
0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3121234, IEEE
Transactions on Automatic Control

1

Finite-dimensional boundary control of the linear
Kuramoto-Sivashinsky equation under point

measurement with guaranteed L2-gain
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Abstract—Finite-dimensional observer-based controller design
for PDEs is a challenging problem. Recently, such controllers
were introduced for the 1D heat equation, under the assumption
that one of the observation or control operators is bounded. This
paper suggests a constructive method for such controllers for 1D
parabolic PDEs with both observation and control operators be-
ing unbounded. We consider the Kuramoto-Sivashinsky equation
(KSE) under either boundary or in-domain point measurement
and boundary actuation in the presence of disturbances in the
PDE and measurement. We employ a modal decomposition
approach via dynamic extension, using eigenfunctions of a Sturm-
Liouville operator. The controller dimension is defined by the
number of unstable modes, whereas the observer dimension N
may be larger. We suggest a direct Lyapunov approach to the full-
order closed-loop system, which results in an LMI, for input-to-
state stabilization (ISS) and guaranteed L2-gain, whose elements
and dimension depend on N . The value of N and the decay rate
are obtained from the LMI. We prove that the LMI is always
feasible provided N and the L2 or ISS gains are large enough,
thereby obtaining guarantees for our approach. Moreover, for
the case of stabilization, we show that feasibility of the LMI for
some N implies its feasibility for N + 1. Numerical examples
demonstrate the efficiency of the method.

Index Terms—Parabolic PDEs, boundary control, observer-
based control, modal decomposition, LMI.

I. INTRODUCTION

Parabolic PDEs have many applications in physics and
engineering. Among such PDEs, the Kuramoto-Sivashinsky
equation (KSE) describes many important processes, includ-
ing chemical reaction-diffusion, flame propagation and vis-
cous flow (see, e.g, [1]–[4]). Distributed state-feedback and
observer-based control of the KSE was suggested in [5] via a
modal decomposition approach. A boundary controller for the
KSE in case of a small anti-diffusion parameter was designed
in [6]. State-feedback stabilization of KSE under boundary or
non-local actuation was studied in [7], [8] by using modal
decomposition, whereas null controllability of the KSE was
studied in [9]. Stability of the linear KSE as well as its
stabilization using a distributed control were studied in [10].

Output-feedback controllers are more realistic for im-
plementation. Finite-dimensional static output-feedback con-
trollers were suggested in [11]–[14] via the spatial decompo-
sition method. However, such controllers may require many
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sensing and actuation devices. Observer-based controllers for
parabolic equations have been constructed in [15]–[18], where
an observer was designed in the form of a PDE. An advantage
of PDE observers is the resulting separation of controller and
observer designs. However, they are often difficult for numer-
ical implementation due to high computational complexity.

Finite-dimensional observer-based controllers for parabolic
PDEs were suggested in [1], [15], [19], [20], whereas finite-
dimensional boundary observers for the heat equation were
constructed in [21]. In particular, for bounded control and
observation operators, it was shown in [19] that the closed-
loop system is stable provided the controller dimension is
large enough. A singular perturbation approach that reduces
the controller design to a finite-dimensional slow system was
suggested in [1], without giving rigorous conditions for finding
the dimension of the slow system. A bound (which appeared to
be conservative) on the controller dimension was suggested in
[20]. Recently an efficient bound on the controller dimension
in terms of simple LMIs was suggested for the 1D heat
equation in [22], [23] for the case when at least one of the
observation or control operators is bounded. The challenging
case where both operators are unbounded remained open.
H∞ control of abstract distributed parameter systems was

studied in [24], where the H∞ control problem was reduced
to solvability of operator Riccati equations. LMI-based con-
ditions for H∞ control of PDEs were derived in [14], [25]
and [26]. Recently, input-to-state stability (ISS) of PDEs has
regained much interest. ISS of the 1D heat equation with
boundary disturbance was studied in [27]. State-feedback
with ISS analysis of diagonal boundary control systems was
considered in [28]. Non-coercive Lyapunov functionals for ISS
of infinite-dimensional system were studied in [29]. A survey
of ISS results can be found in [30].

In this paper, for the first time, we provide a constructive
method for finite-dimensional observer-based control of a
parabolic PDE with the observation and control operators
both unbounded. We consider control of the 1D linear KSE
under point measurement under either (mixed) Dirichlet or
(mixed) Neumann actuation. We use dynamic extension (see
e.g. [31], Sect. 3.3) employed for the state-feedback case in
[7], [31], [32] and for observer-based control in [23]. This
allows to manage with unbounded observation and control op-
erators via modal decomposition. Differently from the existing
modal decomposition methods for KSE (see, e.g. [7], [8]),
we introduce a method based on a Sturm-Liouville operator
with explicit eigenfunctions and eigenvalues. In comparison
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to [7], [8], where the eigenfunctions and eigenvalues can only
be approximated numerically, our novel approach does not
require such approximations.

We study internal stabilization with guaranteed L2-gain
and input-to-state stabilization in the presence of disturbances
in both the PDE and measurement. Note that stabilization
with guaranteed L2-gain has not been studied yet via modal
decomposition for parabolic PDEs. In the design, the controller
dimension is defined by the number of unstable modes,
whereas the observer’s dimension N may be larger than this
number. The observer and controller gains are found separately
by solving Lyapunov inequalities. We use a direct Lyapunov
approach to the full-order closed-loop system to derive LMIs,
whose dimension depends on N . These LMIs are used for
finding N , the resulting exponential decay rate and the L2 and
ISS gains. We provide feasibility guarantees for the derived
LMIs in the cases of L2 and ISS gains for large enough N
and gains. For the case of stabilization we also prove that
feasibility for N implies feasibility for N+1 (meaning that the
decay rate does not deteriorate when the observer dimension
increases). Numerical examples demonstrate the efficiency of
the presented method.

Preliminary results on stabilization of unperturbed 1D KSE
under Dirichlet boundary conditions, were presented in [33].

Notation: L2(0, 1) is the Hilbert space of square integrable
functions f : [0, 1] → R with the inner product 〈f, g〉 :=∫ 1

0
f(x)g(x)dx and induced norm ‖f‖2 := 〈f, f〉. Hk(0, 1)

is the Sobolev space of functions having k square integrable
weak derivatives, with the norm ‖f‖2Hk :=

∑k
j=0

∥∥f (j)
∥∥2

.
We denote f ∈ H1

0 (0, 1) if f ∈ H1(0, 1) and f(0) = f(1) =
0. The Euclidean norm on Rn is denoted by |·|. For P ∈
Rn×n, P > 0 means P is symmetric and positive definite.
Sub-diagonal elements of a symmetric matrix are denoted by
∗. For 0 < U ∈ Rn×n and x ∈ Rn let |x|2U := xTUx. Z+

denotes the nonnegative integers. N are the natural numbers.

II. MATHEMATICAL PRELIMINARIES

Consider the Sturm-Liouville eigenvalue problem

φ′′ + λφ = 0, x ∈ (0, 1) (1)

with one of the following boundary conditions:

(D): φ(0) = φ(1) = 0, (Ne): φ′(0) = φ′(1) = 0. (2)

These problems induce a sequence of eigenvalues λn with
corresponding eigenfunctions φDn and φNen given by

(D): λn = n2π2, φDn (x) =
√

2 sin
(√
λnx

)
, n ∈ N,

(Ne): λ0 = 0, λn = n2π2,

φNe0 (x) ≡ 1, φNen (x) =
√

2 cos
(√
λnx

)
, n ∈ N.

(3)
The eigenfunctions from a complete and orthonormal family
in L2(0, 1).

Lemma 1: [22] Let h L2

=
∑∞
n=1 hnφ

D
n . Then h ∈ H1

0 (0, 1)
if and only if

∑∞
n=1 λnh

2
n <∞. Moreover,

‖h′‖2 =
∞∑
n=1

λnh
2
n. (4)

Lemma 2: [34] Let h L2

=
∑∞
n=0 hnφ

Ne
n . Then h ∈ H2(0, 1)

with h′(0) = h′(1) = 0 if and only if
∑∞
n=1 λ

2
nh

2
n < ∞.

Moreover,

‖h′′‖2 =
∞∑
n=1

λ2
nh

2
n, ‖h′‖

2
=
∞∑
n=1

λnh
2
n. (5)

Lemma 3: (Sobolev’s inequality [13]) Let h ∈ H1(0, 1).
Then, for all Γ > 0 :

maxx∈[0,1] |h(x)|2 ≤ (1 + Γ) ‖h‖2 + Γ−1 ‖h′‖2 .

III. CONTROL WITH GUARANTEED L2 AND ISS GAINS

A. Dirichlet actuation and in-domain point measurement
In this section we consider the perturbed PDE

zt(x, t) = −zxxxx(x, t)− νzxx(x, t) + d(x, t), (6)

with (mixed) Dirichlet boundary conditions

z(0, t) = u(t), z(1, t) = 0, zxx(0, t) = zxx(1, t) = 0
(7)

and in-domain point measurement

y(t) = z(x∗, t) + σ(t), x∗ ∈ (0, 1). (8)

Here, we consider disturbances satisfying

d ∈ L2((0,∞);L2(0, 1)) ∩H1
loc((0,∞);L2(0, 1)),

σ ∈ L2(0,∞) ∩H1
loc(0,∞).

(9)

Introducting the change of variables

w(x, t) = z(x, t)− r(x)u(t), r(x) := 1− x (10)

we obtain the equivalent ODE-PDE system

u̇(t) = v(t),
wt(x, t) = −wxxxx(x, t)− νwxx(x, t)− r(x)v(t) + d(x, t)

(11)
with boundary conditions

w(0, t) = w(1, t) = wxx(0, t) = wxx(1, t) = 0. (12)

and measurement

y(t) = w(x∗, t) + r(x∗)u(t) + σ(t). (13)

Henceforth, we treat u(t) as a state variable and v(t) as the
control input, where we choose u(0) = 0. Given v(t), u(t)
can be computed by integrating u̇(t) = v(t).

We present the solution to (11) as

w(x, t) =
∑∞
n=1 wn(t)φDn (x), wn(t) =

〈
w(·, t), φDn

〉
(14)

where
{
φDn
}
n∈N are defined in (3). Differentiating under the

integral, integrating by parts and using (1) and (2) we have

ẇn(t) = (−λ2
n + νλn)wn(t) + bnv(t) + dn(t),

wn(0) =
〈
w(·, 0), φDn

〉
, dn(t) =

〈
d(·, t), φDn

〉
,

bn = −
〈
r, φDn

〉
= −

√
2
λn

(15)

Note that {bn}∞n=1 satisfy bn 6= 0, n ≥ 1 and
∞∑

n=N+1

b2n ≤
2

π2

∫ ∞
N

dx

x2
=

2

π2N
, N ≥ 1. (16)
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Let δ > 0 be a desired decay rate. Since limn→∞ λn =∞,
there exists some N0 ∈ N such that

−λ2
n + νλn < −δ, n > N0. (17)

Let N ∈ N, N0 ≤ N . N0 will define the dimension of the
controller, whereas N will be the dimension of the observer.
We construct a finite-dimensional observer of the form

ŵ(x, t) =
N∑
n=1

ŵn(t)φDn (x), (18)

where ŵn(t) satisfy the ODEs

˙̂wn(t) = (−λ2
n + νλn)ŵn(t) + bnv(t)

−ln [ŵ(x∗, t) + r(x∗)u(t)− y(t)] ,
ŵn(0) = 0, 1 ≤ n ≤ N,

(19)

with y(t) in (13) and scalar observer gains ln, 1 ≤ n ≤ N .
Denote

A0 = diag
{
−λ2

i + νλi
}N0

i=1
, Ã0 = diag {0, A0} ,

C0 = [c1, . . . , cN0 ] , B̃0 = [1, b1, . . . , bN0 ]
T
.

(20)

Assumption 1: The point x∗ ∈ (0, 1) satisfies

cn = φDn (x∗) =
√

2 sin
(√

λnx∗

)
6= 0, 1 ≤ n ≤ N0. (21)

Assumption 1 is satisfied for N0 = 1 by any x∗ ∈ (0, 1),
whereas for N0 > 1 the corresponding x∗ is subject to the
following condition: x∗ 6= k/n < 1, k = 1, ..., N0 − 1, n =
2, ..., N0. E.g, for N0 = 2 the condition is x∗ 6= 1

2 .
Assumption 2: Assume

ν /∈
{
π2(n2 +m2) ; n,m ≥ 0 n 6= m

}
∪ {0} .

Under Assumptions 1 and 2 the pair (A0, C0) is observable,
by the Hautus lemma. We choose L0 = [l1, . . . , lN0 ]

T which
satisfies the Lyapunov inequality

Po(A0 − L0C0) + (A0 − L0C0)TPo < −2δPo (22)

with 0 < Po ∈ RN0×N0 . Furthermore, let ln = 0 for n > N0.
Similarly, it can be verified that (Ã0, B̃0) is controllable, by
the Hautus lemma (see also Lemma 6 in [8], where the Kalman
rank condition is used). Let K0 ∈ R1×(N0+1) satisfy

Pc(Ã0 + B̃0K0) + (Ã0 + B̃0K0)TPc < −2δPc, (23)

with 0 < Pc ∈ R(N0+1)×(N0+1). We propose a (N0 + 1)-
dimensional controller of the form

v(t) = K0ŵ
N0(t), ŵN0(t) = [u(t), ŵ1(t), . . . , ŵN0(t)]

T

(24)
which is based on the N -dimensional observer (19). Then the
closed-loop ODE-PDE system is given by (11), (12), (19) with
controller of the form (24).

Well-posedness of the closed-loop system (11), (19) with
y(t) defined in (13) and controller (24), under the assumption
(9) on the disturbances d(x, t) and σ(t) follows from Theorem
6.3.3 in [35]. In partiucalr, let

G =
{
h ∈ H4(0, 1)|h(0) = h(1) = h′′(0) = h′′(1) = 0

}
.

(25)
Then, if z(·, 0) = w(·, 0) ∈ G there exists a unique classical

solution satisfying

ξ ∈ C([0,∞);G) ∩ C1([0,∞);L2(0, 1)),
ξ(t) = col {w(·, t), u(t), ŵ1(t), . . . , ŵN (t)} (26)

such that ξ(t) ∈ G × RN+1, t > 0. The details are omitted
due to space constraints (see [34] and [33]).

Let γ > 0 and ρw, ρu ≥ 0 be scalars. We introduce the
performance index

J(ρw,ρu,γ)(∞) =
∫∞

0

[
ρ2
w ‖w(·, t)‖2L2 + ρ2

uu
2(t)

−γ2
(
‖d(·, t)‖2L2 + σ2(t)

)]
dt.

(27)

The closed-loop ODE-PDE system (11), (12), (19), (24) has
L2-gain less or equal to γ if J(ρw,ρu,γ)(∞) ≤ 0 for all
disturbances d(x, t) and σ(t) satisfying (9) along the solutions
of the closed-loop system starting from w(·, 0) ≡ 0. We will
find conditions that guarantee that the following inequality
holds along the closed-loop system:

V̇ + 2δV +W ≤ 0,

W = ρ2
w ‖w(·, t)‖2L2 + ρ2

uu
2(t)− γ2

(
‖d(·, t)‖2L2 + σ2(t)

)
(28)

with V (t) given by

V (t) = |XN (t)|2P +

∞∑
n=N+1

λnw
2
n(t) (29)

and δ = 0. Indeed, integration of (28) in t from 0 to ∞ leads
to J(ρw,ρu,γ)(∞) ≤ 0 for w(·, 0) ≡ 0. For the case δ > 0 and
ρw = ρu = 0, (28) and the comparison principle imply ISS
of the closed-loop system for all T > 0:

V (T ) ≤ e−2δTV (0) + γ2

2δ sup0≤t≤T

[
‖d(·, t)‖2L2 + σ2(t)

]
.

(30)
Note that by Lemma 1, Wirtinger’s inequality (see [36], Sec.
3.10 ) and Parseval’s equality, the following holds for t ≥ 0

V (t) ≥ σmin(P ) |u(t)|2

+ π2

4+π2 min
(
σmin(P )

2λN
, 1
)
‖w(·, t)‖2H1 ,

V (0) ≤M0 ‖wx(·, 0)‖2L2 ≤M0 ‖w(·, 0)‖2H1

(31)

for some M0 > 0. Thus, (30) yields for some M > M > 0:

M
[
|u(t)|2 + ‖w(·, t)‖2H1

]
≤Me−2δT ‖w(·, 0)‖2H1

+γ2

2δ sup0≤t≤T

[
‖d(·, t)‖2L2 + σ2(t)

]
∀T > 0,

(32)

leading to the upper bound γ√
2δ

on the ISS gain.

Remark 1: The performance index (27), expressed in terms
of w(x, t) and u(t), is considered for simplicity. Note that for
a performance index

J̄(ρ̄z,ρ̄u,γ)(∞) =
∫∞

0

[
ρ̄2
z ‖z(·, t)‖

2
L2 + ρ̄2

uu
2(t)

−γ2
(
‖d(·, t)‖2L2 + σ2(t)

)]
dt,

(33)

where γ > 0 and ρ̄z, ρ̄u ≥ 0, the triangle and Young
inequalities imply J̄(ρ̄z,ρ̄u,γ)(∞) ≤ J(√

2ρ̄z,
√

2
3 ρ̄

2
z+ρ̄2u,γ

)(∞).

Let
en(t) = wn(t)− ŵn(t), 1 ≤ n ≤ N (34)
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be the estimation error. By (14) and (18), the innovation term
ŵ(x∗, t) + r(x∗)u(t)− y(t) in (19) can be presented as

ŷ(t)− y(t) = −
∑N
n=1 cnen(t)− ζN (t)− σ(t),

ζN (t) = w(x∗, t)−
∑N
n=1 wn(t)φDn (x∗)

=
∫ x∗

0

[
wx(x, t)−

∑N
n=1 wn(t) d

dxφ
D
n (x)

]
dx.

(35)

Note that the Young inequality implies

ζ2
N (t) ≤

(∫ x∗
0

∣∣∣wx(x, t)−
∑N
n=1 wn(t) d

dxφ
D
n (x)

∣∣∣ dx)2

≤
∥∥∥wx(·, t)−

∑N
n=1 wn(t) d

dxφ
D
n (·)

∥∥∥2 (4)
=
∑∞
n=N+1 λnw

2
n(t).

(36)
Then the error equations have the form

ėn(t) = (−λ2
n + νλn)en(t) + dn(t)

−ln
(∑N

n=1 cnen(t) + ζN (t) + σ(t)
)
, 1 ≤ n ≤ N0,

ėn(t) = (−λ2
n + νλn)en(t) + dn(t), N0 + 1 ≤ n ≤ N.

(37)
Denote

XN (t) = col
{
ŵN0(t), eN0(t), ŵN−N0(t), eN−N0(t)

}
,

eN0(t) = col {ei(t)}N0

i=1 , e
N−N0(t) = col {ei(t)}Ni=N0+1 ,

ŵN−N0(t) = col {ŵi(t)}Ni=N0+1 , K̃0 =
[
K0, 01×(2N−N0)

]
,

F =

[
Ã0 + B̃0K0 L̃0C0 0 L̃0C1

0 A0 − L0C0 0 −L0C1

B1K0 0 A1 0
0 0 0 A1

]
,

L̃0 = col {0, L0} ∈ RN0+1, L = col
{
L̃0,−L0, 0

}
(38)

Using (15), (19), (24), (37) and (38), we present the closed-
loop system as

ẊN (t) = FXN (t) + LζN (t) + Lσ(t) + dN (t), t ≥ 0,

ẇn(t) = (−λ2
n + νλn)wn(t) + bnK̃0XN (t) + dn(t), n > N.

(39)
Here

dN (t) = col
{

0, dN0(t), 0, dN−N0(t)
}
,

dN0(t) = col {di(t)}N0

i=1 , d
N−N0(t) = col {di(t)}Ni=N0+1 .

Recall that we are interested in determining conditions which
guarantee (28), with V (t) given in (29). By Parseval’s equality
W can be presented as

W = |XN (t)|2Ξ + ρ2
w

∑∞
n=N+1 w

2
n(t)

−γ2
∣∣dN (t)

∣∣2 − γ2
∑∞
n=N+1 d

2
n(t)− γ2σ2(t),

Ξ1 =

[
ρu 0 0 0 0
0 ρwIN0 ρwIN0 0 0
0 0 0 ρwIN−N0

ρwIN−N0

]
, Ξ = ΞT1 Ξ1.

(40)
Differentiating V (t) along the solution to (39) we have

V̇ + 2δV = XT
N (t)

[
PF + FTP + 2δP

]
XN (t)

+2XT
N (t)PL [ζN (t) + σ(t)] + 2XT

N (t)PdN (t)
+2
∑∞
n=N+1(−λ3

n + νλ2
n + δλn)w2

n(t)

+2
∑∞
n=N+1 λnwn(t)

[
bnK̃0XN (t) + dn(t)

]
.

(41)

Furthermore, (16) and the Young inequality imply∑∞
n=N+1 2λnwn(t)

[
bnK̃0XN (t) + dn(t)

]
(16)
≤ 2α

π2N

∣∣∣K̃0XN (t)
∣∣∣2 + α+α1

αα1

∑∞
n=N+1 λ

2
nw

2
n(t)

+α1

∑∞
n=N+1 d

2
n(t).

(42)

where α, α1 > 0. By using (40), (41) and (42) we find

V̇ + 2δV +W ≤ XT
N (t)

[
PF + FTP + 2δP + 2α

π2N K̃
T
0 K̃0

+Ξ]XN (t) + 2XT
N (t)PL [ζN (t) + σ(t)] + 2XT

N (t)PdN (t)

−γ2
[
σ2(t) +

∣∣dN (t)
∣∣2]+

(
α1 − γ2

)∑∞
n=N+1 d

2
n(t)

+2
∑∞
n=N+1

(
−θ(1)

n + λn
2α + λn

2α1

)
λnw

2
n(t),

(43)
where

θ(1)
n = λ2

n − νλn − δ −
ρ2
w

2λn
, n > N. (44)

By monotonicity of {λn}∞n=1, we have

−θ(1)
n + λn

2α + λn
2α1
≤ −θ(1)

N+1 + λN+1

2α + λN+1

2α1
≤ 0,

implying due to (36)

2
∑∞
n=N+1(−θ(1)

n + λn
2α + λn

2α1
)λnw

2
n(t)

≤ −2
(
θ

(1)
N+1 −

λN+1

2α − λN+1

2α1

)
ζ2
N (t).

(45)

Let η(t) = col
{
XN (t), ζN (t), dN (t), σ(t)

}
and α1 = γ2.

Then, (43) and (45) imply

V̇ + 2δV +W ≤ ηT (t)Ψ
(1)
N η(t) ≤ 0

provided

Ψ
(1)
N =

Φ
(1)
N + Ξ PL
∗ −2

(
θ
(1)
N+1 −

λN+1
2α −

λN+1

2γ2

) P PL
0 0

∗ −γ2I

 < 0,

Φ
(1)
N = PF + FTP + 2δP + 2α

π2N K̃
T
0 K̃0.

(46)
Applying Schur complement, we find that (46) holds iff

Φ
(1)
N PL
∗ −2θ

(1)
N+1

0 0
1 1

P PL
0 0

ΞT1
0

∗ − diag
(

α
λN+1

, γ2

λN+1

)
0 0

∗ ∗ −γ2I 0
∗ ∗ ∗ −I

 < 0. (47)

Note that if (47) holds for δ = 0, then we obtain internal
exponential stability of the closed-loop system with a small
enough decay rate δ0 > 0. Summarizing, we have:

Theorem 1: Consider the system (11) with boundary condi-
tions (7), perturbed in-domain measurement (13) and control
law (24), (19). Here, d(x, t) and σ(t) are disturbances sat-
isfying (9). Let δ = 0, N0 ∈ N satisfy (17) and N ∈ N
satisfy N0 ≤ N . Let L0 and K0 be obtained using (22)
and (23), respectively. Given γ > 0, let there exist 0 <
P ∈ R(2N+1)×(2N+1) and scalar α > 0 such that (47) holds
with θ

(1)
n and Ξ1 given in (40). Then the above system is

internally exponentially stable and satisfies J(ρw,ρu,γ)(∞) ≤ 0
for w(·, 0) ≡ 0. Given ρw, ρu > 0, (47) is feasible for N and
γ large enough.

Proof: We show that (47) is always feasible for large
enough N and γ > 0 . Assume, without loss of generality,
γ ≥ 1. First, consider Ξ = ΞT1 Ξ1 with Ξ1 given in (40).
Since Ξ is symmetric, the equality |Ξ| = max|g|≤1

∣∣gTΞg
∣∣ =

max|g|≤1 |Ξ1g|2 implies |Ξ| = |Ξ1|2 ≤ max
(
ρ2
u, 2ρ

2
w

)
is

independent of N . Thus, there exists 0 < µ ∈ R such that

−µI + Ξ < 0, ∀N ∈ N. (48)
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Next, note that (16) and (21) imply {cn}∞n=1 ∈ l∞(N) and
{bn}∞n=1 ∈ l2(N), respectively. By arguments of Theorem 3.2
in [22], there exist some κ > 0 and Λ > 0, independent of N ,
such that

∣∣e(F+δI)t
∣∣ ≤ Λ ·

√
N
(
1 + t+ t2

)
e−κt for all t > 0.

Therefore, P ∈ R(2N+1)×(2N+1) which solves

P (F + δI) + (F + δI)T = −µI (49)

satisfies |P | ≤ Λ1 · N , where 0 < Λ1 ∈ R is independent of
N . Substituting (49), λN+1 = π2 (N + 1)

2 and α = 1 into
the top left block of (46) we first show[
−µI + Ξ + 2

π2N
K̃T

0 K̃0 PL
∗ −2

(
θ
(1)
N+1 −

λN+1
2 −

λN+1

2γ2

)] < 0 (50)

holds for large enough N . From (48), γ ≥ 1 and λN+1 ≈
(N + 1)

2, the diagonal blocks are negative provided N is large
enough. Applying Schur complement (50) holds iff

−µI + Ξ + 2
π2N K̃

T
0 K̃0

+ 1

2
(
θ
(1)
N+1−

λN+1
2 −

λN+1

2γ2

)PLLTP < 0. (51)

Note that θ(1)
n ≈ n4 for large n, whereas

∣∣∣K̃0

∣∣∣ and |L| are
independent of N . Taking into account |P | ≤ Λ1 · N and
increasing N , (50) holds for large enough N . Finally, consider
(46) with N large enough for (50) to hold. Applying Schur
complement and choosing γ large enough, (46) holds.

Remark 2: Let (47) hold with δ > 0 and ρw = ρu = 0 (i.e
Ξ1 = 0). Then the closed-loop system (11), (7), (24), (19) is
ISS and its solutions satisfy (30) and (32).

Next, we consider the case of ISS with d(x, t) ≡ 0 (i.e.,
only the measurement disturbance σ(t) is present in (8) ) and
show that feasibility of LMI (47) with some N implies the
feasibility of LMI (47) with N + 1.

Proposition 1: Consider ISS with d(x, t) ≡ 0. Let δ > 0,
N0 ∈ N satisfy (17) and N ∈ N satisfy N0 ≤ N . Let the gains
L0 and K0 be obtained using (22) and (23). Assume that for
some 0 < P ∈ R(2N+1)×(2N+1) and scalars γ, α, α1 > 0, the
LMI (47) holds with θ

(1)
n and Ξ1 given in (40) respectively.

Then, there exists some 0 < P1 ∈ R(2N+3)×(2N+3) such
that (47) holds with N and P replaced by N + 1 and P1,
respectively, and the same γ, α, α1 > 0.

Proof: Let d(x, t) ≡ 0. Recall that for ISS we have
ρw = ρu = 0, which implies Ξ1 = 0 in (40). Recall
ŵN0(t), eN0(t), ŵN−N0(t), eN−N0(t) and XN (t) defined in
(24) and (38). For N + 1, we rewrite XN+1(t) as XN (t)
with the remaining eN+1(t), ŵN+1(t) written in the end:[
XN (t)
eN+1(t)
ŵN+1(t)

]
= Q1XN+1(t), where Q1 is a permutation ma-

trices. Let P1 = QT1 diag {P, q1, q2}Q1, where q1, q2 > 0 are
scalars. Substitution of P1, α > 0, γ > 0 and ρu = ρw = 0
into (46) results in the following equivalent LMI for η(t) =
col {XN (t), ζN+1(t), σ(t), eN+1(t), ŵN+1(t)}:

Φ
(1)
N+1 PL
∗ −2

(
θ
(1)
N+2 −

λN+2
2α

) PL
0

0 q2K̃
T
0

0 0

∗ −γ2I 0 0

∗ ∗ Π1

 < 0,

Π1 = −2θ
(1)
N+1 diag {q1, q2} ,

Φ
(1)
N+1 = PF + FTP + 2δP + 2α

π2(N+1)K̃
T
0 K̃0.

(52)

In particular, note that Π1 < 0, since θ(1)
N+1 < 0 by assumption.

Applying Schur complement and taking q2 → 0+ small and
q1 →∞ large, we have that feasibility of LMI (47) with some
N implies the feasibility of LMI (47) with N + 1.

Remark 3: For the case of ISS and L2-gain with nonzero
d(x, t), there is a coupling of eN+1(t) and dN+1(t) in the
ODEs (37). Therefore, eN+1(t) is no longer exponentially
decaying. Furthermore, coupling of XN (t) and eN+1(t) ap-
pears in the innovation term (35). In these cases, the proof that
feasibility for N implies feasibility for N+1 remains unclear.

B. Neumann actuation and collocated measurement

In this section we consider the perturbed PDE (6), with
disturbances d(x, t) and σ(t) satisfying (9), (mixed) Neumann
boundary conditions

zx(0, t) = u(t), zx(1, t) = zxxx(0, t) = zxxx(1, t) = 0.
(53)

and collocated boundary measurement

y(t) = z(0, t) + σ(t). (54)

By change of variables

w(x, t) = z(x, t)− r(x)u(t), r(x) := x− x2

2
(55)

we obtain the ODE-PDE system

u̇(t) = v(t),
wt(x, t) = −wxxxx(x, t)− νwxx(x, t)

+νu(t)− r(x)v(t) + d(x, t)
(56)

with boundary conditions

wx(0, t) = wx(1, t) = wxxx(0, t) = wxxx(1, t) = 0. (57)

and measurement

y(t) = w(0, t) + σ(t). (58)

We present the solution to (56) as

w(x, t) =
∑∞
n=0 wn(t)φNen (x), wn(t) =

〈
w(·, t), φNen

〉
,

(59)
with

{
φNen

}∞
n=0

given in (3). Differentiating under the integral
sign, integrating by parts and using (1) and (2) we have

ẇ0(t) = νu(t) + b0v(t) + d0(t),
ẇn(t) = (−λ2

n + νλn)wn(t) + bnv(t) + dn(t), n ∈ N
wn(0) =

〈
w(·, 0), φNen

〉
, bn =

√
2

λn
, n ∈ Z+.

(60)
Note that in this case {bn}∞n=0 satisfy

∞∑
n=N+1

b2n ≤
2

π4

∫ ∞
N

1

x4
dx ≤ 2

3π4N3
, N ≥ 1. (61)

Let δ ≥ 0, N0 ∈ Z+ satisfy (17) and N ∈ Z+, N0 ≤ N .
Let scalars γ > 0 and ρw, ρu ≥ 0. Recall the performance
index given by (27). We want to find a control law v(t) which
guarantees (28), where V (t) is given by (29).

We construct a finite-dimensional observer of the form (18),
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with summation starting from n = 0. Here ŵn(t) satisfy

˙̂w0(t) = νu(t) + b0v(t)− l0 [ŵ(0, t)− y(t)] ,
˙̂wn(t) = (−λ2

n + νλn)ŵn(t) + bnv(t)
−ln [ŵ(0, t)− y(t)] , n ∈ N,

ŵn(0) = 0, 0 ≤ n ≤ N.

(62)

with y(t) in (58) and scalar observer gains ln, 0 ≤ n ≤ N .
Recall A0 and Ã0 defined in (20) and denote

Ã
(1)
0 = diag

([
0 0
ν 0

]
, A0

)
∈ R(N0+2)×(N0+2),

L
(1)
0 = [l0, . . . , lN0 ]

T
, L̃

(1)
0 = col

{
0, L

(1)
0

}
∈ RN0+2,

C
(1)
0 = [c0, . . . , cN0 ] , B̃

(1)
0 = [1, b0, . . . , bN0

]
T
,

c0 = 1, cn = φNen (0) =
√

2, n ≥ 1.

(63)

Let Assumptions 1 and 2 hold. Then, the observer and
controller gains L(1)

0 and K0 can be chosen to satisfy

Po(Ã0 − L(1)
0 C

(1)
0 ) + (Ã0 − L(1)

0 C
(1)
0 )TPo < −2δPo,

Pc(Ã
(1)
0 + B̃

(1)
0 K0) + (Ã

(1)
0 + B̃

(1)
0 K0)TPc < −2δPc,

(64)
with 0 < Po ∈ R(N0+1)×(N0+1) and 0 < Pc ∈
R(N0+2)×(N0+2). Let ln = 0, n > N0. We propose a (N0+2)-
dimensional controller of the form

v(t) = K0ŵ
N0(t), ŵN0(t) = [u(t), ŵ0(t), . . . , ŵN0

(t)]
T
,
(65)

which is based on the N + 1-dimensional observer (62).
Using the estimation error en(t) = wn(t)−ŵn(t), 0 ≤ n ≤

N, (59) and (18), the innovation term ŵ(0, t) − y(t) in (62)
can be presented as (35) (with summation starting at n = 0),
where ζN (t) is now given by

ζN (t) = w(0, t)−
∑N
n=0 wn(t)φNen (0). (66)

To bound ζN (t), let g(x, t) := w(x, t)−
∑N
n=0 wn(t)φNen (x)

and Γ > 0. By Sobolev’s inequality

ζ2
N (t) ≤ (1 + Γ) ‖g(·, t)‖2 + Γ−1 ‖gx(·, t)‖2 . (67)

By (1), (2) and (5)

ζ2
N (t) ≤

∞∑
n=N+1

µnw
2
n(t), µn = 1 + Γ +

1

Γ
λn. (68)

Then the error equations have the form

ė0(t) = −l0
(∑N

n=0 cnen(t) + ζN (t) + σ(t)
)

+ d0(t),

ėn(t) = (−λ2
n + νλn)en(t) + dn(t)

−ln
(∑N

n=0 cnen(t) + ζN (t) + σ(t)
)
, 1 ≤ n ≤ N0,

ėn(t) = (−λ2
n + νλn)en(t) + dn(t), N0 + 1 ≤ n ≤ N.

(69)
Let

eN0(t) = [e0(t), . . . , eN0
(t)]

T
, K̃0 =

[
K0, 0

]
∈ R1×2N+3

L(1) = col
{
L̃

(1)
0 ,−L(1)

0 , 0
}
∈ R2N+3,

F (1) =

Ã(1)
0 + B̃

(1)
0 K0 L̃

(1)
0 C

(1)
0 0 L̃

(1)
0 C1

0 Ã0 − L(1)
0 C

(1)
0 0 −L(1)

0 C1

B1K0 0 A1 0
0 0 0 A1

 .
(70)

Using (38), (60), (62), (65), (69) and (70) we arrive at the
closed-loop system

ẊN (t) = F (1)XN (t) + L(1)ζN (t) + L(1)σ(t) + dN (t),

ẇn(t) = (−λ2
n + νλn)wn(t) + bnK̃0XN (t) + dn(t), n > N.

(71)

We derive conditions which guarantee (28), with V (t) in
(29). Differentiation of V (t) along the solution to (71) gives

V̇ + 2δV = XT
N (t)

[
PF (1) +

(
F (1)

)T
P + 2δP

]
XN (t)

+2XT
N (t)PL(1) [ζN (t) + σ(t)] + 2XT

N (t)PdN (t)
+2
∑∞
n=N+1(−λ3

n + νλ2
n + δλn)w2

n(t)

+2
∑∞
n=N+1 λnwn(t)

[
bnK̃0XN (t) + dn(t)

]
.

(72)
By the Young inequality and bn given in (60), we have that∑∞

n=N+1 2λnwn(t)
[
bnK̃0XN (t) + dn(t)

]
(16)
≤ 2α

π2N

∣∣∣K̃0XN (t)
∣∣∣2 +

∑∞
n=N+1

(
λn
α +

λ2
n

α1

)
w2
n(t)

+α1

∑∞
n=N+1 d

2
n(t).

(73)

holds with α, α1 > 0. By (40), (72) and (73) we find

V̇ + 2δV +W ≤ XT
N (t)

[
PF (1) +

(
F (1)

)T
P + 2δP + Ξ

+ 2α
π2N K̃

T
0 K̃0

]
XN (t) + 2XT

N (t)P
[
L(1) (ζN (t) + σ(t)) +

dN (t)
]
− γ2

[
σ2(t) +

∣∣dN (t)
∣∣2]+

(
α1 − γ2

)∑∞
n=N+1 d

2
n(t)

+2
∑∞
n=N+1

(
−θ(2)

n + λn
2αµn

+
λ2
n

2α1µn

)
µnw

2
n(t)

(74)
where µn, n > N is defined in (68) and

θ(2)
n =

λ3
n − νλ2

n − δλn − 0.5ρ2
w

µn
, n > N. (75)

By monotonicity of λn, n ≥ 0 we have

−θ(2)
n + λn

2αµn
+

λ2
n

2α1µn

≤ −θ(2)
N+1 + λN+1

2αµN+1
+

λ2
N+1

2α1µN+1
≤ 0 ∀n > N.

Then, due to (68) we obtain

2
∑∞
n=N+1

(
−θ(2)

n + λn
2αµn

+
λ2
n

2α1µn

)
µnw

2
n(t)

≤ 2
(
−θ(2)

N+1 + λN+1

2αµN+1
+

λ2
N+1

2α1µN+1

)
ζ2
N (t).

(76)

Let η(t) = col
(
XN (t), ζN (t), dN (t), σ(t)

)
and α1 = γ2.

Then, (74) and (76) imply

V̇ + 2δV +W ≤ ηT (t)Ψ
(2)
N η(t) ≤ 0

provided

Ψ
(2)
N =

Φ
(2)
N + Ξ PL(1)

∗ −2θ
(2)
N+1 +

λN+1

(
γ2+αλN+1

)
αγ2µN+1

P PL(1)

0 0

∗ −γ2I2

 < 0,

Φ
(2)
N = PF (1) +

(
F (1)

)T
P + 2δP + 2α

π2N K̃
T
0 K̃0,

µN+1 = 1 + Γ + 1
ΓλN+1,

(77)
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By Schur complement (77) holds if and only if
Φ

(2)
N PL(1)

∗ −2θ
(2)
N+1

0 0
1 1

P PL(1)

0 0
ΞT1
0

∗ − diag

(
αµN+1
λN+1

,
γ2µN+1

λ2
N+1

)
0 0

∗ ∗ −γ2I 0
∗ ∗ ∗ −I

 < 0.

(78)
Note that if (78) holds for δ = 0 then we obtain internal
exponential stability of the closed-loop system with a small
enough decay rate δ0 > 0. Summarizing, we have:

Theorem 2: Consider the system (56) with boundary condi-
tions (57), boundary measurement (58) and control law (65).
Here, d(x, t) and σ(t) are disturbances satisfying (9). Let
δ = 0, N0 ∈ N satisfy (17) and N ∈ N satisfy N0 ≤ N .
Let L0 and K0 be obtained using (64). Given γ > 0 and
Γ > 0, let there exist 0 < P ∈ R(2N+2)×(2N+2) and a scalar
α > 0 satisfying (78) with θ

(2)
n given by (75). Then (56) is

internally exponentially stable and satisfies J(ρw,ρu,γ)(∞) ≤ 0
for w(·, 0) ≡ 0. Furthermore, given ρw, ρu > 0, the LMI (47)
is always feasible for N and γ > 0 large enough.

Remark 4: By arguments similar to Proposition 1, it can be
shown that either for d(x, t) ≡ 0 (ISS) or d(x, t) ≡ 0, σ(t) ≡
0 (H1-stabilization), feasibility of (78) with some N ≥ N0

implies feasibility of the LMI with N + 1.
Remark 5: For the unperturbed system (6) with boundary

conditions (53) and measurement (54), where d(x, t) ≡ σ(t) ≡
0, our approach can be used to prove H2-exponential stability
of the closed-loop system by considering the Lyapunov func-
tional (29) with {λn}∞n=N+1 replaced by

{
λ2
n

}∞
n=N+1

[34].

IV. EXAMPLES

Consider KSE (6) with ν = 10. This choice corresponds to
an unstable open-loop system for both Dirichlet (one unstable
mode) and Neumann (two unstable modes) actuations. Feasi-
bility of LMIs was verified using the Matlab LMI toolbox.
A. Dirichlet actuation and in-domain measurement

Consider the perturbed KSE (6) under boundary conditions
(7) and preturbed measurement (8) with x∗ = π−1. Here, the
disturbances d(x, t) and σ(t) satisfy (9). For the case of input-
to-state stabilization we choose K0 and L0 given by

K0 = [7.1415, 26.0901] , L0 = 2.3419. (79)

For the corresponding L2-gain problem we consider ρw = 0.1,
ρu = 0.2 and δ = 0. Similarly to (79), the gains K0 and L0

were found by solving (22) and (23) with strong inequality
replaced by equality and δ = δ0 = 1.5. The resulting gains
are given by

K0 = [3.0672, 15.911] , L0 = 1.501. (80)

The LMI (47) (with δ = 0 and gains (80) for L2-gain analysis
and with δ = 1 and gains (79) for ISS) is verified for N ∈
{4, 6, 8, 10, 12}. For each choice of N , we find the smallest
γ which guarantees the feasibility of the LMI. The results are
presented in Table I. Note that for ISS γ decreases as N grows,
while for L2-gain the resulting γ does not grow for larger N .

N 4 6 8 10 12
γ (ISS) 0.8 0.5 0.3 0.3 0.2
γ (L2-gain) 15 15 15 15 15

TABLE I
FEASIBILITY OF LMIS - DIRICHLET. N VS MINIMAL γ .

Next, we carry out two simulations of the closed-loop
system for the unperturbed (i.e. d(x, t) ≡ σ(t) ≡ 0) and the
perturbed case with

d(x, t) = 0.25 sin(10x+ t), σ(t) = 0.25 cos(30t). (81)

In both simulations we have N = 4 and gains given by (79).
We choose initial conditions

u(0) = 0, z(x, 0) = w(x, 0) = 25(x− x2)3, x ∈ [0, 1].
(82)

Note that w(·, 0) ∈ G, where G is defined in (25). The H1

norm of w(·, t) is approximated by truncating (4) after 60
coefficients. Then, (15) with 1 ≤ n ≤ 60 and (19) are
simulated using MATLAB with v(t) = K0ŵ

N0(t) and ŵN0(t)
in (24). The value of ζN (t) in (35) is approximated using

ζN (t) ≈
60∑
n=5

wn(t)φDn (x∗). (83)

The simulation results are presented in Figure 1. From the
simulations of exponential stability, we obtain a decay rate
1.17, which is slightly larger than the theoretical decay rate
δ = 1 found from the LMIs.
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Exponential stability
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Fig. 1. Dirichlet actuation:
‖w(·, t)‖H1 + |u(t)| vs. t
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Fig. 2. Neumann actuation: J(t)
v.s t

B. Neumann actuation and collocated measurement
Consider the perturbed KSE (6), boundary conditions (53)

and perturbed measurement (54). The disturbances again sat-
isfy (9). For the case of ISS, let K0 and L0 given by

K0 = [477.83, 32.61,−3315.44] , L0 = [−6.147, 8.101]
T
.

(84)
For L2-gain analysis we consider ρw = 0.1, ρu = 0.2 and
δ = 0. The gains K0 and L0 were found by solving (64) with
strong inequality replaced by equality and δ = δ0 = 1. The
corresponding gains are

K0 = [291.602, 13.311,−2043.3] , L0 = [−1.967, 3.741]
T
.

(85)
Let Γ = 1. The LMI (78) (with δ = 0 and gains (85) for
L2-gain analysis and with δ = 1 and gains (84) for ISS) was
verified for N ∈ {5, 7, 9, 11, 13}. For each choice of N , we
find the smallest γ which guarantees the feasibility of the LMI.
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N 5 7 9 11 13
γ (ISS) 3.6 1.7 1 0.6 0.5
γ (L2-gain) 31 31 31 31 31

TABLE II
FEASIBILITY OF LMIS - NEUMANN. N VS MINIMAL γ .

The results are presented in Table II. Also in this case, for ISS
γ decreases as N grows, whereas for L2-gain the resulting γ
does not grow for larger N .

Next, we perform a simulation for the corresponding L2-
gain with γ = 31 and N = 5. The observer and controller
gains are given by (85). The chosen disturbances are given
by (81). We choose zero initial conditions. For t ∈ [0, 3.5]
we simulate the ODEs (60), 0 ≤ n ≤ 60 and (62) with v(t)
defined in (65). The value of ζN (t) in (66) is approximated
similarly to (83). By truncating Parseval’s equality at n =
60 we approximate the value of J(ρw,ρu,γ)(t) (see (27)). The
results appear in Figure 2, confirming the theoretical analysis.
We also carry out simulations with γ less than 31 (obtained
in LMIs). Simulations show that it is possible to reduce γ to
approximately 18, while maintaining J(t) ≤ 0 for t ∈ [0, 3.5].
The latter may indicate the conservatism of the LMIs.

V. CONCLUSIONS

This paper introduced finite-dimensional observer-based
boundary controllers for linear parabolic PDEs under point
measurement via modal decomposition. The results were
presented for stabilization with guaranteed L2-gain and ISS
gain. The presented method allows for challenging finite-
dimensional observer-based control of various PDEs, and for
design in the case of delayed inputs and outputs.
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