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a b s t r a c t

Recently a constructive method was introduced for finite-dimensional observer-based control of 1D
parabolic PDEs. In this paper we present an improved method in terms of the reduced-order LMIs (that
significantly reduce the computation time) and introduce predictors to manage with larger delays.
We treat the case of a 1D heat equation under Neumann actuation and non-local measurement, that
has not been studied yet. We apply modal decomposition and prove L2 exponential stability by a
direct Lyapunov method. We provide reduced-order LMI conditions for finding the observer dimension
N and resulting decay rate. The LMI dimension does not grow with N . The LMI is always feasible
for large N , and feasibility for N implies feasibility for N + 1. For the first time we manage with
delayed implementation of the controller in the presence of fast-varying (without any constraints on
the delay-derivative) input and output delays. To manage with larger delays, we construct classical
observer-based predictors. For the known input delay, the LMIs’ dimension does not grow with N ,
whereas for unknown one the LMIs dimension grows, but it is essentially smaller than in the existing
results. A numerical example demonstrates the efficiency of our method.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Observer-based controllers for PDEs with observers in the
orm of PDEs have been constructed in Curtain (1982), Krstic
nd Smyshlyaev (2008), Lasiecka and Triggiani (2000) (to name a
ew). Very attractive for practical applications finite-dimensional
bserver-based controllers for parabolic systems were studied
y using the modal decomposition approach in Balas
1988), Christofides (2001), Curtain (1982), Ghantasala and El-
arra (2012), Harkort and Deutscher (2011). The recent papers
Katz & Fridman, 2020a, 2020b, 2021) on constructive LMI-based
inite-dimensional observer-based control have introduced
-dimensional observers, where the observer gains (and the con-
roller gains) are based only on the N0 ≤ N unstable modes. How-
ver, the stability analysis was based on the full-order closed-loop
ystems. The latter led to higher-order LMIs whose dimension
rows with N and complicated proofs of their feasibility.

✩ Supported by Israel Science Foundation (grant 673/19), the C. and H.
Manderman Chair at Tel Aviv University, Israel and by the Y. and C. Weinstein
Research Institute for Signal Processing, Israel. This paper was presented at
the 2021 European Control Conference, June 29-July 2, 2021, Rotterdam, The
Netherlands. This paper was recommended for publication in revised form by
Associate Editor Fouad Giri under the direction of Editor Miroslav Krstic.
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E. Fridman).
ttps://doi.org/10.1016/j.automatica.2022.110341
005-1098/© 2022 Elsevier Ltd. All rights reserved.
Delayed and/or sampled-data finite-dimensional controllers
were designed in Fridman and Blighovsky (2012) for distributed
static output-feedback control and in Espitia, Karafyllis, and Krstic
(2021), Karafyllis and Krstic (2018) for boundary state-feedback
control. Delayed implementation of finite-dimensional observer-
based controllers for the 1D heat equation was presented in Katz
and Fridman (2021a). In the case of Dirichlet actuation considered
in Katz and Fridman (2021a), the results were not applicable to
the case where both input and output delays are fast-varying
(without any constraints on the time-derivative that correspond
e.g. to sampled-data and network-based control). For boundary
control in the presence of fast-varying input and output delays
only infinite-dimensional PDE observers have been suggested till
now (Katz, Fridman, & Selivanov, 2021).

Large input delays for PDEs can be compensated by classical
predictors (Krstic, 2009). Predictor-based controllers for ODEs
that compensated an arbitrary large constant part of a delay were
suggested in Karafyllis and Krstic (2017), Mazenc and Normand-
Cyrot (2013), Selivanov and Fridman (2016) and extended to
state-feedback boundary control of parabolic PDEs in Lhachemi,
Prieur, and Shorten (2019), Prieur and Trélat (2018). For coupled
systems of ODEs, predictors may enlarge the constant part of the
delay which preserves stability, but cannot manage with arbitrary
large constant delays due to coupling (Liu, Sun, & Krstic, 2018).
However, the finite-dimensional observer-based predictors have
not been constructed yet for PDEs.
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In the present paper, we introduce finite-dimensional
observer-based controllers for the 1D heat equation under Neu-
mann actuation and non-local measurement. We apply modal de-
composition to the original system (without dynamic extension)
and prove L2 exponential stability of the closed-loop system by a
direct Lyapunov method. The paper contribution to challenging
finite-dimensional observer-based control can be summarized as
follows:

(1) The paper introduces reduced-order closed-loop system that
reveals the singularly perturbed structure of the system,
leads to reduced-order LMIs, trivializes the LMIs feasibility
proof and the fact that their feasibility for the observer
dimension N implies feasibility for N + 1. In the example,
the feasibility of the reduced-order LMIs for the delayed
case can be easily verified for N = 30, whereas in Katz and
Fridman (2021a) the corresponding conditions could not be
verified for N = 9. Note that larger N enlarges delays that
preserve the stability.

(2) For the first time in the case of boundary control, the re-
sults are applicable to fast-varying input and output delays.
This is because the proportional controller under Neumann
actuation and non-local measurement leads to L2 conver-
gence. For briefness, our results are presented for differ-
entiable delays. However, via the time-delay approach to
networked control (Fridman, 2014), the same LMI condi-
tions are applicable to networked control implementation
via a zero-order-hold device, under sampled-data delayed
measurements.

(3) The first finite-dimensional observer-based predictor is con-
structed to compensate the constant part of input fast-
varying delay, and this is in the presence of the small
output fast-varying delay. We present the classical pre-
dictors using the reduction approach (Artstein, 1982). We
predict the future state of the observer, whereas the infinite
dimensional part depends on the uncompensated large
delay. We consider the case of either known or unknown
input delay. For the known input delay, the LMIs dimension
does not grow with N , whereas for the unknown one it
grows, but is essentially smaller than in Katz and Fridman
(2021a). An example demonstrates the efficiency of the
method and shows that predictors allow for larger delays
which preserve the stability.

Our new method can be applied to other classes of parabolic
PDEs (see Remark 2.1). In the conference version of the pa-
per (Katz, Basre, & Fridman, 2021a) predictors were not consid-
ered.

Notations and preliminaries: L2(0, 1) is the Hilbert space of
Lebesgue measurable and square integrable functions f : [0, 1] →

R with inner product ⟨f , g⟩ :=
∫ 1
0 f (x)g(x)dx and norm ∥f ∥2

:=

⟨f , f ⟩. Hk(0, 1) is the Sobolev space of functions f : [0, 1] → R
having k square integrable weak derivative, with norm ∥f ∥2

Hk :=∑k
j=0

 djf
dxj

2
. The Euclidean norm on Rn will be denoted by |·|.

or P ∈ Rn×n, the notation P > 0 means that P is symmetric
nd positive definite. The sub-diagonal elements of a symmetric
atrix are denoted by ∗. For U ∈ Rn×n, U > 0 and X ∈ Rn we

denote |X |
2
U = XTUX . We denote by Z+ the set of nonnegative

integers.
Recall that the Sturm–Liouville eigenvalue problem

φ′′
+ λφ = 0, x ∈ [0, 1] ; φ′(0) = φ′(1) = 0, (1.1)

nduces a sequence of eigenvalues λn = n2π2, n ≥ 0 with
orresponding eigenfunctions

√ (√ )
(1.2)
φ0(x) = 1, φn(x) = 2 cos λnx , n ≥ 1.

2

Moreover, the eigenfunctions form a complete orthonormal sys-

tem in L2(0, 1). Given N ∈ Z+ and h ∈ L2(0, 1) satisfying h L2
=∑

∞

n=0 hnφn we will use the notation ∥h∥2
N = ∥h∥2

−
∑N

n=0 h
2
n =∑

∞

n=N+1 h
2
n.

2. Non-delayed L2-stabilization

Consider the reaction–diffusion system

zt (x, t) = zxx(x, t) + qz(x, t), zx(0, t) = 0, zx(1, t) = u(t) (2.1)

where t ≥ 0, x ∈ [0, 1], z(x, t) ∈ R and q ∈ R is the reaction
coefficient. We consider Neumann actuation with a control input
u(t) and non-local measurement of the form

y(t) = ⟨c, z(·, t)⟩ , c ∈ L2(0, 1). (2.2)

Below, we prove the existence and uniqueness of a classical
solution to (2.1) (see proof after (2.14)). Therefore, we can present
the solution as

z(x, t) L2
=

∞∑
n=0

zn(t)φn(x), zn(t) = ⟨z(·, t), φn⟩ . (2.3)

with φn(t), n ∈ Z+ given in (1.2) (see e.g Christofides (2001),
Karafyllis and Krstic (2018)). Differentiating zn(t) and substitut-
ing zt = zxx + qz we have

żn(t)=
∫ 1
0 zt (x, t)φn(x)dx=

∫ 1
0 zxx(x, t)φn(x)dx + qzn(t).

Integrating by parts twice and using the boundary conditions for
z and φn we find∫ 1

0 zxx(x, t)φn(x)dx = −λnzn(t) + φn(1)u(t)

which leads to
żn(t) = (−λn + q)zn(t) + bnu(t), t ≥ 0,

b0 = 1, bn = (−1)n
√
2, n ∈ Z+.

(2.4)

In particular, note that

bn ̸= 0, n ∈ Z+ (2.5)

and for N ≥ 0 the following holds:∑
∞

n=N+1 b
2
nλ

−1
n =

2
π2

∑
∞

n=N+1
1
n2

≤
2

π2N
. (2.6)

et δ > 0 be a desired decay rate. Since limn→∞ λn = ∞, there
xists some N0 ∈ Z+ such that

− λn + q < −δ, n > N0. (2.7)

Let N ≥ N0+1, where N will define the dimension of the observer,
whereas N0 will be the dimension of the controller. We construct
a N-dimensional observer of the form

ẑ(x, t) :=

N∑
n=0

ẑn(t)φn(x) (2.8)

where ẑn(t) satisfy the ODEs for t ≥ 0
˙̂zn(t) = (−λn + q)ẑn(t) + bnu(t)

− ln
[⟨∑N

n=0 ẑn(t)φn, c
⟩
− y(t)

]
,

ẑn(0) = 0, 0 ≤ n ≤ N.

(2.9)

ere ln, 0 ≤ n ≤ N are scalars, and lN0+1 = · · · = lN = 0.
his choice will lead to a reduced-order closed-loop system (see
2.25), (2.26)) with omitted ODEs for ẑN0+1, . . . , ẑN and will not
eteriorate the performance of the closed-loop system. Let

A0 = diag {−λi + q}N0
i=0 , L0 = col {li}

N0
i=0

N0
[ ] (2.10)
B0 = col {bi}i=0 , C0 = c0, . . . , cN0 , cn = ⟨c, φn⟩ .
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n ̸= 0, 0 ≤ n ≤ N0. (2.11)

By the Hautus lemma (A0, C0) is observable. We choose L0 =

l0, . . . , lN0 ]
T which satisfies the Lyapunov inequality:

Po(A0 − L0C0) + (A0 − L0C0)TPo < −2δPo (2.12)

with 0 < Po ∈ R(N0+1)×(N0+1). By the Hautus lemma, (A0, B0) is
controllable due to (2.5). Let K0 ∈ R1×(N0+1) satisfy the Lyapunov
nequality

Pc(A0 + B0K0) + (A0 + B0K0)TPc < −2δPc, (2.13)

where 0 < Pc ∈ R(N0+1)×(N0+1). We propose a controller

u(t) = K0ẑN0 (t), ẑN0 (t) =
[
ẑ0(t), . . . , ẑN0 (t)

]T (2.14)

which is based on the N-dimensional observer (2.9). Note that
(2.9) implies u(0) = 0.

For well-posedness we introduce the change of variables
w(x, t) = z(x, t) −

1
2x

2u(t) leading to the equivalent PDE

wt (x, t) = wxx(x, t) + qw(x, t) + f (x, t), x ∈ [0, 1], t ≥ 0,

f (x, t) = −
1
2x

2u̇(t) +
( q
2x

2
+ 1

)
u(t),

wx(0, t) = 0, wx(1, t) = 0.

(2.15)

Consider the operator

A : D(A) ⊆ L2(0, 1) → L2(0, 1), Ah = −h′′,

D(A) =
{
h ∈ H2(0, 1)|h′(0) = h′(1) = 0

}
.

(2.16)

It is well known that A generates a strongly continuous semi-
group on L2(0, 1) (Pazy, 1983). Let G = L2(0, 1) × RN+1 be a
Hilbert space with the norm ∥·∥G =

√
∥·∥

2
+ |·|

2. Defining the
tate ξ (t) = col

{
w(·, t), ẑN (t)

}
, where

ẑN (t) = col
{
ẑ0(t), . . . , ẑN (t)

}
(2.17)

he closed-loop system (2.9), (2.14) and (2.15) can be presented
s
d
dt

ξ (t) + diag {A,B} ξ (t) = col {f1(ξ ), f2(ξ )}

where

Bξ2 =

[
− (A0 + B0K0 − L0C0) L0C1

−B1K0 −A1

]
ξ2, ξ2 ∈ RN+1,

f1(ξ ) =

[
q υ x2

2 K0L0C1

]
ξ −

x2
2 K0L0 ⟨c, ξ1⟩ ,

f2(ξ ) = col
{
L0 ⟨c, ξ1⟩ +

1
2

⟨
c, x2

⟩
K0ξ2, 0

}
,

υ =
( q
2x

2
+ 1

)
K0 −

x2
2 K0(A0 + B0K0 − L0C0)

+
1
2

⟨
c, x2

⟩
L0K0.

f1 and f2 are linear and, therefore, continuously differentiable. Let
z(·, 0) = w(·, 0) ∈ H1(0, 1). By Theorem 6.1.5 in Pazy (1983),
there exists a unique classical solution

ξ ∈ C ([0, ∞);G) ∩ C1 ((0, ∞);G) (2.18)

satisfying ξ (t) ∈ D (A)×RN+1, t > 0. Applying z(x, t) = w(x, t)+
1
2x

2u(t), (2.1) and (2.9), subject to (2.14), have a unique classical
solution such that z ∈ C([0, ∞), L2(0, 1)) ∩ C1((0, ∞), L2(0, 1))
nd z(·, t) ∈ H2(0, 1) with zx(0, t) = 0, zx(1, t) = u(t) for
∈ [0, ∞).
Let

(t) = z (t) − ẑ (t), 0 ≤ n ≤ N (2.19)
n n n

3

e the estimation error. The last term on the right-hand side of
2.9) can be written as∫ 1

0 c(x)
[∑N

n=1 ẑn(t)φn(x) −
∑

∞

n=1 zn(t)φn(x)
]
dx

= −
∑N

n=0 cnen(t) − ζ (t), ζ (t) =
∑

∞

n=N+1 cnzn(t).
(2.20)

hen the error equations for 0 ≤ n ≤ N and t ≥ 0 are

ėn(t) = (−λn + q)en(t) − ln
(∑N

n=1 cnen(t) + ζ (t)
)

. (2.21)

sing the Young inequality, we obtain the bound

ζ 2(t) ≤ ∥c∥2
N

∑
∞

n=N+1 z
2
n (t). (2.22)

enote

eN0 (t) = col {en(t)}
N0
n=1 , eN−N0 (t) = col {en(t)}Nn=N0+1 ,

ẑN−N0 (t) = col
{
ẑn(t)

}N
n=N0+1 , L0 = col {L0, −L0} ,

K0 =
[
K0, 01×(N0+1)

]
, A1 = diag {−λi + q}Ni=N0+1 ,

B1 =
[
bN0+1, . . . , bN

]T
, C1 =

[
cN0+1, . . . , cN

]
,

(2.23)

and

F0 =

[
A0 + B0K0 L0C0

0 A0 − L0C0

]
, X0(t) =

[
ẑN0 (t)
eN0 (t)

]
. (2.24)

From (2.3), (2.9), (2.10), (2.14), (2.21), (2.23) and (2.24) we ob-
serve that eN−N0 (t) satisfies

ėN−N0 (t) = A1eN−N0 (t) (2.25)

and is exponentially decaying, whereas the reduced-order closed-
loop system

Ẋ0(t) = F0X0(t) + L0C1eN−N0 (t) + L0ζ (t),
żn(t) = (−λn + q)zn(t) + bnK0X0(t), n > N.

(2.26)

with ζ (t) subject to (2.22) does not depend on ẑN−N0 (t). More-
over, ẑN−N0 (t) satisfies
˙̂zN−N0 (t) = A1ẑN−N0 (t) + B1K0X0(t) (2.27)

and is exponentially decaying provided X0(t) is exponentially
decaying. Therefore, for stability of (2.1) under the control law
(2.14) it is sufficient to show stability of the reduced-order system
(2.26). The latter can be considered as a singularly perturbed
system with the slow state X0(t) and the fast infinite-dimensional
state zn(t), n > N .

Note that in Katz and Fridman (2020a), the full-order closed-
loop system with the states X0, ẑN−N0 , eN−N0 , zn (n > N) was
considered, leading to full-order LMI conditions for stability. In
the present paper we derive stability conditions for the reduced-
order system (2.26) in terms of reduced-order LMI (see (2.29)) for
finding N and the exponential decay rate δ. Differently from Katz
and Fridman (2020a), the dimension of this LMI will not grow
with N . Its feasibility for large N will follow directly from the
application of Schur complements. Moreover, if this LMI is fea-
sible for N , it will be feasible for N + 1. To prove the exponential
L2-stability of the closed-loop system we employ the Lyapunov
function

V (t) = V0(t) + pe
⏐⏐eN−N0 (t)

⏐⏐2 ,

V0(t) = |X0(t)|2P0 +
∑

∞

n=N+1 z
2
n (t)

(2.28)

where 0 < P0 ∈ R(2N0+2)×(2N0+2) and 0 < pe ∈ R. Note that V (t)
allows to compensate ζ (t) using (2.22), whereas V0 corresponds
to (2.26) with eN−N0 = 0.

Theorem 2.1. Consider (2.1) with measurement (2.2) where c ∈
2 2
L (0, 1) satisfies (2.11) and z(·, 0) ∈ L (0, 1). Let the control law
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atisfy (2.7) and N ≥ N0 + 1. Assume that L0 and K0 are obtained
sing (2.12) and (2.13), respectively. Let there exist 0 < P0 ∈

R(2N0+2)×(2N0+2) and a scalar α > 0 such that the following LMI
holds:⎡⎢⎣Φ0 P0L0 0

∗ −2 (λN+1 − q − δ) ∥c∥−2
N 1

∗ ∗ −
α∥c∥2N
λN+1

⎤⎥⎦ < 0,

Φ0 = P0F0 + F T
0 P0 + 2δP0 +

2α
π2N

KT
0K0.

(2.29)

Then the solution z(x, t) of (2.1) subject to the control law (2.14)
and the corresponding observer ẑ(x, t) given by (2.8), (2.9) satisfy
the following inequalities:

∥z(·, t)∥ +
z(·, t) − ẑ(·, t)

 ≤ Me−δt ∥z(·, 0)∥ (2.30)

for some constant M ≥ 1. Moreover, LMI (2.29) is always feasible if
N is large enough and feasibility of (2.29) for N implies its feasibility
for N + 1.

Proof. We begin by deriving LMI conditions which guarantee
V̇ + 2δV ≤ 0, thereby implying (2.30). Differentiating V0(t) along
(2.26) we obtain

V̇0 + 2δV0 = XT
0 (t)

[
P0F0 + F T

0 P0 + 2δP0
]
X0(t)

+2XT
0 (t)P0L0ζ (t) + 2

∑
∞

n=N+1(−λn + q + δ)z2n (t)
+2

∑
∞

n=N+1 zn(t)bnK0X0(t) + 2XT
0 (t)P0L0C1eN−N0 (t).

(2.31)

The Young inequality implies

2
∞∑

n=N+1

zn(t)bnK0X0(t) = 2
∞∑

n=N+1

λ
1
2
n zn(t)

bn

λ
1
2
n

K0X0(t)

(2.6)
≤

1
α

∞∑
n=N+1

λnz2n (t) +
2α

π2N
|K0X0(t)|2 ,

(2.32)

where α > 0. From monotonicity of λn, n ∈ Z+ we have

2
∑

∞

n=N+1

(
−λn + q + δ +

1
2α λn

)
z2n (t)

(2.22)
≤ 2

(
−λN+1 + q + δ +

1
2α λN+1

)
∥c∥−2

N ζ 2(t)
(2.33)

rovided −λN+1+q+δ+ 1
2α λN+1 ≤ 0. Differentiating pe

⏐⏐eN−N0 (t)
⏐⏐2

we have
d
dt

[
pe

⏐⏐eN−N0 (t)
⏐⏐2] + 2δpe

⏐⏐eN−N0 (t)
⏐⏐2

= 2pe
(
eN−N0 (t)

)T
(A1 + δI) eN−N0 (t).

(2.34)

Let η(t) = col
{
X0(t), ζ (t), eN−N0 (t)

}
. From (2.31)–(2.34)

V̇ + 2δV ≤ ηT (t)Ψ η(t) ≤ 0 (2.35)

if

Ψ =

[
Ω1 Ω2
∗ 2pe (A1 + δI)

]
< 0, Ω2 =

[
P0L0C1

0

]
,

Ω1 =

[
Φ0 P0L0

∗ −2
(
λN+1 − q − δ −

1
2α λN+1

)
∥c∥−2

N

]
.

(2.36)

We now show feasibility of (2.36) for large N . Note that A1+δI <

0 by (2.7). By Schur complement, Ψ < 0 iff

Ω1 −
1

2pe
P0L0C1 (A1 + δI)−1 CT

1 L
T
0P0 < 0 (2.37)

Taking pe → ∞ in (2.37) (pe does not appear in Ω1), we find
that Ψ < 0 iff Ω1 < 0 and the latter is equivalent, by Schur
complement, to (2.29). Thus, (2.29) guarantees (2.35) implying
the exponential stability of the closed-loop system (2.25)–(2.27)
and (2.30).
4

To prove the feasibility of (2.29) for large N , choose α = 1 and
N1 ∈ N such that for N ≥ N1, we have Φ0 < 0 in (2.29) for some
P0 > 0. This is possible since ∥K0∥ is independent of N and F0 is
Hurwitz (see (2.12), (2.13) and (2.24)). By increasing N1 we can
also assume that for N ≥ N1 we have 1

2λN+1−q−δ > 0. By Schur
complement Ω1 < 0 iff

Φ0 +
∥c∥2

N

λN+1 − 2q − 2δ
P0L0LT

0P0 < 0. (2.38)

ince ∥L0∥ is independent of N , λN+1
N→∞
−→ ∞ and ∥c∥2

N
N→∞
−→ 0,

by increasing N1 if needed, (2.38) holds. Finally, note that by
replacing N with N + 1 in (2.38), the positive terms on the left-
and side decrease, whereas P0F0 + F T

0 P0 + 2δP0 is unchanged.
This shows that feasibility for N implies feasibility for N + 1. □

Remark 2.1. The reduced-order LMIs can be derived similarly
for other parabolic PDEs (including heat equations with vari-
able diffusion and reaction coefficients as in Katz and Fridman
(2020a) and Kuramoto–Sivashinsky equation (KSE) as in Katz
and Fridman (2020b)): for the reduced-order closed-loop system
(without ẑN−N0 ) the Lyapunov function of the form V (t) = V0(t)+
pe|eN−N0 (t)|2 should be employed, where pe > 0 is large and V0
corresponds to the reduced-order closed-loop system with the
omitted eN−N0 . Then for pe → ∞ the reduced-order LMI will
be obtained. Moreover, it can be shown that for the mentioned
above PDEs the similar controller under Neumann actuation and
non-local measurement leads to L2 convergence without dynamic
extension. This allows treating fast-varying input/output delays
as presented in Section 3.

3. Delayed L2-stabilization

We consider the delayed reaction–diffusion system

zt (x, t) = zxx(x, t) + qz(x, t),
zx(0, t) = 0, zx(1, t) = u(t − τu(t)),

(3.1)

under delayed Neumann actuation and delayed non-local mea-
surement

y(t) =
⟨
z(·, t − τy(t)), c

⟩
, c ∈ L2(0, 1). (3.2)

Here z(·, t − τy(t)) = z(·, 0) for t − τy(t) ≤ 0 and τy(t) ≥ 0
is a known continuously differentiable output delay with locally
Lipschitz derivative from the interval

0 < τm ≤ τy(t) ≤ τM . (3.3)

The lower bound on τy(t) is required for well-posedness only.
The continuously differentiable input delay τu(t) belongs to the
known interval

τu(t) ∈ [r, r + θM ], t ≥ 0 (3.4)

where r > 0 and has locally Lipschitz derivative. We assume that
there exist unique t∗y ∈ [τm, τM ] and t∗u ∈ [r, r + θM ] such that
t∗y − τy(t∗y ) = t∗u − τu(t∗u ) = 0. Henceforth the dependence of τy(t)
and τu(t) on t will be suppressed.

We present the solution of (3.1) as (2.3). Then (2.4) has the
form
żn(t) = (−λn + q)zn(t) + bnu(t − τu)

b0 = 1, bn = (−1)n
√
2, n = 0, 1, . . . .

(3.5)

Let δ > 0. There exists some N0 ∈ Z+ such that (2.7) holds.
N0 will define the dimension of the controller, whereas N ≥

N0 + 1 will be the dimension of the observer. To derive stability
conditions in terms of the reduced-order LMIs, in Sections 3.1 and
3.2 we consider the case of known input delay and construct a
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N

H

-dimensional observer of the form (2.8), where ẑn(t) satisfy the
ODEs
˙̂zn(t) = (−λn + q)ẑn(t) + bnu(t − τu)

− ln
[⟨
ẑ(·, t − τy), c

⟩
− y(t)

]
, t ≥ 0,

ẑn(t) = 0, t ≤ 0, 0 ≤ n ≤ N.

(3.6)

ere ln (0 ≤ n ≤ N) are scalars and lN0+1 = · · · = lN = 0.
In Section 3.3 we consider unknown τu, where u(t − τu) in the
observer Eq. (3.6) is replaced by u(t − r).

Recall the notations (2.10). Under the assumption (2.11),
(A0, C0) is observable. Let L0 = [l0, . . . , lN0 ]

T satisfy the Lyapunov
inequality (2.12) for some 0 < Po ∈ R(N0+1)×(N0+1). Similarly, (2.5)
implies that (A0, B0) is controllable. Let K0 ∈ R1×(N0+1) satisfy
(2.13) for some 0 < Pc ∈ R(N0+1)×(N0+1).

Let z(·, 0) ∈ D (A). In Sections 3.1–3.3 well-posedness of
the closed-loop systems follows arguments similar to (2.15)–
(2.18), together with the step method. These arguments are stan-
dard and we refer the reader to the arXiv version of this pa-
per (Katz, Basre, & Fridman, 2021b), where they are explicitly
shown. These arguments lead to existence of a unique classical
solution z ∈ C([0, ∞), L2(0, 1)) ∩ C1((0, ∞) \ S, L2(0, 1)), where
S =

{
τ ∗
u + jτm

}∞

j=0. Moreover, z(·, t) ∈ H2(0, 1) with zx(0, t) =

0, zx(1, t) = u(t − τu(t)) for t ∈ [0, ∞). Here, the details are
omitted due to space limitations.

3.1. Stabilization robust with respect to delays

We propose the control law (2.14), which is based on the
N-dimensional observer (2.8), (3.6). Recall the estimation error
given in (2.23). The last term on the right-hand side of (3.6) can
be written as⟨
ẑ(·, t − τy), c

⟩
− y(t) = −

∑N
n=0 cnen(t − τy) − ζ (t − τy) (3.7)

with ζ (t) given in (2.20) and satisfies (2.22). Then the error
equations for t ≥ 0 and 0 ≤ n ≤ N0 are

ėn(t) = (−λn + q)en(t) − ln
(∑N

n=1 cnen(t − τy)

+ζ (t − τy)
)
, en(t) = ⟨z0, φn⟩ , t ≤ 0.

(3.8)

Recall the notations (2.10), (2.23) and (2.24) and let

B0 = col
{
B0, 0(N0+1)×1

}
, C0 = [01×(N0+1), C0],

Υy(t) = X0(t − τy) − X0(t), Υr (t) = X0(t − r) − X0(t),
Υu(t) = X0(t − τu) − X0(t − r).

(3.9)

As in the non-delayed case, here eN−N0 (t) = eA1te(0) satisfies
(2.25). Substituting eN−N0 (t − τy) = e−A1τyeN−N0 (t), the reduced-
order (i.e. decoupled from ẑN−N0 (t)) closed-loop system is gov-
erned by

Ẋ0(t) = F0X0(t) + B0K0 [Υu(t) + Υr (t)] + L0C0Υy(t)
+L0ζ (t − τy) + L0C1e−A1τyeN−N0 (t),

(3.10)

żn(t) = (−λn + q)zn(t) + bnK0X0(t)
+ bnK0 [Υu(t) + Υr (t)] , n > N,

with ζ (t) subject to (2.22), where eN−N0 (t) is an exponentially
decaying input. Note that ẑN−N0 (t) satisfies
˙̂zN−N0 (t) = A1ẑN−N0 (t) + B1K0X0(t − τu) (3.11)

and is exponentially decaying provided X0(t) is exponentially
decaying. For L2-stability analysis of (3.10), (2.25) we fix δ0 > δ

and define the Lyapunov functional

W (t) := V (t) +

2∑
VSi (t) +

2∑
VRi (t), (3.12)
i=0 i=0

5

where V (t) is given by (2.28) and

VS0 (t) :=
∫ t
t−r e

−2δ0(t−s) |K0X0(s)|2S0 ds,

VR0 (t) := r
∫ 0

−r

∫ t
t+θ

e−2δ0(t−s)
⏐⏐K0Ẋ0(s)

⏐⏐2
R0

dsdθ

VS1 (t) :=
∫ t−r
t−r−θM

e−2δ0(t−s) |K0X0(s)|2S1 ds,

VR1 (t) := θM
∫

−r
−r−θM

∫ t
t+θ

e−2δ0(t−s)
⏐⏐K0Ẋ0(s)

⏐⏐2
R1

dsdθ

VS2 (t) :=
∫ t
t−τM

e−2δ0(t−s) |X0(s)|2S2 ds,

VR2 (t) := τM
∫ 0

−τM

∫ t
t+θ

e−2δ0(t−s)
⏐⏐Ẋ0(s)

⏐⏐2
R2

dsdθ.

(3.13)

Here S2, R2 > 0 are square matrices of order 2N0 + 2 and
S0, R0, S1, R1 > 0 are scalars. VS0 and VR0 are introduced to
compensate Υr (t). VS1 and VR1 are used to compensate Υu(t). VS2
and VR2 are used to compensate Υy(t). Finally, to compensate
ζ (t − τy) we will use Halanay’s inequality:

Lemma 3.1 (Halanay’s inequality)..
Let 0 < δ1 < δ0 and let W : [t0 − τM , ∞) −→ [0, ∞) be an

absolutely continuous function that satisfies

Ẇ (t) + 2δ0 W (t) − 2δ1 sup
−τM≤θ≤0

W (t + θ ) ≤ 0, t ≥ t0.

Then W (t) ≤ exp
(
−2δτM (t − t0)

)
sup−τM≤θ≤0 W (t0 + θ ), t ≥ t0,

where δτM > 0 is a unique positive solution of

δτM = δ0 − δ1 exp(2δτM τM ). (3.14)

To state the main result of this section, we employ the fol-
lowing notations for G1 ∈ R and G2 ∈ R2(N0+1)×2(N0+1) and
0 < α, α1, α2 ∈ R:

Ψ0 =

[
Θ Σ1 Σ2
∗ diag {Γ1, Γ2}

]
, Θ =

[
Φdelay P0L0

∗ −2δ1 ∥c∥−2
N

]
,

Σ1 =

[
P0L0C0 − 2δ1P0 − εMS2 −εMS2

0 0

]
,

Σ2 =

[
P0B0 − εr,MKT

0S1 Ξ1 −εr,MKT
0S1

0 0 0

]
,

Γ1 =

[
−2δ1P0 − εM (R2 + S2) −εM (S2 + G2)

−εM (R2 + S2)

]
,

(3.15)

Γ2 =

⎡⎣−εr,M (R1 + S1) +
2α1
π2N

−εr,MS1 −εr,M (S1 + G1)
∗ Ξ2 −εr,MS1
∗ ∗ −εr,M (R1 + S1)

⎤⎦ ,

Φdelay = Φ0 + (1 − εr )KT
0S0K0

+(εr − εr,M )KT
0S1K0 + (1 − εM )S2,

Ξ1 = P0B0 − εrKT
0S0 + (εr − εr,M )KT

0S1,

Ξ2 =
2α2
π2N

− εr (R0 + S0) + (εr − εr,M )S1,

Λ0 = [F0,L0,L0C0, 0,B0,B0, 0],
ετ = e−2δ0τ , τ ∈ {r, τM , r + θM} .

Theorem 3.1. Consider (3.1), measurement (3.2) with c ∈ L2(0, 1)
satisfying (2.11), control law (2.14). Let δ0 > δ > 0 and δ1 =

δ0 − δ. Let N0 ∈ Z+ satisfy (2.7) and N ≥ N0 + 1. Assume that
L0 and K0 are obtained using (2.12) and (2.13), respectively. Given
r, θM , τM > 0, let there exist positive definite matrices P0, S2, R2 ∈

R2(N0+1)×2(N0+1), scalars S , R , S , R , α, α , α > 0, G ∈ R and
0 0 1 1 1 2 1
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G

−

2 ∈ R2(N0+1)×2(N0+1) such that[
R1 G1
∗ R1

]
≥ 0,

[
R2 G2
∗ R2

]
≥ 0,[

−λN+1 + q + δ0 1 1 1
∗ −

2
λN+1

diag {α, α1, α2}

]
< 0

(3.16)

and

Ψ0 + ΛT
0

[
KT

0

(
r2R0 + θ2

MR1
)
K0 + τ 2

MR2
]
Λ0 < 0 (3.17)

hold. Then the solution z(x, t) to (3.1) under the control law (2.14)
and the observer ẑ(x, t) defined by (2.8), (3.6) satisfy

∥z(·, t)∥ +
z(·, t) − ẑ(·, t)

 ≤ Me−δτM t
∥z(·, 0)∥ (3.18)

for some M ≥ 1, where δτM > 0 is defined by (3.14). Moreover,
LMIs (3.16), (3.17) are always feasible for large enough N and small
enough τM , θM and r and their feasibility for N implies feasibility for
N + 1.

Proof. Differentiating V (t) along (2.25), (3.10) we obtain

V̇ + 2δV = XT
0 (t)

[
P0F0 + F T

0 P0 + 2δ0P0
]
X0(t)

+2XT
0 (t)P0L0ζ (t − τy) + 2XT

0 (t)P0B0K0 [Υu(t) + Υr (t)]
+2XT

0 (t)P0L0C0Υy(t) + 2XT
0 (t)P0L0C1e−AτyeN−N0 (t)

+2
∑

∞

n=N+1(−λn + q + δ0)z2n (t) + 2pe
⏐⏐eN−N0 (t)

⏐⏐2
A1+δ0I

+2
∑

∞

n=N+1 zn(t)bnK0 [X0(t) + Υu(t) + Υr (t)] .

(3.19)

By arguments similar to (2.32) we have

2
∑

∞

n=N+1 zn(t)bnK0 [X0(t) + Υu(t) + Υr (t)]

≤

[
1
α

+
1
α1

+
1
α2

]∑
∞

n=N+1 λnz2n (t) +
2α

π2N
|K0X0(t)|2

+
2α1
π2N

|K0Υu(t)|2 +
2α2
π2N

|K0Υr (t)|2 .

(3.20)

Differentiation of VS0 and VR0 leads to

V̇S0 + 2δ0VS0 = |K0X0(t)|2S0
−εr |K0X0(t) + K0Υr (t)|2S0 ,

V̇R0 + 2δ0VR0 = r2
⏐⏐K0Ẋ0(t)

⏐⏐2
R0

−r
∫ t
t−r e

−2δ0(t−s)
⏐⏐K0Ẋ0(s)

⏐⏐2
R0

ds.

(3.21)

By using Jensen’s inequality we have

r
∫ t

t−r
e−2δ0(t−s)

⏐⏐K0Ẋ0(s)
⏐⏐2
R0

ds ≤ −εr |K0Υr (t)|2R0 .

Let
Qu(t) = X0(t − r − θM ) − X0(t − τu),
Qy(t) = X0(t − τM ) − X0(t − τy).

(3.22)

Differentiation of VSi and VRi , i ∈ {1, 2}, gives:

V̇S1 + 2δ0VS1 = εr |K0Υr (t) + K0X0(t)|2S1
− εr+θM |K0 (Qu(t) + Υu(t) + Υr (t) + X0(t))|2S1 ,

V̇S2 + 2δ0VS2 = |X0(t)|2S2
− ετM

⏐⏐Qy(t) + Υy(t) + X0(t)
⏐⏐2
S2

,

V̇R1 + 2δ0VR1 = θ2
M

⏐⏐K0Ẋ0(t)
⏐⏐2
R1

−θM
∫ t−r
t−r−θM

e−2δ0(t−s)
⏐⏐K0Ẋ0(s)

⏐⏐2
R1

ds,

V̇R2 + 2δ0VR2 = τ 2
M

⏐⏐Ẋ0(t)
⏐⏐2
R2

−τ
∫ t e−2δ0(t−s)

⏐⏐Ẋ (s)
⏐⏐2 ds.
M t−τM 0 R2

6

By Jensen’s and Park’s inequalities (see Fridman (2014)) to obtain

−θM
∫ t−r
t−r−θM

e−2δ0(t−s)
⏐⏐K0Ẋ0(s)

⏐⏐2
R1

ds

≤ −εr+θM

[
K0Υu(t)
K0Qu(t)

]T [
R1 G1
∗ R1

][
K0Υu(t)
K0Qu(t)

]
,

− τM
∫ t
t−τM

e−2δ0(t−s)
⏐⏐Ẋ0(s)

⏐⏐2
R2

ds

≤ −ετM

[
Υy(t)
Qy(t)

]T [
R2 G2
∗ R2

][
Υy(t)
Qy(t)

]
.

To compensate ζ (t − τy) we will use Halanay’s inequality. Note
that

−2δ1 sup−τM≤θ≤0 W (t + θ ) ≤ −2δ1V (t − τy(t))
(2.22)
≤ −2δ1

[
Υy(t) + X0(t)

]T P0 [
Υy(t) + X0(t)

]
− 2δ1 ∥c∥−2

N ζ 2(t − τy) − 2δ1pe
⏐⏐eN−N0 (t)

⏐⏐2
e−2A1τy

(3.23)

where δ0 = δ1 + δ. Let η(t) = col
{
X0(t), ζ (t − τy), Υy(t),

Qy(t),K0Υu(t),K0Υr (t),K0Qu(t), eN−N0 (t)
}
. Then due to (3.19)–

(3.23) Halanay’s inequality

Ẇ (t) + 2δ0W (t) − 2δ1 sup−τM≤θ≤0 W (t + θ )

≤ ηT (t)Ψ1η(t) + 2
∑

∞

n=N+1 ϖnz2n (t) ≤ 0, t ≥ 0

holds if

ϖn = −λn + q + δ0 +

[
1
2α +

1
2α1

+
1

2α2

]
λn < 0, n > N,

Ψ1 = Ψfull + ΛT
[
KT

0

(
r2R0 + θ2

MR1
)
K0 + τ 2

MR2
]
Λ < 0.

Here

Λ = [Λ0,L0C1e−A1τy ], Γ3 = 2pe(A1 + δ0I − δ1e−2A1τy ),

Ψfull =

[
Ψ0 Σ3
∗ Γ3

]
, Σ3 =

[
P0L0C1e−A1τy

0

]
. (3.24)

Monotonicity of {λn}
∞

n=1 and Schur’s complement imply that
ϖn < 0, n > N iff the second LMI in (3.16) holds. We have
Γ3 = 2pe(A1 + δ0I − δ1e−2A1τy ) < 0 due to (2.7). Therefore, by
Schur complement for pe → ∞ we obtain that Ψ1 < 0 iff (3.17)
holds. Hence, feasibility of (3.16), (3.17) and Lemma 3.1 lead to
W (t) ≤ exp

(
−2δτM t

)
sup−τM≤θ≤0 W (θ ) for t ≥ 0. The latter

implies (3.18). Finally, note that (3.16) and (3.17) are reduced-
order LMIs whose dimension is independent of N . By arguments
similar to Theorem 3.1 in Katz and Fridman (2021a) it can be
shown that (3.16) and (3.17) are feasible for large enough N and
small enough τM , θM , r . Moreover, by Schur complements, the
LMIs feasibility for N implies their feasibility for N + 1. □

3.2. Predictor-based L2-stabilization: known input delay

In this section we compensate the constant and known part
r of τu subject to (3.4) by using a classical predictor (Artstein,
1982; Selivanov & Fridman, 2016). Recall the observer (2.8) which
satisfies (3.6). Using the notations (2.10),(2.17), (2.23) and (2.24)
we obtain

˙̂zN0 (t) = A0ẑN0 (t) + B0u(t − τu) + L0C0eN0 (t − τy)
+L0C1eN−N0 (t − τy) + L0ζ (t − τy), t ≥ 0.

(3.25)

We propose the following predictor-based control law

¯ A0r ˆN0
∫ t A0(t−s) ¯ (3.26)
z(t) = e z (t) + t−r e B0u(s)ds, u(t) = K0z(t)
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ifferentiating z̄(t) and using (3.25) we obtain
˙̄z(t) = A0z̄(t) + B0u(t)
+ eA0rB0 [u(t − τu) − u(t − r)] + eA0rL0

×

[
C0eN0 (t − τy) + C1eN−N0 (t − τy) + ζ (t − τy)

]
.

We present the reduced-order closed-loop system as
˙̄X(t) = F̄0X̄(t) + B̄0K0Ῡu(t) + L̄0C0Ῡy(t)

+L̄0ζ (t − τy) + L̄0C1e−A1τyeN−N0 (t),

żn(t) = (−λn + q)zn(t) + bnK0X̄(t)
+ bnK0[Ῡu(t) + Ῡr (t)], n > N, t ≥ 0,

(3.27)

where

X̄(t) = col{z̄(t), eN0 (t)}, Ῡy(t) = X̄(t − τy) − X̄(t),

Ῡu(t) = X̄(t − τu) − X̄(t − r), C0 = [01×(N0+1), C0],

Ῡr (t) = X̄(t − r) − X̄(t), L̄0 = col
{
eA0rL0, −L0

}
,

Q̄u(t) = X̄(t − r − θM ) − X̄(t − τu),

Q̄y(t) = X̄(t − τM ) − X̄(t − τy),

F̄0 =

[
A0 + B0K0 eA0rL0C0

0 A0 − L0C0

]
, B̄0 = col

{
eA0rB0, 0

}
.

(3.28)

As in the non-delayed case, here eN−N0 (t) satisfies (2.25) and is
exponentially decaying, whereas ζ (t) satisfies (2.22). From (3.26)
we have that exponential decay of X̄(t) implies exponential decay
of X0(t) in (2.24).

For L2-stability analysis of (3.27), (2.25) we fix δ0 > δ and
define the Lyapunov functional (3.12). Here V (t) and VSi , VRi , i ∈

{0, 1, 2} are given by (2.28) and (3.13), respectively, with X0
replaced by X̄ . To state the main result of this section, let G1 ∈ R
and G2 ∈ R2(N0+1)×2(N0+1) and 0 < α, α1, α2 ∈ R. We introduce

Ψ̄0 =

[
Θ̄ Σ̄1 Σ̄2
∗ diag {Γ1, Γ2}

]
, Θ̄ =

[
Φ̄ P0L̄0

∗ −2δ1 ∥c∥−2
N

]
,

Σ̄1 =

[
P0L̄0C0 − 2δ1P0 − εMS2 −εMS2

0 0

]
,

Σ̄2 =

[
P0B̄0 − εr,MKT

0S1 Ξ̄1 −εr,MKT
0S1

0 0 0

]
,

Φ̄ = P0F̄0 + F̄ T
0 P0 + 2δP0 + (1 − εr )KT

0S0K0

+
2α

π2N
KT

0K0 + (εr − εr,M )KT
0S1K0 + (1 − εM )S2,

Ξ̄1 = −εrKT
0S0 + (εr − εr,M )KT

0S1,

Λ̄0 = [F̄0, L̄0, L̄0C0, 0, B̄0, 0, 0]

where Γi, i ∈ {1, 2, 3} and ετ , τ ∈ {r, τM , r + θM} are given in
3.15), (3.24).

heorem 3.2. Consider (3.1), measurement (3.2) with c ∈ L2(0, 1)
atisfying (2.11), control law (3.26). Let δ0 > δ > 0 and δ1 =

0 − δ. Let N0 ∈ Z+ satisfy (2.7) and N ≥ N0 + 1. Assume
hat L0 and K0 are subject to (2.12) and (2.13), respectively. Given
r, θM , τM > 0, let there exist positive definite matrices P0, S2, R2 ∈

R2(N0+1)×2(N0+1), scalars S0, R0, S1, R1, α, α1, α2 > 0, G1 ∈ R and
2 ∈ R2(N0+1)×2(N0+1) such that (3.16) and

Ψ̄0 + Λ̄T
0

[
KT

0

(
r2R0 + θ2

MR1
)
K0 + τ 2

MR2
]
Λ̄0 < 0. (3.29)

old. Then the solution z(x, t) to (3.1) under the control law (3.26)
nd the corresponding observer ẑ(x, t) defined by (2.8), (3.6) satisfy
3.18) for some M > 0 and δ > 0 defined by (3.14). LMIs (3.16)
τM t

7

and (3.29) are feasible if N is large enough and τM , θM , r are small
nough. Feasibility of (3.16) and (3.29) for N implies their feasibility
or N + 1.

roof. The proof is essentially identical to proof of Theorem 3.1.
ence, we only state the differences. Let η(t) = col

{
X̄(t), ζ (t − τy)

Ῡy(t), Q̄y(t),K0Ῡu(t), K0Ῡr (t),K0Q̄u(t), eN−N0 (t)
}
. By arguments

similar to (3.19)–(3.23) we obtain

Ẇ (t) + 2δ0W (t) − 2δ1 sup−τM≤θ≤0 W (t + θ )

≤ ηT (t)Ψ2η(t) + 2
∑

∞

n=N+1 ϖnz2n (t) ≤ 0, t ≥ 0,
(3.30)

f

ϖn = −λn + q + δ0 +

[
1
2α +

1
2α1

+
1

2α2

]
λn < 0, n > N,

Ψ2 = Ψ̄ + Λ̄T
[
KT

0

(
r2R0 + θ2

MR1
)
K0 + τ 2

MR2
]
Λ̄ < 0.

(3.31)

Here Λ̄ = [Λ̄0, L̄0C1e−A1τy ] and

Ψ̄ =

[
Ψ̄0 Σ3
∗ Γ3

]
, Σ3 =

[
P0L̄0C1e−A1τy

0

]
. (3.32)

Monotonicity of {λn}
∞

n=1 and Schur’s complement imply that
ϖn < 0, n > N iff the second LMI in (3.16) holds. Finally, note
that (2.7) implies Γ3 < 0. By Schur complement and pe → ∞,
Ψ2 < 0 iff (3.29) holds. Note that (3.16) and (3.29) are again of
reduced-order (i.e., the dimension is independent of N). □

3.3. Predictor-based L2-stabilization: unknown input delay

In this section we assume an input delay τu(t) = r + θ (t) with
a known constant part r > 0 and unknown θ (t) ∈ [0, θM ]. Since
θ (t) is unknown, the observer (2.8) is designed to satisfy (3.6)
with u(t − τu) replaced by u(t − r). Therefore, (3.25) is modified
as follows:
˙̂zN0 (t) = A0ẑN0 (t) + B0u(t − r) + L0C0eN0 (t − τy)

+ L0C1eN−N0 (t − τy) + L0ζ (t − τy)
(3.33)

hereas ẑN−N0 (t) satisfies

˙̂N−N0 (t) = A1ẑN−N0 (t) + B1u(t − r). (3.34)

urthermore, the estimation error satisfies

ėN0 (t) = A0eN0 (t) + B0[u(t − τu) − u(t − r)]
−L0[C0eN0 (t − τy) + C1eN−N0 (t − τy) + ζ (t − τy)],

ėN−N0 (t) = A1eN−N0 (t) + B1[u(t − τu) − u(t − r)].
(3.35)

s in Katz and Fridman (2021a), uncertainty in τu leads to cou-
ling of eN−N0 (t) with u(t). We propose the predictor-based con-
rol law (3.26). Differentiating z̄(t) and using (3.33) we obtain

˙̄z(t) = (A0 + B0K0)z̄(t) + eA0rL0

×

[
C0eN0 (t − τy) + C1eN−N0 (t − τy) + ζ (t − τy)

] (3.36)

ifferently from the case of a known τu, we introduce

¯ (t) = col{z̄(t), eN0 (t), eN−N0 (t)} (3.37)

s the closed-loop state, which includes eN−N0 (t). Note that dif-
erently from Katz and Fridman (2021a), ẑN−N0 (t) is not a part of
¯ (t). Therefore, for a given N , the LMIs subsequently obtained will
ot be of reduced-order, but are of essentially smaller dimension
han in Katz and Fridman (2021a). Recall Q̄ (t), Q̄ (t), Ῡ (t), Ῡ (t)
u y u y
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w

m
(
a
G
P
0

,

nd Ῡr (t) given in (3.28) and let

F̄ =

⎡⎣A0 + B0K0 eA0rL0C0 eA0rL0C1
0 A0 − L0C0 −L0C1
0 0 A1

⎤⎦ ,

L̄ = col
{
eA0rL0, −L0, 0

}
, C = [01×(N0+1), C0, C1],

B̄ = col
{
0(N0+1)×1, B0, B1

}
, K0 = [K0, 0, 0].

The closed-loop system is governed by
˙̄X(t) = F̄ X̄(t) + B̄K0Ῡu(t) + L̄CῩy(t) + L̄ζ (t − τy),

żn(t) = (−λn + q)zn(t) + bnK0X̄(t)
+ bnK0[Ῡu(t) + Ῡr (t)], n > N, t ≥ 0

(3.38)

where ζ (t) satisfies (2.22). From (3.34) follows that ẑN−N0 (t) is
exponentially decaying if the closed-loop system (3.38) is expo-
nentially decaying.

For L2-stability of the closed-loop system (3.38) let δ0 > δ
and define the Lyapunov functional (3.12) with V (t) replaced by
V0(t), given in (2.28), VSi , VRi , i ∈ {0, 1, 2} given in (3.13) and
X0(t) is replaced by X̄(t) everywhere. To state the main result
of this section, let G1 ∈ R and G2 ∈ R(N+N0+2)×(N+N0+2) and
0 < α, α1, α2 ∈ R. Let

Ψ̄1 =

[
Ψ̄2 Σ4 Σ5
∗ diag {Γ1, Γ2}

]
, Ψ̄2 =

[
Φ̄1 P0L̄
∗ −2δ1 ∥c∥−2

N

]
Σ4 =

[
P0L̄C − 2δ1P0 − εMS2 −εMS2

0 0

]
,

Σ5 =

[
P0B̄ − εr,MKT

0S1 Ξ̄1 −εr,MKT
0S1

0 0 0

]
,

Λ̄1 = [F̄ , L̄, L̄C, 0, B̄, 0, 0]

Φ̄1 = P0F̄ + F̄ TP0 + 2δP0 + (1 − εr )KT
0S0K0

+
2α

π2N
KT

0K0 + (εr − εr,M )KT
0S1K0 + (1 − εM )S2,

ith Γ1, Γ2 given in (3.15).

Theorem 3.3. Consider (3.1) with unknown input delay τu(t),
easurement (3.2) with c ∈ L2(0, 1) satisfying (2.11), control law
3.26). Let δ0 > δ > 0 and δ1 = δ0 − δ. Let N0 ∈ Z+ satisfy (2.7)
nd N ≥ N0+1. Let L0 and K0 satisfy (2.12) and (2.13), respectively.
iven r, θM , τM > 0, let there exist positive definite matrices
0, S2, R2 ∈ R(N+N0+2)×(N+N0+2), scalars S0, R0, S1, R1, α, α1, α2 >
, G1 ∈ R and G2 ∈ R(N+N0+2)×(N+N0+2) such that (3.16) and

Ψ̄1 + Λ̄T
1

[
KT

0

(
r2R0 + θ2

MR1
)
K0 + τ 2

MR2
]
Λ̄1 < 0 (3.39)

hold. Then the solution z(x, t) to (3.1) under the control law (3.26)
and the observer ẑ(x, t) defined by (2.8), (3.33) and (3.34) satisfy
(3.18) for some M > 0 and δτM > 0 defined by (3.14). The
LMIs (3.16) and (3.39) are always feasible if N is large enough and
τM , θM , r are small enough.

Proof. The proof is essentially identical to proof of Theorem 3.1.
Hence, we only state the differences. Let η(t) = col

{
X̄(t), ζ (t − τy)

Ῡy(t), µ̄y(t),K0Ῡu(t),K0Ῡr (t),K0Q̄u(t)
}

Similar to (3.19)–(3.23)
we obtain

Ẇ (t) + 2δ0W (t) − 2δ1 sup−τM≤θ≤0 W (t + θ )

≤ ηT (t)Ψ3η(t) + 2
∑

∞

n=N+1 ϖnz2n (t) ≤ 0, t ≥ 0,

if

ϖn = −λn + q + δ0 +

[
1
2α +

1
2α1

+
1

2α2

]
λn < 0, n > N,

Ψ3 = Ψ̄1 + Λ̄T
1

[
KT

0

(
r2R0 + θ2

MR1
)
K0 + τ 2

MR2
]
Λ̄1 < 0.

(3.40)
8

Table 1
Minimal N that guarantees decay rate δ: non-delayed case.
δ 0.1 1 2 5 7.5

N 3 4 4 4 5
K0 −5 −5 −7 −13 −18
L0 5.5 8.33 11.67 21.6 29.8

Table 2
Minimal N for the stability: given r and τM = θM = 10−7 .
r 0.06 0.1 0.14 0.18 0.26 0.3

Theorem 3.1 6 6 14 – – –
Theorems 3.2, 3.3 6 6 6 8 12 16

Schur’s complement imply that ϖn < 0, n > N iff the second
LMI in (3.16) holds, whereas Ψ3 < 0 iff (3.39). □

4. Example: temperature control in a rod

Consider control of heat flow in the rod with constant thermal
conductivity, mass density, specific heat and reaction coefficient
(Christofides, 2001; Curtain & Morris, 2009). The control action
effects the heat flow at one end, while keeping the heat flow in
the other end fixed. The model of spatiotemporal evolution of
the dimensionless rod temperature (denoted by z(x, t)) is given
by (2.1), where q is the reaction coefficient. We consider q = 3,
which results in an unstable open-loop system. The measure-
ment of the distributed rod temperature is given by (2.2), where
c(x) = χ[0.3,0.9](x) (i.e., an indicator function of [0.3, 0.9]). We
aim to stabilize the rod temperature at the unstable steady state
z(x, t) = 0.

The observer and controller gains are found from (2.12) and
(2.13). For non-delayed stabilization we consider δ ∈ {0.1, 1, 2, 5}
which result in N0 = 0. For each δ we compute the corresponding
gains and find the minimum value of N such that the LMI of
Theorem 2.1 holds (see Table 1).

For delayed stabilization we choose δ = 0, which results in
N0 = 0. The controller and observer gains are given by

K0 = −5.5, L0 = 5.5. (4.1)

We verify the feasibility of LMIs of Theorems 3.1 (no predictor),
3.2 (predictor, known τu) and 3.3 (predictor, unknown τu) for
δ0 = δ1. Since the corresponding LMIs are strict, feasibility with
δ = 0 implies their feasibility for small enough δ∗ > 0. In the
first test we fix τM = θM = 10−7 and find the minimal value of N
which guarantees the feasibility of the LMIs for increasing values
of r . The results are given in Table 2. It is seen that predictor
allows to increase the maximal value of r from 0.14 till 0.3. The
maximum value of r , with corresponding N , for which the LMIs of
Theorems 3.1, 3.2 and 3.3 were found feasible are r = 0.16 (N =

18), r = 0.44 (N = 24) and r = 0.41 (N = 26), respectively.
In the second test we fix τM = θM and find the maximum value

of r and the corresponding minimal value of N for which LMIs
are feasible. The results are given in Table 3. It is seen that for
θM = τM = 0.01 the LMIs of Theorems 3.2 and 3.3 allow for larger
r than in Theorem 3.1. For θM = τM = 0.04 the same comparison
holds only for Theorems 3.1 and 3.2, whereas no feasibility was
obtained in Theorem 3.3 due to higher-dimensional LMIs for N =

30.
Our reduced-order LMIs are feasible for larger values of N than

in Katz and Fridman (2021a) (where for N > 9 we could not verify
LMIs) due to a significantly lower computational complexity. A
larger N allows larger delays in example. For additional LMI
simulations with different gains see Katz et al. (2021a).

For simulations of the solutions to the closed-loop systems
we choose observer and controller gains given by (4.1). We fix
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0

Table 3
Maximal r and minimal N that guarantee the stability.
τM = θM 0.01 0.04

Theorem 3.1 r = 0.14, N = 30 r = 0.12, N = 30
Theorem 3.2 r = 0.3, N = 30 r = 0.25, N = 30
Theorem 3.3 r = 0.25, N = 22 –

Fig. 1. Simulation results for known τu . Top: stability confirming the LMI
results. Bottom: instability without predictor.

τM = θM = 0.01 and choose the known delays τu(t) = r +

.01 sin2(120t) and τy(t) = 0.01 cos2(120t). Note that τ̇y < 1 and
τ̇u < 1 does not hold. We choose rmax and N given in the first
column and the first two lines of Table 3. For the initial condition
z(x, 0) = 10x2(1 − x)2 we do simulations of the closed-loop
systems (3.10) (without predictor) and (3.27) (with predictor) and
the ODEs satisfied by ẑN−N0 (t). In both cases, we simulate the
ODEs of zn(t) for N + 1 ≤ n ≤ 50. The value of ζ (t), given
by (2.20), is approximated by ζ (t) ≈

∑50
n=N+1 cnzn(t). Results

of the simulations are given at the top of Fig. 1 and confirm
our theoretical results. Moreover, a simulation for r = 0.22 and
N = 30 without predictor shows instability (see the bottom of
Fig. 1). The use of predictor allows to stabilize for a larger r = 0.3
with N = 30.

5. Conclusion

We suggested a finite-dimensional observer-based control of
the 1D heat equation under Neumann actuation, non-local mea-
surement and fast-varying input/output delays. Reduced-order
LMI stability conditions were derived. Classical predictors were
used to enlarge the delays.
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