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a b s t r a c t

We consider perturbed linear systems with fast-varying coefficients that are piecewise-continuous
in time. Recently, a constructive time-delay approach to periodic averaging of such systems was
introduced that provided an upper bound on the small parameter preserving their input-to-state
stability (ISS). In the present paper, we present an improved time-delay approach and extend it to
L2-gain analysis. By the backward averaging, we transform the system to a modified time-delay system
that leads to fewer terms to be compensated in the Lyapunov–Krasovskii (L–K) analysis. As a result we
derive less conservative and simpler conditions for ISS and L2-gain analysis in the form of linear matrix
inequalities (LMIs). We further extend our results to stochastic systems where we employ a stochastic
extension of Lyapunov functionals that we use for the deterministic case. Two numerical examples
(stabilization by vibrational control and by time-dependent switching) illustrate the efficiency of the
method.

© 2021 Published by Elsevier Ltd.
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1. Introduction

Periodic systems are extensively encountered in engineering
pplications (see e.g. Cheng & Tan, 2018; Christensen & San-
os, 2005; Sandberg & Möllerstedt, 2001; Xie & Lam, 2018 and
he references therein). Exponential stability and stabilization of
eriodic piecewise linear systems via a time-dependent homo-
eneous Lyapunov matrix polynomial were studied in Li et al.
2018). Averaging is one of the efficient methods to study the
tability of systems with oscillatory control inputs (Bullo, 2002;
rstić & Wang, 2000; Meerkov, 1980). Results on asymptotic
veraging, where the stability of the original system is guaranteed
or small enough values of the small parameter if the averaged
ystem is stable, were presented for deterministic systems (Bo-
oliubov & Mitropolsky, 1961; Khalil, 2002; Teel & Moreau, 2003)
nd for stochastic systems (Liu & Krstic, 2012). However, these
esults do not provide an efficient upper bound on the small
arameter that guarantees the stability.
Recently, a constructive time-delay approach to periodic av-

raging was introduced in Fridman and Zhang (2020). It was
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suggested to use a backward averaging of the system and to
present it in the form of a time-delay system, where the delay
length is equal to the small parameter. The stability of the time-
delay systems guarantees the stability of the original one. Then
the direct L–K approach (see e.g. Fridman, 2014) leads to LMI-
based conditions that allow to find an efficient upper bound
on the small parameter preserving the stability and ISS of the
original system. However, the presented results were conserva-
tive, whereas L2-gain analysis and stochastic extension were not
tudied. It is well known that L–K approach allows to cope with
xponential stability analysis of systems with state multiplicative
oise. Multiplicative noise may appear due to the system param-
ters that undergo random perturbations of white noise process
nd due to nonlinearities (Mao, 2007; Shaikhet, 2013).
In this paper, we consider perturbed linear systems with fast-

arying coefficients that are piecewise-continuous in time. We
resent an improved time-delay approach to periodic averaging
nd extend it to L2-gain analysis and to the stochastic systems.
e provide LMI-based conditions for finding an upper bound
n the small parameter that preserves ISS and guarantees a
ertain L2-gain. Two numerical examples (stabilization by vibra-
ional control and by time-dependent switching) illustrate the
fficiency of the method. Particularly, essentially larger bounds on
he small parameter are obtained via simpler LMIs comparatively
o Fridman and Zhang (2020). We summarize the contribution as
ollows:

(1) We provide less conservative and simpler LMI conditions

for the stability and ISS analysis comparatively to Fridman

https://doi.org/10.1016/j.automatica.2021.110126
http://www.elsevier.com/locate/automatica
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and Zhang (2020). This is achieved by using a novel time-
delay model that leads to fewer terms to be compensated
in the L–K analysis.

(2) We study, for the first time, L2-gain analysis. We derive
LMIs for the L2-gain analysis of the time-delay system.
These LMIs together with an additional condition guaran-
tee the same L2-gain for the original system.

(3) For the first time, we extend averaging via the time-delay
approach to the stochastic systems. This extension is not
straightforward since the deterministic Lyapunov function-
als depend on ẋ and are not applicable in the stochastic
case (Fridman & Shaikhet, 2019; Zhang & Fridman, 2020).
We suggest an appropriate stochastic extension of the Lya-
punov functionals that leads to constructive LMIs for the
ISS and L2-gain analysis.

Throughout the paper Rn denotes the n-dimensional Euclidean
space with the vector norm | · |, Rn×m is the set of all n × m
real matrices with the induced matrix norm ∥ · ∥. The superscript
T stands for the vector/matrix transposition, and the notation
P > 0, for P ∈ Rn×n means that P is symmetric and positive
efinite. The symmetric elements of the symmetric matrix are
enoted by ∗.
We will employ extended Jensen’s inequalities (Solomon &

ridman, 2013):

emma 1.1. Let G =
∫ b
a f (s)φ(s)ds and Y =

∫ b
a

∫ b
s φ(θ )dθds with

≤ b, where f : [a, b] → R, φ : [a, b] → Rn and the integrations
oncerned are well defined. Then for any 0 < R ∈ Rn×n the following
nequalities hold:

GTRG ≤
∫ b
a |f (θ )|dθ

∫ b
a |f (s)|φT (s)Rφ(s)ds, (1.1)

YTRY ≤
(b−a)2

2

∫ b
a

∫ b
s φT (θ )Rφ(θ )dθds. (1.2)

. Improved time-delay approach to periodic averaging: L2-
ain and ISS analysis

Consider a linear system with fast-varying coefficients:

ẋ(t) = A( t
ε
)x(t) + Bv(t), t ≥ 0, (2.1)

here x(t) ∈ Rn is the state, A : [0, ∞) → Rn×n is piecewise-
ontinuous, B ∈ Rn×nv is a constant matrix, v(t) ∈ Rnv is the
isturbance and ε > 0 is a small parameter. For L2-gain analysis
e consider v ∈ L2[0, ∞), whereas for ISS analysis v is locally
ssentially bounded. Then for any x(0) ∈ Rn, (2.1) has a unique

solution in the sense of Carathéodory (see Theorem 5.1 of Hale,
1980). The latter means that this solution x satisfies the initial
condition, it is absolutely continuous and it satisfies (2.1) almost
for all t ≥ 0.

Similar to Fridman and Zhang (2020), we assume:

A1 Assume that the following holds:
1

εT

∫ t
t−εT A( s

ε
)ds = Aav + ∆A( t

ε
),

∥∆A( t
ε
)∥ ≤ σ ∀

t
ε

≥ T
(2.2)

ith Hurwitz constant matrix Aav , period T > 0 and small
nough constant σ > 0. This means that the unperturbed av-
raged system

ẋav(t) = [Aav + ∆A( t
ε
)]xav(t), xav(t) ∈ Rn (2.3)

s exponentially stable for small enough σ > 0 and all ε > 0.

A2 All entries akj( tε ) of A(
t
ε
) are uniformly bounded for t ≥ 0 with

the values from some finite intervals akj( tε ) ∈ [amkj, a
M
kj ] for

t
ε

≥ T .
Differently from A1 in Fridman and Zhang (2020) with T = 1

in (2.2), in the present paper we consider the periodic averaging
2

over a general period T in A1 (that allows to avoid scaling in time
in order to have T = 1). We can rewrite (2.2) in A1 in terms of
the stretched time τ =

t
ε
(by changing variable s to ζ =

s
ε
in the

integral) as
1
T

∫ τ

τ−T A(ζ )dζ = Aav + ∆A(τ ), ∥∆A(τ )∥ ≤ σ ∀τ ≥ T .

atrix ∆A(τ ) may stand for system uncertainty whose norm is
pper bounded by a known constant σ > 0. Under A2, A(τ ) can
e presented as a convex combination of the constant matrices Ai
ith the entries amkj or a

M
kj :

A(τ ) =
∑N

i=1 ρi(τ )Ai ∀τ ≥ T ,

ρi ≥ 0,
∑N

i=1 ρi = 1, 1 ≤ N ≤ 2n2 .
(2.4)

or a constant akj, we have amkj = aMkj . Note that we study the case
here the time-varying parameters stabilize the system. Here
reating time-varying terms as norm-bounded or polytopic type
ncertainties is not appropriate since without these terms the
ystem is unstable.
In this paper, by using periodic averaging we will present an

mproved (compared to Fridman & Zhang, 2020) ISS analysis of
ystem (2.1) with locally essentially bounded v. For the first time,
e will study L2-gain analysis of system (2.1) with v ∈ L2[0, ∞).
ollowing the time-delay approach to periodic averaging of Frid-
an and Zhang (2020), we integrate (2.1) on [t − εT , t] for t ≥

T . Denote

f ( t
ε
) = A( t

ε
)x(t) (2.5)

nd

G(t, ε) ∆
=

1
εT

∫ t
t−εT (s − t + εT )f ( s

ε
)ds. (2.6)

or shortness we omit the dependence on ε throughout this
aper (e.g. G(t) = G(t, ε), Y (t) = Y (t, ε) in (2.12), etc.). Similar

to Fridman and Shaikhet (2016), we can present
1

εT

∫ t
t−εT ẋ(s)ds =

1
εT [x(t) − x(t − εT )]

=
d
dt [x(t) − G(t) −

1
εT

∫ t
t−εT (s − t + εT )Bv(s)ds]

=
d
dt [x(t) − G(t)] +

1
εT

∫ t
t−εT Bv(s)ds − Bv(t).

(2.7)

ntegrating (2.1), and then adding and subtracting x(t), via (2.7)
e arrive at
d
dt [x(t) − G(t)] =

1
εT

∫ t
t−εT A( s

ε
)[x(s) + x(t)

−x(t)]ds + Bv(t), t ≥ εT .
(2.8)

e present
1

εT

∫ t
t−εT A( s

ε
)[x(s) − x(t)]ds

= −
1

εT

∫ t
t−εT A( s

ε
)
∫ t
s ẋ(θ )dθds.

(2.9)

Denote

z(t) ∆
= x(t) − G(t). (2.10)

Then under A1 we transform (2.1) to the following time-delay
system for t ≥ εT :

ż(t) = [Aav + ∆A( t
ε
)]x(t) − Y (t) + Bv(t), (2.11)

here

Y (t) ∆
=

1
εT

∫ t
t−εT A( s

ε
)
∫ t
s ẋ(θ )dθds,

ẋ(θ ) = A( θ
ε
)x(θ ) + Bv(θ ).

(2.12)

simpler derivation of the time-delay model will be presented
n Section 3. Note that system (2.11) is a kind of neutral type
ystem. Moreover, compared with the averaged system (2.3),
ystem (2.11) with v ≡ 0 and ẋ(θ ) = A( θ

ε
)x(θ ) + Bv(θ ) has the

additional terms −G(t) and −Y (t) that are both of the order O(ε)
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rovided x and ẋ are O(1). Thus, for small ε > 0, system (2.11)
ith v ≡ 0 can be considered as a perturbation of system (2.3).

f given v(t), the function x(t) is a solution to system (2.1) then
it satisfies the time-delay system (2.11). Therefore, the stability
and ISS of the time-delay system guarantee the stability and ISS
of the original system.

Remark 2.1. Note that in Fridman and Zhang (2020), for the ISS
analysis G(t)-term has a form of (2.6) with f ( s

ε
) replaced by ẋ(s)

hat leads to the additional disturbance term 1
εT

∫ t
t−εT Bv(s)ds,

hereas Y (t)-term in (2.12) is replaced by
∑N

i=1 AiYi(t) with

i(t)
∆
=

1
εT

∫ t
t−εT ρi( sε )

∫ t
s ẋ(θ )dθds. The Yi(t)-terms are further

compensated by N integral terms VHi (t), i = 1, . . . ,N (see (2.22)
of Fridman & Zhang, 2020). Comparatively to Fridman and Zhang
(2020), system (2.11) has novel G(t)-term depending on f ( s

ε
) only

and a single Y (t)-term that lead to fewer terms to be compen-
sated in the L–K analysis. The latter significantly simplifies the
LMIs and improves the results in the examples.

We will now present a L–K method for system (2.11) leading
to LMIs that allow to find an upper bound ε∗ on ε preserving
he exponential stability and the corresponding performance of
erturbed system (2.1) for all ε ∈ (0, ε∗

]. Consider the following
yapunov functional

V1(t) = VP (t) + VR(t) + VH (t), t ≥ εT , (2.13)

here
VP (t) = zT (t)Pz(t),

VR(t) =
1

εT

∫ t
t−εT e−2α(t−s)(s − t + εT )2f T ( s

ε
)Rf ( s

ε
)ds,

VH (t) =
1

εT

∫ t
t−εT

∫ t
s e−2α(t−θ )(s − t + εT )

×ẋT (θ )AT ( s
ε
)HA( s

ε
)ẋ(θ )dθds

(2.14)

with n × n matrices P > 0, R > 0, H > 0 and a scalar α ≥ 0.
Here VR(t) compensates G(t)-term whereas VH (t) is employed to
compensate Y (t)-term. By Jensen’s inequality (3.87) in Fridman
(2014), we have for all ε ∈ (0, ε∗

]

V1(t) ≥ VP (t) + VR(t)

≥

[
x(t)

G(t)

]T [P −P

∗ P + e−2αε∗T R

] [
x(t)

G(t)

]
≥ c1|x(t)|2,

(2.15)

where

c1 = λmin(
[

P −P

∗ P+e−2αε∗T R

]
). (2.16)

Thus, V1(t) is positive-definite.
Consider next the controlled output

y(t) = Cx(t), t ≥ 0, y(t) ∈ Rl, (2.17)

where C ∈ Rl×n is a constant matrix. Given γ > 0, for neutral
system (2.11) we employ the following performance index:

JεT =
∫

∞

εT

[
|Cx(t)|2 − γ 2

|v(t)|2
]
dt. (2.18)

We will derive LMI conditions that guarantee JεT < 0 for all
0 ̸= v ∈ L2[εT , ∞) along the solutions of (2.11) starting from
the zero initial condition x(t) ≡ 0 ∀t ∈ [0, εT ], meaning that
the neutral system (2.11), (2.17) has L2-gain less than γ . Given
γ > 0, we define the following performance index for the original
system (2.1):

J =
∫

∞

0

[
|Cx(t)|2 − γ 2

|v(t)|2
]
dt. (2.19)

System (2.1), (2.17) has L2-gain less than γ if J < 0 for all 0 ̸=

v ∈ L2[0, ∞) along the solutions of (2.1) starting from x(0) = 0.
From A2, it follows that there exists a constant a > 0 such

that ∥A( t
ε
)∥ ≤ a holds for all t ≥ 0. The following lemma gives

sufficient conditions for L -gain and ISS analysis:
2

3

Lemma 2.1. Given ε∗ > 0, α ≥ 0 and γ > 0, let for V1(t) given
by (2.13) the following inequality holds along the solutions of (2.11)
for all ε ∈ (0, ε∗

]:

V̇1(t) + 2αV1(t) + |Cx(t)|2 − γ 2
|v(t)|2 < 0

∀0 ̸= v(t) ∈ Rnv and ∀t ≥ εT .
(2.20)

f (2.20) holds with α = 0, then the neutral system (2.11), (2.17)
as L2-gain less than γ for all ε ∈ (0, ε∗

]. If additionally

ε∗M − γ 2 < 0 (2.21)

s satisfied with

M =
T ∥B∥2

2a (e2aε
∗T

− 1)[ε∗c2(2a2 + 1) + ∥C∥
2
]

+c2∥B∥2(2 + T e2aε
∗T ),

c2 = max{2λmax(P), a2T λmax(2P + R), a2T λmax(H)},

(2.22)

here a is the upper bound of ∥A( t
ε
)∥, then the original system (2.1),

(2.17) has L2-gain less than γ for all ε ∈ (0, ε∗
]. Moreover, if (2.20)

olds with α > 0 and C = 0, then system (2.1) is ISS, i.e. there exists
M0 > 0 such that for all ε ∈ (0, ε∗

] and locally essentially bounded
v, the solutions of system (2.1) initialized by x(0) ∈ Rn satisfy the
following inequality:

|x(t)|2 ≤ M0e−2αt
|x(0)|2 +

[
M0e−2αt

+
γ 2

2αc1

]
∥v[0, t]∥2

∞
(2.23)

or all t ≥ 0 with c1 given by (2.16).

roof. Let (2.20) hold with α = 0. Integration of (2.20) in t from
T to ∞ yields

V1(∞) − V1(εT ) +
∫

∞

εT |Cx(t)|2dt − γ 2
∫

∞

εT |v(t)|2dt < 0.

(2.24)

aking into account V1(εT ) = 0 and V1(∞) ≥ 0, (2.24) yields
εT < 0 implying that system (2.11), (2.17) has L2-gain less than
.
We next study L2-gain analysis of system (2.1), (2.17). From

2.24), we have

J < V1(εT ) +
∫ εT
0 ∥C∥

2
|x(t)|2dt − γ 2

∫ εT
0 |v(t)|2dt. (2.25)

y using Young’s and Jensen’s inequalities, we obtain the upper
ound on V1(εT ) given by (2.13) for all ε ∈ (0, ε∗

]

V1(εT ) ≤ 2xT (εT )Px(εT ) + εT
∫ εT
0 f T ( s

ε
)(2P + R)f ( s

ε
)ds

+
∫ εT
0

∫ εT
s ẋT (θ )AT ( s

ε
)HA( s

ε
)ẋ(θ )dθds.

Using (2.5), we have

V1(εT ) ≤ c2
[
|x(εT )|2 + ε

∫ εT
0 (|x(t)|2 + |ẋ(t)|2)dt

]
(2.26)

ith c2 given by (2.22). Note that for t ∈ [0, εT ], x(t) satisfies
2.1). Thus, from (2.1), we find

|ẋ(t)|2 ≤ [a|x(t)| + ∥B∥|v(t)|]2

≤ 2a2|x(t)|2 + 2∥B∥2
|v(t)|2 ∀t ∈ [0, εT ],

here we applied Young’s inequality. Therefore,∫ εT
0 |ẋ(t)|2dt ≤ 2a2

∫ εT
0 |x(t)|2dt + 2∥B∥2

∫ εT
0 |v(t)|2dt. (2.27)

ubstituting (2.27) into (2.26), we have

V1(εT ) ≤ c2
[

|x(εT )|2 + ε(2a2 + 1)
∫ εT
0 |x(t)|2dt

+2ε∥B∥2
∫ εT
0 |v(t)|2dt

]
.

(2.28)

ntegrating (2.1) with x(0) = 0, we find for all t ∈ [0, εT ]∫ t ∫ εT

|x(t)| ≤ a 0 |x(s)|ds + ∥B∥ 0 |v(s)|ds.
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he latter, by Gronwall’s inequality, implies

|x(t)| ≤ ∥B∥eat
∫ εT
0 |v(s)|ds, t ∈ [0, εT ]

and, by Jensen’s inequality,

|x(t)|2 ≤ εT ∥B∥2e2at
∫ εT
0 |v(s)|2ds, t ∈ [0, εT ]. (2.29)

Then we have∫ εT
0 |x(t)|2dt ≤

εT
2a ∥B∥2(e2aεT − 1)

∫ εT
0 |v(s)|2ds.

ubstituting the latter and (2.29) into (2.28) and further into
2.25), we arrive at J < (εM−γ 2)

∫ εT
0 |v(t)|2dt . Thus, under (2.21)

e have J < 0 for all ε ∈ (0, ε∗
] and for all non-zero v ∈ L2[0, ∞),

.e. system (2.1), (2.17) has L2-gain less than γ .
Moreover, if (2.20) holds for C = 0 and α > 0, then by

omparison principle and by employing (2.15) we obtain the
ollowing bound on solutions of (2.1) for all t ≥ εT :

c1|x(t)|2 ≤ V1(t) ≤ e−2α(t−εT )V1(εT ) +
γ 2

2α ∥v[0, t]∥2
∞

. (2.30)

e have along (2.1) for t ∈ [0, εT ] (cf. (2.29))

|x(t)|2 ≤ 2e2at [|x(0)|2 + εT ∥B∥2
∫ εT
0 |v(s)|2ds].

From (2.28) and the latter, it follows that (2.30) implies (2.23)
with some ε-independent M0 > 0. □

We will further derive LMI-based conditions for finding ε∗

such that (2.20) along (2.11) and (2.21) hold. As in Fridman and
Shaikhet (2019), there is no need to verify the stability of z(t) = 0
since the bound (2.30) on |x(t)| directly follows from (2.15) and
(2.20).

Theorem 2.1. Consider system (2.1) subject to A1 and A2. Given
matrices Aav , Ai (i = 1, . . . ,N), B, C, and constants σ > 0, α ≥ 0,
ε∗ > 0, T > 0, let there exist n × n matrices P > 0, R > 0, H > 0
and H̄ > 0 and scalars λ > 0 and γ > 0 (that becomes a tuning
parameter for L2-gain analysis) satisfying the following LMIs:

1
T 2

∫ τ

τ−T (ζ − τ + T )AT (ζ )HA(ζ )dζ ≤ H̄ ∀τ ≥ T (2.31)

and for i = 1, . . . ,N⎡⎢⎢⎢⎣
Φ

√
ε∗T AT

i R
√

ε∗T AT
i H̄

03n×n 03n×n

0nv×n
√

ε∗T BT H̄
∗ −R 0n×n

∗ ∗ −H̄

⎤⎥⎥⎥⎦ < 0, (2.32)

here Φ is the symmetric matrix composed of

Φ11 = PAav + AT
avP + 2αP + λσ 2In + CTC,

Φ12 = −AT
avP − 2αP, Φ13 = Φ24 = −P,

Φ14 = Φ23 = P, Φ15 = −Φ25 = PB,

Φ22 = −
4

ε∗T e−2αε∗T R + 2αP, Φ44 = −λIn,

Φ33 = −
2

ε∗T e−2αε∗T H, Φ55 = −γ 2Inv

(2.33)

nd other blocks are zero matrices. If LMIs (2.32) hold with α = 0,
hen system (2.11), (2.17) has L2-gain less than γ for all ε ∈ (0, ε∗

].
f additionally (2.21) is satisfied with M defined by (2.22), then
ystem (2.1), (2.17) has L2-gain less than γ for all ε ∈ (0, ε∗

].
Moreover, if LMIs (2.32) hold with α > 0 and C = 0, then system
(2.1) is ISS (i.e. there exists M0 > 0 such that the solutions of system
(2.1) initialized by x(0) ∈ Rn satisfy (2.23) for all ε ∈ (0, ε∗

] and
ocally essentially bounded v). LMIs (2.32) are always feasible for
small enough ε∗ > 0, 1

γ
> 0, α > 0 and ∥C∥.

roof. Consider the functional V1(t) given by (2.13). Differenti-
ting VP (t) along (2.11) we have

V̇P (t) = 2[x(t) − G(t)]TP[(Aav + ∆A( t
ε
))x(t)

(2.34)

−Y (t) + Bv(t)].

4

For the term VR(t), we find

V̇R(t) + 2αVR(t) = εT f T ( t
ε
)Rf ( t

ε
)

−
2

εT

∫ t
t−εT e−2α(t−s)(s − t + εT )f T ( s

ε
)Rf ( s

ε
)ds.

Jensen’s inequality (1.1) leads to

2GT (t)RG(t) ≤
∫ t
t−εT (s − t + εT )f T ( s

ε
)Rf ( s

ε
)ds.

Then

V̇R(t) + 2αVR(t) ≤ εT f T ( t
ε
)Rf ( t

ε
) −

4
εT e−2αεT GT (t)RG(t).

(2.35)

Moreover, we have

V̇H (t) + 2αVH (t)

≤ ẋT (t) ·
1

εT

∫ t
t−εT (s − t + εT )AT ( s

ε
)HA( s

ε
)ds · ẋ(t)

−
1

εT e−2αεT
∫ t
t−εT

∫ t
s ẋT (θ )AT ( s

ε
)HA( s

ε
)ẋ(θ )dθds.

y changing variable s = εζ and employing (2.31) we obtain
1

ε2T 2

∫ t
t−εT (s − t + εT )AT ( s

ε
)HA( s

ε
)ds

=
1
T 2

∫ t
ε
t
ε −T

(ζ −
t
ε

+ T )AT (ζ )HA(ζ )dζ ≤ H̄.
(2.36)

pplying further the extended Jensen’s inequality (1.2)

2Y T (t)HY (t) ≤
∫ t
t−εT

∫ t
s ẋT (θ )AT ( s

ε
)HA( s

ε
)ẋ(θ )dθds,

we arrive at

V̇H (t) + 2αVH (t) ≤ εT ẋT (t)H̄ẋ(t) −
2

εT e−2αεT Y T (t)HY (t).

(2.37)

To compensate ∆A( t
ε
)x(t) in (2.34), from (2.2) we have

λ[σ 2
|x(t)|2 − |∆A( t

ε
)x(t)|2] ≥ 0 (2.38)

with some λ > 0. Then from (2.34)–(2.37), by applying S-
procedure where we add (2.38) to V̇1(t), we obtain for all ε ∈

(0, ε∗
]

V̇1(t) + 2αV1(t) + |Cx(t)|2 − γ 2
|v(t)|2

≤ V̇1(t) + 2αV1(t) + |Cx(t)|2 − γ 2
|v(t)|2

+λ[σ 2
|x(t)|2 − |∆A( t

ε
)x(t)|2]

≤ ξ T
1 (t)Φξ1(t) + ε∗T [f T ( t

ε
)Rf ( t

ε
) + ẋT (t)H̄ẋ(t)].

(2.39)

Here ξ T
1 (t) = [xT (t),GT (t), Y T (t), xT (t)∆AT ( t

ε
), vT (t)] and Φ is

omposed of (2.33). We substitute into (2.39)

f ( t
ε
) =

∑N
i=1 ρi( tε )Aix(t),

ẋ(t) =
∑N

i=1 ρi( tε )Aix(t) + Bv(t).
(2.40)

pplying further Schur complements, we conclude that if

Φ

√
ε∗T

∑N
i=1 ρi( tε )A

T
i R

√
ε∗T

∑N
i=1 ρi( tε )A

T
i H̄

03n×n 03n×n

0nv×n
√

ε∗T BT H̄
∗ −R 0n×n

∗ ∗ −H̄

⎤⎥⎥⎥⎥⎦ < 0,

(2.41)

then (2.20) holds. LMIs (2.32) imply (2.41) (thus, (2.20)) since
(2.41) is affine in

∑N
i=1 ρi( tε )A

T
i . Then the result follows from

Lemma 2.1.
We show next the feasibility of Φ < 0 for small enough

∗ > 0, 1
γ

> 0 and ∥C∥. Since Aav is Hurwitz, there exists n × n
matrix P > 0 such that for small enough α > 0 the following
holds: Φ = PA + AT P + 2αP < 0. Choose R = H = T e2αε∗T I ,
0 av av n
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=
1
ε∗ and σ = ε∗. By applying Schur complements, Φ < 0 is

equivalent to[
Φ0 + ε∗In + CTC −AT

avP − 2αP

∗ −
4
ε∗ In + 2αP

]

+

[
P

−P

]
( 32ε

∗In +
1
γ 2 BBT )

[
P

−P

]T

< 0.

ince Φ0 < 0, the latter inequality (thus, Φ < 0) is always
feasible for small enough ε∗ > 0, 1

γ
> 0 and ∥C∥. Finally,

pplying Schur complements to the last two block-columns and
lock-rows of LMIs (2.32), we find that LMIs (2.32) hold for small
nough ε∗ > 0 if Φ < 0 is feasible. Therefore, LMIs (2.32) are

always feasible for small enough ε∗ > 0, 1
γ

> 0, α > 0 and
C∥. □

emark 2.2. In some cases the upper-bounding in (2.31) (and
n (3.26)) can be done directly (see the switched system Exam-
le 4.2). In others (as in Example 4.1), one can choose H = hIn

with scalar h > 0 to be determined, and use the bounding
1
T 2

∫ τ

τ−T (ζ −τ +T )AT (ζ )HA(ζ )dζ ≤
h
T

∫ τ

τ−T AT (ζ )A(ζ )dζ .

. Stability and performance analysis of stochastic systems by
eriodic averaging

Let {Ω,F, P} be a probability space, {Ft , t ≥ 0} be a nonde-
reasing family of sub-σ -algebras of F, i.e., Fs ⊂ Ft for s < t ,
P{·} be the probability of an event enclosed in the brackets. The
mathematical expectation E of a random variable ξ = ξ (w) on
the probability space {Ω,F, P} is defined as Eξ =

∫
Ω

ξ (w)dP(w).
The scalar standardWiener process (also called Brownian motion)
is a stochastic process w(t) with normal distribution satisfying
w(0) = 0, Ew(t) = 0 (t > 0) and Ew2(t) = t (t > 0) (Shaikhet,
2013).

Consider the following stochastic fast-varying system

dx(t) = [A( t
ε
)x(t) + Bv(t)]dt + Dx(t)dw(t), t ≥ 0, (3.1)

here x(t) ∈ Rn is the state, A : [0, ∞) → Rn×n is piecewise-
ontinuous, B ∈ Rn×nv and D ∈ Rn×n are constant matrices,
(t) ∈ Rnv is the deterministic disturbance, w(t) is the scalar

standard Wiener process and ε > 0 is a small parameter. For the
well-posedness, we assume v(t) to be continuous.

A solution of (3.1) with the initial condition x(0) is a stochastic
process x(t) that satisfies the initial condition and for t ≥ 0 with
probability 1 satisfies the equation

x(t) = x(0) +
∫ t
0 [A( s

ε
)x(s) + Bv(s)]ds +

∫ t
0 Dx(s)dw(s).

By Theorem 2.3.1 of Mao (2007), there exists a unique solu-
tion to system (3.1) and this solution satisfies

∫ t
0 E|x(s)|2ds =∫ t

0 |x(s)|2ds < ∞ for all t ≥ 0.
Note that in A1, term ∆A(τ ) stems from system uncertainty

hat now may be included in the multiplicative noise. Thus, for
tochastic system (3.1) we assume that A(τ ) is T -periodic and the
following holds:

A3 Assume that the following holds:
1

εT

∫ t
t−εT A( s

ε
)ds = Aav ∀

t
ε

≥ T (3.2)

ith Hurwitz constant matrix Aav and period T > 0.
Assume also that A2 and relation (2.4) hold. We will follow the

ime-delay approach to periodic averaging of Fridman and Zhang
2020). Let f ( t

ε
), G(t) and z(t) be defined by (2.5), (2.6) and (2.10)

respectively. We have for all t ≥ εT

dz(t) = d[x(t) −
1

εT

∫ t
t−εT (s − t + εT )A( s

ε
)x(s)ds][ 1 ∫ t s t ] (3.3)
= dx(t) +
εT t−εT A(

ε
)x(s)ds − A(

ε
)x(t) dt.

5

By substituting the right-hand side of (3.1) for dx(t) and adding
and subtracting x(t), we obtain from (3.3)

dz(t) =
[ 1

εT

∫ t
t−εT A( s

ε
)(x(s) + x(t) − x(t))ds

+Bv(t)
]
dt + Dx(t)dw(t), t ≥ εT

hat under A3 leads to the neutral system

dz(t) =
[
Aavx(t) +

1
εT

∫ t
t−εT A( s

ε
)(x(s) − x(t))ds

+Bv(t)
]
dt + Dx(t)dw(t), t ≥ εT .

(3.4)

For a functional V (t, x(t)), associated with (3.4), which is con-
inuously differentiable in t and twice continuously differentiable
n x, we employ the generator L (Mao, 2007; Shaikhet, 2013):

LV (t, x(t)) = Vt (t, x(t)) + Vx(t, x(t))[Aavx(t)

+
1

εT

∫ t
t−εT A( s

ε
)(x(s) − x(t))ds + Bv(t)]

+
1
2 trace{x

T (t)DTVxx(t, x(t))Dx(t)},

(3.5)

here Vt =
∂
∂t V , Vx = ( ∂V

∂x1
, . . . , ∂V

∂xn
) and Vxx = ( ∂2V

∂xi∂xj
)n×n.

ifferently from the deterministic case, for the stochastic case we
mphasize dependence on x(t) of Lyapunov functional V (t, x(t)),
hich is important for definition of LV (t, x(t)) in (3.5). Denote

f̃ ( t
ε
) = A( t

ε
)x(t) + Bv(t). (3.6)

e present (cf. (2.9))
1

εT

∫ t
t−εT A( s

ε
)[x(s) − x(t)]ds = −

∑2
i=1 Yi(t), (3.7)

here we substituted the right-hand side of (3.1) for dx(θ ) and

Y1(t)
∆
=

1
εT

∫ t
t−εT A( s

ε
)
∫ t
s f̃ ( θ

ε
)dθds,

Y2(t)
∆
=

1
εT

∫ t
t−εT A( s

ε
)
∫ t
s Dx(θ )dw(θ )ds.

(3.8)

y substituting (3.7) into (3.5) we obtain

LV (t, x(t)) = Vt (t, x(t)) + Vx(t, x(t))
[
Aavx(t) + Bv(t)

−
∑2

i=1 Yi(t)
]

+
1
2 trace{x

T (t)DTVxx(t, x(t))Dx(t)}.
(3.9)

onsider the following Lyapunov functional for (3.4):

V2(t) = V (t, x(t)) = VP (t, x(t)) + VR(t) + VH (t) + VF (t), (3.10)

here VR(t) is given by (2.14), and

VP (t, x(t)) = [x(t) − G(t)]TP[x(t) − G(t)],

VH (t) =
1

εT

∫ t
t−εT

∫ t
s e−2α(t−θ )(s − t + εT )

×f̃ T ( θ
ε
)AT ( s

ε
)HA( s

ε
)f̃ ( θ

ε
)dθds,

VF (t) =
1

ε2T 2

∫ t
t−εT

∫ t
s e−2α(t−θ )(s − t + εT )

×xT (θ )DTAT ( s
ε
)FA( s

ε
)Dx(θ )dθds

(3.11)

with n × n matrices P > 0, H > 0 and F > 0 and a scalar
α ≥ 0. Note that VH (t) and VF (t) are employed to compensate
Y1(t) and Y2(t) respectively. From (2.15), it follows that V (t, x(t))
is positive-definite for all ε ∈ (0, ε∗

] where due to (2.15) the
following holds for some ε-independent c1 > 0:

V (t, x(t)) ≥ VP (t, x(t)) + VR(t) ≥ c1|x(t)|2. (3.12)

For simplicity, we will further use notation V2(t) = V (t, x(t)). The
stochastic extension of L2-gain and ISS analysis will be based on
the following Lemma:

Lemma 3.1. Consider JεT and J defined by (2.18) and (2.19)
respectively. Given ε∗ > 0, α ≥ 0 and γ > 0, let for V2(t) defined
by (3.10) and LV2(t) = LV (t, x(t)) given by (3.9) the following
inequality holds for all ε ∈ (0, ε∗

]:

E
(
LV2(t) + 2αV2(t) + |Cx(t)|2

)
< γ 2

|v(t)|2
nv

(3.13)

∀0 ̸= v(t) ∈ R and ∀t ≥ εT .
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f (3.13) holds with α = 0, then for all ε ∈ (0, ε∗
] the neutral

ystem (3.4), (2.17) has L2-gain less than or equal to γ meaning
hat EJεT ≤ 0 for all 0 ̸= v ∈ L2[εT , ∞) and all solutions of (3.4)
tarting from the zero initial condition x(t) ≡ 0 ∀t ∈ [0, εT ]. If
additionally

ε∗M̃ − γ 2 < 0 (3.14)

holds, where

M̃ =
T ∥B∥2

a2ε∗T +∥D∥2
(eε∗T (a2ε∗T +∥D∥

2)
− 1)[c̃2(1 + 2a2ε∗

+ε∗) + ∥C∥
2] + c̃2∥B∥2(2 + 3T e3ε

∗T (a2ε∗T +∥D∥
2)),

c̃2 = max {2λmax{P}, a2T λmax{2P + R}, a2T λmax{H},

a2∥D∥
2λmax{F}}

(3.15)

and a is the upper bound of ∥A( t
ε
)∥, then for all ε ∈ (0, ε∗

] the
original system (3.1), (2.17) has L2-gain less than γ meaning that
EJ < 0 for all 0 ̸= v ∈ L2[0, ∞) and solutions of (3.1) starting
from x(0) = 0. Moreover, if (3.13) holds with α > 0 and C = 0,
then system (3.1) is ISS, i.e. there exists M0 > 0 such that for all
ε ∈ (0, ε∗

] and locally essentially bounded v, the solutions of system
(3.1) initialized by x(0) ∈ Rn satisfy the following inequality:

E|x(t)|2 ≤ M0e−2αtE|x(0)|2 +

[
M0e−2αt

+
γ 2

2αc1

]
∥v[0, t]∥2

∞

(3.16)

for all t ≥ 0 with c1 given by (2.16).

Proof. Let (3.13) hold with α = 0. The proof of EJεT ≤ 0 follows
the standard arguments (see e.g. Xu & Chen, 2002). Integration of
(3.13) in s from εT to t > εT yields for 0 ̸= v ∈ L2[εT , t)∫ t

εT E|Cx(s)|2ds − γ 2
∫ t

εT |v(s)|2ds < −
∫ t

εT ELV2(s)ds. (3.17)

From equation (2.8) of Shaikhet (2013), we have

−
∫ t

εT ELV2(s)ds = EV2(εT ) − EV2(t) ≤ EV2(εT ), (3.18)

where the inequality follows from EV2(t) ≥ 0 for t > εT .
Moreover, since∫ t

εT E|Cx(s)|2ds ≤ ∥C∥
2
∫ t

εT E|x(s)|2ds < ∞, t > εT ,

by Fubini’s theorem (see Theorem 2.39 of Klebaner, 2005) we
have∫ t

εT E|Cx(s)|2ds = E
∫ t

εT |Cx(s)|2ds, t > εT . (3.19)

Thus, (3.17)–(3.19) imply

E
∫ t

εT |Cx(s)|2ds < γ 2
∫ t

εT |v(s)|2ds + EV2(εT ) ∀t > εT

which leads to

limt→∞ E
∫ t

εT |Cx(s)|2ds ≤ γ 2
∫

∞

εT |v(s)|2ds + EV2(εT ).

By using monotonic convergence theorem (see Theorem 1.2.2
of Mao, 2007), we have

limt→∞ E
∫ t

εT |Cx(s)|2ds = E
∫

∞

εT |Cx(s)|2ds.

Thus, we arrive at

EJεT = E
∫

∞

εT |Cx(s)|2ds − γ 2
∫

∞

εT |v(s)|2ds ≤ EV2(εT ) (3.20)

meaning that EJεT ≤ 0 since EV2(εT ) = 0.
Next, we study L2-gain analysis of the original system (3.1),

(2.17). For J defined by (2.19), from (3.20) we have

EJ ≤ EV2(εT ) + E
∫ εT
0 ∥C∥

2
|x(t)|2dt − γ 2

∫ εT
0 |v(t)|2dt. (3.21)

Note that V2(εT ) given by (3.10) is upper bounded for all ε ∈

(0, ε∗
]

V (εT ) ≤ c̃
[

|x(εT )|2 +
∫ εT ((1 + ε)|x(t)|2 + ε|f̃ ( t )|

2
)dt

]

2 2 0 ε

6

with c̃2 defined by (3.15). Under A2, f̃ ( t
ε
) defined by (3.6) satisfies

he following inequality (cf. (2.27)):∫ εT
0 |f̃ ( t

ε
)|
2
dt ≤ 2a2

∫ εT
0 |x(t)|2dt + 2∥B∥2

∫ εT
0 |v(t)|2dt.

(3.22)

hus, we have

V2(εT ) ≤ c̃2
[

|x(εT )|2 + 2ε∥B∥2
∫ εT
0 |v(t)|2dt

+(1 + 2a2ε + ε)
∫ εT
0 |x(t)|2

]
.

(3.23)

ntegrating (3.1) with the initial condition x(0) = 0, we obtain for
ll t ∈ [0, εT ]

|x(t)| ≤ a|
∫ t
0 x(s)ds| + ∥B|||

∫ t
0 v(s)ds| + ∥D|||

∫ t
0 x(s)dw(s)|.

ifferently from the deterministic case, we cannot apply Gron-
all’s inequality directly to the latter. Instead, we use Cauchy–
chwarz and Jensen’s inequalities:

|x(t)|2 ≤ 3a2|
∫ t
0 x(s)ds|

2
+ 3∥B∥2

|
∫ t
0 v(s)ds|

2

+3∥D∥
2
|
∫ t
0 x(s)dw(s)|

2

≤ 3a2εT
∫ t
0 |x(s)|2ds + 3εT ∥B∥2

∫ εT
0 |v(s)|2ds

+3∥D∥
2
|
∫ t
0 x(s)dw(s)|

2
∀t ∈ [0, εT ].

ince
∫ t
0 E|x(s)|2ds < ∞ for t ∈ [0, εT ], by using Itô isometry

roperty (see Theorem 4.3 in Klebaner, 2005) we have

E|
∫ t
0 x(s)dw(s)|

2
= E

∫ t
0 |x(s)|2ds, t ∈ [0, εT ].

e obtain

E|x(t)|2 ≤ 3εT ∥B∥2
∫ εT
0 |v(s)|2ds

+3
(
a2εT + ∥D∥

2
) ∫ t

0 E|x(s)|2ds, t ∈ [0, εT ],

here we applied Fubini’s theorem. By Gronwall’s inequality, the
ollowing holds for all ε ∈ (0, ε∗

] and t ∈ [0, εT ]

E|x(t)|2 ≤ 3εT ∥B∥2e3(a
2ε∗T +∥D∥

2)t
∫ εT
0 |v(s)|2ds. (3.24)

hen we have∫ εT
0 E|x(t)|2dt ≤

εT ∥B∥2

a2ε∗T +∥D∥2
(e3(a

2ε∗T +∥D∥
2)εT

− 1)
∫ εT
0 |v(s)|2ds.

ubstituting the latter and (3.24) into (3.23) and further into
3.21), under (3.14) we arrive at EJ ≤ (ε∗M̃ − γ 2)

∫ εT
0 |v(t)|2dt <

for all 0 ̸= v ∈ L2[0, ∞).
Let (3.13) hold with α > 0 and C = 0. Then the comparison

rinciple implies

EV2(t) ≤ e−2α(t−εT )EV2(εT ) +
γ 2

2α ∥v[0, t]∥2
∞

∀t ≥ εT . (3.25)

e have along (3.1) for t ∈ [0, εT ]

E|x(t)|2 ≤ 4e4(a
2ε∗T +∥D∥

2)t
[E|x(0)|2 + εT ∥B∥2

∫ εT
0 |v(s)|2ds].

rom (3.12), (3.23) and the latter, it follows that (3.25) implies
3.16) with some ε-independent M0 > 0. □

Theorem 3.1. Consider the system (3.1) subject to A2 and A3.
Given matrices Aav , Ai (i = 1, . . . ,N), B, C, D, and constants α ≥ 0,
ε∗ > 0, T > 0, let there exist n × n matrices P > 0, R > 0, H > 0,
H̄ > 0, F > 0 and F̄ > 0 and a scalar γ > 0 (that becomes a tuning
parameter for L2-gain analysis) satisfying that satisfy the following
LMIs: (2.31),

1 ∫ τ (ζ − τ + T )AT (ζ )FA(ζ )dζ ≤ F̄ ∀τ ≥ T (3.26)
T 2 τ−T
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Ξ

√
ε∗T AT

i R
√

ε∗T AT
i H̄

03n×n 03n×n

0nv×n
√

ε∗T BT H̄
∗ −R 0n×n

∗ ∗ −H̄

⎤⎥⎥⎥⎦ < 0, (3.27)

where Ξ is the symmetric matrix composed of

Ξ11 = PAav + AT
avP + 2αP + CTC + DT (P + F̄ )D,

Ξ12 = −AT
avP − 2αP, Ξ1i = −Ξ2i = −P, i = 3, 4,

Ξ15 = −Ξ25 = PB, Ξ22 = −
4

ε∗T e−2αε∗T R + 2αP,

Ξ33 = −
2

ε∗T e−2αε∗T H,

Ξ44 = −
1

ε∗T e−2αε∗T F , Ξ55 = −γ 2Inv

(3.28)

and other blocks are zero matrices. If LMIs (3.27) hold with α = 0,
then system (3.4), (2.17) has L2-gain less than or equal to γ . If
additionally (3.14) is satisfied with M̃ defined by (3.15), then system
(2.1), (2.17) has L2-gain less than γ for all ε ∈ (0, ε∗

]. Moreover,
if LMIs (3.27) hold with α > 0 and C = 0, then system (3.1) is
ISS (i.e. there exists M0 > 0 such that the solutions of system (3.1)
initialized by x(0) ∈ Rn satisfy (3.16) for all ε ∈ (0, ε∗

] and locally
essentially bounded v). LMIs (3.27) are always feasible for small
enough ε∗ > 0, 1

γ
> 0, α > 0, ∥C∥ and ∥D∥.

roof. Consider the functional V2(t) given by (3.10). Using (3.9)
e have

LVP (t, x(t)) = 2[x(t) − G(t)]TP[Aavx(t) −
∑2

i=1 Yi(t)
+Bv(t)] + xT (t)DTPDx(t).

(3.29)

For the VF (t)-term given by (3.11), we find

LVF (t) + 2αVF (t)

=
1

ε2T 2 xT (t)DT
∫ t
t−εT (s − t + εT )AT ( s

ε
)FA( s

ε
)dsDx(t)

−
1

ε2T 2

∫ t
t−εT

∫ t
s e−2α(t−θ )xT (θ )DTAT ( s

ε
)FA( s

ε
)Dx(θ )dθds.

By changing variable s = εζ and employing (3.26) we have
1

ε2T 2

∫ t
t−εT (s − t + εT )AT ( s

ε
)FA( s

ε
)ds

=
1
T 2

∫ t
ε
t
ε −T

(ζ −
t
ε

+ T )AT (ζ )FA(ζ )dζ ≤ F̄ .
(3.30)

y using Jensen’s inequality (3.87) in Fridman (2014)

εT EY T
2 (t)FY2(t) ≤ E

∫ t
t−εT

∫ t
s xT (θ )DTAT ( s

ε
)dw(θ )

×F
∫ t
s A( s

ε
)Dx(θ )dw(θ )ds

and Itô isometry property

E
∫ t
s xT (θ )DTAT ( s

ε
)dw(θ )F

∫ t
s A( s

ε
)Dx(θ )dw(θ )

= E
∫ t
s xT (θ )DTAT ( s

ε
)FA( s

ε
)Dx(θ )dθ, s ∈ [t − εT , t],

via Fubini’s theorem we obtain
ELVF (t) + 2αEVF (t) ≤ ExT (t)DT F̄Dx(t)

−
1

εT e−2αεT EY T
2 (t)FY2(t).

(3.31)

In view of (3.29) and (3.31), taking into account (2.35) and (2.37)
with ẋ(t), Y (t) respectively changed by f̃ ( t

ε
), Y1(t), we have for all

∈ (0, ε∗
]

ELV2(t) + 2αEV2(t) + E|Cx(t)|2 − γ 2
|v(t)|2

≤ Eξ T
2 (t)Ξξ2(t) + ε∗T E[f T ( t

ε
)Rf ( t

ε
) + f̃ T ( t

ε
)H̄ f̃ ( t

ε
)],

(3.32)

here ξ T
2 (t) = [xT (t),GT (t), Y T

1 (t), Y
T
2 (t), v

T (t)], Ξ is composed of
(3.28) and H̄ is defined by (2.31). Via (2.4) we can present f̃ ( t

ε
) in

3.6) as follows

˜ t ∑N t (3.33)
f (
ε
) = i=1 ρi( ε

)Aix(t) + Bv(t).
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By substituting the first equation in (2.40) and (3.33) into (3.32)
and applying further Schur complements, we conclude that if⎡⎢⎢⎢⎢⎣

Ξ

√
ε∗T

∑N
i=1 ρi( tε )A

T
i R

√
ε∗T

∑N
i=1 ρi( tε )A

T
i H̄

03n×n 03n×n

0nv×n
√

ε∗T BT H̄
∗ −R 0n×n

∗ ∗ −H̄

⎤⎥⎥⎥⎥⎦ < 0,

(3.34)

hen (3.13) holds. LMIs (3.27) imply (3.34) (thus, (3.13)) since
3.34) is affine in

∑N
i=1 ρi( tε )A

T
i . Then the result follows from

Lemma 3.1. The proof of the feasibility of LMIs (3.27) is similar
to that of LMIs (2.32). □

4. Examples

Example 4.1 (Khalil, 2002, Example 10.10: Vibrational Control).
Consider the suspended pendulum with the suspension point that
is subject to vertical vibrations of small amplitude and high fre-
quency. We consider a linearized model at the upper equilibrium
position (i.e. x1 = π , x2 = 0). Following the classical arguments
for stochastic systems (see e.g. Shaikhet, 2013), in the linearized
system we add multiplicative noise that models the error due to
linearization (this error increases for larger state). We therefore
consider

dx(t) =

[
cos t

ε
1

γ 2
0 − cos2 t

ε
−γ0(β + ∆β) − cos t

ε

]
x(t)dt

+Bv(t)dt + Dx(t)dw(t).
(4.1)

ith γ0 > 0 and β > 0. For the deterministic case, as in Fridman
nd Zhang (2020) we consider the uncertainty ∆β that stems
rom the uncertainties of friction coefficient and satisfies |∆β| ≤

1 with β1 ≥ 0, whereas for the stochastic case we consider
∆β = 0. Since A(τ ) in (4.1) with ∆β = 0 is 2π-periodic, we
erify A1 with T = 2π and obtain as follows:

Aav =

[
0 1

γ 2
0 − 0.5 −γ0β

]
, ∆A =

[
0 0
0 −γ0∆β

]
,

σ = γ0β1.

(4.2)

It follows from Theorem 10.4 of Khalil (2002) that for γ 2
0 < 0.5

and small enough ε, system (4.1) with ∆β = 0 and D = 0 is
exponentially stable. We choose γ0 = 0.2 and β = 1 such that Aav
in (4.2) is Hurwitz. Note that cos τ ∈ [−1, 1] and cos2 τ ∈ [0, 1].
Therefore, A(τ ) can be presented as a convex combination (2.4)
of N = 8 constant matrices:

Ai =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
1 1

−0.46 ± 0.5 −1.2 ± 0.2β1

]
, i = 1, . . . , 4,[

−1 1

−0.46 ± 0.5 0.8 ± 0.2β1

]
, i = 5, . . . , 8.

(4.3)

As explained in Remark 2.2, to reduce inequality (2.31) to simple
LMI, we assume H = hI2 > 0 to be a scalar matrix. Let matrices
Ω1 and Ω2(ζ ) = [Ωij] be as follows:

Ω1 = diag{0.0016, 1 + 0.04(1 + β1)2},
Ω11 = 0.92 cos2 ζ + cos4 ζ ,

Ω12 = Ω21 = −0.008(1 + ∆β) + 0.96 cos ζ

+0.2(1 + ∆β) cos2 ζ + cos3 ζ ,

2
Ω22 = 0.4(1 + ∆β) cos ζ + cos ζ .
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fter simple calculations, for all τ ≥ T = 2π we have
1
T 2

∫ τ

τ−T (ζ − τ + T )AT (ζ )HA(ζ )dζ

≤
h
2Ω1 +

h
T

∫ τ

τ−T Ω2(ζ )dζ = hΩ,

Ω =

[
0.8358 0.092(1 + ∆β)

∗ 0.02(1 + β1)2 + 1

]
.

(4.4)

ince ∆β ∈ [−β1, β1], Ω in (4.4) can be presented as a convex
ombination Ω =

∑2
i=1 ρ̃iΩ

(i), where
∑2

i=1 ρ̃i = 1 and ρ̃i ≥ 0,
ith two constant matrices

Ω (i)
=

[
0.8358 0.092(1 ± β1)

∗ 0.02(1 + β1)2 + 1

]
, i = 1, 2. (4.5)

he latter leads to the choice H̄ = h
∑2

i=1 ρ̃iΩ
(i) in (2.31).

In the deterministic case, i.e. D = 0, we first choose β1 =

= 0, where the number of vertices in (4.3) becomes N = 4
nd H̄ = hΩ (1) with β1 = 0. By verifying the feasibility of LMIs
2.32) in the 4 vertices and using H̄ = hΩ (1) with β1 = 0, we
ind the maximum value of ε∗ (see Table 4.1) that guarantees the
xponential stability (and thus ISS) of system (4.1) with D = 0
or all ε ∈ (0, ε∗

] either with a small enough decay rate (for
= 0) or with a decay rate α =

1
10π . It is clear that our method

llows to essentially improve the results of Fridman and Zhang
2020) in terms of essentially larger ε∗, whereas LMIs are not
ore complicated.
We next choose β1 = 0.1 leading to σ = 0.02 (cf. (4.2)).

y verifying the feasibility of LMIs (2.32) in the 16 vertices that
orrespond to the 8 vertices in (4.3) and H̄ = hΩ (1) or H̄ = hΩ (2),
e find the smaller maximum values of ε∗ comparatively to the
ase of σ = 0 in Table 4.1 (in brackets we show ε∗ achieved
n Fridman & Zhang, 2020):

α =0 : ε∗
= 0.0058 (0.0013); α =

1
10π : ε∗

= 0.0034 (0.0007)

hat guarantee the exponential stability (and thus ISS) of system
4.1) with D = 0 for all ε ∈ (0, ε∗

] either with a small enough
ecay rate (for α = 0) or with a decay rate α =

1
10π . Note that

e first choose σ = 0 and find the corresponding value of ε∗.
Then we choose a small positive σ = 0.02 that still guarantees a
reasonable (but smaller) ε∗ > 0.

In the stochastic case, we consider ∆β = 0 (thus, β1 = σ = 0)
and D = 0.05I2. From (4.4), it follows that the choice of H̄ in
(2.31) is H̄ = hΩ (1) with β1 = 0. Similarly, for (3.26) we choose
F̄ = ηΩ (1) with β1 = 0 and with a scalar η > 0 to be determined.
By verifying the feasibility of LMIs (3.27) with D = 0.05I2 in the
4 vertices (4.3) with β1 = 0, and using H̄ = hΩ (1) and F̄ = ηΩ (1)

with β1 = 0, we find the maximum value of ε∗ (see Table 4.1)
that guarantees the exponential stability (and thus ISS) of system
(4.1) with D = 0.05I2 for all ε ∈ (0, ε∗

] either with a small
enough decay rate (for α = 0) or with a decay rate α =

1
10π . Note

that Fridman and Zhang (2020) is not applicable to the stochastic
case.

We further consider L2-gain analysis of system (4.1) with B =

[1, 0]T , ∆β = 0, D = 0.05I2 and the controlled output:

y(t) = [0.2, 0.1]x(t). (4.6)

For α = 0 and ε∗
= 0.002, by verifying LMIs (3.27) in the

vertices (4.3) with β1 = 0, and using H̄ = hΩ (1) and F̄ = ηΩ (1)

with β1 = 0, we find the minimum value of γ = 1.54. From
(3.15) where we choose a =

√
sup trace{AT ( t

ε
)A( t

ε
)}, we find

˜ = 964. Clearly, ε∗M̃ − γ 2 < 0 holds implying that system
4.1), (4.6) has L2-gain less than γ = 1.54. We further perform
umerical simulations for (4.1) with x(0) = 0, ε = 0.002 and
hoose disturbances v1(t) = sin(t) and v2(t) = 1 if t ≤ 10 and

v1(t) = v2(t) = 0 otherwise. Simulations confirm our theoretical
result that EJ < 0 holds with γ = 1.54. Fig. 1 (left) plots |x| with
(t) (i = 1, 2).
i
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Example 4.2 (Hetel & Fridman, 2013: Stabilization by Fast Switch-
ing). Consider a stochastic switched system

dx(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[A1x(t) + Bv(t)]dt + Dx(t)dw(t),

t ∈ [kε, kε + βε),

[A2x(t) + Bv(t)]dt + Dx(t)dw(t),

t ∈ [kε + βε, (k + 1)ε),

(4.7)

here ε > 0, k = 0, 1, . . . and β ∈ (0, 1), with unstable modes

A1 =

[
0.1 0.3
0.6 −0.2

]
, A2 =

[
−0.13 −0.16
−0.33 0.03

]
. (4.8)

hen (4.7) can be presented as (3.1) with

A(τ ) =
∑2

i=1 ρi(τ )Ai, τ ∈ [k, k + 1), k = 0, 1, . . . ,

here ρ1(τ ) = χ[k,k+β)(τ ) is the indicator function of [k, k + β),
2(τ ) = 1−χ1(τ ). Note that since A(τ ) is not continuous, Theorem
0.4 of Khalil (2002) is not applicable here for D = 0. It is clear
hat in this example A(τ ) is T = 1-periodic and ∆A = 0 and σ =

. We choose β = 0.4 that leads to Hurwitz Aav = βA1+(1−β)A2.
or all τ ≥ T = 1, inequality (2.31) in this example∫ τ

τ−1(ζ − τ + 1)AT (ζ )HA(ζ )dζ

≤
∫ τ

τ−β
(ζ − τ + 1)dsAT

1HA1

+
∫ τ

τ−(1−β)(ζ − τ + 1)dsAT
2HA2

=
1−(1−β)2

2 AT
1HA1 +

1−β2

2 AT
2HA2

holds with

H̄ =
1−(1−β)2

2 AT
1HA1 +

1−β2

2 AT
2HA2. (4.9)

Similarly, we find that (3.26) holds with

F̄ =
1−(1−β)2

2 AT
1FA1 +

1−β2

2 AT
2FA2. (4.10)

By verifying the feasibility of LMIs (2.32) with D = 0, and (3.27)
with D = 0.05I2 in the 2 vertices (4.8) and using (4.9) and (4.10),
we find the maximum value of ε∗ (see Table 4.1) that guarantees
the exponential stability (and thus ISS) of (4.7) for all ε ∈ (0, ε∗

]

either with a small enough decay rate (for α = 0) or with a
decay rate α = 0.005. In the deterministic case, our method
allows to improve (Fridman & Zhang, 2020) by more than 40%,
where for ISS LMIs in Fridman and Zhang (2020) have 28 lines
and 15 decision variables and our LMIs have the same number of
lines and 14 decision variables. In the stochastic case our method
leads to efficient results whereas Fridman and Zhang (2020) is
not applicable.

Let B = [0, 1]T , D = 0.05I2, α = 0 and ε∗
= 0.002. By

verifying the feasibility of LMIs (3.27) in the two vertices (4.8) and
using (4.9) and (4.10), we find the minimum value of γ = 7.34.
From (3.15), we find M̃ = 1.4554 × 104. Clearly, ε∗M̃ − γ 2 <
0 holds implying that system (4.7), (4.6) has L2-gain less than
γ = 7.34. By performing numerical simulations of solutions to
the stochastic system with x(0) = 0, ε = 0.002 and the same
disturbances as in Example 4.1, it confirms EJ < 0 with γ = 7.34.
Fig. 1 (right) plots |x| with vi(t) (i = 1, 2).

5. Conclusions

This paper has presented an improved time-delay method to
periodic averaging that allows to derive essentially less conserva-
tive LMIs for the upper bound on the small parameter preserving
the exponential stability, L2-gain and ISS of linear systems with
piecewise-continuous fast-varying coefficients. The method has
been extended to systems with multiplicative noise. The sug-
gested method may be applied in the future to various control
problems that employ averaging, e.g. to power systems (Krein
et al., 1990) and stochastic extremum seeking (Liu & Krstic, 2012).
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T
M

R

B

B

C

able 4.1
aximum value of ε∗ and numerical complexity of LMIs for ISS.

Example 4.1 (N = 4) Example 4.2 (N = 2) No. LMI lines No. dec. vars

α = 0 α =
1

10π α = 0 α = 0.005

D = 0, σ = 0: Fridman and Zhang (2020) 0.0031 0.0021 0.1363 0.0930 nN(N + 4) + 2nvN (N+2)(n2+n)+6
2

Theorem 2.1 0.0074 0.0050 0.1920 0.1306 n(6N + 1) + nvN 2n2
+ 2n + 2

D = 0.05I2: Theorem 3.1 0.0066 0.0043 0.1164 0.0698 n(6N + 1) + nvN 3n2
+ 3n + 1
Fig. 1. Dynamics of (4.1) (left) and (4.7) (right) with v1(t) (black solid line) and with v2(t) (red dashed line).
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