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Constructive robust stabilization by using square wave dithers: A
time-delay approach

Jin Zhang and Emilia Fridman, Fellow, IEEE

Abstract— This paper studies robust stabilization of the second-
and third-order (with relative degree 3) linear uncertain systems by
a fast-varying square wave dither with high frequency 1

ε
and high

gain, where ε > 0 is small. In contrast to the existing methods
for control by fast oscillations that are all qualitative, we present
constructive quantitative results for finding an upper bound on
ε that ensures the exponential stability. Our method consists of
two steps: 1) we construct appropriate coordinate transformations
that cancel the high-gains and lead to a stable averaged system,
2) we apply the time-delay approach to periodic averaging of the
system in new coordinates and derive linear matrix inequalities for
finding an upper bound on ε. Three numerical examples illustrate
the efficiency of the method.

Index Terms— Stabilization by fast oscillations, averag-
ing, time-delay systems

I. INTRODUCTION

The theory of vibrational control was developed to stabilize lin-
ear/nonlinear systems by a fast-varying dither (with zero mean value)
that depends on a small parameter ε > 0, see e.g. [1]–[6] and the
references therein. These works rely on the coordinate transformation
introduced in [2] that allows the application of classical averaging
(see Chapter 10 in [7]) leading to various stability results. Besides,
Brockett’s problem of stabilization of linear systems by static output-
feedback with a time-varying gain, where the system is not stabiliz-
able by constant gain, was formulated in [8]. Some solutions to this
problem were given in [9]–[12] by using sine and cosine dithers.
The only solution to Brocket’s problem via square wave dither of
the form sgn sin( 2πtε ) was suggested in [13] for the case, where
one coordinate transformation from [2] leads to the stable averaged
system. Stabilization by square wave dither in the cases, where two or
more transformations are needed (e.g. systems with relative degree 3
as studied in [10]) remains an open problem. Moreover, constructive
conditions for finding for all kinds of fast-varying dithers, an upper
bound on the small parameter that ensures the stability are missing.
Till now such bounds could be found from simulations only, which
is not reliable for the uncertain systems.

A constructive time-delay approach to periodic averaging was
introduced recently in [14]. By using a backward averaging, the
system is transformed to a time-delay system where the delay length
is equal to the small parameter. Then direct Lyapunov-Krasovskii (L-
K) method (see e.g. [15]) leads to linear matrix inequalities (LMIs)
that allow to find an efficient upper bound on the small parameter
preserving the exponential stability and input-to-state stability (ISS)
of the time-delay system (and thus, of the original one). Recently,
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an improved time-delay approach to periodic averaging has been
provided in [16] with fewer terms to be compensated in the L-K
analysis leading to less conservative and simpler LMI conditions.
However, the averaging method of [14], [16] cannot be directly ap-
plied to vibrational control systems due to the high gains multiplying
the square wave dithers.

This paper studies robust stabilization of the second- and third-
order (with relative degree 3) linear uncertain systems by square
wave dithers. In contrast to the existing methods for stabilization by
fast-varying dithers that are all qualitative, we present constructive
quantitative results for finding an upper bound on ε that ensures
the stability. Our method consists of two steps: 1) we construct
appropriate coordinate transformations that cancel the high gains and
lead to a stable averaged system, 2) we apply the time-delay approach
to periodic averaging of the system in new coordinates and derive
LMIs for finding an upper bound on ε. The main challenge is the
choice of coordinate transformations that leads to efficient averaging
with less conservative results. Note that the transformation in [13],
[17] seems not to be applicable to the third-order systems, where
it is difficult to find the second transformation leading to a stable
averaged system. Our stabilizability conditions coincide with those
given in [9]–[11] for the case of sine and cosine dithers, but we give
the first full solution to the Brocket’s problem that includes an upper
bound on ε ensuring a desired performance (exponential decay rate).

In the conference version of this paper [17] the results were
confined to the second-order systems without uncertainties, whereas
the dither had the form of sgn sin( 2πtε ) as in [13] and the results
were essentially more conservative. We summarize the contribution
as follows:

1) We consider, for the first time, stabilization of the third-order
systems with relative degree 3 by the dither sgn cos( 2πtε ) that
leads to efficient stability conditions;

2) For the second-order systems, we provide less conservative
results in the examples compared to [17]. This is due to
the new transformation corresponding to the considered dither
sgn cos( 2πtε ) with a smaller amplitude of time-varying terms
than in [17].

3) In both cases, we present a novel comparatively to [14], [16]
stability analysis via averaging for systems with slowly-varying
norm-bounded uncertainties.

Throughout the paper Rn denotes the n-dimensional Euclidean
space with the vector norm | · |, Rn×m is the set of all n×m real
matrices with the induced matrix norm ∥·∥. The superscript T stands
for the transposition, and the notation P > 0, for P ∈ Rn×n means
that P is symmetric and positive definite. The symmetric elements
of the symmetric matrix are denoted by ∗.

II. ROBUST STABILIZATION BY SQUARE WAVE DITHERS

In this section, we will study robust static output-feedback stabi-
lization of linear uncertain system

ẋ(t) = [A+∆A(t)]x(t) +Bu(t), y(t) = Cx(t) (1)

with the state x(t) ∈ Rn, where n = 2 or 3, the input u(t) ∈ R, the
output y(t) ∈ R, constant A ∈ Rn×n, B ∈ Rn and C ∈ R1×n to
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Fig. 1. The square wave dither sq( t
ε
), functions ρ( t

ε
) and µ( t

ε
).

be given later, and a time-varying uncertain matrix ∆A(t) ∈ Rn×n

satisfying the following inequality

∥∆A(t)∥ ≤ σ0 ∀t ≥ 0. (2)

Here σ0 > 0 is a small constant. In the case of ∆A(t) = 0,
stabilization of system (1) by using sine/cosine wave dithers was
studied in [9]- [12], where necessary and sufficient conditions were
found that guarantees the stability provided the dither frequency is
high enough. However the lower bound on the frequency could be
found from simulations only, which is not reliable especially for the
uncertain systems that we consider.

Our objective is robust stabilization of the uncertain system (1) by
square wave dither with the first constructive and efficient bounds
on the dither frequency. We consider for system (1) the novel square
wave dither (comparatively to the dither sgn sin( 2πtε ) in [13], [17])
defined by

sq( tε ) = sgn cos( 2πtε )

=

{
1, t

ε ∈ [j, j + 1
4 ) or [j + 3

4 , j + 1),

−1, t
ε ∈ [j + 1

4 , j +
3
4 ), j ∈ N0

(3)

with a small parameter ε > 0 that is inverse of the dither frequency.
See its plot in the top of Fig. 1. Note that if the vibrational control
is considered as an open-loop control with a dither to be a control
signal (as e.g. in [2]), then this square wave presents a sampled-data
implementation of the vibrational control.

A. Second-order linear uncertain system
Consider the second-order linear uncertain system (1) with x(t) ∈

R2, ∆A(t) ∈ R2×2 satisfying (2), and

A =

[
0 1
a1 a2

]
, B =

[
0
b

]
, C =

[
c1 c2

]
. (4)

Here a1 ≥ 0 (implying that A is not Hurwitz), a2 < 0, b, c1 and
c2 ̸= 0 are constants. This system with ∆A(t) = 0 may be not
stabilizable by a static time-invariant output-feedback, but may be
stabilizable by a static time-varying output-feedback [1], [2], [9] (see
e.g. Example 2 below borrowed from [12]).

We will study stabilization of system (1), (4) by a fast-varying
output-feedback controller

u(t) = k
ε sq(

t
ε )y(t), (5)

where k is a scalar controller gain and sq( tε ) is defined by (3). The
closed-loop system has the form

ẋ(t) = [A+∆A(t)]x(t) + k
ε sq(

t
ε )BCx(t), t ≥ 0. (6)

System (1), (4) with ∆A(t) = 0 is exponentially stabilizable by
u(t) = k

ε cos( 2πtε )y(t) with appropriate k and small enough ε > 0
iff the following holds [9]: a2 < 0 and

a1c
2
2 − a2c1c2 − c21 < 0. (7)

We will show that the same conditions guarantee stabilization by the
square wave dither (3). This will be done by using the coordinate
transformation from [2] and application of the time-delay approach
to averaging (see e.g. [14], [16]) of the transformed system. Note that
the direct averaging is not applicable to (6) (and (21), (25) below)
since the averaged system is unstable for non-Hurwitz A. Moreover,
the term k

ε sq(
t
ε )BCx(t) cannot be compensated in the L-K analysis

since it is of order O( 1ε ) (i.e. large for small ε > 0) provided x is
of order O(1).

To cancel the large term k
ε sq(

t
ε )BCx(t), we consider the follow-

ing generating equation

d
dtϕ(

t
ε ) =

k
ε sq(

t
ε )BCϕ( tε ), t ≥ 0. (8)

Denote by Φ( tε , s) the fundamental matrix of equation (8). For the
transformation of system (6), we will employ

Φ( tε , 0) = ekρ(
t
ε )BC =

[
1 0

c1
c2
ekbc2ρ(

t
ε ) − c1

c2
ekbc2ρ(

t
ε )

]
, (9)

where

ρ( tε ) =


t
ε − j, t

ε ∈ [j, j + 1
4 ),

− t
ε + j + 1

2 ,
t
ε ∈ [j + 1

4 , j +
3
4 ),

t
ε − j − 1, t

ε ∈ [j + 3
4 , j + 1)

(10)

with j ∈ N0. See the plot of ρ in the middle of Fig. 1. It is clear
that ρ( tε ) (and thus Φ( tε , 0) in (9)) is ε-periodic. Note that for the
case of c2 = 0 in (4), we can obtain the corresponding Φ( tε , 0) by
using the limit of (9) as c2 approaches zero:

Φ( tε , 0) =

[
1 0

kbc1ρ(
t
ε ) 1

]
.

Introduce the coordinate transformation

x(t) = Φ( tε , 0)ζ(t), t ≥ 0. (11)

Since ∥Φ( tε , 0)∥ and ∥Φ−1( tε , 0)∥ are uniformly bounded for all t ≥
0, this coordinate transformation is stability preserving. Taking the
derivative with respect to t in (11) and using the relation d

dtΦ(
t
ε , 0) =

k
ε sq(

t
ε )BCΦ( tε , 0) ∀t ≥ 0, we obtain

ẋ(t) = k
ε sq(

t
ε )BCΦ( tε , 0)ζ(t) + Φ( tε , 0)ζ̇(t), t ≥ 0. (12)

Substituting the right-hand side of (6) for ẋ(t) and taking into account
that matrix Φ( tε , 0) is nonsingular for all t ≥ 0, we obtain for t ≥ 0

ζ̇(t) = [A( tε ) + ∆A(t)]ζ(t), A( tε ) = Φ−1( tε , 0)AΦ( tε , 0)
(13)

with
∆A(t) = Φ−1( tε , 0)∆A(t)Φ( tε , 0). (14)

Then the averaged system of (13) with ∆A(t) = 0 has the form

ζ̇av(t) = Aavζav(t), (15)

where ζav(t) ∈ R2 and

Aav = 1
ε

∫ ε
0 A( sε )ds

=

[
a11

4
kbc2

sinh(kbc24 )

a21 a22

]
,

a11 = 4c1
kbc22

sinh(kbc24 )− c1
c2
,

a21 =
4(a1c

2
2−a2c1c2−2c21)

kbc32
sinh(kbc24 ) + a2c1

c2
+

2c21
c22

,

a22 = a2 − 4c1
kbc22

sinh(kbc24 ) + c1
c2
.

(16)
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Matrix Aav has the following characteristic polynomial:

s2 − a2s−
[a2c1

c2
+

c21
c22

+
8(cosh(

kbc2
2 )−1)

k2b2c42
×(a1c

2
2 − a2c1c2 − c21)

]
.

(17)

By using the Routh-Hurtwiz stability criterion, we arrive at:
Lemma 1: Let a2 < 0. Matrix Aav given by (16) is Hurtwiz iff

a2c1
c2

+
c21
c22

+
8(cosh(

kbc2
2 )−1)

k2b2c42
(a1c

2
2 − a2c1c2 − c21) < 0. (18)

Moreover, if (7) holds, then inequality (18) is always feasible for
large enough |k|.

Indeed, the following holds for k ̸= 0:

0 <
8(cosh(

kbc2
2 )−1)

k2b2c42
= 1

c22
+ 2

c22

∑∞
i=2

1
(2i)!

(kbc22 )2(i−1).

Supposing that as in [9] (7) holds, we obtain

0
(7)
>

8(cosh(
kbc2
2 )−1)

k2b2c42
(a1c

2
2 − a2c1c2 − c21)

= a1 − a2c1
c2

− c21
c22

+
2(a1c

2
2−a2c1c2−c21)

c22

∑∞
i=2

1
(2i)!

(kbc22 )2(i−1).

Thus, if (7) holds, the feasibility of

a1 +
2(a1c

2
2−a2c1c2−c21)

c22

∑∞
i=2

1
(2i)!

(kbc22 )2(i−1) < 0

(thus, of inequality (18)) is always guaranteed for large enough |k|.
From (17) it follows that as |k| increases the product of two

eigenvalues of matrix Aav given by (16) increases whereas their
sum is fixed as a2. Thus, when |k| is large enough, the real parts
of eigenvalues are a2

2 implying that the decay rate α ≥ 0 to be
found via LMIs of Theorem 1 or Corollary 1 below should be
smaller than −a2

2 (which is independent of k). However, the fast-
varying matrix A( tε ) defined in (13) corresponding to a larger |k|
belongs to a larger polytope in the presentation (34) below leading
to more conservative results in the second-order examples (as well
as the third-order example) below. We will show how to select an
appropriate k in the design, see Remark 3 below.

B. Third-order linear uncertain system
We now consider the third-order linear uncertain system (1) with

x(t) ∈ R3, ∆A(t) ∈ R3×3 satisfying (2), and

A =

 0 1 0
0 0 1
a1 a2 a3

 , B =

00
b

 , C =

c0
0

T

. (19)

Here σ0 > 0, a1, a2, a3 < 0, b and c are constants. For small
enough σ0 > 0, system (1), (19) is exponentially stabilizable by a
static time-invariant output-feedback iff a2 < 0 and a3 < 0 [10].
Therefore, our main interest of this paper is to study stabilization of
system (1), (19) subject to a2 ≥ 0 (implying that A is not Hurwitz)
and a3 < 0. Moreover, it is clear that the relative degree of system
(1), (19) is 3 since [18]

CB = CAB = 0, CA2B ̸= 0.

Remark 1: If the vector C =
[
c c2 c3

]
has non-zero c2 or c3,

it may happen that controller (5) (the same as for the second-order
system) stabilizes the system for small enough ε > 0 (see e.g. [13]
and the example of Section 4.1 therein). However, when c2 = c3 = 0
(in the case of relative degree 3), the averaged system (15) with the
characteristic polynomial

s3 − a3s
2 − a2s− a1

is unstable for a2 ≥ 0. Indeed, by the Routh-Hurtwiz criterion, the
system is stable iff the following holds:

a3 < 0, a2 < 0, a1 < 0, a2a3 + a1 > 0,

which contradicts to a2 ≥ 0. Thus, controller (5) does not stabilize
(1), (19) with ∆A(t) = 0.

We design for system (1), (19) with relative degree 3 a fast-varying
output-feedback controller

u(t) = k
ε2

sq( tε )y(t) (20)

that leads to the following closed-loop system

ẋ(t) = [A+∆A(t)]x(t) + k
ε2

sq( tε )BCx(t), t ≥ 0. (21)

From [10], it follows that system (1), (19) with relative degree 3 and
∆A(t) = 0 is exponentially stabilizable by u(t) = k

ε2
sin( 2πtε )y(t)

with appropriate k and small enough ε > 0 iff a3 < 0. We will show
that the same condition a3 < 0 guarantees stabilization by the square
wave dither (3).

Following the second-order case, we consider

d
dtϕ0(

t
ε2

) = k
ε2

sq( tε )BCϕ0(
t
ε2

), t ≥ 0. (22)

Then the fundamental matrix Φ0(
t
ε2

, 0) of equation (22) is obtained
as

Φ0(
t
ε2

, 0) = e
k
ε ρ(

t
ε )BC = I + k

ε ρ(
t
ε )BC (23)

with ρ(·) given by (10), where we used eX =
∑∞

i=0
1
i!X

i for all
X ∈ Rn×n with the fact CB = 0. Introduce the following stability
preserving coordinate transformation

x(t) = Φ0(
t
ε2

, 0)ζ0(t), t ≥ 0. (24)

By using (23) with the fact CAB = 0, we transform system (21) to
the following system:

ζ̇0(t) = [A+Φ−1
0 ( t

ε2
, 0)∆A(t)Φ0(

t
ε2

, 0)

+k
ε ρ(

t
ε )(ABC −BCA)]ζ0(t), t ≥ 0.

(25)

We further consider

ϕ̇( tε ) =
k
ε ρ(

t
ε )(ABC −BCA)ϕ( tε ) (26)

with ρ(·) given by (10). The fundamental matrix Φ( tε , 0) of equation
(26) is obtained as

Φ( tε , 0) = ekµ(
t
ε )(ABC−BCA), (27)

where

µ( tε ) =


1
2 (

t
ε − j)2, t

ε ∈ [j, j + 1
4 ),

1
16 − 1

2 (
t
ε − j − 1

2 )
2, t

ε ∈ [j + 1
4 , j +

3
4 ),

1
2 (

t
ε − j − 1)2, t

ε ∈ [j + 3
4 , j + 1)

(28)

with j ∈ N0. See the plot of µ in the bottom of Fig. 1. It is clear
that µ( tε ) (and thus Φ( tε , 0) in (27)) is ε-periodic.

Remark 2: If we consider the dither sgn sin( 2πtε ) as in [13],
[17] and apply the corresponding transformation (24) we will obtain
Φ( tε , 0) given by (27), where

µ( tε ) =

{
1
4 j +

1
2 (

t
ε − j)2, µ ∈ [j, j + 1

2 ),
1
4 (j + 1)− 1

2 (
t
ε − j − 1)2, µ ∈ [j + 1

2 , j + 1)

with j ∈ N0. Clearly, µ( tε ) is monotonically increasing that leads to a
non-periodic matrix A( tε ) (see e.g. the entry A11(

t
ε ) = kbcµ( tε ) of

A( tε )). The averaging is not applicable to this matrix A( tε ). However,
our square wave (3) allows to avoid this difficulty (see the ε-periodic
µ( tε ) given by (28)).
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By introducing the coordinate transformation

ζ0(t) = Φ( tε , 0)ζ(t), t ≥ 0, (29)

we transform (25) to system (13) with

∆A(t) = Φ−1( tε , 0)Φ
−1
0 ( t

ε2
, 0)∆A(t)Φ0(

t
ε2

, 0)Φ( tε , 0). (30)

Here Φ0(
t
ε2

, 0) and Φ( tε , 0) are, respectively, from (23) and (27).
Then the averaged system of (13) with ∆A(t) = 0 is given by (15)
with ζav(t) ∈ R3 and

Aav =


kbc
32 1 0

− 23k2b2c2−320a3kbc
10240 −kbc

16 1

a31 a32 a3 + kbc
32

 ,

a31 = a1 − 39k3b3c3+368a3k
2b2c2−15360(a2+a23)kbc
491520 ,

a32 = a2 − 23k2b2c2+640a3kbc
10240 .

(31)

This system has the following characteristic polynomial:

s3 − a3s
2 − (a2 − k2b2c2

640 )s− a1 − a3k
2b2c2

1920 .

By using the Routh-Hurtwiz stability criterion, we arrive at:
Lemma 2: Let a3 < 0. Matrix Aav given by (31) is Hurtwiz iff

a2 − k2b2c2

640 < 0, a1 + a3k
2b2c2

1920 < 0,

a1 + a3(a2 − k2b2c2

960 ) > 0.
(32)

Moreover, inequalities (32) always hold for large enough |k|.

III. ROBUST STABILITY ANALYSIS

In this section, we will present a robust stability analysis of un-
certain system (13) by developing a time-delay approach to periodic
averaging [14], [16]. Note that in the latter works the uncertainty
∆A(t) was not considered in the systems under study. In this
sense we present a novel stability analysis for systems with norm-
bounded uncertainties. We formulate the constructive LMI conditions
for finding the upper bound ε∗ that preserves the exponential stability
of the original system for all ε ∈ (0, ε∗]. As mentioned above,
quantitative bounds were missing in all the previous works (see e.g.
[1]–[6], [9]–[13]).

A. A time-delay model

Consider system (13), where ζ(t) ∈ Rn and an < 0 with n = 2
or 3. Let k be subject to (18) or (32) such that Aav given either by
(16) or by (31) is Hurwitz. Given small σ0 > 0 in (2), let a small
enough σ > 0 (independent on ε ∈ (0, ε∗]) be the upper bound on
∆A(t) given either by (14) or by (30) for all t ≥ 0, i.e.

∥∆A(t)∥ ≤ σ ∀t ≥ 0. (33)

Indeed, this upper bound can be found by using (2), (14) and (30):

n = 2 : ∥∆A(t)∥ ≤ σ0∥Φ−1( tε , 0)∥∥Φ(
t
ε , 0)∥ ≤ σ,

n = 3 : ∥∆A(t)∥ ≤ σ0∥Φ−1( tε , 0)∥∥Φ
−1
0 ( t

ε2
, 0)∥

×∥Φ0(
t
ε2

, 0)∥∥Φ( tε , 0)∥ ≤ σ.

If particularly ∆A(t) = ∆a(t)I with ∆a(t) ∈ R satisfying
|∆a(t)| ≤ σ0 for all t ≥ 0 (see e.g. (61) below), then σ = σ0.
Moreover, from (13) it follows that all entries Aij(

t
ε ) of A( tε ) are

uniformly bounded for t ≥ 0. Then A( tε ) can be presented as a
convex combination of the constant matrices Ai for all t ≥ ε:

A( tε ) =
∑N

i=1 ρi(
t
ε )Ai, ρi(

t
ε ) ≥ 0,

∑N
i=1 ρi(

t
ε ) = 1

(34)
with some integer N ≥ 2.

Following [14], [16], we will apply the time-delay approach to
periodic averaging of system (13). Namely, we integrate both sides
of system (13) over [t− ε, t] for t ≥ ε, i.e.

ζ(t)−ζ(t−ε)
ε = 1

ε

∫ t
t−ε[A( sε ) + ∆A(s)]ζ(s)ds. (35)

We present the left-hand side of (35) as
ζ(t)−ζ(t−ε)

ε = d
dt [ζ(t)−G(t)]

+ 1
ε

∫ t
t−ε ∆A(s)ζ(s)ds−∆A(t)ζ(t),

(36)

where
G(t) = 1

ε

∫ t
t−ε(s− t+ ε)A( sε )ζ(s)ds. (37)

Note that the term G(t) depends on the nominal part A( tε )ζ(t) only
(that is the fast-varying term to be “averaged” ) and not on the whole
right-hand part of (13) as in [14]. Then we obtain

d
dt [ζ(t)−G(t)] = ∆A(t)ζ(t)

+ 1
ε

∫ t
t−ε A( sε )[ζ(s)− ζ(t) + ζ(t)]ds, t ≥ ε.

(38)

We present

1
ε

∫ t
t−ε A( sε )[ζ(s)− ζ(t)]ds = − 1

ε

∫ t
t−ε A( sε )

∫ t
s ζ̇(θ)dθds.

Thus, we transform system (13) to the following time-delay system:

ż(t) = [Aav +∆A(t)]ζ(t)− Y (t), t ≥ ε, (39)

where
z(t) = ζ(t)−G(t),

Y (t) = 1
ε

∫ t
t−ε A( sε )

∫ t
s ζ̇(θ)dθds,

ζ̇(θ) = [A( θε ) + ∆A(θ)]ζ(θ)

(40)

with G(t) given by (37). Note that system (39) with notations (40)
is a neutral type system. Comparatively to the averaged system (15),
system (39) with ∆A(t) = 0 has the additional terms G(t) and
Y (t) that are both of order O(ε) provided ζ(t) and ζ̇(t) are of order
O(1). Thus, for small ε > 0 system (39) with ∆A(t) = 0 can be
considered as a perturbation of system (15). If ζ(t) is a solution to
system (13), then it satisfies the time-delay system (39). Therefore,
the stability of the time-delay system (39) guarantees the stability of
system (13) (and thus, of systems (6) and (21)).

B. LMI conditions: L-K method

Theorem 1: Let an < 0 with n = 2 or 3, and k satisfy (18) or (32)
(resulting in Hurwitz Aav given either by (16) or by (31)). Assume
that (33) and (34) hold. Given matrices Ai (i = 1, . . . , N, N ≥ 2)
and scalars σ > 0, α > 0, ε∗ > 0, let there exist n × n matrices
P > 0, R > 0 and scalars h > 0, λ > 0 that satisfy the following
LMIs:

Ξ

√
ε∗AT

i R
√
ε∗hAT

i Ω
0 0

0
√
ε∗hΩ

∗ −R 0
∗ ∗ −hΩ

 < 0, i = 1, . . . , N, (41)

where

Ξ =


Ξ11 −AT

avP − 2αP −P P

∗ − 4
ε∗ e

−2αε∗R+ 2αP P −P

∗ ∗ − 2h
ε∗ e

−2αε∗I 0
∗ ∗ ∗ −λI

 ,

Ξ11 = PAav +AT
avP + 2αP + λσ2I,

Ω =
∫ 1
0 AT (τ)A(τ)dτ.

(42)
Then systems (6) and (21) are exponentially stable with a decay rate
α for all ε ∈ (0, ε∗], meaning that there exists M > 0 such that for
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all ε ∈ (0, ε∗] the solutions of (6) and (21) initialized by x(0) satisfy
the following inequality:

|x(t)|2 ≤ Me−2αt|x(0)|2 ∀t ≥ 0 (43)

Moreover, LMIs (41) are always feasible for small enough ε∗ > 0,
σ > 0 and α > 0, i.e. systems (6) and (21) are exponentially stable
for small enough ε > 0 and σ0 > 0 with a small enough decay rate
α = α0 > 0.

Proof: Choose the following Lyapunov functional [16]

V (t) = VP (t) + VR(t) + Vh(t), t ≥ ε, (44)

where

VP (t) = zT (t)Pz(t),

VR(t) = 1
ε

∫ t
t−ε e

−2α(t−s)(s− t+ ε)2

×ζT (s)AT ( sε )RA( sε )ζ(s)ds,

Vh(t) =
h
ε

∫ t
t−ε

∫ t
s e−2α(t−θ)(s− t+ ε)|A( sε )ζ̇(θ)|

2dθds
(45)

with P > 0, R > 0 and h > 0. This functional is positive-definite
for all ε ∈ [0, ε∗]:

V (t) ≥ VP (t) + VR(t)

≥
[
ζ(t)
G(t)

]T [
P −P

∗ P + e−2αε∗R

][
ζ(t)
G(t)

]
≥ c̄1|ζ(t)|2,

where we applied Jensen’s inequality (i.e. (3.87) in [15]), and c̄1 =

λmin(
[
P −P

∗ P+e−2αε∗R

]
). As in [16], [19], the latter directly gives

the bound on |ζ(t)| instead of |z(t)| implying that there is no need
to verify the stability of z(t) = 0 in (40). Following the proof of
Theorem 1 in [16], we obtain for all ε ∈ (0, ε∗]

V̇ (t) + 2αV (t) ≤ ηT (t)Ξη(t) + ε∗[ζT (t)AT ( tε )RA( tε )ζ(t)

+ h
ε2

ζ̇T (t)
∫ t
t−ε(s− t+ ε)AT ( sε )A( sε )dsζ̇(t)], t ≥ ε,

(46)
where Ξ is given by (42) and

ηT (t) = [ζT (t), GT (t), Y T (t), ζT (t)∆AT (t)].

Taking into account that the following holds with Ω defined in (42):
h
ε2

∫ t
t−ε(s− t+ ε)AT ( sε )A( sε )ds

≤ h
∫ t
t−ε A

T ( sε )A( sε )ds

= h
∫ t

ε
t
ε−1

AT (τ)A(τ)dτ = hΩ,

from (46) we obtain

V̇ (t) + 2αV (t) ≤ ηT (t)Ξη(t)

+ε∗[ζT (t)AT ( tε )RA( tε )ζ(t) + hζ̇T (t)Ωζ̇(t)], t ≥ ε.
(47)

Moreover, from (13) and (34) it follows that

ζ̇(t) = [
∑N

i=1 ρi(
t
ε )Ai +∆A(t)]ζ(t), A( tε ) =

∑N
i=1 ρi(

t
ε )Ai.

(48)
Substituting (48) into (47) and applying further Schur complements
to (47), we conclude that if

Ξ

√
ε∗

∑N
i=1 ρi(

t
ε )A

T
i R

√
ε∗h

∑N
i=1 ρi(

t
ε )A

T
i Ω

0 0

0
√
ε∗hΩ

∗ −R 0
∗ ∗ −hΩ

 < 0,

(49)
we have

V̇ (t) + 2αV (t) ≤ 0 ∀t ≥ ε (50)

yielding the following bound for solutions of (13):

c̄1|ζ(t)|2 ≤ V (t) ≤ e−2α(t−ε)V (ε) ∀t ≥ ε. (51)

Note that V (ε) in (44) is upper bounded for all ε ∈ (0, ε∗]

V (ε) ≤ c̄2[|ζ(ε)|2 +
∫ ε
0 |ζ̇(s)|2ds]

with some ε-independent c̄2 > 0. For t ∈ [0, ε], ζ(t) satisfies (13),
where using (33) we have

∥A( tε ) + ∆A(t)∥ ≤ ∥A( tε )∥+ σ ≤ a

for some a > 0 since all the entries of A( tε ) are uniformly bounded
for t ≥ 0. Therefore, d

dt |ζ(t)|
2 ≤ 2a|ζ(t)|2 for t ∈ [0, ε] yielding

|ζ(t)| ≤ eat|ζ(0)|, |ζ̇(t)| ≤ aeat|ζ(0)|.

Thus, V (ε) for all ε ∈ (0, ε∗] is further upper bounded as

V (ε) ≤ c̄2(e
2aε + a2

∫ ε
0 e2asds)|ζ(0)|2 ≤ c̄3|ζ(0)|2 (52)

with some ε-independent c̄3 > 0. Moreover, Φ(0, 0) = Φ0(0, 0) =
I . For some ε-independent c̄4 > 0, when n = 2, via (11) we have
for all t ≥ 0

|ζ(0)| = |x(0)|, |x(t)| ≤ ∥Φ( tε , 0)∥|ζ(t)| ≤ c̄4|ζ(t)| (53)

and when n = 3, via (24) and (29) we have for all t ≥ 0

|ζ(0)| = |ζ0(0)| = |x(0)|,
|x(t)| ≤ ∥Φ0(

t
ε2

, 0)∥|ζ0(t)|
≤ ∥Φ0(

t
ε2

, 0)∥∥Φ( tε , 0)∥|ζ(t)| ≤ c̄4|ζ(t)|.
(54)

Then (43) follows from (51), (52) and (53) or (54).
The feasibility of the strict LMIs (41) with α = 0 implies the

feasibility of (41) with the same decision variables and a small
enough α = α0 > 0, and thus guarantees exponential stability of
system (6) with a small enough decay rate. Moreover, as in [16]
the feasibility of LMIs (41) is always guaranteed for small enough
ε∗ > 0, σ > 0 and α > 0 provided Aav is Hurwitz. □

Remark 3: For the choice of the controller gain k, we suggest the
following algorithm: i) given matrices (4) (or (19)) we first find from
(18) (or (32)) the minimum value of |k| such that matrix Aav given
by (16) (or (31)) is Hurwitz. ii) Using the obtained minimum value of
|k|, we verify the feasibility of LMIs of Theorem 1 with α = σ = 0
to find the maximum value of ε∗. iii) Save k̂ = k0 = |k| and ε̂ = ε∗.
Then we enlarge |k| until e.g. 5k0 with a fixed step e.g. 1 and repeat
item ii). If ε̂ is larger than the newly obtained ε∗, update k̂ = |k|
and ε̂ = ε∗, otherwise not. Finally, we choose k = k̂ or k = −k̂.

Remark 4: Note that in [16] the uncertainty was fast-varying and
it was in A( tε ) that resulted in a larger polytope in presentation
(34) because of the uncertainty. In the present paper polytope (34)
is defined by the uncertainty-independent A( tε ). This leads to fewer
LMIs in the stability conditions and less conservative results.

In Theorem 1, we have N vertices-dependent LMIs that involve
much numerical complexity (see e.g. N = 8 vertices in Example 3
below). Alternatively, we can derive a single, but more conservative
in examples, LMI. Since all entries Aij(

t
ε ) of A( tε ) in (13) are

uniformly bounded for all t ≥ 0, there exist some constants Āij ≥ 0
such that

|Aij(
t
ε )| ≤ Āij ∀t ≥ 0. (55)

Thus,

∥A( tε )∥ ≤ trace{AT ( tε )A( tε )} =
∑n

i=1

∑n
j=1 A

2
ij(

t
ε )

≤
∑n

i=1

∑n
j=1 Ā

2
ij ∀t ≥ 0.

(56)

Choose R = rI > 0 in VR(t) given by (45) to be scalar matrix.
Then using (56) we obtain the following upper bounds on the last
two quadratic terms in the right-hand side of (46) for t ≥ ε:

ε∗ζT (t)AT ( tε )RA( tε )ζ(t) ≤ ε∗r
∑n

i=1

∑n
j=1 Ā

2
ij |ζ(t)|

2,
(57)
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ε∗h
ε2

ζ̇T (t)
∫ t
t−ε(s− t+ ε)AT ( sε )A( sε )dsζ̇(t)

≤ ε∗h
2

∑n
i=1

∑n
j=1 Ā

2
ij∥A( tε ) + ∆A(t)∥2|ζ̇(t)|2

≤ ε∗h
∑n

i=1

∑n
j=1 Ā

2
ij(

∑n
i=1

∑n
j=1 Ā

2
ij + σ2)|ζ(t)|2,

(58)

where we substituted (13) for ζ̇(t) and used Young’s inequality

1
2∥A( tε ) + ∆A(t)∥2 ≤ ∥A( tε )∥

2 + σ2

≤
∑n

i=1

∑n
j=1 Ā

2
ij + σ2 ∀t ≥ ε.

From (46), (57) and (58) we find

V̇ (t) + 2αV (t) ≤ ηT (t)Ξη(t) + ε∗
∑n

i=1

∑n
j=1 Ā

2
ij

×[r + h(
∑n

i=1

∑n
j=1 Ā

2
ij + σ2)]|ζ(t)|2, t ≥ ε.

(59)

Thus, following arguments in the proof of Theorem 1 we arrive at
the following simpler conditions with a single LMI:

Corollary 1: Let an < 0 with n = 2 or 3, and k satisfy (18)
or (32) (resulting in Hurwitz Aav given either by (16) or by (31)).
Assume that (33) and (55) hold. Given scalars Āij (i, j = 1, . . . , n),
σ > 0, α > 0 and ε∗ > 0, let there exist n × n matrix P > 0 and
scalars r > 0, h > 0, λ > 0 that satisfy the following LMI:

Ξ̂ < 0, (60)

where Ξ̂ is obtained from Ξ in (42) with Ξ11 and R changed by
Ξ11 + ε∗

∑n
i=1

∑n
j=1 Ā

2
ij [r + h(

∑n
i=1

∑n
j=1 Ā

2
ij + σ2)] and rI .

Then systems (6) and (21) are exponentially stable with a decay rate
α for all ε ∈ (0, ε∗], meaning that there exists M > 0 such that
for all ε ∈ (0, ε∗] the solutions of (6) and (21) initialized by x(0)
satisfy (43). Moreover, LMI (60) is always feasible for small enough
ε∗ > 0, σ > 0 and α > 0, i.e. systems (6) and (21) are exponentially
stable for small enough ε > 0 and σ0 > 0 with a small enough decay
rate α = α0 > 0.

Remark 5: The dither (3) leads to a smaller amplitude of ρ defined
in (10) with |ρ| ≤ 1

4 compared to |ρ| ≤ 1
2 in [17]. Consequently, we

obtain a smaller polytope in presentation (34) (see e.g the polytope
in Example 1 with vertices corresponding to ρ ∈ {− 1

4 ,
1
4} and ρ2 ∈

{0, 1
16} to be compared with ρ ∈ {0, 12} and ρ2 ∈ {0, 14} in [17])

that leads to less conservative results for the second-order systems.
Remark 6: The direct Lyapunov method (see e.g in [15]) is appli-

cable not only to the stability but also to the performance analysis.
In the presence of locally essentially bounded disturbances ISS can
be proved similar to [14]. Thus, under our LMI conditions, ISS is
always guaranteed for large enough γ independent on ε ∈ (0, ε∗].

Remark 7: As in [9]–[12], we can consider stabilization by
sine/cosine wave dithers. This will lead to a periodic fundamental
matrix (see e.g. [12]). After the coordinate transformation [2], we
will obtain system (13) with a different but periodic matrix A( tε )
that allows to employ further the time-delay approach to averaging
[14], [16]. Thus, our constructive method is also applicable to the
sine/cosine wave dithers.

IV. NUMERICAL EXAMPLES

To illustrate the efficiency of the method, we will present three
examples in the presence of uncertainties, where the uncertainty takes
the following form

∆A(t) = σ0 sin(t)I. (61)

The latter satisfies (2). From (14) and (30), we arrive at (33) with
σ = σ0.

Example 1: [17] Consider system (1), (4) with

a1 = 52.973, a2 = −5, b = c1 = 1, c2 = 0 (62)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

x
1

0 5 10 15 20 25 30

time (s)

-15

-10

-5

0

5

10

15

x
2

Fig. 2. State trajectory of (6) with (62), k = 57 and ∆A(t) = 0
∀t ≥ 0 when ε = 0.39.

and ∆A(t) given by (61) under a fast-varying output feedback
controller (5). By using the coordinate transformation (11), we obtain
(13) with

A( tε ) =

[
kρ( tε ) 1

52.973− 5kρ( tε )− k2ρ2( tε ) −5− kρ( tε )

]
(63)

with ρ(·) given by (10), and ∆A(t) in (14) satisfies (33) with σ = σ0.
It is clear that A( tε ) in (63) belongs to uncertain polytope with four
vertices (that are omitted here) corresponding to ρ ∈ {− 1

4 ,
1
4} and

ρ2 ∈ {0, 1
16}. We obtain

Aav =

[
0 1

52.973− k2

48 −5

]
. (64)

Using Remark 3, we choose the controller gain as k = 57. The upper
bounds on entries of A( tε ) are given by

Ā11 = 14.25, Ā12 = 1, Ā21 = 221.3395, Ā22 = 19.25.

From (42) and (63) we obtain

Ω = 103 ×
[
5.6417 0.412
0.412 0.09377

]
. (65)

By verifying the feasibility of LMIs of Theorem 1 in the four vertices
and of LMI of Corollary 1 with different decay rates α and σ = σ0,
and using (64), (65), we find the upper bounds ε∗ (see Table I) that
guarantee the exponential stability of system (6), (61) with (62) and
k = 57 for all ε ∈ (0, ε∗]. It is clear that LMIs of Theorem 1 lead to
an essentially larger upper bound than that via LMI of Corollary 1, but
the improvement is achieved on the account of numerical complexity
(see Table I). Note that comparatively to [17] an improvement on
the upper bound is achieved due to the smaller amplitude of time-
varying terms in fundamental matrix by our square wave dither (3).
Moreover, the case of σ ̸= 0 was not studied in [17].

Numerical simulations under an arbitrary initial condition
|x(0)|∞ ≤ 1 show that system (6) with (62), k = 57 and ∆A(t) = 0
∀t ≥ 0 is stable for a larger upper bound ε∗ = 0.39 (to be compared
with the theoretical ε∗ = 0.18 × 10−2), see Fig. 2, which may
illustrate the conservatism of the proposed method.

Example 2: [12] Consider system (1), (4) with

a1 = b = c1 = −c2 = 1, a2 = − 1
2 (66)

and ∆A(t) given by (61) under a fast-varying output feedback
controller (5). This system with ∆A(t) = 0 is not stabilizable
by a static time-invariant output-feedback controller. By using the
coordinate transformation (11), we obtain (13) where

A( tε ) =

[
−e−kρ( t

ε ) + 1 e−kρ( t
ε )

−e−kρ( t
ε ) − 1

2e
kρ( t

ε ) + 5
2 e−kρ( t

ε ) − 3
2

]
(67)
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TABLE I
MAXIMUM VALUE OF ε∗ AND NUMERICAL COMPLEXITY OF LMIS

Example 1 (n = 2, N = 4) Example 2 (n = 2, N = 4) Example 3 (n = 3, N = 8) No. LMI lines No. dec. vars
(α, σ) (10−6, 0) (0.2, 0.2) (10−6, 0) (0.01, 0.02) (10−6, 0) (0.01, 0.02)
[17] 0.05× 10−3 – 0.04× 10−3 – – – 4nN n2 + n+ 1
Th. 1 1.80× 10−3 1.31× 10−3 9.71× 10−3 7.96× 10−3 2.40× 10−2 1.04× 10−2 6nN n2 + n+ 2
Cor. 1 0.02× 10−3 0.01× 10−3 0.96× 10−3 0.79× 10−3 0.36× 10−2 0.15× 10−2 4n 0.5(n2 + n) + 3
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Fig. 3. State trajectory of (6) with (66), k = 9 and ∆A(t) = 0 ∀t ≥ 0
when ε = 3.8.

with ρ(·) given by (10), and ∆A(t) in (14) satisfies (33) with σ = σ0.
It is clear that A( tε ) in (67) belongs to uncertain polytope with
four vertices (that are omitted here) corresponding to (−ρ, ρ) ∈
{− 1

4 ,
1
4} × {− 1

4 ,
1
4}. We obtain

Aav =

[
− 4

k sinh(k4 ) + 1, 4
k sinh(k4 )

− 6
k sinh(k4 ) +

5
2

4
k sinh(k4 )−

3
2

]
. (68)

Using Remark 3, we choose the controller gain as k = 9. The upper
bounds on entries of A( tε ) are given by

Ā11 = 8.4877, Ā12 = 9.4877, Ā21 = 11.7316, Ā22 = 7.9877.

From (42) and (67) we obtain

Ω =

[
10.9444 −12.2628
−12.2628 15.9964

]
. (69)

By verifying the feasibility of LMIs in Theorem 1 in the four vertices
and of LMI in Corollary 1 with different α and σ = σ0, and using
(68), (69), we find the upper bounds ε∗ (see Table I) that guarantee
the exponential stability of (6), (61) with (66) and k = 9 for all
ε ∈ (0, ε∗]. Compared with LMI of Corollary 1, LMIs of Theorem 1
lead to a larger upper bound on the account of numerical complexity.
Moreover, our conditions lead to an essentially larger upper bound
than [17].

Numerical simulations under an arbitrary initial condition
|x(0)|∞ ≤ 1 show that system (6) with (66), k = 9 and ∆A(t) = 0
∀t ≥ 0 is stable for a larger upper bound ε∗ = 3.8, see Fig. 3.

Example 3: Consider system (1), (19) with

a1 = a2 = 0, −a3 = b = c = 1 (70)

and ∆A(t) given by (61) under a fast-varying output-feedback con-
troller (20). Note that due to a2 = 0, this system with ∆A(t) = 0 is
not stabilizable by a static time-invariant output-feedback controller.
By using the two successive coordinate transformations (24) and (29),
we obtain (13) where

A( tε ) =

 kµ( tε ) 1 0

−kµ( tε )−
3
2k

2µ2( tε ) −2kµ( tε ) 1

A31(
t
ε ) A32(

t
ε ) −1 + kµ( tε )

 ,

A31(
t
ε ) = kµ( tε ) +

1
2k

2µ2( tε )− k3µ3( tε ),

A32(
t
ε ) = 2kµ( tε )−

3
2k

2µ2( tε ),
(71)
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Fig. 4. State trajectory of (21) with (70), k = 14 and ∆A(t) = 0
∀t ≥ 0 when ε = 12.

with µ(·) given by (28), and ∆A(t) in (30) satisfies (33) with σ =
σ0. It is clear that A( tε ) in (71) belongs to uncertain polytope with
eight vertices (that are omitted here) corresponding to µi = 0 or
µi = 1

16i
(i = 1, 2, 3). We obtain

Aav =


k
32 , 1 0

− 23k2+320k
10240 − k

16 1

a31 − 23k2−640k
10240 −1 + k

32

 ,

a31 = − 39k3−368k2−15360k
491520 .

(72)

Using Remark 3, we choose the controller gain as k = 14. The upper
bounds on entries of A( tε ) are given by

Ā11 = 0.875, Ā12 = Ā23 = Ā33 = 1, Ā13 = 0,
Ā21 = 2.0234, Ā22 = Ā32 = 1.75, Ā31 = 1.2578.

From (28), (42) and (71) we obtain

Ω =

 1.8099 1.8928 −1.0107
1.8928 2.4213 −1.0494
−1.0107 −1.0494 1.4185

 . (73)

By verifying the feasibility of LMIs of Theorem 1 in the eight vertices
and LMI of Corollary 1 with different α and σ = σ0, and using
(72), (73), we find the upper bounds ε∗ (see Table I) that guarantee
the exponential stability of (21), (61) with (70) and k = 14 for all
ε ∈ (0, ε∗]. Compared with LMI of Corollary 1, LMIs of Theorem 1
lead to a larger upper bound on the account of numerical complexity.

Numerical simulations under an arbitrary initial condition
|x(0)|∞ ≤ 1 show that system (21) with (70), k = 14 and
∆A(t) = 0 ∀t ≥ 0 is stable for a larger upper bound ε∗ = 12,
see Fig. 4.

Remark 8: As expected, in all three examples numerical simula-
tions show that the systems are stabilizable by the dither sgn sin( 2πtε )
from [13], [17] with the same maximum values of ε∗ as in the present
paper (with sgn cos( 2πtε )).

V. CONCLUSIONS

We have given the first constructive solution for stabilization of
the second- and third-order (with relative degree 3) linear uncertain
systems by using a fast-varying square wave dither, where the bounds
on the dither frequencies that guarantee the stability are found from
LMIs. Extension of the results to higher-order and nonlinear systems
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as well as to the act-and-wait control [20] may be topics for future
research.
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