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Data-Driven Control for Linear Discrete-Time
Delay Systems

Juan G. Rueda-Escobedo, Emilia Fridman and Johannes Schiffer

Abstract— The increasing ease of obtaining and pro-
cessing data together with the growth in system complex-
ity has sparked the interest in moving from conventional
model-based control design towards data-driven concepts.
Since in many engineering applications time delays natu-
rally arise and are often a source of instability, we con-
tribute to the data-driven control field by introducing data-
based formulas for state feedback control design in linear
discrete-time time-delay systems with uncertain delays.
With the proposed approach, the problems of system sta-
bilization as well as of guaranteed cost and H∞ control
design are treated in a unified manner. Extensions to de-
termine the system delays and to ensure robustness in the
event of noisy data are also provided.

Index Terms— Data-driven control, sampled data control,
delay systems, robust control.

I. INTRODUCTION

There is a growing stream of efforts for developing novel
control design methods that only rely on data, enabling a direct
control synthesis while avoiding intermediate steps, such as
system modeling or system identification [1], [2]. This trend
is driven by several factors. These comprise the increasing
ease of obtaining and processing data, which is facilitated by
modern computers and communication networks, the growth
in system complexity in many modern applications and the
desire of systematizing the control design.

Although this movement has its roots in computer sci-
ence [2], where, among other techniques, neural networks,
fuzzy systems, online optimization, learning methods, etc.,
are used for system control, the area of data-driven control
has recently shifted towards the development of controller
synthesis approaches, which are based on more conventional
control strategies. A main reason for this is the need of
rigorous guarantees on the system operation, in other words,
the need of robust controllers. With this premise in mind, there
has been a number of recent contributions in the area of linear
system control. The main idea is to assume an underlying
linear system to interpret the data and to develop data-driven
control formulas which leads to robust controllers by account-
ing for model mismatches, noise and disturbances. Recent
contributions comprise works on linear quadratic tracking [3],
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[4], dynamical feedback [5], predictive control [6]–[8], state-
feedback and optimal control [9]–[17] as well as extensions
to nonlinear discrete Volterra systems and subclasses thereof
[18], [19].

Among the most relevant robust control problems is the
stabilization of time-delay systems (TDSs). Time delays are
an ubiquitous phenomenon in many engineering applications,
such as biological and chemical systems as well as networked
control and sampled-data systems [20]–[22]. Yet in this impor-
tant direction, to date there are only few contributions from a
data-driven control perspective. One of these is [23], where
the authors extend the Virtual Reference Feedback Tuning
(VRFT) method to SISO linear discrete-time (LDT) TDS with
known input delay. The VRFT is combined with a data-based
Smith predictor to account for the effect of the delay. A similar
approach is presented in [24] for a SISO linear continuous-
time TDSs with unknown input delay. In the field of optimal
control for TDSs, a data-driven quadratic guaranteed cost
control for continuous time TDSs with known delay, but
unknown system matrices is proposed in [25]. Therein, the
system data is used to characterize the cost and to update the
control gains. In a similar direction, in [26], [27], the authors
propose a data-based adaptive dynamic programming method
for optimal and H∞ control design.

These recent advances motivate the work in the present
paper, which is focused on data-driven control design for
LDT-TDSs with state and input delays. Inspired by [13] and
[21], we provide data-driven formulas for the computation of
state feedback gains to achieve system stabilization as well
as for guaranteed cost and H∞ control design in a unified
manner. In contrast to the approaches in [23], [26], [27], the
proposed method addresses the case of uncertain and time-
varying delays. Furthermore, the impact of noise in the data
is analyzed and taken into account for the feedback design,
resulting in robust stability guarantees for the closed-loop
system. More precisely, the following contributions are made:

1) From input-state data and for known delays, we provide
data-based formulas to replace the system model by
the data itself. These formulas can be used for system
representation or for control design.

2) By using these data-based formulas, we provide data-
driven formulas for the design of state-feedback gains.
These formulas are given for three control problems:
stabilization, control with guaranteed cost, and for H∞
control. In all these cases, uncertain delays are consid-
ered.

3) The proposed approach is extended to the cases of un-
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known delays and data corrupted by noise. In particular,
we provide an algorithm to determine the system delays
from disturbed data, and we robustify the data-driven
formulas to account for the impact of noise.

The organization of the paper is as follows. In Section II the
addressed system is described and the main goals of the paper
are outlined. In Section III, a data-based representation for
linear discrete-time time-delay systems is introduced. By using
the results of Section III, in Section IV data-based formulas
for control design are given. The formulas address three
basic control problems: stabilization, control with guaranteed
cost, and H∞ control. In Section V we investigate the effect
of uncertainties in the data. The application of the control
formulas is illustrated with a numerical example in Section VI.
In Section VII some concluding remarks are given. Finally, the
proofs of all the claims are given in the Appendix.

A. Notation
The set of integer numbers is denoted by Z and R represents

the set of real numbers. Let F be either Z or R. Then F>0

(F≥0) denotes the set of all elements of F greater than (or equal
to) zero. The identity matrix of order n ∈ Z>0 is denoted by
In. For A ∈ Rn×n, A > 0 means that A is symmetric positive
definite. The elements below the diagonal of a symmetric
matrix are denoted by ?. Given a matrix A ∈ Rn×m, A†

denotes its Moore-Penrose inverse. If A has full-row rank, we
have AA† = In with

A† = A>
(
AA>

)−1
.

For v ∈ Rn, ‖v‖2 =
√
v>v denotes the Euclidean norm of

v. For A ∈ Rm×n, ‖A‖2 = max‖v‖2=1 ‖Av‖2 with v ∈ Rn
denotes the induced Euclidean norm of A.

Given a signal z : Z→ Rn and two integers k and r, where
r ≥ k, we define z[k,r] := {z(k), z(k + 1), · · · , z(r)}. Given
a signal z and a positive integer T , we define

Z{i} = Z{i,T} :=
[
z(i) z(i+ 1) · · · z(T + i− 1)

]
. (I.1)

Finally, given signals x(k) ∈ Rn and h(k) ∈ Z≥0 for k ∈ Z,
we introduce the short hand xh(k)(k) := x(k − h(k)). If h is
independent of k, then xh(k) := x(k − h).

II. CONSIDERED CLASS OF SYSTEMS AND OBJECTIVES

The following LDT-TDS is considered in this paper:

x(k + 1) = A0x(k) +A1xh1(k)(k) +Buh2(k)(k), (II.1)

with k ∈ Z≥0, state vector x(k) ∈ Rn and input u(k) ∈
Rm. Furthermore, h1(k) and h2(k), where h1(k) ∈ Z≥0 and
h2(k) ∈ Z≥0, represent uncertain, bounded delays with upper
bound h̄ ≥ hi(k) for i = {1, 2} and all k ∈ Z≥0. With respect
to the system’s initial condition and past inputs we assume
x(j) = φj ∈ Rn and u(j) = 0 for j ∈ Z ∩ [−h̄, 0].

The main objective of this paper is to design state feed-
back controllers directly from input-state data that stabilize
the system (II.1) in the presence of - possibly uncertain -
delays h1(k) and h2(k). The analysis is conducted under the
following assumptions on the system (II.1).

Assumption II.1.
1) The system matrices A0, A1 and B are constant but

unknown.
2) An upper bound h̄ ∈ Z>0 for the input and state delay

h1(k) and h2(k), respectively, is known.
3) Input and state sequences u[−h̄,T ] and x[−h̄,T ] are avail-

able, where T ∈ Z>0 with T > h̄ is the number
of recorded samples and the delays h1 and h2 were
constant during the time window in which the data was
recorded.

Assumption II.1.1 and Assumption II.1.2 are standard. As-
sumption II.1.3 can be contextualized as follows. Consider
a scenario in which the recorded data is produced in a
controlled experiment where the state and input delays are
constant. However, during the system operation, the delays
might change. Another scenario in which Assumption II.1.3 is
reasonable is in networked control. Suppose that for generating
the data the system is operated in open-loop and that the
input delay remains constant. Then the system state can
be recorded locally and transmitted later for its processing.
Hence, Assumption II.1.3 follows. However, when the system
is operated in closed-loop, the input delay becomes uncertain
(but bounded) due to the transmission of the state measurement
through the network [21, Sec. 7.8.1], [22, Sec. 3].

In the following, a data-based representation framework is
introduced for the system (II.1) under Assumption II.1. At
first, this is done for the case of known delays. By using
the resulting framework, three control designs are derived in
Section IV. These are stabilizing control, guaranteed cost con-
trol, and H∞ control. In addition, in Section V the proposed
approach is extended to the case of unknown delays and noisy
data.

III. DATA-BASED SYSTEM REPRESENTATION OF LINEAR
DISCRETE-TIME TIME-DELAY SYSTEMS

In this section, we derive a data-based representation of the
system (II.1) using the data provided by the sequences u[−h̄,T ]

and x[−h̄,T ], see Assumption II.1.3. To this end, we at first
assume that the delays h1 and h2 are known and constant. The
case of unknown delays is then treated in Section V. Under
these considerations, the system (II.1) can be rewritten as

x(k + 1) =
[
B A1 A0

]  uh2
(k)

xh1
(k)

x(k)

 . (III.1)

To represent the system (III.1) solely by data, consider also the
matrices Uh2,{0} ∈ Rm×T , Xh1,{0} ∈ Rn×T , X{0} ∈ Rm×T ,
X{1} ∈ Rm×T , and

W0 :=

 Uh2,{0}
Xh1,{0}
X{0}

 ∈ R(m+2n)×T . (III.2)

Here, the matrices Uh2,{0}, Xh1,{0}, X{0} and X{1} are built
using the sequences corresponding to uh2

(k), xh1
(k), x(k)

and x(k + 1), respectively, in accordance with the definition
given in (I.1). We have the following result.
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Proposition III.1 (Open-Loop Data-Based Representation).
The system trajectories of (III.1) and the ones of the system

x(k + 1) = X{1}W
†
0

 uh2
(k)

xh1
(k)

x(k)

 (III.3)

are equivalent if and only if W0 given in (III.2) satisfies
rank(W0) = m+2n. Furthermore, it holds that [B A1 A0] =
X{1}W

†
0 . OOO

The condition on the rank of W0 in Proposition III.1 is
equivalent to the requirement that the recorded data is rich
enough. Since this rank condition is necessary and sufficient,
it is analogous to [13, Eq. 6], but for LDT-TDSs of the form
(III.1). The rank condition rank(W0) = m + 2n will appear
repeatedly along this note. From this rank condition it also
follows that a minimal requirement on the data length ` is
that ` ≥ m + 2n + h̄ (since the sequences uh2

(k), xh1
(k),

x(k) and x(k + 1) are used to build W0 in (III.2)).
In a similar way, one can find a system representation in

closed-loop by using the recorded data. While Proposition III.1
represents an identification-like result, the following lemma
provides a system representation that can be used for control
design while avoiding the identification of the system matrices.

Lemma III.2 (Closed-Loop Data-Based Representation).
Consider the system (III.1) and assume a feedback control
of the form u(k) = Kx(k) with K ∈ Rm×n. The trajectories
of the closed-loop system

x(k + 1) =
[
BK A1 A0

]  xh2(k)
xh1

(k)
x(k)

 (III.4)

and the ones of the system

x(k + 1) = X{1}GK

 xh2
(k)

xh1
(k)

x(k)

 , (III.5)

where GK is a T × 3n matrix satisfyingK 0 0
0 In 0
0 0 In

 = W0GK , (III.6)

are equivalent for every K if and only if rank(W0) = m+2n
with W0 given in (III.2). In particular, one has

u(k) = Uh2,{0}GK
[
In 0 0

]>
x(k). (III.7)

OOO

Note that Lemma III.2 not only provides a purely data-
based representation for the closed-loop system, but also for
the control input, and more importantly, for the feedback gain.
These characteristics are exploited in the next section for
controller synthesis.

Remark III.3. By setting h1 or h2 in (III.1) to zero, respec-
tively, the following standard LDT-TDS can be described using
the same approach as in Proposition III.1:
• x(k + 1) = A0x(k) +Bu(k − h2),
• x(k + 1) = A0x(k) +A1x(k − h1) +Bu(k).

Similarly, the case h = h1 = h2 > 0 can be addressed in this
manner. OOO

Remark III.4. By introducing the augmented state vector, see
[21],

xaug(k) =
[
x>(k) x>(k − 1) . . . x>(k − h1)

]>
,

it is possible to obtain an augmented non-delayed system
dynamics corresponding to (III.1), namely

xaug(k + 1) = Aaugxaug(k) +Baugu(k − h2),

k ∈ Z≥0, xaug(k) ∈ R(h1+1)n, u(k) ∈ Rm,
(III.8)

with

Aaug =


A0 0 . . . A1

In 0 . . . 0
...

. . . . . .
...

0 . . . In 0

 , Baug =


B
0
...
0

 . (III.9)

In principle, this augmented dynamics could also be used to
derive a data-driven formula suitable for control design, e.g.
by using the results from [13]. However, this would require
that

rank
[
Uh2,{0}
Xaug,{0}

]
= (h1 + 1)n+m.

Clearly, this can be very demanding in the reasonable scenario
that h1 � 0 and also seems unnecessary since only A0

and A1 in Aaug and B in Baug are unknown, see (III.9). In
addition, practically meaningful scenarios in which the delay
becomes uncertain (and possibly time-varying) in closed-loop
cannot be addressed with the augmented dynamics, see also
the discussion below Assumption II.1. OOO

Remark III.5. In view of the representation (III.9), Willems’
Lemma [28, Cor. 2] provides sufficient conditions for guar-
anteeing rank(W0) = m + 2n with W0 as in (III.2), i.e., the
controllability of the pair (Aaug, Baug) and the persistence of
excitation of order (h1 + 1)n+ 1 of the input sequence.

OOO

IV. DATA-DRIVEN FORMULAS FOR CONTROLLING
LINEAR DISCRETE-TIME TIME-DELAY SYSTEMS

This section is dedicated to the derivation of data-based
controller synthesis formulas for the system (II.1) in the
presence of uncertain, time-varying, bounded input and state
delays h1(k) < h̄ and h2(k) < h̄, respectively. The main
tool to achieve this goal is Lemma III.2 together with the
recorded data sequences u[−h̄,T ] and x[−h̄,T ]. More precisely,
three goals are pursuit in this section for the system (II.1):

1) Design of a feedback gain for system stabilization.
2) Design of a feedback gain, which ensures a prescribed

cost for the input and state trajectory.
3) Design of a feedback gain, which ensures a prescribed

L2-gain of the system with respect to additive distur-
bances.

With regard to item 3), we note that in the present setting
the H∞ control design is performed in the time domain
by using the L2-gain, which we recall is defined as the
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maximum energy amplification ratio of the system [21]. Also,
as discussed in Section II, we account for the event that the
delays h1(k) and h2(k) may become uncertain during the
operation of the closed-loop system.

We start with the first item, i.e., system stabilization, which
not only is the simplest scenario, but also paves the path for
finding solutions to the other two items. Hence, formally the
first problem we address is the following.

Problem IV.1. Consider the system (II.1) with given h̄ > 0 an
upper bound for the input and state delays. Find a feedback
gain K, such that the origin of system (II.1) with feedback
u(k) = Kx(k) is an asymptotically equilibrium point for all
uncertain delays h1(k) ∈ [0, h̄] and h2(k) ∈ [0, h̄]. OOO

In an analogous fashion to the non-delayed case [13], also in
the present delayed setting the matrix GK in (III.5) plays the
role of a decision variable in a direct data-driven controller
synthesis. By exploiting this fact together with the closed-
loop data representation given in Lemma III.2, we provide the
following solution to Problem IV.1.

Theorem IV.2 (Stabilization with Static State Feedback).
Consider the system (II.1) and suppose that rank(W0) =
m+ 2n with W0 as in (III.2). Given a positive delay bound h̄
and a tuning parameter ε > 0, let there exist n× n matrices
P̄ > 0, S̄ > 0, R̄i > 0, S̄12,i, with i = {1, 2}, and T × n
matrices Q1, Q2 and Q3 such that

Φ̄ > 0, (IV.1)[
R̄i S̄12,i

? R̄i

]
≥ 0, (IV.2)

with Φ̄ given in (IV.5) on p. 5 and

Uh2,{0}Q2 = Uh2,{0}Q3 = 0,

Xh1,{0}Q1 = Xh1,{0}Q3 = 0,

X{0}Q1 = X{0}Q2 = 0,

Xh1,{0}Q2 = X{0}Q3.

(IV.3)

Choose the feedback gain as

K = Uh2,{0}Q1

(
X{0}Q3

)−1

. (IV.4)

Then for all delays h1(k) ∈ [0, h̄] and h2(k) ∈ [0, h̄] for all
k ∈ Z≥0, the origin of (II.1) in closed-loop with the control
u(k) = Kx(k) is asymptotically stable. OOO

Note that Φ̄ > 0 in (IV.5) implies that Φ̄55 > 0, meaning
that X{0}Q3 + Q>3 X

>
{0} > 0, i.e., X{0}Q3 is nonsingular.

To build the inequalities (IV.1) and (IV.2) only the recorded
data from the sequences x[−h̄,T ] and u[−h̄,T ] is needed. Once
the matrices Q1, Q2 and Q3 are found such that (IV.1), (IV.2)
and (IV.3) hold, the feedback gain K can be computed directly
from (IV.4). In this way, the process of identifying the system
matrices and the a posteriori controller design is combined
into a single direct data-driven synthesis step.

Differently from the non-delay case, see e.g., [13], in the
present setting the LMIs (IV.1) and (IV.2) are accompanied
by the equality constraints (IV.3). The reason for this lies in
the closed-loop representation (III.5) and in particular (III.6).

To see this, consider the right hand-side of (III.6). Not only
the matrices in the main diagonal are needed to obtain (III.5),
but also the zeros, which gives rise to the equality constraints
(IV.3). This does not happen in the non-delay case since there
the closed-loop system is fully described by the single matrix
A + BK, while in the present case three separated matrices
are required.

Once a solution for Problem IV.1 is given, we can think
of including performance criteria in the controller design. For
linear systems, it is common to attempt the minimization of
the system trajectories and the control effort. This results in a
linear quadratic regulator (LQR) design. However, for systems
of the form (II.1) an optimal control gain does not exist due to
the uncertain delays [21, Sec. 6.2.3]. Instead, one can attempt
to find a feedback gain which guarantees a certain cost. This
yields the problem formulation below.

Problem IV.3. Consider the system (II.1) with x(0) = x0 and
x(k) = 0 for k < 0 with cost function

J =
∞∑
j=0

z>(k)z(k), (IV.6)

and performance output

z(k) = L1x(k) + L2xh1(k)(k) +Duh2(k)(k), (IV.7)

with z(k) ∈ Rq and constant matrices L1 ∈ Rq×n, L2 ∈ Rq×n
and D ∈ Rq×m. Given a cost δ > 0, find a feedback gain K
that guarantees J ≤ δ for all uncertain delays h1(k) ∈ [0, h̄]
and h2(k) ∈ [0, h̄]. OOO

The result provided in Theorem IV.2 can be extended to
address Problem IV.3 by including the effect of the cost δ and
the functional J in the inequalities (IV.1) and (IV.2). By doing
so, we obtain the following result.

Corollary IV.4 (Guaranteed Cost Control). Consider the
system (II.1) together with the considerations presented in
Problem IV.3. Suppose that rank(W0) = m + 2n with W0

as in (III.2). Given a positive delay bound h̄, the cost δ > 0
and a tuning parameter ε > 0, let there exist n× n matrices
P̄ > 0, S̄ > 0, R̄i > 0, S̄12,i, with i = {1, 2}, and T × n
matrices Q1, Q2 and Q3 such that

Ψ̄ =

[
Φ̄ κ>

? −In

]
> 0 (IV.8)

κ =
[
L1X{0}Q3 L2X{0}Q3 DUh2,{0}Q1 0 0

]
,[

R̄i S̄12,i

? R̄i

]
≥ 0, (IV.9)

together with (IV.3) are satisfied with Φ̄ given in (IV.5), in
addition to[

δ −x>0
? X{0}Q3 +Q>3 X

>
{0} + P̄

]
> 0. (IV.10)

Choose the feedback gain

K = Uh2,{0}Q1

(
X{0}Q3

)−1

. (IV.11)

Then for all delays h1(k) ∈ [0, h̄] and h2(k) ∈ [0, h̄] for
all k ∈ Z≥0, the origin of (II.1) in closed-loop with the
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Φ̄ =


Φ̄11 Φ̄12 Φ̄13 −S̄12,1 − S̄12,2 Φ̄15

? 2R̄1 − S̄12,1 − S̄>12,1 0 −R̄1 + S̄12,1 −ε
(
X{1}Q2

)>
? ? 2R̄2 − S̄12,2 − S̄>12,2 −R̄2 + S̄12,2 −ε

(
X{1}Q1

)>
? ? ? R̄1 + R̄2 + S̄ 0
? ? ? ? Φ̄55

 , (IV.5)

Φ̄11 = P̄ − S̄ + (1− h̄2)(R̄1 + R̄2)−X{1}Q3 −
(
X{1}Q3

)>
, Φ̄12 = −R̄1 + S̄12,1 −X{1}Q2,

Φ̄13 = −R̄2 + S̄12,2 −X{1}Q1, Φ̄15 = h̄2(R̄1 + R̄2) +X{0}Q3 − ε
(
X{1}Q3

)>
,

Φ̄55 = −P̄ − h̄2(R̄1 + R̄2) + ε
(
X{0}Q3 +Q>3 X

>
{0}
)
.

control u(k) = Kx(k) is exponentially stable. Furthermore,
this control ensures a guaranteed cost δ for J given in (IV.6),
i.e., J ≤ δ. OOO

Another way of introducing performance criteria into the
control design is to consider external disturbances affecting
the system and to impose restrictions to the response of the
system subject to these disturbances. For linear time invariant
systems, this is usually done by minimizing the H∞ norm
of the system. In the present setting, the H∞ control design
is performed in the time domain by using the L2-gain. The
resulting control problem is formalized as follows.

Problem IV.5. Consider the system (II.1) with an additive
disturbance ω(k) ∈ Rp and feedback gain K, i.e.,

x(k + 1) = A0x(k) +A1xh1(k)(k)

+BKxh2(k)(k) +D0ω(k), (IV.12)

together with the performance output

z(k) = L1x(k) + L2xh1(k)(k) +DKxh2(k)(k), (IV.13)

with z(k) ∈ Rq and constant matrices L1 ∈ Rq×n, L2 ∈
Rq×n, D0 ∈ Rn×p and D1 ∈ Rq×m. Fix a constant γ > 0.
For all uncertain delays h1(k) ∈ [0, h̄] and h2(k) ∈ [0, h̄],
find a feedback gain K such that, for ω(k) = 0, the origin of
(IV.12) is an asymptotically stable equilibrium point and for
ω(k) 6= 0, the system (IV.12) has an L2-gain less than γ.

OOO

As before, it is possible to give a solution to Problem IV.5 by
extending Theorem IV.2 and including the required conditions
in the data-based inequalities (IV.1) and (IV.2). The following
results is consistent with such approach.

Corollary IV.6 (Static H∞ Control). Consider the system
(IV.12) together with the considerations given in Problem IV.5.
Suppose that rank(W0) = m + 2n with W0 given in (III.2).
Given positive constants h̄ and γ and the tuning parameter
ε > 0, suppose that there exists n×n matrices P̄ > 0, S̄ > 0,
R̄i > 0 and S̄12,i > 0, for i = {1, 2}, and T ×n matrices Q1,
Q2 and Q3 such that the following data-based inequalities are

satisfied.

Γ̄ =

[
Ψ̄ κ>2
? γIn

]
> 0, (IV.14)

κ2 =
[
−Q>3 X>{0}D

>
0 0 0 0 −εQ>3 X>{0}D

>
0 0

]
,[

R̄i S̄12,i

? R̄i

]
≥ 0, (IV.15)

together with (IV.3), and where Ψ̄ is given in (IV.8). Choose
the feedback gain

K = Uh2,{0}Q1

(
X{0}Q3

)−1

. (IV.16)

Then for all delays h1(k) ∈ [0, h̄] and h2(k) ∈ [0, h̄], the
origin of (IV.12) is an asymptotically stable equilibrium point
for ω(k) = 0. Furthermore, for ω(k) 6= 0 the system (IV.12)
has an L2-gain less than γ. OOO

V. HANDLING UNKNOWN CONSTANT DELAYS AND NOISY
DATA

In this section we address the problems that the delays h1

and h2 of the system (II.1) are unknown and that the available
data is corrupted by noise. To this end, we assume that the
sequences x[−h̄,T ] and u[−h̄,T ] can be expressed as the sum
of two sequences:

x[−h̄,T ] = xnom
[−h̄,T ] + xδ[−h̄,T ],

u[−h̄,T ] = unom
[−h̄,T ] + uδ[−h̄,T ],

(V.1)

where the superscript ‘nom’ denotes the sequence that cor-
responds to the dynamics (III.1), i.e., the nominal part of
the data, whereas the superscript ‘δ’ denotes the sequence
corresponding to the measurement noise.

Hence, the objectives of this section are to provide formulas
for determining the delays h1 and h2 from the recorded
data and to robustify the design of the feedback gains from
Section IV with respect to additive noise.

A. Data-Based System Representations for Unknown
Constant Delays

By using the sequences u[−h̄,T ] and x[−h̄,T ] as described
in (V.1), we can build the matrix W0 as in (III.2). Since the
construction of W0 is linear, it is possible to split it in two
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parts, one corresponding to the data generated by the system
(III.1), i.e. the nominal (’nom’) data, and one to the noise, i.e.,

W0 = W nom
0 +W δ

0 . (V.2)

However, W0 in (V.2) will not result in useful data for arbitrary
W δ

0 . To study when W0 retains the system information, let
U ∈ R(m+2n)×(m+2n) and V ∈ RT×T be orthonormal
matrices such that

Range(U) = Range(W0), Range(V ) = Range(W>0 ).

Consider the factorization [29, Sec. 2]

W0 = U
[
W 11

0 0
]
V >,

W δ
0 = U

[
W δ,11

0 W δ,12
0

]
V >,

(V.3)

where W 11
0 ∈ R(m+2n)×(m+2n), W δ,11 ∈ R(m+2n)×(m+2n)

and W δ,12
0 ∈ R(m+2n)×T . By using the factorization (V.3),

we introduce the following assumptions related to the impact
of the noise.
Assumption V.1.

1) rank(W0) = rank(W nom
0 ) = m+ 2n.

2)
∥∥W δ,11

0

∥∥
2

∥∥W †0∥∥2
=
∥∥W δ,11

0

∥∥
2

∥∥(W 11
0

)−1∥∥
2
< 1.

Assumption V.1.1) implies that W δ
0 does not modify the

rank of W nom
0 , whereas Assumption V.1.2) restricts the size

of the perturbation term W δ
0 . The premises of Assumption V.1

ensure that W0 is an acute perturbation of W nom
0 [29], [30].

Now, in order to identify the system delays, consider the
matrices

W0,(i,j) =

 Ui,{0}
Xj,{0}
X{0}

 , (V.4)

for i = {0, 1, · · · , h̄}, j = {0, 1, · · · , h̄}, where Ui,{0} is
built with u(k − i), Xj,{0} with x(k − j), and h̄ ≥ 0 is the
upper bound for the delays. In the unperturbed case, i.e., for
xδ

[−h̄,T ]
= 0 and uδ

[−h̄,T ]
= 0, one can verify the next rank

conditions in order to determine the system delays

rank
(
W0,(i,j)

)
= rank

([
W0,(i,j)

X{1}

])
= m+ 2n, (V.5)

for all i and j in {0, 1, · · · , h̄}. If for some pair (i?, j?) the
condition above holds, then one can take h1 = j? and h2 =
i? since X{1} belongs to the row space of W0,(i?,j?). If for
two or more pairs (i, j) the condition (V.5) holds, then it is
not possible to identify the delays from the recorded data.
However, in the perturbed case the condition (V.5) might never
hold due to the effect of the noise. Therefore, instead of (V.5),
we propose to use the orthogonal distance of X{1} to the row
space of each W

(i,j)
0 in order to determine the delays. This

yields the next proposition, for the presentation of which we
introduce the matrix

X{1} = Xnom
{1} +Xδ

{1}, (V.6)

where Xnom
{1} denotes the part of the data that corresponds to

the dynamics of (III.1) and Xδ
{1} denotes the part correspond-

ing to the noise. In addition, we define the orthogonal distance

d(i,j)

(
X{1}

)
:=
∥∥∥X{1} (IT − (W0,(i,j)

)†
W0,(i,j)

)∥∥∥
2
,

(V.7)

and the function ψ : R≥0 → R≥0

ψ(σ) =
σ

[1 + σ2]
1/2

. (V.8)

In addition, upper bounds for the noisy matrices are required.
These are represented by the positive, data-dependent con-
stants rXδ{1} , rW δ,11

0,(i,j)
and rW δ,12

0,(i,j)
satisfying∥∥Xδ

{1}
∥∥

2
≤ rXδ{1} ,

∥∥W δ,12
0,(i,j)

∥∥
2
≤ rW δ,12

0,(i,j)
,∥∥W δ,11

0,(i,j)

∥∥
2

∥∥W †0,(i,j)∥∥2
≤ rW δ,11

0,(i,j)

∥∥W †0,(i,j)∥∥2
< 1,

(V.9)

with Xδ
{1} and W δ

0,(i,j) as in (V.6) and (V.2), respectively, and
W δ,11

0,(i,j) and W δ,12
0,(i,j) as in (V.3). Clearly, rW δ,11

0,(i,j)
exists for

any data set consistent with Assumption V.1.2).

Proposition V.2 (Data-Based System Representations for Un-
known Delays). Consider the system (II.1) with corresponding
perturbed data sequences x[−h̄,T ] and u[−h̄,T ] as introduced
in (V.1). Let h̄ > 0 be the upper bound for the constant
but unknown state and input delays h1 ∈ Z≥0 and h2 ∈
Z≥0. Build the matrices W0,(i,j) as in (V.4) for i and j in
{0, 1, · · · , h̄}, and suppose that, for all i and j, Assumption
V.1 holds for each of the matrices W0,(i,j) and the respective
perturbation W δ

0,(i,j). Furthermore, suppose that the constants
rXδ{1}

, rW δ,11
0,(i,j)

and rW δ,12
0,(i,j)

defined in (V.9) are known.

Recall the orthogonal distance d(i?,j?)

(
X{1}

)
given in (V.7)

and the function ψ(·) defined in (V.8). If

d(i?,j?)

(
X{1}

)
≤rXδ{1} +

(
‖X{1}‖2 + rXδ{1}

)
· ψ (σ?)

(V.10)

where

σ? =
rW δ,12

0,(i?,j?)

∥∥∥W †0,(i?,j?)

∥∥∥
2

1− rW δ,11
0,(i?,j?)

∥∥∥W †0,(i?,j?)

∥∥∥
2

, (V.11)

for only one pair (i?, j?), then h1 = j? and h2 = i?.
Moreover, the corresponding open- and closed-loop data-
based representations are obtained via Proposition III.1 and
Lemma III.2, respectively, by using the matrices Ui?,{0},
Xj?,{0} together with X{0} and X{1}.

If condition (V.10) holds for two or more pairs (i, j), then
the delays are not decidable from the available data. OOO

Proposition V.2 provides a tool for deriving data-based
system representations for unknown delays, even in the pres-
ence of noise. In addition, the delays themselves are also
determined.

In general, (h̄+1)2 evaluations of (V.10) are required. This
number reduces to h̄ + 1 if, for example, h1 = h2 or if
one of the delays is known. Furthermore, the same idea can
be used to identify time-dependent delays. However, in such
case, (h̄ + 1)T evaluations are required, which might not be
computationally feasible.

B. Stabilization with Noisy Data
Now we proceed to analyze the impact of noisy data on the

controller synthesis formulas derived in Section IV. The main
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objective is to extend the result of Theorem IV.2 to incorporate
a criterion to ensure closed-loop stability of the system (II.1)
even when the feedback gain K is computed with corrupted
data. In order to account for the impact of the noise in the
data, consider the following matrix

∆[·] :=
[
B A1 A0

]
W δ

0 −Xδ
{1}. (V.12)

The quantity ‖∆[·]‖2 is a measurement of how far the noise is
from being a system trajectory. If the noise would correspond
to a system trajectory, then it would not affect any of the
calculations; though in such case it might not be classified
as noise. Therefore, it is logical that only ∆[·] has an impact
on the computation of K. By using this measurement of the
noise, it is possible to account for it in the feedback design.
This approach yields the next result.

Theorem V.3 (Stabilization with Noisy Data). Consider the
premises of Theorem IV.2. Let the recorded data be corrupted
by noise as in (V.1). Suppose that ∆[·] in (V.12) is bounded
as ‖∆[·]‖2 ≤ α, with α > 0 known. Given a positive delay
bound h̄ and a tuning parameter ε > 0, let there exist n× n
matrices P̄ > 0, S̄ > 0, R̄i > 0, S̄12,i, with i = {1, 2}, T ×n
matrices Q1, Q2, Q3, and λ > 0, such that[

Φ̄− α2λI5n Q>

Q λI5T

]
> 0, (V.13)[

R̄i S̄12,i

? R̄i

]
≥ 0, (V.14)

together with (IV.3) hold, where Φ̄ is given in (IV.5) and

Q =


Q3 Q2 Q1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
εQ3 εQ2 εQ1 0 0

 . (V.15)

Choose the feedback gain

K = Uh2,{0}Q1

(
X{0}Q3

)−1

. (V.16)

Then for all delays h1(k) ∈ [0, h̄] and h2(k) ∈ [0, h̄] for all
k ∈ Z≥0, the origin of (II.1) in closed-loop is asymptotically
stable. OOO

For α = 0, i.e., in the noise free case, the inequality (V.13)
reduces to the one in (IV.1). As in (V.13), the inequalities
(IV.8) and (IV.14) can be extended to account for data cor-
rupted by noise. Therefore, from Theorem IV.2 analogous
corollaries to Corollary IV.4 and Corollary IV.6 can be derived
in a straightforward manner. Hence, their explicit presentation
is omitted.

VI. NUMERICAL EXAMPLE: UNSTABLE BATCH REACTOR

To exemplify the proposed method, we consider the unstable
linearized batch reactor in [31, pp. 63] controlled through a

TABLE I
COMPUTED VALUES OF THE DISTANCE d(i,j)(X{1}) GIVEN IN (V.7)

FOR THE DIFFERENT VALUES OF i, WITH j = 0 AND T = 10, IN THE

ABSENCE OF NOISE WITH THE DATA RECORDED FROM THE SYSTEM

(VI.1).

i 0 1 2

d(i,0)(X{1}) 6.85× 10−4 2.44× 10−3 3.92× 10−4

i 3 4 5

d(i,0)(X{1}) 2.75× 10−10 2.76× 10−3 6.83× 10−3

i 6 7 8

d(i,0)(X{1}) 3.88× 10−3 1.97× 10−2 1.06× 10−2

network, and described by the dynamics

ẋ(t) =


1.38 −0.20 6.71 −5.67
−0.58 −4.29 0 0.67
1.06 4.27 −6.65 5.89
0.04 4.27 1.34 −2.10

x(t)

+


0 0

5.67 0
1.13 −3.14
1.13 0

u(t− h2).

(VI.1)

The input to the system is generated using a zero-order hold
(ZOH) with a sampling time of 10 [ms]. This sampling time
is taken as the base time. Additionally, a constant input
delay h2 = 3 (30 [ms]) is introduced in the system (VI.1).
Furthermore, we assume a maximum delay length of h̄ = 8.
We consider that the plant has been in operation for a certain
time using the PI-control given in [31]. In the context of the
present paper, it is assumed that this controller implementation
is based on expertise rather than on a model. Furthermore, the
plant operation point is assumed known and corresponds to

xop =
[
24.35 14 48.78 63.13

]>
,

uop =
[
5.565 44.36

]>
.

(VI.2)

The overall objective is to stabilize the system around (VI.2).

A. Scenario 1: Noise-Free Data and Unknown Delay

For generating the input-state data, and to characterize the
system (VI.1), we feed the reference yref = [10 14]> in
combination with the excitation signal uexc(t) defined below
to the PI-control already available in the plant [31].

uexc(t) =

[
10 sin(7π t)− 5 sin(11π t)
8 sin(9π t)− 6 sin(13π t)

]
.

The resulting excitation signal is shown in Figure 1. For the
control design, we assume h2 constant, but unknown, and
given the physical background of the system (VI.1), we have
h1 = 0.

As first step, we seek to investigate the value of h2 in
the range {0, 1, · · · , h̄}. Note that for T = m + n, which
yields a square W0, the distance d(i,j)(X{1}) defined in (V.7)
is always zero since In+m − W0W

−1
0 = 0. Therefore, we

choose T = 10 > n + m. We identify the length of h2

using the result of Proposition V.2. For the noise free case
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(rXδ{1} = rW δ,11
0

= rW δ,12
0

= 0), the criterion given in (V.10)
reads as d(i,j)(X{1}) ≤ 0. The resulting values for the distance
d(i,j)(X{1}) for the different values of i, with j = 0 (since
h1 = 0) and T = 10, are shown in Table I. From Table I,
the input delay can be clearly determined as h2 = 3 since the
distance d(3,0)(X{1}) is practically zero and its value is due
to numerical errors.

Now that h2 has been determined, the matrices X{0}, X{1}
and Uh2,{0} can be built. To illustrate the application of the
data-driven controller synthesis from Section IV, we consider
the stabilization of the system (VI.1) at the operational point
(VI.2). We assume that the network-induced delay takes values
in the set {0, 1, · · · , 5}, whereas the input delay remains
constant at h2 = 3. This satisfies the delay upper bound h̄ = 8,
which is used in the formulas provided in Theorem IV.2. By
using the data-based matrices X{0}, X{1} and Uh2,{0}, and
following Theorem IV.2, we solve (IV.1), (IV.2) and (IV.3)
with R̄1 = S̄12 = 0 and Q2 = 0 using CVX1 [33]. For this,
we used ε = 3. This yields the following feedback gain:

K =

[
0.813 −0.282 0.115 −1.121
2.255 −0.549 1.894 −1.226

]
. (VI.3)

To compare our result with a model-based approach, we
also computed a stabilizing gain following [21, Chap. 6] by
discretizing the batch reactor model in (VI.1) with the given
base time of 10 [ms]. By using the given delay upper bound
h̄ = 8 and with ε = 3, we obtained the controller gain

KMB =

[
0.338 −0.511 −0.081 −0.626
2.117 0.034 1.512 −0.914

]
. (VI.4)

We simulate the stabilization of the system (VI.1) around the
operational point (VI.2) for the two gains K and KMB in
(VI.3) and (VI.4), respectively. We used a network induced
delay that randomly changed in the proposed range, i.e.,
between zero and five. In Figure 2, the error norm between
the system state and xop is shown. We can observe that both
controllers achieve the task in a similar time, under the same
circumstances. Finally, in Figure 3, the response of the system
(VI.1) to the control process using K in (VI.3) is illustrated
for reference.

B. Scenario 2: Noisy Data and Unknown Delay

In order to evaluate the robustness of the proposed approach
under corrupted measurements, we add an uniform distributed
random signal δ(k) to each measurement x(k) and u(k)
of the system (VI.1). The range of δ(k) corresponds to
[1× 10−4, 1× 10−4]. As before, for the control design we
assume a constant and unknown input delay h2 as well as
h1 = 0, with the same delay upper bound h̄ = 8. For this
section, and because we are dealing with data corrupted by

1CVX can parse LMIs with equality constraints and process them as a
semidefinite program. Therefore, including (IV.3) is straightforward in this
case. For noisy data, a numerically more robust approach consists in jointly
minimizing the norms ‖Uh2,{0}Q2‖2, ‖Uh2,{0}Q3‖2, ‖Xh1,{0}Q1‖2,
‖Xh1,{0}Q3‖2, ‖X{0}Q1‖2, ‖X{0}Q2‖2, ‖Xh1,{0}Q2 − X{0}Q3‖2
subject to the LMIs (IV.1) and (IV.2), which is a convex problem. If needed,
the norm minimization can be transformed into a semidefinite program
following [32].

noise, we set T = 50. Now, in order to determine the input
delay, and following Proposition V.2, we need to estimate the
upper bounds

rXδ{1}
≥
∥∥∥Xδ
{1}

∥∥∥
2
, rW δ,11

0
≥
∥∥∥W δ,11

0

∥∥∥
2
, rW δ,12

0
≥
∥∥∥W δ,12

0

∥∥∥
2
.

Since the noise follows a uniform distribution, it is bounded in
magnitude. We can find the required upper bounds by using the
Frobenius norm with the maximum value for each component:∥∥∥Xδ

{1}

∥∥∥
2
≤ 10−4 ·

√
n · T = 1.41× 10−3 =: rXδ{1}

,∥∥∥W δ,11
0

∥∥∥
2
≤ 10−4(n+m) = 6× 10−4 =: rW δ,11

0
,∥∥∥W δ,12

0

∥∥∥
2
≤ 10−4

√
(n+m)(T −m− n)

= 1.62× 10−3 =: rW δ,12
0

.

We proceed to compute the distance d(i,j)(X{1}) given in (V.7)
and the criterion given in (V.10), but with noisy data. The
results are shown in Table II. In contrast to the noise-free
scenario in Section VI-A, the distance value for i = 3, i.e.,
the correct delay length, is not as close to zero as before. Still,
using the criterion derived in Proposition V.2, we can correctly
identify the input delay as h2 = 3 since it is the only case in
which the criterion (V.10) is satisfied.

To guarantee a robust closed-loop performance despite the
presence of noise, we seek to employ Theorem V.3 for the
controller synthesis. Thus in order to proceed, we need to
estimate a bound for ‖∆[·]‖2 in (V.12). From (V.12), we have∥∥∆[·]

∥∥
2
≤
∥∥[B A0

]∥∥
2

∥∥W δ
0

∥∥
2

+
∥∥∥Xδ
{1}

∥∥∥
2
.

Again, using a bound over the Frobenius norm, we obtain∥∥W δ
0

∥∥
2
≤ 10−4 ·

√
(m+ n) · T = 1.73× 10−3. (VI.5)

To estimate the norm of the system matrices we use the
relation∥∥[B A0

]∥∥
2

=
∥∥∥Xnom
{1} (W nom

0 )
†
∥∥∥

2

≤
(∥∥X{1}∥∥2

+ rXδ{1}

) √
2‖W †0 ‖2

1− rW δ
0
‖W †0 ‖2

≤ 102, (VI.6)

where the last step follows from the upper bound for
‖(W nom

0 )†‖2 given in [30, Lem. 3.1]. Using (VI.5) and (VI.6)
we obtain ∥∥∆[·]

∥∥
2
≤ 0.191.

Thus we have ‖∆[·]‖2 ≤ α with α = 0.191. Now, we can
compute the feedback gain K using Theorem V.3 and CVX
[33], which for α = 0.251, ε = 70 and λ = 1.42× 103 yields

K =

[
0.736 −0.623 9.17× 10−2 −1.07
2.35 −7.99× 10−3 1.70 −1.17

]
.

(VI.7)

To test this new feedback gain, we use the same setting as
in Section VI-A, i.e., the stabilization around the operational
point xop in (VI.2) with uncertain network induced delay. The
results of this simulation are presented in Figure 4. As can be
seen, despite K being computed using data corrupted by noise,
the stabilization is achieved. This demonstrates the robustness
of the proposed approach with respect to noisy data.
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TABLE II
COMPUTED VALUES OF THE DISTANCE d(i,j)(X{1}) GIVEN IN (V.7)

AND THE UPPER BOUND GIVEN IN (V.10) FOR THE DIFFERENT VALUES

OF i, WITH j = 0 AND T = 50, WITH THE DATA RECORDED FROM THE

SYSTEM (VI.1) CORRUPTED BY NOISE.

i 0 1 2

d(i,j)(X{1}) 1.81 1.35 6.71× 10−1

(V.10) 1.40× 10−1 1.35× 10−1 1.30× 10−1

i 3 4 5

d(i,j)(X{1}) 6.88× 10−4 5.68× 10−1 1.03
(V.10) 1.27× 10−1 1.29× 10−1 1.36× 10−1

i 6 7 8

d(i,j)(X{1}) 1.40 1.69 2.14
(V.10) 1.56× 10−1 1.81× 10−1 1.50× 10−1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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20

40

60

80

Fig. 1. Input signal u(t) used to excite the batch reactor in (VI.1).
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Fig. 2. Norm of the error between the state of the batch reactor (VI.1)
and the operational point xop in (VI.2) for the control gain K in (VI.3)
computed using data and the gain KMB in (VI.4) computed following
[21, Chap. 6].
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Fig. 3. Response of the batch reactor in (VI.1) to the stabilization
process around the operational point xop in (VI.2) using K in (VI.3).
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Fig. 4. Response of the batch reactor in (VI.1) to the stabilization
process around the operational point xop in (VI.2) using K in (VI.7)
computed with noisy data.

VII. CONCLUSIONS

In this work we have presented a method for designing
robust controllers for LTD-TDSs relying exclusively on input-
state data recorded from the system, i.e., avoiding the system
modeling. We have provided explicit data-dependent formulas
to compute state feedback gains for stabilization, guaranteed
cost control and H∞ control. By accounting on possible noise
and unknown constant delays in the recorded data, the method
ensures closed-loop stability of the system with the computed
gain even under such circumstances.

Differently from other methods based on data [13], [16],
we have investigated robustness against uncertain delays. The
proposed design approach provides stability guarantees on the
closed-loop system through a robust control design. Further-
more, the amount of data required for the control design is
relatively small as is shown in the numerical example.

Future work will be geared towards the implementation and
experimental validation of the reported results in real-world
applications, such as traffic control or power systems opera-
tion. Likewise, we plan to investigate extensions to nonlinear
systems, possibly by incorporating prior system knowledge as
recently proposed in [17].

APPENDIX

Proof of Proposition III.1. The matrices A0, A1 and B of the
system (II.1) are related through data by

X{1} =
[
B A1 A0

]
W0. (A.6)

Sufficiency: Since by assumption W0 has full-row rank, we
obtain from (A.6) that

[
B A1 A0

]
= X{1}W

†
0 . (A.7)

Using (A.7) in (III.1) yields (III.3).
Necessity: If rank(W0) < m+2n, then (A.6) together with

the Rouché-Capelli theorem [34] implies that the matrices A0,
A1 and B of the system (II.1) cannot be determined univocally.

Therefore, the condition rank(W0) = m+ 2n is necessary
and sufficient to represent the open-loop system through data.
���
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Φ1 =


R1 +R2 −R1 + S12,1 −R2 + S12,2 −S12,1 − S12,2 0

? 2R1 − S12,1 − S>12,1 0 −R1 + S12,1 0
? ? 2R2 − S12,2 − S>12,2 −R2 + S12,2 0
? ? ? R1 +R2 0
? ? ? ? 0

 . (A.1)

Φ2 =



Φ2,11 P>2 X{1}GK

 0
In
0

 P>2 X{1}GK

In0
0

 0 −P>2 +

P>3 X{1}GK
 0

0
In

>

? 0 0 0

P>3 X{1}GK
 0
In
0

>

? ? 0 0

P>3 X{1}GK
In0

0

>
? ? ? 0 0
? ? ? ? −

(
P3 + P>3

)



, (A.2)

Φ2,11 = P>2 X{1}GK

 0
0
In

+

P>2 X{1}GK
 0

0
In

> .

Proof of Lemma III.2. The closed-loop system (III.4) can be
rewritten as

x(k + 1) =
[
B A1 A0

] K 0 0
0 In 0
0 0 In

xh2
(k)

xh1
(k)

x(k)

 .
Sufficiency: Since by assumption rank(W0) = m + 2n, one
has that

rank

 K 0 0
0 In 0
0 0 In

 W0

 = rank(W0).

Thus, by the Rouché-Capelli theorem [34], there exists a T ×
3n matrix GK , such that (III.6) holds. Therefore,

[
B A1 A0

] K 0 0
0 In 0
0 0 In

 =
[
B A1 A0

]
W0Gk

= X{1}GK ,

where the relation (A.6) has been used.
Necessity: If rank(W0) < m + 2n, then by the Rouché-

Capelli theorem [34], not for any matrix diag(K, In, In) there
is a matrix GK that satisfies (III.6).

This proves the main claim of Lemma III.2. The explicit
formula for K in (III.7) is obtained from (III.6) by considering
the definition of W0 in (III.2). ���

Proof of Theorem IV.2. Inspired by the procedure of [21,
Sec. 6.1.3.2], we propose the following Lyapunov-Krasovskii
functional

V (k) = VP (k) + VS(k) +
2∑
i=1

VR,i(k), (A.8)

with

VP (k) = x>(k)Px(k),

VS(k) =
k−1∑
j=k−h̄

x>(j)Sx(j),

VR,i(k) = h̄
−1∑

m=−h̄

k−1∑
j=k+m

ȳ>(j)Riȳ(j),

ȳ(j) : = x(j + 1)− x(j),

where P > 0, S > 0, Ri > 0, with i = {1, 2}, are n×n matrix
variables. We are interested in computing V (k + 1) − V (k),
which can be done by taking the difference of each of its
components. By direct calculation, the following difference
equations are obtained:

VP (k + 1)− VP (k) = x>(k + 1)Px(k + 1)− x>(k)Px(k),

VS(k + 1)− VS(k) = x>(k)Sx(k)− x>h̄ (k)Sxh̄(k),

VR,i(k + 1)− VR,i(k) = h̄2ȳ>(k)Riȳ(k)

− h̄
k−1∑
j=k−h̄

ȳ>(j)Riȳ(j).

The summation term in VR,i(k + 1)− VR,i(k) is rewritten as

h̄
k−1∑
j=k−h̄

ȳ>(j)Riȳ(j) =

h̄

k−1−hi(k)∑
j=k−h̄

ȳ>(j)Riȳ(j) + h̄

k−1∑
j=k−hi(k)

ȳ>(j)Riȳ(j).
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Φ =



Φ11 Φ12 Φ13 −S12,1 − S12,2 Φ15

? 2R1 − S12,1 − S>12,1 0 −R1 + S12,1 −

P>3 X{1}GK
 0
In
0

>

? ? 2R2 − S12,2 − S>12,2 −R2 + S12,2 −

P>3 X{1}GK
In0

0

>
? ? ? R1 +R2 + S 0
? ? ? ? Φ55


, (A.3)

Φ11 = P − S + (1− h̄2)(R1 +R2)− P>2 X{1}GK

 0
0
In

−
P>2 X{1}GK

 0
0
In

> ,
Φ12 = −R1 + S12,1 − P>2 X{1}GK

 0
In
0

 , Φ13 = −R2 + S12,2 − P>2 X{1}GK

In0
0

 ,
Φ15 = h̄2(R1 +R2) + P>2 −

P>3 X{1}GK
 0

0
In

> , Φ55 = −P − h̄2(R1 +R2) + (P3 + P>3 ).

Φ̄ =



Φ̄11 Φ̄12 Φ̄13 −S̄12,1 − S̄12,2 Φ̄15

? 2R̄1 − S̄12,1 − S̄>12,1 0 −R̄1 + S̄12,1 −

εX{1}GK
 0
In
0

 P̄2

>

? ? 2R̄2 − S̄12,2 − S̄>12,2 −R̄2 + S̄12,2 −

εX{1}GK
In0

0

 P̄2

>
? ? ? R̄1 + R̄2 + S̄ 0
? ? ? ? −P̄ − h̄2(R̄1 + R̄2) + ε(P̄2 + P̄>2 )


, (A.4)

Φ̄11 = P̄ − S̄ + (1− h̄2)(R̄1 + R̄2)−X{1}GK

 0
0
In

 P̄2 −

X{1}GK
 0

0
In

 P̄2

> ,
Φ̄12 = −R̄1 + S̄12,1 −X{1}GK

 0
In
0

 P̄2, Φ̄13 = −R̄2 + S̄12,2 −X{1}GK

In0
0

 P̄2,

Φ̄15 = h̄2(R̄1 + R̄2) + P̄2 − ε

X{1}GK
 0

0
In

 P̄2

> .

Φ̃2 =



P>2 ∆[·]GK

 0
0
In

+

P>2 ∆[·]GK

 0
0
In

> P>2 ∆[·]GK

 0
In
0

 P>2 ∆[·]GK

In0
0

 0

εP>2 ∆[·]GK

 0
0
In

>

? 0 0 0

εP>2 ∆[·]GK

 0
In
0

>

? ? 0 0

εP>2 ∆[·]GK

In0
0

>
? ? ? 0 0
? ? ? ? 0



.

(A.5)
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By applying Jensen’s inequality twice [21, Sec. 6.1.3.2], one
obtains

h̄

k−1−hi(k)∑
j=k−h̄

ȳ>(j)Riȳ(j) ≥

h̄

h̄− hi(k)

[
xhi(k)(k)− xh̄(k)

]>
Ri
[
xhi(k)(k)− xh̄(k)

]
,

h̄
k−1∑

j=k−hi(k)

ȳ>(j)Riȳ(j) ≥

h̄

hi(k)

[
x(k)− xhi(k)(k)

]>
Ri
[
x(k)− xhi(k)(k)

]
.

Furthermore, by invoking the reciprocally convex approach
[21, Lem. 3.4] one has

h̄
k−1∑
j=k−h̄

ȳ>(j)Riȳ(j) ≥

h̄

h̄− hi(k)

[
xhi(k)(k)− xh̄(k)

]>
Ri
[
xhi(k)(k)− xh̄(k)

]
+

h̄

hi(k)

[
x(k)− xhi(k)(k)

]>
Ri
[
x(k)− xhi(k)(k)

]
≥[

x(k)− xhi(k)(k)
xhi(k)(k)− xh̄(k)

]> [
Ri S12,i

? Ri

] [
x(k)− xhi(k)(k)
xhi(k)(k)− xh̄(k)

]
,

(A.9)

for any S12,i ∈ Rn×n satisfying[
Ri S12,i

? Ri

]
≥ 0.

Consider the short-hand

χ>(k) =
[
x>(k), x>h1(k)(k), x>h2(k)(k), x>h̄ (k), x>(k + 1)

]
.

(A.10)

Then, by using (A.9) and (A.10) we obtain
2∑
i=1

VR,i(k + 1)− VR,i(k) ≤ h̄2ȳ>(k)
(
R1 +R2

)
ȳ(k)

− χ>(k)Φ1χ(k),
(A.11)

where Φ1 is given in (A.1).
Now, consider (III.5) and (III.6) in Lemma III.2. From them

it follows that

BK = X{1}GK
[
In 0 0

]>
,

A1 = X{1}GK
[
0 In 0

]>
,

A0 = X{1}GK
[
0 0 In

]>
,

(A.12)

subject to

0 = Uh2,{0}GK
[
0 In 0

]>
= Uh2,{0}GK

[
0 0 In

]>
,

0 = Xh1,{0}GK
[
In 0 0

]>
= Xh1,{0}GK

[
0 0 In

]>
,

0 = X{0}GK
[
In 0 0

]>
= X{0}GK

[
0 In 0

]>
.
(A.13)

Now, combining the descriptor method [21, Sec. 3.5.2] with
the data-based representation of the system matrices in (A.12),
we obtain

0 = 2
[
x>(k)P>2 + x>(k + 1)P>3

]
×

×
[
X{1}GK

[
x>h2(k)(k), x>h1(k)(t), x

>(k)
]>
− x(k + 1)

]
= −2x>(k)P>2 x(k + 1)− 2x>(k + 1)P>3 x(k + 1)

+ 2
(
x>(k)P>2 + x>(k + 1)P>3

)
X{1}GK×

×

In0
0

xh2(k)(k) +

 0
In
0

xh1(k)(k) +

 0
0
In

x(k)

 ,

(A.14)

where P2 ∈ Rn×n and P3 ∈ Rn×n are matrix variables.
By using the short-hand (A.10), we can rewrite (A.14) as the
quadratic form

0 = χ>(k)Φ2χ(k), (A.15)

with Φ2 given in (A.2).
Now, retaking the calculation V (k+ 1)− V (k), by consid-

ering (A.11), (A.15), and adding Φ1 and Φ2 we obtain

V (k + 1)− V (k) ≤ −χ>(k)Φχ(k), (A.16)

where Φ is given in (A.3).
By recalling that both GK and K are design parameters, an

inspection of Φ in (A.3) reveals that it contains nonlinear terms
in the decision variables. In order to reformulate Φ as an LMI,
we follow the standard approach in control design of TDSs via
the descriptor method, see [21, Chapter 6]. Since Φ > 0 in
(A.3) implies that Φ55 > 0, we have P3 + P>3 > 0, meaning
that P3 is invertible. We choose P3 = εP2, where ε > 0 is a
scalar tuning parameter. Then, we define P̄2 = P−1

2 and the
matrices

P̄ = P̄>2 PP̄2, R̄i = P̄>2 RiP̄2,

S̄ = P̄>2 SP̄2, S̄12,i = P̄>2 S12,iP̄2.
(A.17)

Consider the congruent transformation Φ̄ = P>ΦP, with

P = diag
(
P̄2, P̄2, P̄2, P̄2, P̄2

)
.

The resulting matrix Φ̄ is given in (A.4), which is linear in
all decision variables. Now, inspired by [13], we introduce the
auxiliary matrix variables

Q1 = GK

In0
0

 P̄2, Q2 = GK

 0
In
0

 P̄2, Q3 = GK

 0
0
In

 P̄2.

(A.18)

By considering (III.2) and the restriction (III.6), it holds that

KP̄2 = Uh2,{0}GK

In0
0

 P̄2 = Uh2,{0}Q1,

P̄2 = Xh1,{0}GK

 0
In
0

 P̄2 = Xh1,{0}Q2,

P̄2 = X{0}GK

 0
0
In

 P̄2 = X{0}Q3.

(A.19)
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Replacing the previous definitions in Φ̄ in (A.4) yields the
matrix Φ̄ in (IV.5) and the data-based set of inequalities (IV.1)
and (IV.2). The equality restrictions (IV.3) follow from (A.13)
and the definitions (A.18) and (A.19). The control gain K is
obtained from (A.19) and is given in (IV.4). Then, if the above-
mentioned inequalities hold, we have V (k+1)−V (k) < 0. By
invoking [21, Thm. 6.1], the assertions of the theorem follow.
���

Proof of Corollary IV.4. Consider the Lyapunov-Krasovskii
functional given in (A.8) and the short-hand introduced in
(A.10). From (A.16) together with the performance output
z(k) given in (IV.7), we have

V (k + 1)− V (k) + z>(k)z(k) ≤ −χ̂>(k)Ψχ̂(k),

where χ̂>(k) = [χ>(k), z>(k)] and

Ψ =

[
Φ −κ>
? In

]
, (A.20)

κ =
[
L1 L2 DK 0 0

]
.

The matrix Φ is given in (A.3). Consider once more the
matrices introduced in (A.17). As before, in order to obtain
an LMI, we perform a congruent transformation. Define the
block-diagonal matrix P

P = diag
(
P̄2, P̄2, P̄2, P̄2, P̄2, In

)
.

Using P, we define the congruent matrix Ψ̄ = P>ΨP, and,
by considering the substitutions (A.18), we obtain the matrix

Ψ̄ =

[
Φ̄ −κ̄>
? In

]
,

κ̄ =
[
L1P̄2 L2P̄2 DKP̄2 0 0

]
,

with Φ̄ given in (A.4). By replacing P̄2 following (A.19), it
results Ψ̄ in (IV.8). By invoking [21, Prop. 6.5], we have
that J ≤ V (x0) = x>(0)Px(0) if the data-based inequalities
(IV.8) and (IV.9) are satisfied. In addition, we have V (0) ≤ δ,
and by transitivity J ≤ δ, if (IV.10) is simultaneously satisfied.
This is achieved by selecting the feedback gain K according
to (IV.11). ���

Proof of Corollary IV.6. Consider the performance index

J∞ =
∞∑
k=0

(
z>(k)z(k)− γω>(k)ω(k)

)
.

If one can find a feedback gain K such that J∞ < 0, then the
system (IV.12) has an L2-gain less than γ [21]. Such gain can
be found as follows. Consider the short hand

χ̂>2 (k) = [χ̂>(k), ω>(k)].

From (A.16) together with the system dynamics (IV.12) and
(IV.13), we obtain

−χ̂>2 (k)Γχ̂2(k) ≥
V (k + 1)− V (k) +

(
z>(k)z(k)− γω>(k)ω(k)

)
,

(A.21)

with

Γ =

[
Ψ κ>2
? γ In

]
, (A.22)

κ2 =
[
−D>0 P2 0 0 0 −εD>0 P2 0

]
,

where Ψ is given in (A.20). As in the proof of Theorem IV.2
and Corollary IV.4, we consider the congruent matrix Γ̄ =
P>ΓP with

P = diag
(
P̄2, P̄2, P̄2, P̄2, P̄2, In, In

)
,

where P̄2 = P−1
2 . This done to obtain an LMI from the

original BMI. By taking into account (A.17), (A.18) and
(A.19), we obtain the matrix Γ̄ in (IV.14). Hence, if (IV.14)
and (IV.15) are satisfied, the gain given in (IV.16) guarantees
a L2 gain of γ for ω(k) 6= 0. ���

Proof of Proposition V.2. Let h1 = j? and h2 = i? hold,
and consider the short-hands W0? = W0,(i?,j?), W nom

0? =
W nom

0,(i?,j?) and W δ
0? = W δ

0,(i?,j?). In the unperturbed case
(i.e., W δ

0? = 0 and Xδ
{1} = 0), the orthogonal distance

d(i?,j?)(X{1}) defined in (V.7) is zero, in other words (V.5)
holds. In contrast, in the perturbed case (W δ

0? 6= 0, Xδ
{1} 6= 0)

we have

d(i?,j?)

(
X{1}

)
=
∥∥∥X{1} (IT −W †0?W0?

)∥∥∥
2

=

∥∥∥∥(Xnom
{1} +Xδ

{1}

)(
IT −W †0?W0?

)∥∥∥∥
2

. (A.23)

Therefore, it follows that

d(i?,j?)

(
X{1}

)
≤ d(i?,j?)

(
Xnom
{1}

)
+ d(i?,j?)

(
Xδ
{1}
)
. (A.24)

From the properties of orthogonal projectors, we immediately
have

d(i?,j?)(X
δ
{1}) ≤ ‖X

δ
{1}‖2 ≤ rXδ{1} . (A.25)

Now, we proceed to upper bound d(i?,j?)(X
nom
{1} ), for which

we recall (V.2) and consider

IT −W †0?W0? = IT −
(
W nom

0?

)†
W nom

0?

+
(
W nom

0?

)†
W nom

0? −W †0?W0?. (A.26)

In account of (A.26) and the fact that

Xnom
{1}

(
IT − (W nom

0? )
†
W nom

0?

)
= 0, (A.27)

we have from (A.23) that

d(i?,j?)

(
Xnom
{1}

)
=

∥∥∥∥Xnom
{1}

((
W nom

0?

)†
W nom

0? −W †0?W0?

)∥∥∥∥
2

.

(A.28)

Therefore, to obtain an upper bound for d(i?,j?)(X
nom
{1} ) we

need to bound the difference∥∥∥(W nom
0?

)†
W nom

0? −W †0?W0?

∥∥∥
2
.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on July 16,2021 at 09:16:58 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3096896, IEEE
Transactions on Automatic Control

14 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2020

Following [29, Thm. 4.1], and under Assumption V.1, it holds
that∥∥∥(W nom

0?

)†
W nom

0? −W †0?W0?

∥∥∥
2
≤

ψ


∥∥∥W δ,12

0?

∥∥∥
2

∥∥∥W †0?∥∥∥
2

1−
∥∥∥W δ,11

0?

∥∥∥
2

∥∥∥W †0?∥∥∥
2

 ,

with ψ(·) defined in (V.8), and ‖W δ,11
0? ‖2 and ‖W δ,12

0? ‖2 as in
(V.3). Given that ψ is a monotonically increasing function of
its argument and that with Assumption V.1 the relation (V.9)
holds, we have that

1−
∥∥∥W δ,11

0?

∥∥∥
2

∥∥∥W †0?∥∥∥
2
≥ 1− rW δ,11

0,(i,j)

∥∥∥W †0?∥∥∥
2
> 0,

it follows that∥∥∥(W nom
0?

)†
W nom

0? −W †0?W0?

∥∥∥
2
≤ ψ

 rW δ,12
0?

∥∥∥W †0?∥∥∥
2

1− rW δ,11
0?

∥∥∥W †0?∥∥∥
2


= ψ(σ?), (A.29)

with rW δ,11
0?

and rW δ,12
0?

as in (V.9) and σ? given in (V.11).
Hence, from (A.28) and (A.29), we obtain

di?,j?
(
Xnom
{1}

)
≤
∥∥Xnom
{1}

∥∥
2
· ψ (σ?)

≤
(
‖X{1}‖2 + rXδ{1}

)
· ψ (σ?) . (A.30)

In account of (A.24) and the bounds (A.25) and (A.30), the
upper bound for d(i?,j?)(X{1}) given in (V.10) follows.

For i 6= i? and j 6= j?, (A.27) does not hold, and thus, the
upper bound for d(i,j)(X{1}) given in (V.10) increases.

Once the correct delays are determined, the corresponding
open- and closed-loop data-based system representations are
obtained via Proposition III.1 and Lemma III.2, respectively.

Finally, if for two distinct pairs (i, j) the condition (V.10)
holds simultaneously, there are two candidates for the delay
values and it is not possible to distinguish between them with
the derived bound (V.10) and with the available data. ���

Proof of Theorem V.3. As in Theorem V.3, let there exist the
matrices Qi for i = {1, 2, 3}, P̄ , S̄, R̄i and S̄12,i for i =
{1, 2}, and compute K following (V.16). Following (A.19),
define P̄2 = X{0}Q3. By using (A.17), the matrices P , S, Ri
and S12,i for i = {1, 2} can be computed. With these matrices,
the Lyapunov-Krasovskii functional (A.8) can be built and
used to analyze the stability of (II.1) with feedback gain K.

Consider the proof of Theorem IV.2. The effect of the noise
impacts the terms introduced by the descriptor method, i.e.
(A.14), since

X{1}GK

xh2(k)(k)
xh1(k)(k)
x(k)

− x(k + 1) =

(
X{1}GK −

[
BK A1 A0

]) xh2(k)(k)
xh1(k)(k)
x(k)

 6= 0.

(A.31)

To account for this mismatch, we compute the error induced by
the corrupted data. Consider the nominal part of the data Xnom

{1}

and W nom
0 . From Assumption V.1.1 we have rank(W nom

0 ) =
m+ 2n. It follows that[

B A1 A0

]
= Xnom

{1} (W nom
0 )

†
.

From (III.6) in combination with the expression above, we get[
BK A1 A0

]
= Xnom

{1} (W nom
0 )

†
W0GK .

By using this relation, we obtain

X{1}GK−
[
BK A1 A0

]
=(

X{1} −Xnom
{1} (W nom

0 )
†
W0

)
GK . (A.32)

Note that X{1} = Xnom
{1} +Xδ

{1} and W0 = W nom
0 +W δ

0 . We
further continue from (A.32) as

X{1} −Xnom
{1} (W nom

0 )
†
W0 =

Xnom
{1}

(
IT − (W nom

0 )
†
W0

)
+Xδ

{1}

=Xnom
{1}

(
IT − (W nom

0 )
†
W nom

0 − (W nom
0 )

†
W δ

0

)
+Xδ

{1}

= −Xnom
{1} (W nom

0 )
†
W δ

0 +Xδ
{1}

= −
[
B A1 A0

]
W δ

0 +Xδ
{1} = −∆[·].

Then, in order to account for the mismatch (A.31) and to keep
the equation (A.14) equal to zero, we add the compensating
term

2
[
x>(k) + εx>(k + 1)

]
P>2 ×∆[·]GK

xh2k
(k)

xh1k
(k)

x(k)


to (A.14). This term can be written as the quadratic form
χ>(k)Φ̃2χ(k) with Φ̃2 given in (A.5). Carrying this term along
and continuing as in the proof of Theorem IV.2, we obtain

V (k + 1)− V (k) ≤ −χ>(k)
(

Φ̄− Φ̃2

)
χ(k). (A.33)

As before, to obtain an LMI from (A.33), we make use of a
congruent transformation. Let P = diag(P̄2, P̄2, P̄2, P̄2, P̄2),
and consider the congruent transformation

P>
(

Φ̄− Φ̃2

)
P = Φ̄− Φ̃2,

where Φ̄ is given in (IV.5) and

Φ̃2 = ∆Q + Q>∆>, (A.34)

with ∆ = diag
(
∆[·],∆[·],∆[·],∆[·],∆[·]

)
and Q is given in

(V.15). Using (A.34), it follows that

Φ̃2 ≤ λ∆∆> +
1

λ
Q>Q ≤ α2λI5n +

1

λ
Q>Q,

with λ > 0 and α > 0 as in Theorem (V.3). Therefore, the
negativeness of (A.33) can be ensured if

Φ̄− α2λI5n −
1

λ
Q>Q > 0.

By using the Schur complement, the inequality above is trans-
formed into (V.13). Hence, if (V.13) and (V.14) are satisfied,
it is ensured that V (k+1)−V (k) < 0 and the origin of (II.1)
with feedback u(k) = Kx(k), where K is given in (V.16) is
exponentially stable.

���
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