and η to preserve
the practical stability of (22) is important. For the definition
of practical stability see e.g. [16, Section 2.2].

An accurate representation with quantitative bounds on ε , η

and the resulting ultimate bound of the closed-loop ES solution
is the major advantage of the developed time-delay method.
The traditional classical averaging, weak limit averaging and
Lie bracket methods are “approximate” methods in nature:

• the classical averaging method presents the solution of the
original ES system as an approximation by the solution
of the averaged system [1], [9].

• the Lie bracket method employs the averaged system
written in terms of Lie brackets to approximate the
behavior of the original ES control system [2], [16].

Different from the two above methods, the proposed time-
delay approach is a direct method without any approximation.
The solution θ̃(t) of the ES system (11) is also a solution
of the time-delay system (22). Thus, the stability of the time-
delay system guarantees the stability of the original ES control
system.

D. LMI-based Ultimate Boundedness of the Error System

To formulate the main theorem, we define the fol-
lowing LMIs that depend on the tuning parameter-
s k1,k2,a1,a2 and q,δ ,ε∗,η∗ > 0

(
with h∗M = η∗ + ε∗

4

)
as well as σ > σ0, and the following decision scalars
q2,b,λ1,λ2,λ3,λ4,λP,λR,λQ0 ,λQ1 ,λS0 ,λR0 ,λW > 0, and 2×2
matrices P > I and R,Q0,Q1,S0,R0,W > 0. Consider the
LMIs:

Φ1 =
[

P−I −P
∗ P+e−2δε∗R

]
> 0, Φ2 =

[
Ω Ψε Ψη

∗ − 1
ε∗ Ξε 0

∗ ∗ − 1
η∗ Ξη

]
< 0,

Φ3 = (σ0 +(ε∗+η∗)ω̄)2 e2µ(ε∗+η∗) < σ2,

Φ4 =
(

1+ 1
q

)
λP (σ0 +(ε∗+η∗)ω̄)2 e2µ(ε∗+η∗)+η∗λS0σ2

+
[

ε∗2(1+q)
4 λP +

ε∗2

3 λR +
(ε∗2+3ε∗h∗M+3h∗M

2)
3

×
(
λQ1 +λQ0 +q2λmax(H2)σ2

)
+ 1

2 η∗3
λR0

+
h∗Mε∗2

16 e
δε∗

2 λW

]
∆2 + ε∗+η∗

2δ
bω̄2 < σ2,

P−λPI < 0, R−λRI < 0, Q0−λQ0 I < 0,
Q1−λQ1 I < 0, S0−λS0 I < 0, R0−λR0 I < 0,
W −λW I < 0,

(25)
where Ω is composed of

Ω11 = (PKH +HT KT P+2δPI)+S0− e−2δη∗R0,
Ω12 =−(HT KT +2δ I)P, Ω13 =−PKH,

Ω14 =−PK̄H, Ω15 =−P ¯̄K, Ω16 = e−2δη∗R0,

Ω22 =− 4
ε∗ e−2δε∗R+2δP, Ω23 = PKH, Ω24 = PK̄H,

Ω25 = P ¯̄K, Ω33 =− 4
ε∗+2h∗M

e−2δ (ε∗+h∗M)Q1,

Ω44 =− 4
ε∗+2h∗M

e−2δ (ε∗+h∗M)Q0,

Ω55 =− 2q2
ε∗+2h∗M

e−2δ (ε∗+h∗M)I,

Ω66 =−e−2δη∗(S0 +R0)+
[
λ1 +2λ3λ 2(H)σ2

]
I,

Ω77 =−π2

4 e−2δη∗W +
[
λ2 +8λ4λmax(H2)σ2

]
I,

Ω88 =−λ1I, Ω99 =−λ2I, Ω10,10 =−λ3I,
Ω11,11 =−λ4I, Ω12,12 =−(ε∗+η∗)bI,

(26)
and ω̄ is given by (13),

µ =

√(
k2

1
a2

1
+

k2
2

a2
2

)(√
λmax(H2)

(
a2

1 +a2
2

)
+ λ (H)

2 σ

)
,

Ξε = R+ 3
2

(
Q1 +Q0 +q2σ2H2

)
+ ε∗

16 e
δε∗

2 W,
Ξη = 2

(
Q1 +Q0 +q2σ2H2

)
+η∗R0,
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Ψε =
[
0,0,0,0,0,KH,KH, K̄H, K̄H,

¯̄K
2 ,

¯̄K
2 , I
]T

Ξε ,

Ψη =
[
0,0,0,0,0,KH,KH, K̄H, K̄H,

¯̄K
2 ,

¯̄K
2 , I
]T

Ξη ,

∆ =

√
k2

1
a2

1
+

k2
2

a2
2

[
|Q∗|+ λ (H)

2

(
(σ0 +(ε +η)ω̄)eµ(ε+η)

+
√

a2
1 +a2

2

)2]
.

(27)
Theorem 1: Assume that the Hessian H and the extremum

value Q∗ are known, the extremum point θ ∗ is uncertain
but each of its elements belongs to a known ball θ ∗i ∈[
θ
∗
i ,θ
∗
i

]
, i = 1,2. Consider the closed-loop system consisting

of the multi-input plant (1) and the ES controller (5), with
the initial condition satisfying

∣∣θ̃(0)∣∣ ≤ σ0. Given the tun-
ing parameters k1,k2,a1,a2,q,δ ,ε∗,η∗,σ ,σ0, let the scalars
q2,b,λ1,λ2,λ3,λ4,λP,λR,λQ0 ,λQ1 ,λS0 ,λR0 ,λW , and the matri-
ces P,R,Q0,Q1,S0,R0,W satisfy the LMIs (25) with notations
given by (26), (27). Then, ∀ε ∈ (0,ε∗] and ∀η ∈ (0,η∗], the
solution of the closed-loop system (11) satisfies∣∣θ̃(t)∣∣2 < (∣∣θ̃(0)∣∣+(ε +η)ω̄

)2 e2µt < σ2, t ∈ [0,ε +η ],∣∣θ̃(t)∣∣2 < (1+ 1
q

)
λPe−2δ (t−ε−η)

(∣∣θ̃(0)∣∣+(ε +η)ω̄
)2

×e2µ(ε+η)+ e−2δ (t−ε−η)ηλS0σ2

+e−2δ (t−ε−η)
[

ε2(1+q)
4 λP +

ε2

3 λR

+
(ε2+3εhM+3h2

M)
3

(
λQ1 +λQ0 +q2λmax(H2)σ2

)
+ 1

2 η3λR0 +
hMε2

16 e
δε
2 λW

]
∆2

+
(

1− e−2δ (t−ε−η)
)

ε+η

2δ
bω̄2 < σ2, t ≥ ε +η ,

(28)
Moreover, the solution exponentially approaches the ball

Θ =
{

θ̃ ∈ R2 :
∣∣θ̃ ∣∣2 < ε+η

2δ
bω̄2

}
. (29)

with a decay rate δ .
Proof: The proof is given in Appendix. �
Comparing the LKF (49) with the LKF (A.6) in [20]

that included only VP(t) and VR(t) terms, it is observed that
the LKF in (49) also contains VQ1(t) and VQ2(t) which are
employed to compensate the linear perturbation Y1(t) and the
nonlinear perturbation Y2(t). In [20], Y1(t) and Y2(t) are treated
as disturbances. As a result, the ultimate bound achieved with
the improved LKF of this paper is smaller than that in [20]
(see the improvement in the example of [21]).

E. Selection of ES Parameters and Uncertainties

The ultimate bound on the error of extremum seeking
depends upon both the sampling interval ε and the delay η

from (29). It means the smaller ε and η suggest the less
deviation of the estimate of the extremum point from its real
value. Applying Schur complement to Φ1 > 0 first, we have
P− I − P

(
P+ e−2δε∗R

)−1
PT ≈ P− I − P(P+R)−1 PT > 0,

when ε∗ → 0. Since P and R are decision variables that are
mutually independent, the above inequality is always feasible.
Given P and R subject to Φ1 > 0, applying Schur complement
to Φ2 < 0, we get Ω+ε∗Ψε Ξε

−1
ΨT

ε +η∗Ψη Ξη
−1

ΨT
η ≈Ω< 0,

when ε∗ → 0,η∗ → 0. Further applying Schur complement
to Ω < 0, there is no difficulty to prove that Φ2 < 0 always

TABLE I
TWO-VARIABLE SYSTEM (Q∗ = 0,H = diag{2,2})

ε∗ η∗ σ0 σ δ UB
Continuous-time ES: sine wave
[20] 0.14 - 0.1

√
2 0.01 1.32

[20] 0.017 -
√

2 2
√

2 0.01 1.90
Sampled-data ES: square wave
Theorem 1 0.24 0.1 0.1

√
2 0.01 0.65

Theorem 1 0.09 0.01
√

2 2
√

2 0.01 0.18

hold for ε∗ → 0,η∗ → 0. The feasibility of Φ3 < σ2 and
Φ4 < σ2 are self-evident. Above all, provided that ε and η are
sufficiently small, the LMIs (25) are always feasible. That is
to say, given any pair of the initial condition and overall bound
satisfying |θ̃(0)| ≤ σ0 < σ , as long as the dither and sampling
period ε and the delay η do not go beyond the interval (0,ε∗]
and (0,η∗], the ultimate bound (29) is available and could
be reduced by decreasing ε if η is of order O(ε). Thus, the
practical stability is semi-global.

In classical ES, the Hessian H, the extremum value Q∗ and
the extremum point θ ∗ in (1) are assumed to be unknown. In
the face of an unknown “black box” model, it is impossible
to choose tuning parameters and even to perform simulations.
Here we study a “grey box”, where H is known, Q∗ is known
up to small uncertainties (see Corollary 2 of [21]), θ ∗ is
uncertain but belongs to a known ball. A quantitative analysis
is summarized in Theorem 1. When H is also uncertain
(norm-bounded type or polytopic type), the derivation of LMI
condition follows the logic of scalar case (see Corollary 2
of [21]) but it is more complex and we do not go into details
due to page limit. There is a trade-off between the quantitative
analysis with the plant information and the qualitative analysis
without the model knowledge.

III. NUMERICAL EXAMPLE

In this section we consider an autonomous vehicle in an
environment without GPS orientation [16]. The goal is to
reach the location of the stationary minimum of the map
Q(x(t),y(t)) =Q∗+ 1

2 [x(t),y(t)]H
[

x(t)
y(t)

]
= x2(t)+y2(t), where

Q∗ = 0 and H =
[

2 0
0 2

]
are known. Note that here the notation

[x(t),y(t)]T (which is consistent with those in [16]) refers to
a vehicle’s trajectory in a plane with x-axis and y-axis. It is
equivalent to the input vector θ(t) = [θ1(t),θ2(t)]T in (1)-(2).
The ES parameters are chosen as k1 = k2 =−0.01,a1 = a2 =
0.2. The LMI solution is shown in Table I. The numerical
simulations are shown in Fig. 4, where ε = 0.2 and η = 0.1
which are larger than those achieved via LMIs. This shows
conservatism of results of LMIs.

IV. CONCLUSIONS

In this article we offer a constructive method based on the
time-delay approach to averaging and to sampled-data control
for the design and analysis of ES with discontinuous dither
and constant delay. The resulting time-delay method allows to
derive quantitative bounds on the extremum seeking error, the
period of the dither and sampling, as well as on the largest
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ŷ(t)

0 0.050.1

−1
0
1

 

 

Delay

(b) Input

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

U
p

d
at

e 
L

aw

 

 
˙̂x(t)
˙̂y(t)

5 6 7
−0.5

0

0.5

 

 

(c) Update Law

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

O
u

tp
u

t

 

 

Q(x(t), y(t))

(d) Output

Fig. 4. Numerical simulation of sampled-data ES.

delay that the ES system is able to tolerate, provided the
extremum value and the extremum point are uncertain.

APPENDIX-PROOF OF THEOREM 1

The proof is divided into two steps.
• Step 1—we prove the practical stability of system (22).

We employ

VP(t) =
[
θ̃(t)−G(t)

]T P
[
θ̃(t)−G(t)

]
. (30)

Then, we have

V̇P(t)+2δVP(t) = 2
[
θ̃(t)−G(t)

]T P[KHθ̃(t)−KHY1(t)
−K̄HY0(t)− ¯̄KY2(t)]+2δ

[
θ̃(t)−G(t)

]T P
[
θ̃(t)−G(t)

]
= 2θ̃ T (t)P(KH +δ I)θ̃(t)+2δGT (t)PG(t)
−2θ̃ T (t)(HT KT +2δ I)PG(t)
−2θ̃ T (t)PKHY1(t)−2θ̃ T (t)PK̄HY0(t)−2θ̃ T (t)P ¯̄KY2(t)
+2GT (t)PKHY1(t)+2GT (t)PK̄HY0(t)+2GT (t)P ¯̄KY2(t).

(31)
To compensate G(t) in (31), we use the following:

VR(t) = 1
ε

∫ t
t−ε

e−2δ (t−τ)(τ− t + ε)2 ˙̃
θ T (τ)R ˙̃

θ(τ)dτ. (32)

Hence, we get

V̇R(t)+2δVR(t) = ε
˙̃
θ T (t)R ˙̃

θ(t)
− 2

ε

∫ t
t−ε

e−2δ (t−τ)(τ− t + ε) ˙̃
θ T (τ)R ˙̃

θ(τ)dτ

≤ ε
˙̃
θ T (t)R ˙̃

θ(t)− 2
ε

e−2δε
∫ t

t−ε
(τ− t + ε) ˙̃

θ T (τ)R ˙̃
θ(τ)dτ

≤ ε
˙̃
θ T (t)R ˙̃

θ(t)− 4
ε

e−2δε GT (t)RG(t),
(33)

where the extended Jensen’s inequality is used

2GT (t)RG(t) = 2
ε2

∫ t
t−ε

(τ− t + ε) ˙̃
θ T (τ)dτR

×
∫ t

t−ε
(τ− t + ε) ˙̃

θ(τ)dτ

≤ 2
ε2

∫ t
t−ε

(τ− t + ε)dτ ·
∫ t

t−ε
(τ− t + ε) ˙̃

θ T (τ)R ˙̃
θ(τ)dτ

=
∫ t

t−ε
(τ− t + ε) ˙̃

θ T (τ)R ˙̃
θ(τ)dτ.

(34)

To compensate Y1(t) in (31), we define

VQ1(t) = 2
∫ 1

0
∫ t

t−εζ−hM
e−2δ (t−s)(s− t + εζ +hM)

× ˙̃
θ T (s)Q1

˙̃
θ(s)dsdζ .

(35)

Thus, we have

V̇Q1(t)+2δVQ1(t) = (ε +2hM) ˙̃
θ T (t)Q1

˙̃
θ(t)

−2
∫ 1

0
∫ t

t−εζ−hM
e−2δ (t−s) ˙̃

θ T (s)Q1
˙̃
θ(s)dsdζ

≤ (ε +2hM) ˙̃
θ T (t)Q1

˙̃
θ(t)

−2e−2δ (ε+hM)
∫ 1

0
∫ t

t−εζ−hM
˙̃
θ T (s)Q1

˙̃
θ(s)dsdζ

< (ε +2hM) ˙̃
θ T (t)Q1

˙̃
θ(t)− 4

ε+2hM
e−2δ (ε+hM)Y T

1 (t)Q1Y1(t),
(36)

where the extended Jensen’s inequality is employed

2Y T
1 (t)Q1Y1(t) = 2

∫ 1
0
∫ t

t−εζ−h(t−εζ )
˙̃
θ T (s)dsdζ

×Q1
∫ 1

0
∫ t

t−εζ−h(t−εζ )
˙̃
θ(s)dsdζ

≤ 2
∫ 1

0 (εζ +h(t− εζ ))dζ

×
∫ 1

0
∫ t

t−εζ−h(t−εζ )
˙̃
θ T (s)Q1

˙̃
θ(s)dsdζ

< 2
∫ 1

0 (εζ +hM)dζ ·
∫ 1

0
∫ t

t−εζ−hM
˙̃
θ T (s)Q1

˙̃
θ(s)dsdζ

= (ε +2hM)
∫ 1

0
∫ t

t−εζ−hM
˙̃
θ T (s)Q1

˙̃
θ(s)dsdζ .

(37)

To compensate Y0(t) in (31), we define

VQ0(t) = 2
∫ 1

0
∫ t

t−εζ−hM
e−2δ (t−s)(s− t + εζ +hM)

× ˙̃
θ T (s)NT

1 (t− εζ )Q0N1(t− εζ ) ˙̃
θ(s)dsdζ .

(38)

Consequently, we have

V̇Q0(t)+2δVQ0(t) = (ε +2hM) ˙̃
θ T (t)Q0

˙̃
θ(t)−2

∫ 1
0
∫ t

t−εζ−hM

×e−2δ (t−s) ˙̃
θ T (s)NT

1 (t− εζ )Q0N1(t− εζ ) ˙̃
θ(s)dsdζ

≤ (ε +2hM) ˙̃
θ T (t)Q0

˙̃
θ(t)−2e−2δ (ε+hM)

∫ 1
0
∫ t

t−εζ−hM

× ˙̃
θ T (s)NT

1 (t− εζ )Q0N1(t− εζ ) ˙̃
θ(s)dsdζ

< (ε +2hM) ˙̃
θ T (t)Q0

˙̃
θ(t)− 4

ε+2hM
e−2δ (ε+hM)Y T

0 (t)Q0Y0(t),
(39)

where we utilize

2
∫ 1

0 (εζ +hM)NT
1 (t− εζ )Q0N1(t− εζ )dζ

= 2
∫ 1

0 (εζ +hM)sq2
(
(t−εζ−η)l1

ε

)
sq2
(
(t−εζ−η)l2

ε

)
Q0dζ

= (ε +2hM)Q0,
(40)

and the extended Jensen’s inequality

2Y T
0 (t)Q0Y0(t) = 2

∫ 1
0
∫ t

t−εζ−h(t−εζ )
˙̃
θ T (s)NT

1 (t− εζ )dsdζ

×Q0
∫ 1

0
∫ t

t−εζ−h(t−εζ ) N1(t− εζ ) ˙̃
θ(s)dsdζ

≤ 2
∫ 1

0 (εζ +h(t− εζ ))dζ
∫ 1

0
∫ t

t−εζ−h(t−εζ )

× ˙̃
θ T (s)NT

1 (t− εζ )Q0N1(t− εζ ) ˙̃
θ(s)dsdζ

< 2
∫ 1

0 (εζ +hM)dζ
∫ 1

0
∫ t

t−εζ−hM

× ˙̃
θ T (s)NT

1 (t− εζ )Q0N1(t− εζ ) ˙̃
θ(s)dsdζ

= (ε +2hM)
∫ 1

0
∫ t

t−εζ−hM

× ˙̃
θ T (s)NT

1 (t− εζ )Q0N1(t− εζ ) ˙̃
θ(s)dsdζ .

(41)
To compensate Y2(t) in (31), we define

VQ2(t) = q2
∫ 1

0
∫ t

t−εζ−hM
e−2δ (t−s)(s− t + εζ +hM)

× ˙̃
θ T (s)HT θ̃(s)NT

2 (t− εζ )N2(t− εζ )θ̃ T (s)H ˙̃
θ(s)

×dsdζ .

(42)
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In this sense, we have

V̇Q2(t)+2δVQ2(t) = q2
˙̃
θ T (t)HT θ̃(t)

∫ 1
0 (εζ +hM)NT

2 (t− εζ )

×N2(t− εζ )dζ θ̃ T (t)H ˙̃
θ(t)

−q2
∫ 1

0
∫ t

t−εζ−hM
e−2δ (t−s) ˙̃

θ T (s)HT θ̃(s)NT
2 (t− εζ )

×N2(t− εζ )θ̃ T (s)H ˙̃
θ(s)dsdζ

≤ (ε +2hM)q2
˙̃
θ T (t)HT θ̃(t)θ̃ T (t)H ˙̃

θ(t)
−e−2δ (ε+hM)q2

∫ 1
0
∫ t

t−εζ−hM
˙̃
θ T (s)HT θ̃(s)NT

2 (t− εζ )

×N2(t− εζ )θ̃ T (s)H ˙̃
θ(s)dsdζ

< (ε +2hM)q2
˙̃
θ T (t)HT θ̃(t)θ̃ T (t)H ˙̃

θ(t)
− 2q2

ε+2hM
e−2δ (ε+hM)Y T

2 (t)Y2(t),
(43)

where we have employed

∫ 1
0 (εζ +hM)NT

2 (t− εζ )N2(t− εζ )dζ =∫ 1
0 (εζ +hM)

[
sq
(
(t−εζ−η)l1

ε

)
sq
(
(t−εζ−η)l2

ε

)][ sq
(
(t−εζ−η)l1

ε

)
sq
(
(t−εζ−η)l2

ε

)
]

×dζ = ε +2hM,
(44)

and the extended Jensen’s inequality

2q2Y T
2 (t)Y2(t) = 2q2

∫ 1
0
∫ t

t−εζ−h(t−εζ )
˙̃
θ T (s)HT θ̃(s)

×NT
2 (t− εζ )dsdζ

∫ 1
0
∫ t

t−εζ−h(t−εζ ) N2(t− εζ )

×θ̃ T (s)H ˙̃
θ(s)dsdζ

≤ 2q2
∫ 1

0 (εζ +h(t− εζ ))dζ ·
∫ 1

0
∫ t

t−εζ−h(t−εζ )
˙̃
θ T (s)HT θ̃(s)

×NT
2 (t− εζ )N2(t− εζ )θ̃ T (s)H ˙̃

θ(s)dsdζ

< 2q2
∫ 1

0 (εζ +hM)dζ ·
∫ 1

0
∫ t

t−εζ−hM
˙̃
θ T (s)HT θ̃(s)

×NT
2 (t− εζ )N2(t− εζ )θ̃ T (s)H ˙̃

θ(s)dsdζ

< (ε +2hM)q2
∫ 1

0
∫ t

t−εζ−hM
˙̃
θ T (s)HT θ̃(s)

×NT
2 (t− εζ )N2(t− εζ )θ̃ T (s)H ˙̃

θ(s)dsdζ .
(45)

Combining (8) with (11)-(15) and considering (24), we rewrite
˙̃
θ(t) as

˙̃
θ(t) = KH

[
θ̃(sk)− θ̃(t−η)

]
+KHθ̃(t−η)

+K̄HN1(t)
[
θ̃(sk)− θ̃(t−η)

]
+ K̄HN1(t)θ̃(t−η)

+
¯̄K
2 N2(t)

[
θ̃ T (sk)Hθ̃(sk)− θ̃ T (t−η)Hθ̃(t−η)

]
+

¯̄K
2 N2(t)θ̃ T (t−η)Hθ̃(t−η)+ω(t), t ∈ [tk, tk+1).

(46)
To compensate the error term θ̃(sk)− θ̃(t−η) and the state
with constant delay θ̃(t−η) in (46), we employ

VS0(t) =
∫ t

t−η
e−2δ (t−s)θ̃ T (s)S0θ̃(s)ds,

VR0(t) = η
∫ t

t−η
e−2δ (t−s)(s− t +η) ˙̃

θ T (s)R0
˙̃
θ(s)ds,

VW (t) = (hM−η)2e2δ (hM−η)
∫ t

sk
e−2δ (t−s) ˙̃

θ T (s)W ˙̃
θ(s)ds

−π2

4
∫ t−η

sk
e−2δ (t−s)

[
θ̃(sk)− θ̃(s)

]T W
[
θ̃(sk)− θ̃(s)

]
ds,

t ∈ [tk, tk+1),
(47)

where VW (t) ≥ 0 by the extended Wirtinger’s inequality, and

it does not grow in the jumps t = sk. Thus, we have

V̇S0(t)+2δVS0(t) = θ̃ T (t)S0θ̃(t)
−e−2δη θ̃ T (t−η)S0θ̃(t−η),

V̇R0(t)+2δVR0(t)≤ η2 ˙̃
θ T (t)R0

˙̃
θ(t)

−e−2δη
[
θ̃(t)− θ̃(t−η)

]T R0
[
θ̃(t)− θ̃(t−η)

]
,

V̇W (t)+2δVW (t) = ε2

16 e
δε
2 ˙̃

θ T (t)W ˙̃
θ(t)− π2

4 e−2δη

×
[
θ̃(sk)− θ̃(t−η)

]T W
[
θ̃(sk)− θ̃(t−η)

]
, t ∈ [tk, tk+1).

(48)
Define the Lyapunov-Krasovskii functional (LKF) as

V (t) =VP(t)+VR(t)+VQ1(t)+VQ0(t)+VQ2(t)
+VS0(t)+VR0(t)+VW (t). (49)

and assume the overall bound∣∣θ̃(t)∣∣< σ , t ≥ 0, (50)

to address the nonlinear terms. Taking into account that[
N1(t)θ̃(t−η)

]2 ≤ θ̃ 2(t−η), (51)[
N1(t)

(
θ̃(sk)− θ̃(t−η)

)]2 ≤ [θ̃(sk)− θ̃(t−η)
]2
, (52)

N2
2 (t)

[
θ̃ T (t−η)Hθ̃ T (t−η)

]2
≤ 2

[
λ (H)θ̃ 2(t−η)

]2
< 2λ 2(H)σ2θ̃ 2(t−η),

(53)

N2
2 (t)

[
θ̃ T (sk)Hθ̃(sk)− θ̃ T (t−η)Hθ̃(t−η)

]2
≤ 2λmax(H2)

(
θ̃(sk)+ θ̃(t−η)

)2 (
θ̃(sk)− θ̃(t−η)

)2

< 8λmax(H2)σ2
[
θ̃(sk)− θ̃(t−η)

]2
,

(54)
Considering (31), (33), (36), (39), (43), (48), (51)-(54), we
have

V̇ (t)+2δV (t)+λ1

[
θ̃ 2(t−η)−

[
N1(t)θ̃(t−η)

]2]
+λ2

[[
θ̃(sk)− θ̃(t−η)

]2− [N1(t)
(
θ̃(sk)− θ̃(t−η)

)]2]
+λ3

[
2λ 2(H)σ2θ̃ 2(t−η)

−N2
2 (t)

[
θ̃ T (t−η)Hθ̃(t−η)

]2 ]− (ε +η)bω2(t)

+λ4

[
8λmax(H2)σ2

[
θ̃(sk)− θ̃(t−η)

]2
−N2

2 (t)
[
θ̃ T (sk)Hθ̃(sk)− θ̃ T (t−η)Hθ̃(t−η)

]2 ]
−(ε +η)bω2(t)

< ξ T (t)Ωξ (t)+ ˙̃
θ T (t)(εΞε +ηΞη)

˙̃
θ(t)

= ξ T (t)Ωξ (t)+ξ T (t) [Ψε Ψη ]
[

εΞε
−1 0

0 ηΞη
−1

][
ΨT

ε

ΨT
η

]
ξ (t)< 0,

(55)
where ξ (t) =

[
θ̃(t),G(t),Y1(t),Y0(t),Y2(t), θ̃(t −

η), θ̃(sk) − θ̃(t − η),N1(t)θ̃(t −
η),N1(t)

(
θ̃(sk)− θ̃(t−η)

)
,N2(t)θ̃ T (t − η)Hθ̃(t −

η),N2(t)
[
θ̃ T (sk)Hθ̃(sk)− θ̃ T (t−η)Hθ̃(t−η)

]
,ω(t)

]T
,

and we utilize θ̃(t)θ̃ T (t) ≤ σ2I. The inequality (55) follows
from Φ2 < 0 in (25) by Schur complement.
• Step 2—we prove the assumed overall bound (50) is not

violated. In implementation, usually ˙̃
θ(t) = ˙̂

θ(t)≡ 0 when t <
0. It means that the update law ˙̂

θ(t) is turned off and the
estimate θ̂(t) is fixed at some constant which renders the initial
condition of the error∣∣θ̃(t)∣∣= ∣∣θ̂ −θ ∗

∣∣= ∣∣θ̃(0)∣∣≤ σ0 < σ , t < 0. (56)
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Considering (11), for τ ∈ [−hM,0],

θ̃(t + τ) =


θ̃(0), t + τ < 0,

θ̃(0)+
∫ t+τ

0 KM(s−η)
[
ST (s−η)H

×θ̃(s−h(s))+ 1
2 θ̃ T (s−h(s))Hθ̃(s−h(s))

+ω(s)
]
ds, t + τ ≥ 0.

(57)
where τ ∈ [−hM,0]. Then, we arrive at∥∥θ̃t

∥∥
C ≤

∣∣θ̃(0)∣∣+(ε +η)ω̄ +
∫ t

0 µ
∥∥θ̃s
∥∥

C ds, t ∈ [0,ε +η ],
(58)

where ω̄ is defined by (13) and µ is given in (27). By Gronwall
inequality, the following inequality follows from (58)∣∣θ̃(t)∣∣≤ ∥∥θ̃t

∥∥
C <

(∣∣θ̃(0)∣∣+(ε +η)ω̄
)

eµt < σ ,
t ∈ [0,ε +η ].

(59)

The latter corresponds to the first formula in (28) and is
ensured by Φ3 < σ2 in (25). The equations (8)-(10) result
in ∣∣∣ ˙̃

θ(t)
∣∣∣<√ k2

1
a2

1
+

k2
2

a2
2

[
|Q∗|+ λ (H)

2

(
(σ0 +(ε +η)ω̄)eµ(ε+η)

+
√

a2
1 +a2

2

)2]
= ∆, t ∈ [0,ε +η ].

(60)
With Jensen’s inequality, we obtain

V (t)≥VP(t)+VR(t)≥
[

θ̃(t)
G(t)

]T [P −P
∗ P+e−2δε R

][
θ̃(t)
G(t)

]
≥
∣∣θ̃(t)∣∣2 ,

(61)
which follows from Φ1 > 0 in (25).

From (55), we have

V̇ (t)+2δV (t)< (ε +η)bω2(t)≤ (ε +η)bω̄2, (62)

where ω̄ is given by (13).
Applying comparison principle to (62), we have

V (t)<V (ε +η)e−2δ (t−ε−η)+
(

1− e−2δ (t−ε−η)
)

ε+η

2δ
bω̄2,

t ≥ ε +η .
(63)

From (30), we have

VP(ε +η)<
(

1+ 1
q

)
λP

[(∣∣θ̃(0)∣∣+(ε +η)ω̄
)2 e2µ(ε+η)

]
+ ε2(1+q)

4 λP∆2.
(64)

From (32), we get

VR(ε +η) = 1
ε

∫
ε+η

η
e−2δ (ε+η−τ)(τ−η)2 ˙̃

θ T (τ)R ˙̃
θ(τ)dτ

< λR
ε

∫
ε+η

η
(τ−η)2dτ ·∆2 = ε2

3 λR∆2.
(65)

From (35), we have

VQ1(ε +η)< 1
3 (ε

2 +3εhM +3h2
M)λQ1∆2. (66)

From (38), we obtain

VQ0(ε +η) = 2
∫ 1

0
∫ ε+η

ε+η−εζ−hM
e−2δ (ε+η−s)

< 1
3 (ε

2 +3εhM +3h2
M)λQ0∆2.

(67)

From (42), we get

VQ2(ε +η)< q2
3 (ε

2 +3εhM +3h2
M)λmax(H2)σ2∆2. (68)

From (47), we have

VS0(ε +η) =
∫

ε+η

ε
e−2δ (ε+η−s)θ̃ T (s)S0θ̃(s)ds < ηλS0σ2,

VR0(ε +η) = η
∫

ε+η

ε
e−2δ (ε+η−s)(s− ε) ˙̃

θ T (s)R0
˙̃
θ(s)ds

< 1
2 η3λR0∆2,

VW (ε +η)≤ (hM−η)2e2δ (hM−η)
∫ tk+1

sk
˙̃
θ T (s)W ˙̃

θ(s)ds

< hMε2

16 e
δε
2 λW ∆2.

(69)
Plugging (64)-(69) into (63), we arrive at the second formula
in (28) which follows from Φ4 < σ2 in (25). Finally, by
contradiction-based arguments of [20, Appendix A] it can be
proved that (25) implies (50).
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