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a b s t r a c t 

Recently finite-dimensional observer-based controllers were introduced for the 1D heat equation, where 

at least one of the observation or control operators was bounded. In this paper, for the first time, we 

manage with such controllers for the 1D heat equation with both operators being unbounded. We con- 

sider Dirichlet actuation and point measurement and use a modal decomposition approach via dynamic 

extension. We suggest a direct Lyapunov approach to the full-order closed-loop system, where the finite- 

dimensional state is coupled with the infinite-dimensional tail of the state Fourier expansion, and provide 

Linear Matrix Inequalities (LMIs) for finding the controller dimension and resulting exponential decay 

rate. A numerical example demonstrates the efficiency of the proposed method. In the discussion sec- 

tion, we show that the suggested controller design is well suited for the 1D heat equation with various 

boundary conditions. 

© 2021 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Finite-dimensional observer-based control for PDEs is attrac- 

ive for applications and theoretically challenging. Such controllers 

or parabolic systems were designed by the modal decomposition 

pproach in [1,3,4,11] . The existing results are mostly restricted 

o bounded control and observation operators, whereas efficient 

ounds on the observer and controller dimensions are missing. 

hus, the bound suggested in [11] appeared to be highly conser- 

ative and difficult to compute 

In our recent paper [16] , the first constructive LMI-based 

ethod for finite-dimensional observer-based controller for the 

D heat equation was suggested, where the controller dimension 

nd the resulting exponential decay rate were found from sim- 

le LMI conditions. Robustness of the finite-dimensional controller 

ith respect to input and output delays was studied in [19] . How- 

ver, the results of [16,19] were confined to cases where at least 

ne of the observation or control operators is bounded. Sampled- 

ata and delayed boundary control of 1D heat equation under 

oundary measurement was studied in [21] by using an infinite- 

imensional PDE observer. However, finite-dimensional observer- 

ased control of the heat equation in the challenging case where 
� Supported by Israel Science Foundation (grant no. 673/19 ) and by Chana and 
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oth operators are unbounded remained open. Note that finite- 

imensional observer-based control of the 1D linear Kuramoto- 

ivashinsky equation (KSE) with both observation and control op- 

rators unbounded was studied in [18] . 

In the present paper, for the first time, we manage with finite- 

imensional observer-based controllers for the 1D heat equation 

ith both operators unbounded. We consider Dirichlet actuation 

nd point measurement and employ a modal decomposition ap- 

roach via dynamic extension. We suggest a direct Lyapunov ap- 

roach to the full-order closed-loop system, where the finite- 

imensional state is coupled with the infinite-dimensional tail of 

he state Fourier expansion, and provide LMIs for finding the con- 

roller dimension and resulting exponential decay rate. In order 

o manage with point measurement, we consider H 

1 -stability and 

pply the Young inequality in a novel form (with fractional pow- 

rs of the eigenvalues of a Sturm-Liouville operator). Note that for 

SE, studied in [18] and [20] , the use of fractional powers of the 

igenvalues was not required. We also provide discussions on the 

xtension of the method to 1D linear heat equation under vari- 

us boundary conditions and on sampled-data implementation of 

he controller. A numerical example illustrates the efficiency of the 

roposed method. 

Notations and mathematical preliminaries: Let L 2 (0 , 1) be the 

ilbert space of Lebesgue measurable and square integrable func- 

ions f : [0 , 1] → R with inner product 〈 f, g 〉 := 

∫ 1 
0 f (x ) g(x ) dx and 

nduced norm ‖ f ‖ 2 := 〈 f, f 〉 . H 

k (0 , 1) is the Sobolev space of func- 

ions f : [0 , 1] → R having k square integrable weak derivatives, 
rved. 
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P  
ith the norm ‖ f ‖ 2 H k 
:= 

∑ k 
j=0 

∥∥ f ( j) 
∥∥2 

. The Euclidean norm on R 

n 

ill be denoted by | ·| . We denote f ∈ H 

1 
0 
(0 , 1) if f ∈ H 

1 (0 , 1) and

f (0) = f (1) = 0 . For P ∈ R 

n ×n , P > 0 means that P is symmetric

nd positive definite. The matrix norm of A is denoted by | A | . The 

ub-diagonal elements of a symmetric matrix are denoted by ∗. For 

 ∈ R 

n ×n , U > 0 and x ∈ R 

n we denote | x | 2 U = x T Ux . 

Consider the Sturm-Liouville eigenvalue problem 

′′ + λφ = 0 , x ∈ [0 , 1] (1) 

ith the following boundary conditions: 

φ(0) = φ(1) = 0 . (2) 

his problem induces a sequence of eigenvalues with correspond- 

ng eigenfunctions. The eigenfunctions form a complete orthonor- 

al system in L 2 (0 , 1) . The eigenvalues and corresponding eigen- 

unctions are given by 

φn (x ) = 

√ 

2 sin 

(√ 

λn x 

)
, λn = n 

2 π2 , n ≥ 1 . (3) 

The following lemma will be used: 

emma 1. Let h ∈ L 2 (0 , 1) satisfy h 
L 2 = 

∑ ∞ 

n =1 h n φn . Then h ∈ H 

1 
0 
(0 , 1)

ff
∑ ∞ 

n =1 λn h 
2 
n < ∞ . Moreover, 

h 

′ ∥∥2 = 

∞ ∑ 

n =1 

λn h 

2 
n . (4) 

The result of Lemma 1 follows by arguments of Lemma 2.1 in 

16] for the particular choices p(x ) ≡ 1 and q (x ) ≡ 0 therein. 

. Boundary control of a heat equation 

In this section we consider observer-based stabilization of a lin- 

ar 1D heat equation under Dirichlet actuation and point measure- 

ent. Consider 

z t (x, t) = z xx (x, t) + az(x, t) , t ≥ 0 (5) 

here x ∈ [0 , 1] , z(x, t) ∈ R and a ∈ R is the reaction coefficient. We

onsider Dirichlet actuation given by 

(0 , t) = u (t ) , z(1 , t ) = 0 , (6)

here u (t) is a control input to be designed, and in-domain point 

easurement given by 

 (t) = z(x ∗, t) , x ∗ ∈ (0 , 1) . (7)

ollowing [26] , we introduce the change of variables 

 (x, t) = z(x, t) − r (x ) u (t) , r (x ) := 1 − x (8)

o obtain the following equivalent ODE-PDE system 

w t (x, t) = w xx (x, t) + aw (x, t) + ar(x ) u (t) − r(x ) v (t) , 
˙ u (t) = v (t) , t ≥ 0 

(9) 

ith boundary conditions 

w (0 , t) = 0 , w (1 , t) = 0 . (10) 

nd measurement 

 (t) = w (x ∗, t) + r(x ∗) u (t) . (11)

enceforth we will treat u (t) as an additional state variable and 

 (t) as the control input. Given v (t) , u (t) can be computed by

ntegrating ˙ u (t) = v (t) , where we choose u (0) = 0 . Note that this

hoice implies z(·, 0) = w (·, 0) . 

We use completeness of the eigenfunction { φn } ∞ 

n =1 , given in (3) , 

n L 2 (0 , 1) to present the solution of (9) as 

w (x, t) = 

∑ ∞ 

n =1 w n (t) φn (x ) , w n (t) = 〈 w (·, t) , φn 〉 . (12) 
159 
e show below (see the paragraph after (23) ) that the closed- 

oop system (9), (18) with control input (23) admits a unique 

lassical solution. Therefore, the modes of the closed-loop system 

 

w n (t) } ∞ 

n =1 are differentiable. By differentiating under the integral 

ign, integrating by parts and using (1) and (2) we obtain 

˙ w n (t) = (−λn + a ) w n (t) + ab n u (t) − b n v (t) , t ≥ 0 

b n = 〈 r, φn 〉 = 

√ 

2 
λn 

, w n (0) = 〈 w (·, 0) , φn 〉 , n ≥ 1 . 
(13) 

n particular note that 

b n  = 0 , n ≥ 1 (14) 

nd 

∞ ∑ 

 = N+1 

b 2 n ≤
2 

π2 

∫ ∞ 

N 

dx 

x 2 
= 

2 

π2 N 

, N ≥ 1 . (15) 

From (12) and (13) , it can be seen that the modal decomposi- 

ion approach converts the ODE-PDE system (9) into the sequence 

f ODEs, corresponding to u (t) and the modes { w n (t) } ∞ 

n =1 . Note 

hat only finitely many modes in (13) are unstable, due to the 

rowth of { λn } ∞ 

n =1 . Our aim is to stabilize the unstable modes, 

hile ensuring that the stable modes are not destabilized in the 

rocess (a phenomenon known as spillover [10] ). 

Let δ > 0 be a desired decay rate and let N 0 ∈ N satisfy 

λn + a < −δ, n > N 0 . (16) 

et N ∈ N , N 0 ≤ N. N 0 will define the dimension of the controller

nd N will define the dimension of the observer. 

We construct a finite-dimensional observer of the form 

ˆ 
 (x, t) := 

N ∑ 

n =1 

ˆ w n (t) φn (x ) (17) 

here ˆ w n (t) satisfy the following ODEs for t ≥ 0 : 

˙ ˆ w n (t) = (−λn + a ) ̂  w n (t) + ab n u (t) − b n v (t) 

−l n 
[

ˆ w (x ∗, t) + r(x ∗) u (t) − y (t) 
]
, n ≥ 1 , 

ˆ w n (0) = 0 , 1 ≤ n ≤ N. 

(18) 

ith y (t) in (11) and scalar observer gains { l n } N n =1 . 

ssumption 1. The point x ∗ ∈ (0 , 1) satisfies 

 n = φn (x ∗) = 

√ 

2 sin 

(√ 

λn x ∗
)

 = 0 , 1 ≤ n ≤ N 0 . (19)

Assumption 1 is satisfied for N 0 = 1 by any x ∗ ∈ (0 , 1) , whereas

or N 0 > 1 the corresponding x ∗ must satisfy the following condi- 

ion: x ∗  = k/n < 1 , k = 1 , . . . , N 0 − 1 , n = 2 , . . . , N 0 . E.g, for N 0 = 2

he condition is x ∗  = 0 . 5 . Assumption 1 implies that the measure-

ent y (t) contains information on the unstable modes { w n (t) } N 0 n =1 
. 

hus, the innovation term ˆ w (x ∗, t) + r(x ∗) u (t) − y (t) appearing in

he observer ODEs, will allow to obtain exponential convergence 

f the estimation error. 

Let 

A 0 = diag { −λ1 + a, . . . , −λN 0 + a } , 
B 0 = [ b 1 , . . . , b N 0 ] , L 0 = [ l 1 , . . . , l N 0 ] 

T 
, 

C 0 = [ c 1 , . . . , c N 0 ] , ˜ B 0 = [ 1 , −b 1 , . . . , −b N 0 ] , 

˜ A 0 = 

[
0 0 

aB 0 A 0 

]
∈ R 

(N 0 +1) ×(N 0 +1) . 

(20) 

nder Assumption 1 it can be verified that the pair (A 0 , C 0 ) is ob-

ervable, by the Hautus lemma. We choose L 0 = 

[
l 1 , . . . , l N 0 

]T ∈ R 

N 0 

hich satisfies the Lyapunov inequality 

 o (A 0 − L 0 C 0 ) + (A 0 − L 0 C 0 ) 
T P o < −2 δP o , (21)
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ith 0 < P o ∈ R 

N 0 ×N 0 . We choose l n = 0 , n > N 0 . Since b n  = 0 , n ≥
 the pair ( ̃  A 0 , ˜ B 0 ) is controllable. Let K 0 ∈ R 

1 ×(N 0 +1) satisfy 

 c ( ̃  A 0 + 

˜ B 0 K 0 ) + ( ̃  A 0 + 

˜ B 0 K 0 ) 
T P c < −2 δP c , (22)

ith 0 < P c ∈ R 

(N 0 +1) ×(N 0 +1) . We propose a (N 0 + 1) -dimensional

ontroller of the form 

 (t) = K 0 ˆ w 

N 0 (t ) , ˆ w 

N 0 (t ) = 

[
u (t ) , ˆ w 1 (t ) , . . . , ˆ w N 0 (t ) 

]T 
(23) 

hich is based on the N-dimensional observer (17) . 

For well-posedness of the closed-loop system (9) and (18) sub- 

ect to the control input (23) we consider the operator 

A 1 : D(A 1 ) ⊆ L 2 (0 , 1) → L 2 (0 , 1) , A 1 w = −w xx , 

D(A 1 ) = 

{
w ∈ H 

2 (0 , 1) | w (0) = w (1) = 0 

}
. 

(24) 

ince A 1 is positive, it has a unique positive square root with do- 

ain D 

(
A 

1 
2 
1 

)
= H 

1 
0 (0 , 1) . The latter follows from (4) and Section

.4 in [28] . Let H = L 2 (0 , 1) × R 

N+1 be a Hilbert space with the

orm ‖ ·‖ 2 H 

= ‖ ·‖ 2 + | ·| 2 . Defining the state ξ (t) as 

ξ (t) = col 
{

w (·, t) , u (t) , ˆ w 1 (t) , . . . , ˆ w N (t) 
}
, 

y arguments of [16] that employ Theorems 6.3.1 and 6.3.3 in 

25] it can be shown that the closed-loop system (9) and (18) with 

ontrol input (23) and z(·, 0) = w (·, 0) ∈ D 

(
A 

1 
2 
1 

)
has a unique clas-

ical solution 

∈ C ( [0 , ∞ ) ;H ) ∩ C 1 ( (0 , ∞ ) ;H ) (25) 

uch that 

(t) ∈ D ( A 1 ) × R 

N+1 , t > 0 . (26) 

Let e n (t) be the estimation error defined by 

 n (t) = w n (t) − ˆ w n (t) , 1 ≤ n ≤ N. (27) 

y using (11), (12) and (17) , the last term on the right-hand side

f (18) can be written as 

ˆ w (x ∗, t) + r(x ∗) u (t) − y (t) = −∑ N 
n =1 c n e n (t) − ζ (t) , (28) 

here 

ζ (t) = w (x ∗, t) −
∑ N 

n =1 w n (t) φn (x ∗) 

(2) , (10) = 

∫ x ∗
0 

[
w x (x, t) − ∑ N 

n =1 w n (t) φ′ 
n (x ) 

]
dx. 

(29) 

hen the error equations have the form 

˙ e n (t) = (−λn + a ) e n (t) 

−l n 
(∑ N 

n =1 c n e n (t) + ζ (t) 
)
, t ≥ 0 . 

(30) 

ote that ζ (t) satisfies the following estimate: 

ζ 2 (t) 
(29) ≤

∥∥w x (·, t) −
∑ N 

n =1 w n (t) φ′ 
n (·) 

∥∥2 

(4) ≤ ∑ ∞ 

n = N+1 λn w 

2 
n (t) . 

(31) 

n order to compensate ζ (t) in the Lyapunov analysis (see (39) be- 

ow) we will prove H 

1 -stability of the closed-loop system and ap- 

ly the result of Lemma 1 . Let 

e N 0 (t) = col { e i (t) } N 0 i =1 , e N−N 0 (t) = col { e i (t) } N i = N 0 +1 , 

ˆ w 

N−N 0 (t) = col 
{

ˆ w i (t) 
}N 

i = N 0 +1 
, 

X (t) = col 
{

ˆ w 

N 0 (t ) , e N 0 (t ) , ˆ w 

N−N 0 (t ) , e N−N 0 (t ) 
}
, 

(32) 
160 
nd 

A 1 = diag { −λi + a } N i = N 0 +1 , 
˜ L 0 = col { 0 1 ×1 , L 0 } 

B 1 = [ b N 0 +1 , . . . , b N ] 
T 
, C 1 = [ c N 0 +1 , . . . , c N ] , 

a = 

[
−a, 0 1 ×N 0 

]
, ˜ K 0 = 

[
K 0 + a , 0 1 ×(2 N−N 0 ) 

]
, 

L = col 
{

˜ L 0 , −L 0 , 0 2(N−N 0 ) ×1 

}
, 

F = 

⎡ 

⎢ ⎣ 

˜ A 0 + 

˜ B 0 K 0 
˜ L 0 C 0 0 

˜ L 0 C 1 
0 A 0 − L 0 C 0 0 −L 0 C 1 

−B 1 ( K 0 + a ) 0 A 1 0 

0 0 0 A 1 

⎤ 

⎥ ⎦ 

. 

(33) 

rom (13), (18), (23) and (33) we have the closed-loop system for 

 ≥ 0 : 

˙ X (t) = F X (t) + L ζ (t) , 

˙ w n (t) = (−λn + a ) w n (t) − b n ̃  K 0 X (t) , n > N. 
(34) 

emark 1. In the closed-loop system (34) , the ODE system for X(t) 

s coupled via ζ (t) with the infinite-dimensional part that depends 

n X(t) . This is different from the state-feedback case, where the 

nite-dimensional part is separated from the infinite-dimensional 

art, and thus the stability analysis can be done in two steps: 

) the analysis of the ODE system and 2) the convergence of the 

nfinite-dimensional part with the exponentially decaying control 

ignal [15] . To study the stability of the coupled system we will 

resent a direct Lyapunov method initiated in [16] , which works 

n the case of point actuation and measurement due to dynamic 

xtension. Indeed, without dynamic extension, modal decomposi- 

ion of (5) with boundary conditions (6) results in ODEs similar to 

13) , without v (t) , where | b n | ≥ λ
1 
2 
n . The growth of { b n } ∞ 

n =1 poses a

roblem in compensating cross terms which arise in the Lyapunov 

tability analysis (see (38) below). As can be seen in (15) , dynamic 

xtension leads to { b n } ∞ 

n =1 ∈ l 2 (N ) that results in finite coefficient 
4 α1 √ 

N π
3 
2 

multiplying 
∣∣ ˜ K 0 X(t) 

∣∣2 
in the end of (38) . 

For H 

1 -stability analysis of the closed-loop system (34) we de- 

ne the Lyapunov function 

 (t) = | X (t) | 2 P + 

∞ ∑ 

n = N+1 

λn w 

2 
n (t) , (35) 

here P ∈ R 

(2 N+1) ×(2 N+1) satisfies P > 0 . This function is chosen to 

ompensate ζ (t) using the estimate (31) . Differentiating V (t) along 

he solution of (34) gives 

˙ V + 2 δV = X 

T (t) 
[
P F + F T P + 2 δP 

]
X (t) 

−2 X 

T (t) P L ζ (t) + 2 

∑ ∞ 

n = N+1 

(
−λ2 

n + (a + δ) λn 

)
w 

2 
n (t) 

−2 

∑ ∞ 

n = N+1 λn w n (t) b n ̃  K 0 X (t) , t ≥ 0 . 

(36) 

ote that since λn = n 2 π2 , similar to (13) we have 

∑ ∞ 

n = N+1 λ
− 3 

4 
n ≤ π− 3 

2 

∫ ∞ 

N x −
3 
2 dx = 

2 √ 

N π
3 
2 

. (37) 

ince b n = 

√ 

2 
λn 

, the Young inequality implies 

−2 

∑ ∞ 

n = N+1 λn w n (t) b n ̃  K 0 X (t ) ≤ 1 
α1 

∑ ∞ 

n = N+1 λ
7 
4 
n w 

2 
n (t ) 

+2 α1 

(∑ ∞ 

n = N+1 λ
− 3 

4 
n 

)∣∣ ˜ K 0 X (t) 
∣∣2 

(37) ≤ 1 
α1 

∑ ∞ 

n = N+1 λ
7 
4 
n w 

2 
n (t) + 

4 α1 √ 

N π
3 
2 

∣∣ ˜ K 0 X (t) 
∣∣2 

(38) 
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here α > 0 . From monotonicity of λn we have 

2 

∑ ∞ 

n = N+1 

(
−λ2 

n + (a + δ) λn 

)
w 

2 
n (t) 

+2 

∑ ∞ 

n = N+1 λn w n (t)(−b n ) ̃  K 0 X (t) 

(38) ≤ −2 

(
λN+1 − a − δ − 1 

2 α1 
λ

3 
4 

N+1 

)∑ ∞ 

n = N+1 λn w 

2 
n (t) 

+ 

4 α1 √ 

N π
3 
2 

∣∣ ˜ K 0 X (t) 
∣∣2 (31) ≤ 4 α1 √ 

N π
3 
2 

∣∣ ˜ K 0 X (t) 
∣∣2 

−2 

(
λN+1 − a −δ − 1 

2 α1 
λ

3 
4 

N+1 

)
ζ 2 (t) , 

(39) 

rovided λN+1 − a − δ − 1 
2 α1 

λ
3 
4 
N+1 

≥ 0 . Let η(t) = col { X(t ) , ζ (t ) } . 
rom (36), (38) and (39) we obtain 

˙ V + 2 δV ≤ ηT (t)
(1) η(t) ≤ 0 , t ≥ 0 

(40) 

f 


(1) = 

[
�(1) P L 

−2(λN+1 − a − δ) + 

1 
α1 

λ
3 
4 

N+1 

]
< 0 , 

�(1) = P F + F T P + 2 δP + 

4 α1 √ 

N π
3 
2 

˜ K 

T 
0 

˜ K 0 . 

(41) 

y Schur complement (41) holds iff
 

 

�(1) P L 0 

−2(λN+1 − a − δ) 1 

∗ −α1 λ
− 3 

4 

N+1 

⎤ 

⎦ < 0 . (42) 

ote that the LMI (42) has N-dependent coefficients and its dimen- 

ion depends on N. Summarizing, we arrive at: 

heorem 1. Consider (9) with boundary conditions (10) , in-domain 

oint measurement (11) , control law (23) and w (·, 0) ∈ D(A 

1 
2 
1 
) . Let

> 0 be a desired decay rate, N 0 ∈ N satisfy (16) and N ∈ N sat-

sfy N 0 ≤ N. Let L 0 and K 0 be obtained using (21) and (22) , respec-

ively. Let there exist a positive definite matrix P ∈ R 

(2 N+1) ×(2 N+1) and 

calar α1 > 0 which satisfy (42) . Then the solution w (x, t) and u (t)

o (9) under the control law (23) , (18) and the corresponding observer 

ˆ  (x, t) defined by (17) satisfy 

‖ 

w (·, t) ‖ 

2 
H 1 + | u (t) | 2 ≤ Me −2 δt ‖ 

w (·, 0) ‖ 

2 
H 1 , ∥∥w (·, t) − ˆ w (·, t) 

∥∥2 

H 1 
≤ Me −2 δt ‖ 

w (·, 0) ‖ 

2 
H 1 , 

(43) 

or some constant M > 0 . Moreover, (42) is always feasible for large

nough N. 

roof. Feasibility of the LMI (42) implies, by the comparison prin- 

iple, 

 (t) ≤ e −2 δt V (0) , t ≥ 0 . (44) 

ince u (0) = 0 , for some M 0 > 0 we have 

V (0) 
(4) ≤ M 0 ‖ 

w x (·, 0) ‖ 

2 ≤ M 0 ‖ 

w (·, 0) ‖ 

2 
H 1 . 

(45) 

y Wirtinger’s inequality ( [7] , Section 3.10), for t ≥ 0 , 

 

w x (·, t) ‖ 

2 ≤ ‖ 

w (·, t) ‖ 

2 
H 1 ≤

π2 + 4 

π2 
‖ 

w x (·, t) ‖ 

2 
. (46) 

ince w (·, t) ∈ D(A 1 ) for all t > 0 we have ‖ w x (·, t) ‖ 2 (4)= 

 ∞ 

n =1 λn w 

2 
n (t) . Parseval’s equality, (46) and monotonicity of 

 

λn } ∞ 

n =1 imply 

V (t) ≥ σmin (P ) | u (t) | 2 

+ min 

(
σmin (P) 

2 λN 
, 1 

)‖ 

w x (·, t) ‖ 

2 
, t ≥ 0 . 

(47) 

hen (43) follows from (44), (45), (46), (47) and the presentation 

 (·, t) − ˆ w (·, t) = 

N ∑ 

n =1 

e n (t) φn (·) + 

∞ ∑ 

n = N+1 

w n (t) φn (·) . 
161 
or feasibility of (42) with large enough N, note that (15) and 

19) imply | c n | ≤ √ 

2 , n ≥ 1 and { b n } ∞ 

n =1 ∈ l 2 (N ) . Then, by argu- 

ents of Theorem 3.2 in [16] , there exist some , κ > 0 , indepen-

ent of N, such that 

e ( F + δI ) t 
∣∣ ≤  ·

√ 

N 

(
1 + t + t 2 

)
e −κt . (48) 

herefore, P ∈ R 

(2 N+1) ×(2 N+1) which solves the Lyapunov equation 

 (F + δI) + (F + δI) T = −N 

− 3 
4 I (49) 

atisfies 

 

P | ≤ 1 · N 

1 
4 (50) 

here 1 > 0 is independent of N. We substitute (49) , λN+1 = 

2 (N + 1) 2 and α = N 

− 3 
8 into (41) . By Schur complement, we find

hat (41) holds if and only if 

−I + 4 π− 3 
4 N 

− 1 
8 ˜ K 

T 
0 

˜ K 0 

+ 

1 
2 

(
λN+1 − a − δ − N 

3 
8 π

3 
2 (N + 1) 

3 
2 

)−1 
P LL 

T P < 0 . 

(51) 

ince λN+1 − a − δ ≈ (N + 1) 2 and 

∣∣ ˜ K 0 

∣∣, | L | are independent of 

, by taking into account (50) we find that (51) holds for large 

nough N. �

orollary 1. Under the conditions of Theorem 1 , the following esti- 

ates hold for z(x, t) given in (8) : 

‖ 

z(·, t) ‖ 

2 
H 1 ≤ Me −2 δt ‖ 

z(·, 0) ‖ 

2 
H 1 , ∥∥z(·, t) − ˆ w (·, t) 

∥∥2 

H 1 
≤ Me −2 δt ‖ 

z(·, 0) ‖ 

2 
H 1 , 

(52) 

here M > 0 is some constant. 

roof. From (8) we have 

‖ 

z(·, t) ‖ H 1 ≤ ‖ 

w (·, t) ‖ H 1 + | u (t) | ‖ 

r(·) ‖ H 1 , ∥∥z(·, t) − ˆ w (·, t) 
∥∥

H 1 
≤

∥∥w (·, t) − ˆ w (·, t) 
∥∥

H 1 

+ | u (t) | ‖ 

r(·) ‖ H 1 . 

(53) 

rom u (0) = 0 , (43) and (53) , we obtain (52) . �

emark 2. Differently from Katz and Fridman [19] , where Dirichlet 

ctuation with non-local measurements were considered, we apply 

he Young inequality in (38) with fractional powers of λn which al- 

ows to compensate ζ by using (31) in the Lyapunov analysis. Note 

hat for finite-dimensional observer-based control of the 1D linear 

uramoto-Sivashinsky equation (KSE), studied in [18] , the use of 

ractional powers of the eigenvalues was not required. This is due 

o the faster growth rate of the eigenvalues corresponding to the 

ourth order spatial differential operator appearing in the KSE. 

. A numerical example 

We demonstrate our approach to Dirichlet control of a 1D lin- 

ar heat equation, where we choose a = 10 leading to an unstable 

pen-loop system. We choose point measurement at x ∗ = 

1 
π and 

= 0 . 1 , which results in N 0 = 1 . The observer and controller gains

 0 and K 0 are found from (21) and (22) , respectively. The obtained 

ains are given by 

 0 = 0 . 7398 , K 0 = 

[
−4 . 9910 −5 . 3338 

]
. (54) 

he LMI of Theorem 1 was verified using Matlab with δ = 0 . 1 . It

s feasible for N = 3 implying that the closed-loop system is expo- 

entially H 

1 -stable with a decay rate δ = 0 . 1 . 

For simulation of the closed-loop system (34) with N = 3 we 

onsider the initial conditions 

 (0) = 0 , w (·, 0) = 10 x (1 − x ) cos (2 x ) , x ∈ [0 , 1] . 
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Fig. 1. u 2 (t) + ‖ w x (·, t) ‖ 2 VS t . 

Fig. 2. w (x, t) VS (x, t) . 
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ote that w (·, 0) ∈ D 

(
A 

1 
2 
1 

)
= H 

1 
0 
(0 , 1) . Using the modal decompo-

ition (12) and (4) we approximate the solution norm using 50 

odes as follows: 

 

w (·, t) ‖ 

2 (12) ≈
50 ∑ 

n =1 

w 

2 
n (t) , ‖ 

w x (·, t) ‖ 

2 (4) ≈
50 ∑ 

n =1 

λn w 

2 
n (t) . 

hen, the closed-loop system (34) (with the tail ODEs truncated af- 

er 50 modes) is simulated using MATLAB, subject to the observer- 

ased control law (23) . The value of ζ (t) , defined in (29) , is ap-

roximated by 

(t) ≈
50 ∑ 

n =4 

w n (t) φn (x ∗) . 

e choose t ∈ [0 , 4] as the simulation time interval. The evolution

f u 2 (t) + ‖ w x (·, t) ‖ 2 (which is equivalent to u 2 (t) + ‖ w (·, t) ‖ 2 H 1 by 

obolev’s inequality) is given in Fig. 1 . A surface plot of the solu-

ion w (x, t) is given in Fig. 2 . The numerical simulation validates

ur theoretical results. Moreover, simulation of the correspond- 

ng closed-loop system with N = 2 shows stability. With N = 1 , 

he simulations did not show stability of the closed-loop system, 

eaning that our LMI-based condition is slightly conservative in 

his example. 
162 
. Discussions of the proposed controller 

.1. Compatibility of the observer-based design to various boundary 

onditions 

In this section we demonstrate that our observer-based con- 

roller is well suited for the 1D heat equation with various bound- 

ry conditions. As an example, consider (5) with Neumann actua- 

ion 

 x (0 , t) = u (t ) , z x (1 , t ) = 0 , (55)

nd boundary measurement given by 

 (t) = z(0 , t) . (56) 

y considering the Sturm-Liouville problem (1) with the boundary 

onditions 

φ′ (0) = φ′ (1) = 0 , (57) 

t can be verified that the corresponding eigenvalues and eigen- 

unctions are given by 

φ1 (x ) = 1 , λ1 = 0 , 

φn (x ) = 

√ 

2 cos 

(√ 

λn x 

)
, λn = (n − 1) 2 π2 , n ≥ 2 . 

(58) 

iven h ∈ L 2 (0 , 1) satisfying h 
L 2 = 

∑ ∞ 

n =1 h n φn , it can be easily veri-

ed by arguments of Katz and Fridman [16] that h ∈ H 

1 (0 , 1) iff
 ∞ 

n =1 λn h 
2 
n < ∞ . Moreover, (4) holds. 

For (55) we employ the change of variables 

 (x, t) = z(x, t) − r (x ) u (t) , r (x ) := x − x 2 

2 

(59)

hat leads to the following ODE-PDE system for t ≥ 0 : 

w t (x, t) = w xx (x, t) + aw (x, t) + r 1 (x ) u (t) − r(x ) v (t) , 

˙ u (t) = v (t) , r 1 (x ) = ar(x ) − 1 

(60) 

ith boundary conditions 

w x (0 , t) = 0 , w x (1 , t) = 0 . (61) 

nd measurement 

 (t) = w (0 , t) . (62) 

We present the solution to (60) as (12) . Differentiating under 

he integral sign, integrating by parts and using (1) and (57) we 

btain the following ODEs for t ≥ 0 : 

˙ w n (t) = (−λn + a ) w n (t) + ̄b n u (t) − b n v (t) , t ≥ 0 , 

here 

b 1 = 

1 
3 
, b n = −

√ 

2 
λn 

, n ≥ 2 

b̄ 1 = 

a 
3 

− 1 , b̄ n = ab n , n ≥ 2 , 

w n (0) = 〈 w (·, 0) , φn 〉 , n ≥ 1 . 

(63) 

n particular, note that (14) holds. 

Let δ > 0 be a desired decay rate and let N 0 ∈ N satisfy (16) . Let

 ∈ N , N 0 ≤ N. We construct a finite-dimensional observer of the 

orm (17) where 
{

ˆ w n (t) 
}N 

n =1 
satisfy the following ODEs for t ≥ 0 : 

˙ ˆ w n (t) = (−λn + a ) ̂  w n (t) + ̄b n u (t) − b n v (t) 

−l n 
[

ˆ w (0 , t) − y (t) 
]
, n ≥ 1 , 

ˆ w n (0) = 0 , 1 ≤ n ≤ N. 

(64) 

ith y (t) in (62) and scalar observer gains { l n } N n =1 . 

Note that in this case 

 n = φn (0)  = 0 , 1 ≤ n ≤ N 0 , (65) 
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.e. Assumption 1 always holds. Recall the notations (20) and let 

B̄ 0 = 

[
b̄ 1 , . . . , ̄b N 0 

]T 
, Ā 0 = 

[
0 0 

a ̄B 0 A 0 

]
. (66) 

he pair (A 0 , C 0 ) is observable, by the Hautus lemma. We choose

 0 = 

[
l 1 , . . . , l N 0 

]T ∈ R 

N 0 which satisfies the Lyapunov inequality 

21) with 0 < P o ∈ R 

N 0 ×N 0 . We choose l n = 0 , n > N 0 . Since b n  =
 , n ≥ 1 the pair ( ̄A 0 , ˜ B 0 ) is controllable. Let K 0 ∈ R 

1 ×(N 0 +1) satisfy

22) with 

˜ A 0 replaced by Ā 0 and 0 < P c ∈ R 

(N 0 +1) ×(N 0 +1) . We pr o-

ose a (N 0 + 1) -dimensional controller of the form (23) , which is

ased on the N-dimensional observer (17) . 

Recall the estimation error (27) . By using (12), (17) and (62) , 

he innovation term ˆ w (0 , t) − y (t) in (64) can be written as the

ight-hand side of (28) , where 

ζ (t) = w (0 , t) − ∑ N 
n =1 w n (t) φn (0) . (67) 

hen the error equations have the form (30) . By Sobolev’s inequal- 

ty (see Lemma 4.1 in [13] ) and (4) we have for any � > 0 : 

ζ 2 (t) 
(67) ≤ max x ∈ [0 , 1] 

(
w (x, t) − ∑ N 

n =1 w n (t) φn (x ) 
)2 

Sobolev ≤ (1 + �) 
∥∥w (·, t) − ∑ N 

n =1 w n (t) φn (·) 
∥∥2 

+ 

1 
�

∥∥w x (·, t) −
∑ N 

n =1 w n (t) φ′ 
n (·) 

∥∥2 

(4) ≤ ∑ ∞ 

n = N+1 μn w 

2 
n (t) , μn = 1 + � + 

λn 

� , n ≥ 1 . 

(68) 

Recall the notations (32), (33) . The closed-loop system has the 

orm (34) with F replaced by 

F̄ = 

⎡ 

⎢ ⎣ 

Ā 0 + 

˜ B 0 K 0 
˜ L 0 C 0 0 

˜ L 0 C 1 
0 A 0 − L 0 C 0 0 −L 0 C 1 

−B 1 ( K 0 + a ) 0 A 1 0 

0 0 0 A 1 

⎤ 

⎥ ⎦ 

. (69) 

For H 

1 -stability analysis of the closed-loop system (34) , with 

 replaced by F̄ , we define the Lyapunov function (35) , where 

 ∈ R 

(2 N+1) ×(2 N+1) satisfies P > 0 . This Lyapunov function is cho- 

en to compensate ζ (t) using the estimate (68) . From here, the 

tability analysis follows arguments of (36) - (40) with two adjust- 

ents. First, taking into account b n , n ≥ 2 , given in (63) , the Young

nequality (38) is replaced by: 

−2 

∑ ∞ 

n = N+1 λn w n (t) b n ̃  K 0 X (t) ≤ 1 
α1 

∑ ∞ 

n = N+1 λn w 

2 
n (t) 

+2 α1 

(∑ ∞ 

n = N+1 λ
−1 
n 

)∣∣ ˜ K 0 X (t) 
∣∣2 

≤ 1 
α1 

∑ ∞ 

n = N+1 λn w 

2 
n (t) + 

4 α1 

Nπ2 

∣∣ ˜ K 0 X (t) 
∣∣2 

(70) 

here similar to (15) 

∞ ∑ 

 = N+1 

λ−1 
n = 

1 

π2 

∞ ∑ 

n = N 

1 

n 

2 
≤ 1 

π2 

[
1 

N 

+ 

∫ ∞ 

N 

dx 

x 2 

]
≤ 2 

π2 N 

. 

econd, with notation 

n = 

λ2 
n −

(
a + δ + 

1 
2 α1 

)
λn 

μn 
, n ≥ 2 

39) is replaced by: 

2 

∑ ∞ 

n = N+1 

[
−λ2 

n + (a + δ + 

1 
2 α1 

) λn 

]
w 

2 
n (t) 

= −2 

∑ ∞ 

n = N+1 θn μn w 

2 
n (t) 

≤ −2 θN+1 

∑ ∞ 

n = N+1 μn w 

2 
n (t) 

(68) ≤ −2 θN+1 ζ
2 (t) 

(71) 

rovided λn − a − δ − 1 
2 α1 

≥ 0 , n ≥ N + 1 . 

Therefore, (40) holds with 
1 changed by the following 
2 : 


2 = 

[
�(2) P L 

−2 θN+1 

]
< 0 , 

�(2) = P F̄ + F̄ T P + 2 δP + 

4 α1 
2 

˜ K 

T 
0 

˜ K 0 . 

(72) 
Nπ

163 
y applying Schur complement to (72) we obtain 

 

 

�(2) P L 0 

−2 

λ2 
N+1 −(a + δ) λN+1 

μN+1 
1 

∗ −α1 μN+1 

λN+1 

⎤ 

⎦ < 0 . (73) 

hich guarantees H 

1 -stability of the closed-loop system with de- 

ay rate δ. 

LMI (73) is always feasible for large enough N. Indeed, by 

63) and (65) we have | c n | ≤ √ 

2 , n ≥ 1 and { b n } ∞ 

n =1 ∈ l 2 (N ) . Thus,

y arguments of Theorem 3.2 in [16] , there exist some , κ > 0 ,

ndependent of N, such that (48) holds with F replaced by F̄ . Then, 

 ∈ R 

(2 N+1) ×(2 N+1) which solves the Lyapunov equation 

 ( ̄F + δI) + ( ̄F + δI) T P = −N 

−1 I (74) 

atisfies | P | ≤ 1 where 1 > 0 is independent of N. Substituting 

74) , λN+1 = π2 N 

2 and α1 = N 

− 1 
2 into (72) , we find that (72) is fea-

ible for large enough N. 

For other boundary conditions of the type Neumann-Dirichlet 

r Dirichlet-Neumann, our observer-based control design goes 

hrough with small modifications. Indeed, for both cases we will 

ave λn ≈ n 2 . By choosing a suitable r(x ) in the change of variables

 (x, t) = z(x, t) − r(x ) u (t) we will obtain | c n | = O (1) and | b n | � 

1 
n ,

mplying { b n } ∞ 

n =1 ∈ l 2 (N ) . Then, our observer-based control design, 

eading to LMIs, will guarantee H 

1 -stability of the closed-loop sys- 

em. Furthermore, the resulting LMIs will always be feasible for 

arge enough N. 

.2. Sampled-data implementation of the controller 

For practical application of the controllers, their sampled-data 

mplementation is important. Sampled-data control of PDEs is be- 

oming an active research area. General results on sampled-data 

ontrol of PDEs were presented in [22,23] . Sampled-data con- 

rollers for PDEs implemented by zero-order hold devices were 

uggested in [2,8,9,13–15,19,21,27] . Event-triggered sampled-data 

ontrol of parabolic and hyperbolic PDEs has been studied in 

5,6,12] . 

In this section we briefly discuss a possible sampled-data im- 

lementation of our finite-dimensional controller. Due to dynamic 

xtension the resulting controller becomes proportional integral. 

ifferently from the proportional sampled-data controllers that 

an be implemented via zero-order hold devices, for sampled-data 

mplementation of our proportional integral controller we sug- 

est to employ a generalized hold device (see e.g. [24] for ODEs 

nd [23] for PDEs). Some preliminary results on such implemen- 

ation can be found in [17] . By using a time-delay approach to 

ampled-data control [7] , it is shown in [17] that the resulting 

bserver-based controller preserves H 

1 -stability of the correspond- 

ng closed-loop system for fast enough sampling. Moreover, upper 

ounds on the lengths of the sampling intervals and the resulting 

ecay rate of the closed-loop system can be found from LMIs. 

Detailed study of the sampled-data implementation is not in 

he scope of the present paper. 

. Conclusions 

This paper presented the first constructive LMI-based method 

or finite-dimensional boundary controller design under the point 

easurement for 1D heat equation. The method was based on 

odal decomposition approach via dynamic extension. Sampled- 

ata and network-based implementations of the proposed con- 

roller are currently under study. Extension of results to other 

arabolic PDEs may be a topic for future research. 



R. Katz and E. Fridman European Journal of Control 62 (2021) 158–164 

D

c

i

R

 

 

[

[

[

[

[

[

[

[

[

[

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

[1] M.J. Balas , Finite-dimensional controllers for linear distributed parameter sys- 
tems: exponential stability using residual mode filters, J. Math. Anal. Appl. 133 

(2) (1988) 283–296 . 
[2] N. Bar Am , E. Fridman , Network-based H ∞ filtering of parabolic systems, Auto-

matica 50 (2014) 3139–3146 . 
[3] P. Christofides , Nonlinear and Robust Control of PDE Systems: Methods and 

Applications to Transport Reaction Processes, Springer, 2001 . 
[4] R. Curtain , Finite-dimensional compensator design for parabolic distributed 

systems with point sensors and boundary input, IEEE Trans. Autom. Control 

27 (1) (1982) 98–104 . 
[5] N. Espitia , Observer-based event-triggered boundary control of a linear 2 × 2 

hyperbolic systems, Syst. Control Lett. 138 (2020) 104668 . 
[6] N. Espitia , I. Karafyllis , M. Krstic , Event-triggered boundary control of constan- 

t-parameter reaction-diffusion PDEs: a small-gain approach, in: 2020 American 
Control Conference (ACC), IEEE, 2020, pp. 3437–3442 . 

[7] E. Fridman , Introduction to time-delay systems: analysis and control, 

Birkhauser, Systems and Control: Foundations and Applications, 2014 . 
[8] E. Fridman , A. Blighovsky , Robust sampled-data control of a class of semilinear

parabolic systems, Automatica 48 (2012) 826–836 . 
[9] S. Ghantasala , N. El-Farra , Active fault-tolerant control of sampled-data non- 

linear distributed parameter systems, Int. J. Robust Nonlinear Control 22 (1) 
(2012) 24–42 . 

[10] G. Hagen , I. Mezic , Spillover stabilization in finite-dimensional control and ob- 

server design for dissipative evolution equations, SIAM J. Control Optim. 42 (2) 
(2003) 746–768 . 

[11] C. Harkort , J. Deutscher , Finite-dimensional observer-based control of linear 
distributed parameter systems using cascaded output observers, Int. J. Control 

84 (1) (2011) 107–122 . 
164 
12] W. Kang , L. Baudouin , E. Fridman , Event-triggered control of korteweg-de vries 
equation under averaged measurements, Automatica (2021) . 

[13] W. Kang , E. Fridman , Distributed sampled-data control of Kuramoto-Sivashin- 
sky equation, Automatica 95 (2018) 514–524 . 

[14] I. Karafyllis , M. Krstic , Sampled-data boundary feedback control of 1-D linear 
transport PDEs with non-local terms, Syst. Control Lett. 107 (2017) 68–75 . 

[15] I. Karafyllis , M. Krstic , Sampled-data boundary feedback control of 1-D 
parabolic PDEs, Automatica 87 (2018) 226–237 . 

[16] R. Katz , E. Fridman , Constructive method for finite-dimensional observer-based 

control of 1-D parabolic PDEs, Automatica 122 (2020a) 109285 . 
[17] R. Katz, E. Fridman, Finite-dimensional control of the heat equation: Dirichlet 

actuation and point measurement. arXiv preprint arXiv:2011.07256 . 
[18] R. Katz , E. Fridman , Finite-dimensional control of the Kuramoto-Sivashinsky 

equation under point measurement and actuation, in: 59th IEEE Conference 
on Decision and Control, 2020c . 

[19] R. Katz , E. Fridman , Delayed finite-dimensional observer-based control of 1-D 

parabolic PDEs, Automatica (2021a) . 
20] R. Katz, E. Fridman, Finite-dimensional boundary control of the linear 

Kuramoto-Sivashinsky equation under point measurement with guaranteed L 2 - 
gain. arXiv:2106.14401 . 

21] R. Katz , E. Fridman , A. Selivanov , Boundary delayed observer-controller design 
for reaction-diffusion systems, IEEE Trans. Autom. Control (2021) . 

22] H. Logemann , Stabilization of well-posed infinite-dimensional systems by dy- 

namic sampled-data feedback, SIAM J. Control Optim. 51 (2) (2013) 1203–1231 . 
23] H. Logemann , R. Rebarber , S. Townley , Generalized sampled-data stabilization 

of well-posed linear infinite-dimensional systems, SIAM: Control Optim. 44 (4) 
(2005) 1345–1369 . 

24] L. Mirkin , Intermittent redesign of analog controllers via the Youla parameter 
62 (4) (2016) 1838–1851 . 

25] A. Pazy , Semigroups of Linear Operators and Applications to Partial Differential 

Equations, 44, Springer New York, 1983 . 
26] C. Prieur , E. Trélat , Feedback stabilization of a 1-D linear reaction–diffusion 

equation with delay boundary control, IEEE Trans. Autom. Control 64 (4) 
(2018) 1415–1425 . 

27] A. Selivanov , E. Fridman , Delayed H ∞ control of 2D diffusion systems under 
delayed pointlike measurements, Automatica 109 (2019) 108541 . 

28] M. Tucsnak , G. Weiss , Observation and Control for Operator Semigroups, 

Springer, 2009 . 

http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0001
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0001
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0002
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0002
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0002
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0003
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0003
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0004
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0004
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0005
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0005
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0006
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0007
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0007
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0008
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0009
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0010
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0010
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0010
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0011
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0011
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0011
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0012
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0013
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0014
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0015
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0016
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0016
http://arxiv.org/abs/2011.07256
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0018
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0019
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0019
http://arxiv.org/abs/2106.14401
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0021
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0021
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0021
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0021
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0022
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0022
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0023
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0023
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0023
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0023
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0024
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0024
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0025
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0025
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0026
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0026
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0026
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0027
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0027
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0027
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0028
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0028
http://refhub.elsevier.com/S0947-3580(21)00067-4/sbref0028

	Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement
	1 Introduction
	2 Boundary control of a heat equation
	3 A numerical example
	4 Discussions of the proposed controller
	4.1 Compatibility of the observer-based design to various boundary conditions
	4.2 Sampled-data implementation of the controller

	5 Conclusions
	Declaration of Competing Interest
	References


