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a b s t r a c t

Constant power loads (CPLs) in power systems have a destabilizing effect that gives rise to significant
oscillations or to network collapse, motivating the development of new methods to analyse their effect
in AC and DC power systems. A sine qua non condition for this analysis is the availability of a suitable
mathematical model for the CPL. In the case of DC systems power is simply the product of voltage
and current, hence a CPL corresponds to a first–third quadrant hyperbola in the loads voltage–current
plane. The same approach is applicable for balanced three-phase systems that, after a rotation of the
coordinates to the synchronous frame, can be treated as a DC system. Modelling CPLs for single-phase
(or unbalanced poly-phase) AC systems, on the other hand, is a largely unexplored area because in AC
systems (active and reactive) power involves the integration in a finite window of the product of the
voltage and current signals. In this paper we propose a simple dynamic model of a CPL that is suitable
for the analysis of single-phase AC systems. We give conditions on the tuning gains of the model that
guarantee the CPL behaviour is effectively captured.

© 2021 Elsevier Ltd. All rights reserved.
a

1. Introduction

In many electric power distribution systems and particularly
n microgrids, stability problems may occur when a major pro-
ortion of the loads are electronic equipment. This kind of equip-
ent is usually powered by cascade distributed architectures
hich are characterized by the presence of different voltage

evels and power electronic converters. These converters act as
nterfaces between sections of different voltages in which, at
ast stage, loads are a combination of power electronic con-
erters tightly regulating their output voltage, behaving as Con-
tant Power Loads (CPLs). These architectures are common in
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information and communication technology facilities where the
many telecom switches, wireless communication base stations,
and data centre servers act as CPLs. It is well-known that CPLs
introduce a destabilizing effect that gives rise to significant oscil-
lations or even voltage collapse, and hence they are considered to
be the most challenging component of the standard load model—
referred to as the ZIP model in power system stability analysis.
See Karimipour and Salmasi (2015), Machado (2019), Molinas,
Moltoni, Fascendini, Suul, and Undeland (2008) and Singh, Gau-
tam, and Fulwani (2017) for a recent review of the literature
and Matveev, Machado, Ortega, Schiffer, and Pyrkin (2020) for
a detailed analysis of the effect of CPLs on the power systems
behaviour.

The growing presence of CPLs in modern installations signifi-
cantly aggravates this issue, hence motivating the development of
new methods to analyse their effect in AC and DC power systems.
To carry out this analysis it is necessary to dispose a mathematical
model that suitably describes the behaviour of the CPL. In the case
of a DC system a suitable model for the CPL is simply a first–third
quadrant hyperbola in the loads voltage–current plane, i(t) =

P
v(t) ,

nd, consequently, the load incrementally behaves as a negative
esistance contributing to reduce the relative stability of the
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Fig. 1. Block diagram representation of the system (6) in closed-loop with feedback controller Σc . The light blue box encloses all the CPL device with port voltage
nd desired active power inputs and current output. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
f this article.)
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lectrical network and even to destabilize it (Marx, Magne, Nahid-
obarakeh, Pierfederici, & Davat, 2012; Riccobono & Santi, 2014).
he same model is applicable for balanced three-phase systems
hat, after a rotation of the coordinates to the synchronous frame,
an be treated as a DC system. Modelling CPLs for single-phase
or unbalanced multi-phase) AC systems, on the other hand, is a
argely unexplored area because of the definition of active power
P(t)) in AC systems (Garcia-Canseco, Griñó, Ortega, Salichs, &
Stankovic, 2007; IEEE, 2010), which involves the integration in
a finite moving window of the product of the voltage and current
signals, more precisely, for a single-phase AC system1 we have

P(t) =
1
T

∫ t
t−T v(s)i(s)ds, (1)

where v(t) is the voltage and i(t) the current. Throughout the
paper we make the following assumption.

Assumption 1. The voltage v(t) is T -periodic, i.e., v(t) = v(t+T ),
or all t ≥ 0.

In this paper we propose a simple dynamic model of a CPL that
is suitable for the analysis of single-phase AC systems.2 Because
of space limitations we have concentrated in the emulation of
active power. However, the extension to include reactive power is
immediate and is explained in Section 6. To derive the model we
adopt a control theory perspective and reformulate the problem
as the design of a negative feedback controller wrapped around
the output of a dynamical system that computes P(t). The voltage,
required in the computation of P(t), is viewed as an external
periodic signal. The control objectives are to drive P(t) to some
constant desired value and to ensure that the current is in phase
with the voltage. In spite of the apparent simplicity of the afore-
mentioned control problem, it is a far from trivial task because the
dynamics of the power computation model is a (T -periodic) linear
time-varying delay-differential equation (LTV-DDE), complicating
the design of the required controller.

We consider in the paper two controllers: a simple propor-
tional one with a constant bias input and a classical proportional–
integral (PI) controller. A detailed analysis of the stability of the
closed-loop is carried out using advanced techniques of delay-
differential systems. Thus, the stability analysis under PI con-
troller employs a recent time-delay approach to averaging
(Fridman & Zhang, 2020). The outcome of this study is the
definition of regions in the space of the controller parameters for
which asymptotic stability is ensured. To check how conservative

1 It is worth to remark that this definition computes the active power (W)
or sinusoidal and nonsinusoidal (general T -periodic) AC single-phase systems
nd it is the causal version of the expression that appears in IEEE (2010).
2 For AC poly-phase systems definition (1) changes to P(t) =

1
T

∫ t
t−T v⊤(s)i(s)ds where v(t) and i(t) are, for example, the line-to-neutral

voltages vector and the line currents vector, respectively.
 d

2

the bounds derived from the theoretical analysis are, we carry out
extensive numerical simulations and the computation of the more
relevant characteristic multipliers of the linear periodic DDEs that
arise.

To the best of the authors’ knowledge this is the first at-
tempt to develop a mathematically well-founded model for AC
CPL’s. Most of the results been restricted to numerical deriva-
tions (Dong, Liu, Gao, & Zhang, 2008) or invoking various kinds of
approximations to the actual phenomenon (Molinas et al., 2008).

2. Problem formulation

In this section we describe the dynamical system that com-
putes the active power P(t) defined in (1) as an LTV operator
Σ : (v, i) ↦→ P . From (1) we get the DDE satisfied by P(t) as

Ṗ(t) =
1
T [p(t) − p(t − T )]. (2)

where, for ease of reference, we have defined the instantaneous
active power

p(t) = v(t)i(t). (3)

A block diagram description of the system Σ is given in the
green box of Fig. 1, where v(t) is a fixed T -periodic, external
signal and i(t) as the ‘‘control’’ to be defined. As explained in
the introduction, to derive our dynamic model of the AC CPL
we adopt a control theory perspective. To generate the input
signal i(t) of the system Σ we propose a classical output feedback
configuration with Σc : P̃ ↦→ u the controller to be defined, and
P̃(t) := P⋆ − P(t), with P⋆ the desired value for P(t). To capture
our objective of ensuring that, in steady-state, the voltage and the
current are in phase, we define the latter as

i(t) = u(t)v(t). (4)

In this case, the ‘‘in-phase’’ requirement translates to the con-
dition that u(t) converges to a constant value. A block diagram
description of the overall system is given in Fig. 1.

To complete the description of the mathematical model of the
system Σ , we note that from (3) and (4) we have p(t) = v2(t)u(t).
Then (1) can be rewritten as

P(t) =
1
T

∫ t
t−T v2(ℓ)u(ℓ)dℓ, (5)

revealing that P(t) is just an average of v2(t)u(t). Differentiating
the latter equation, we arrive at the final description of our
system

Ṗ(t) =
v2(t)
T [u(t) − u(t − T )]. (6)

e are now in position to formulate our controller design prob-
em.

ontrol problem formulation Consider the LTV, delay-
ifferential, periodic, scalar system (6). Given P > 0, design a
⋆
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ontroller Σc : P̃ → u such that

lim
t→∞

P(t) = P⋆

lim
t→∞

u(t) = u⋆ (7)

where u⋆ > 0 is an arbitrary constant.
In the following two sections we will present two controllers

Σc : a simple proportional one with a constant bias input and a
classical proportional–integral (PI) controller. For both schemes,
we give conditions on their tuning gains that ensure the control
objective (7) is satisfied with all signals remaining bounded.

Remark 1. A particular case of practical interest is

v(t) =
√
2 V sin

( 2π
T t

)
(8)

where V > 0 is the RMS value of the voltage v(t) defined as

V 2
:=

1
T

∫ T
0 v2(ℓ)dℓ. (9)

3. A simple proportional plus constant bias controller

The main result of this section is given in the proposition be-
low whose proof, to enhance readability, is given in Appendix A.

Proposition 1. Consider the simple proportional plus constant bias
control law

u(t) = kpP̃(t) + u⋆ (10)

with u⋆ =
1
V2 P⋆ and V the RMS value of the voltage v(t) given

y (9), which satisfies Assumption 1. For all values of kp in the
nterval

(
0, 1

V

)
the conditions (7) are satisfied—with the convergence

eing exponential. □

emark 2. It is shown in the proof that, when P⋆ is fixed, the u⋆

iven in Proposition 1 is the unique value that can be obtained for
he limit of u(t) if both P(t) and u(t) converge to constant values.
rom the proof it also follows that ln kpV

T is an upperbound on the
xponential rate of convergence.

emark 3. As it is well-known, to enhance the robustness of
he system, it is necessary to implement feedback – as opposed
o open-loop – control laws. In any case, it is of mathematical
nterest to observe from (A.1) that setting kp = 0, that is,
onsidering the feedforward controller u = u⋆, convergence of the
rror to zero is achieved in finite time. Actually, it is also possible
o show that convergence is preserved even for negative values of
p in the interval

(
−

1
V , 1

V

)
and that the trajectories of the closed-

loop system remain bounded for all kp. Since the analysis is quite
involved, and the boundedness property not very informative, it
is omitted for brevity.

4. A proportional–integral controller

In this section we analyse the behaviour of the closed-loop
system when Σc is a PI controller. That is,

ẋc(t) = P̃(t)

u(t) = kpP̃(t) + kixc(t) (11)

with kp ≥ 0 and ki > 0. As in the previous controller our objective
is to find conditions on (kp, ki)—given in terms of feasibility of lin-
ear matrix inequalities (LMIs)—such that the control objective (7)
is satisfied. We consider two possible scenarios, when v2(t) is
T -periodic, or T

2 -periodic. The motivation to consider the two
ases is two-fold: on one hand, the LMIs are less conservative
3

when considering smaller periods. On the other hand, the case
of practical interest (8) is,3 indeed, T

2 -periodic.
The proposition below, whose proof is given in Appendix B,

pertains to the T -periodic case.

Proposition 2. Let v2(t) be T-periodic.
(i) Consider the PI controller given by (11) with kp > 0 and ki > 0.
Given kMp > 0 and kMi > 0, if there exist scalars r > 0, r1 > 0, s > 0
and q > 0 such that the following LMIs are satisfied

Ξ0 = −s + 2v4
M [(kMp )2s + (kMi )2(r + q)] +

1
T2

r1 < 0, (12)

nd

Ξ (kMp , kMi ) =

⎡⎢⎢⎣
Ξ11(kMp , kMi ) V2 1 1

∗ −
4
T r −1 −1

∗ ∗ −
1

v4MT
q 0

∗ ∗ ∗ −
1

v4MT
r1

⎤⎥⎥⎦< 0, (13)

here we defined the function

11(kMp , kMi ) := −2V 2
+ 2v4

MT [(kMp )2s + (kMi )2(r + q)],

nd
M := maxt∈[0,T ]v(t), (14)

hen (7) is satisfied for all kp ∈ [−kMp , kMp ] and ki ∈ (0, kMi ].
ii) Consider the I controller given by (11) with kp = 0 and ki > 0.
iven kMi > 0, if there exist scalars r > 0 and q > 0 such that the
ollowing LMI⎡⎣ −2V2

+ v4MT (kMi )2(r + q) V2 1
∗ −

4
T r −1

∗ ∗ −
1

v4MT
q

⎤⎦ < 0 (15)

holds, then (7) is satisfied for all ki ∈ (0, kMi ]. □

As indicated above, if v2(t) has a smaller fundamental period
T
2 , a less conservative LMI condition may be derived. This result
s contained in the corollary below, whose proof is given in
ppendix C.

orollary 1. Let v2(t) be T
2 -periodic.

(i) Consider the PI controller given by (11) with kp > 0 and ki > 0.
iven kMp > 0 and kMi > 0, if there exist scalars r > 0, r1 > 0, s > 0
nd q > 0 such that the following LMIs are satisfied

Ξ̂0 = −s + 2v4
M [(kMp )2s + (kMi )2( r2 + q)] +

1
T2

r1 < 0, (16)

nd

Ξ̂ (kMp , kMi ) =

⎡⎢⎢⎣
Ξ̂11(kMp , kMi ) V2 1 1

∗ −
8
T r −1 −1

∗ ∗ −
16

9v4MT
q 0

∗ ∗ ∗ −
1

v4MT
r1

⎤⎥⎥⎦ < 0, (17)

here we defined the function

Ξ̂11(kMp , kMi ) := −2V 2
+ 2v4

MT [(kMp )2s + (kMi )2( r2 + q)],

and vM is given by (14), then (7) is satisfied for all kp ∈ [−kMp , kMp ]

and ki ∈ (0, kMi ].
(ii) Consider the I controller given by (11) with kp = 0 and ki > 0.
iven kMi > 0, if there exist scalars r > 0 and q > 0 such that the
ollowing LMI⎡⎣ −2V2

+ v4MT (kMi )2( r2 + q) V2 1
∗ −

8
T r −1

∗ ∗ −
16

9v4MT
q

⎤⎦ < 0 (18)

holds, then (7) is satisfied for all ki ∈ (0, kMi ]. □

3 Another real case of interest is when v(t) is a T -periodic signal with only
dd harmonics (with zero average). In this situation v2(t) is also a T

2 -periodic
signal.
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Fig. 2. Maximum absolute value characteristic multiplier vs. kp .

Remark 4. As it is seen from LMIs of Proposition 2 and
Corollary 1, given T > 0, these LMIs hold with kMp = kMi = 0.
Thus, these LMIs hold for sufficiently small PI gains, i.e. (7) is
always guaranteed for small enough kp ≥ 0 and ki > 0.

Remark 5. The claim that LMIs (16) and (17) are less conser-
vative than the LMIs (12) and (13) can be established noting that
Ξ̂0 − Ξ0 ≤ 0 and Ξ̂ (·) − Ξ (·) ≤ 0 hold. Note also that LMI (13)
ith kp = 0 is more conservative than LMI (15) in Proposition 2
ecause its 11-term −2V 2

+ 2v4
MT (kMi )2(r + q) is larger than

1-term −2V 2
+ v4

MT (kMi )2(r + q) in (15). The same holds for
MIs (17) and (18) in Corollary 1.

. Numerical simulation results

This section shows some simulation results and numerical
tability assessment, using the characteristic multipliers of the
onodromy matrix of the closed-loop delay-differential system,

or the AC sinusoidal voltage (8) with V = 230.0 V, T = 0.02 s.
he computation of the characteristic multipliers has been done
ith the algorithm eigTMN (Breda, Maset, & Vermiglio, 2015).

emark 6. The proposed behavioural model has been extensively
ested numerically against step variations of the RMS value of the
rid voltage, V , and there are no stability problems for reasonable
ariations of that value around the nominal one. Besides, the main
heoretical result in Proposition 2 can be extended to a variable
n time V ≥ V0 > 0 that takes values in the given interval. This
xtension is not in the scope of the current paper.

.1. P controller

Using the controller in Eq. (10), the closed-loop dynamics is

Ṗ(t) =
−kp
T v2(t) P(t) +

kp
T v2(t) P(t − T ) (19)

nd the sufficient condition in Proposition 1 states that it would
e stable for kp ∈

(
0, 1

V

)
=

(
0, 4.348 · 10−3

)
.

The numerical study of the stability of Eq. (19) is shown in
ig. 2 where the maximum absolute value characteristic multi-
lier is plotted against kp. As it can be observed, the closed-loop

system is stable for all positive values of kp—revealing that, at
least for this particular numerical scenario, the theoretical anal-
ysis is very conservative. As it can be seen from the figure, the
closed-loop system tends to be marginally stable as kp → ∞.

Fig. 3 shows the power, P(t), and the control signal, u(t), time
esponses for a step reference in power, P⋆ = 1000 W, for three
ifferent values of kp. As it can be observed, the steady-state error
s zero and the overshoot in the transient increases as kp gets
igger. In Fig. 4 we plot the voltage applied to the CPL and the
omputed current for the same three different values of kp. After
he transient, with bigger overshoot as kp grows, the current is
inusoidal and perfectly in-phase with the voltage.
4

Fig. 3. P⋆ and P(t) (left), and u(t) (right) for the proportional controller.

Fig. 4. Voltage, v(t)/10, and CPL current i(t) for the proportional controller.

Fig. 5. (kp, ki) stability charts: (left) stability regions and (right) contour lines for
the maximum absolute value characteristic multiplier near kp = 0 and ki = 0.

.2. PI controller

In this subsection we investigate numerically the
I controller (11) with kp > 0, ki > 0, which results in the
losed-loop dynamics[
˙̃P(t)
ẋc(t)

]
=

[
−kp
T v2(t) −ki

T v2(t)
1 0

] [
P̃(t)
xc(t)

]
+

[ kp
T v2(t) ki

T v2(t)
0 0

] [
P̃(t − T )
xc(t − T )

]
.

(20)

Fig. 5 (left) shows the stability chart in the parameter plane
kp, ki), where the shaded area in solid grey corresponds to un-
table behaviour. This information has been obtained looking
or the maximum absolute value characteristic multiplier of a
ectangular sampling of the parameter space kp - ki. In Fig. 5
right) we show the contour lines for the maximum absolute
alue characteristic multiplier in the plane (kp, ki) for kp and ki

close to zero. It is worth to mention that in the other three
quadrants of the plane kp − ki the system is unstable.

Looking for the kp and ki values that give the minimum
maximum absolute value characteristic multiplier (min
kp,ki
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Table 1
Maximum value of kMi for different kMp via LMIs of Proposition 2 and Corollary 1.

kMp 0 1 · 10−6 2 · 10−6 4 · 10−6 6 · 10−6

Proposition 2 2.2923 · 10−4 1.6027 · 10−4 1.5466 · 10−4 1.2985 · 10−4 0.7140 · 10−4

Corollary 1 3.1077 · 10−4 2.1727 · 10−4 2.0967 · 10−4 1.7604 · 10−4 0.9680 · 10−4
(
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Fig. 6. P⋆ and P(t) (left) and u(t) (right) for the PI controller.

Fig. 7. Voltage, v(t)/10 and CPL current i(t) for the PI controller.

axl |µl(kp, ki)|) results4 in kp = 2.95767 · 10−6, ki = 0.92594 ·

0−3 with a maximum absolute value characteristic multiplier,
axl |µl| = 0.048368.
Fig. 6 shows responses of the power, P(t), and the control

signal, u(t), to a step reference in power, P⋆ = 1000 W, for
different values of kp and ki. As it can be observed, the steady-
state error is zero due to the integrator included in the controller.
The red curve in the left plot and the blue curve in the right plot
correspond to the kp and ki values of the minimum maximum
absolute value characteristic multiplier commented in the previ-
ous paragraph. As seen from these plots the resulting transient
performance is excellent with no overshoot. In Fig. 7 appears
the (scaled) voltage (v/10) applied to the CPL and the computed
current for the same three different values of kp and ki. After the
transient, the currents are sinusoidal and perfectly in-phase with
the voltage. Table 1 summarizes the numerical LMI results with
vM =

√
2 V running the solver with different kMp .

. Concluding remarks and future research

We have presented in the paper a possible scenario for the
mulation of CPLs in single-phase AC systems. The inputs of
he system are the voltage signal, which is only assumed to be
eriodic, and the desired value of the constant power load. The
n-phase current that will generate this active power is calcu-
ated with a dynamic controller. We have tried three different
ersions of the latter: proportional+bias, integral and propor-
ional+integral, for which we dispose of a rigorous theoretical
nalysis to determine bounds on their tuning gains, hence these
esults are compared with numerical validation.

4 These optimum has been found using several tries of a Nelder–Mead
ptimization algorithm. So, it cannot be assured that it is the global minimum
ut it is the best minimum found.
 u

5

Because of space limitations, we have concentrated in the
emulation of active power. However, the extension to include
reactive power is immediate. Indeed, reactive power can be cal-
culated5 as Q (t) =

−1
2π

∫ t
t−T v̇(s)i(s)ds, see Garcia-Canseco et al.

2007) for a control-oriented discussion on reactive power. Tak-
ng into account this definition, a single-phase constant reactive
ower load can be emulated changing, in Fig. 1, the voltage
arrier, v(t), by its derivative, v̇(t). Obviously, it is also possible
o emulate a constant active and reactive power load using two
losed-loop systems: one to compute the current for the constant
ctive power load and the other to compute the current for the
onstant reactive power load. Then, the total current is the sum
f the currents from each system as they are in quadrature.

ppendix A. Proof of Proposition 1

Substituting u(t) = kp[P⋆ − P(t)] +
1
V2 P⋆ into (5) we obtain

P(t) =
kp
T

∫ t
t−T v2(ℓ)[P⋆ − P(ℓ)]dℓ + P⋆, (A.1)

r, equivalently,

P̃(t) = −
kp
T

∫ t
t−T v2(ℓ)P̃(ℓ)dℓ. (A.2)

Consequently, taking into account that the function v(t) is T -
periodic, we obtain

|P̃(t)| ≤
kp
T

∫ t
t−T v2(ℓ)|P̃(ℓ)|dℓ

≤
kp
T

∫ T
0 v2(ℓ)dℓ sup

ℓ∈[t−T ,t]
|P̃(ℓ)|

= kpV sup
ℓ∈[t−T ,t]

|P̃(ℓ)|, t ≥ 0.

y using Lemma 1 in Mazenc, Malisoff, and Niculescu (2017) with
he condition kpV < 1, we arrive at |P̃(t)| ≤ supℓ∈[−T ,0] |P̃(ℓ)|
ln(kpV )

T t . Thus, (7) holds. □

Appendix B. Proof of Proposition 2

We will employ Lemma 1 given in Appendix D.
(i) To complete the proof of (i) we make the following simple, but
important, observation. For the PI control law (11), we have the
relation

u(t) − u(t − T ) =
∫ t
t−T u̇(ξ )dξ

= kp
∫ t
t−T

˙̃P(ξ )dξ + ki
∫ t
t−T P̃(ξ )dξ .

(B.1)

ubstituting (B.1) into (6) and taking into account ˙̃P(t) = −Ṗ(t),
e arrive at

˙̃P(t) = −
kp
T v2(t)

∫ t
t−T

˙̃P(ξ )dξ −
ki
T v2(t)

∫ t
t−T P̃(ξ )dξ . (B.2)

hen, conditions (7) are satisfied if (B.2) is asymptotically stable.
For the stability analysis of the time-varying system (B.2) with

he T -periodic coefficient v2(t), we suggest to use the averaging
ethod. We will employ a constructive time-delay approach

o averaging introduced recently in Fridman and Zhang (2020).

5 This definition characterizes the reactive power of a load that can be fully
ompensated using a shunt capacitor or a shunt inductor at its port variables
nd, for AC sinusoidal systems, single-phase and poly-phase, coincides with the
sual equations to compute the reactive power.
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ollowing this approach, we will integrate (B.2) on t ∈ [t − T , t]
for t ≥ T . Note that similar to Fridman and Shaikhet (2016), we
get

1
T

∫ t
t−T

˙̃P(ξ )dξ =
1
T [P̃(t) − P̃(t − T )] =

d
dt [P̃(t) − G], (B.3)

here

G =
1
T

∫ t
t−T (ξ − t + T ) ˙̃P(ξ )dξ . (B.4)

enote z(t) := P̃(t) − G. Then, integrating (B.2) and taking into
ccount (B.3) we arrive at

ż(t) = −
kp
T2

∫ t
t−T v2(ξ )

∫ ξ

ξ−T
˙̃P(θ )dθdξ

−
ki
T2

∫ t
t−T v2(ξ )

∫ ξ

ξ−T P̃(θ )dθdξ

= −
kp
T2

∫ t
t−T v2(ξ )

∫ ξ

ξ−T
˙̃P(θ )dθdξ

−
ki
T2

∫ t
t−T v2(ξ )

∫ ξ

ξ−T dθdξ P̃(t)

+
ki
T2

∫ t
t−T v2(ξ )

∫ ξ

ξ−T [P̃(t) − P̃(θ )]dθdξ, t ≥ T .

he latter equation can be written as

ż(t) = −kiV 2P̃(t) + kiY + kiX, t ≥ T , (B.5)

here

Y =
1
T2

∫ t
t−T

∫ ξ

ξ−T

∫ t
θ

v2(ξ ) ˙̃P(τ )dτdθdξ,

X = −
kp

kiT2
∫ t
t−T

∫ ξ

ξ−T v2(ξ ) ˙̃P(θ )dθdξ .
(B.6)

ummarizing, if P̃(t) is a solution to (B.2), then it satisfies the
ime-delay system (B.5). Therefore, the stability of the time-delay
ystem guarantees the stability of the original system.
We will derive the stability conditions for the time-delay sys-

em (B.5) via Lyapunov–Krasovskii’s method. Towards this end,
e choose the function

Vz = z2(t). (B.7)

ifferentiating Vz along (B.5) we have

V̇z = 2[P̃(t) − G][−kiV 2P̃(t) + kiY + kiX]. (B.8)

By applying Jensen’s inequality (D.1), we obtain

2G2
≤

∫ t
t−T (ξ − t + T ) ˙̃P2(ξ )dξ, (B.9)

whereas via Jensen’s inequalities (D.2) and (D.3) we find

X2
=

k2p
k2i T

4 (
∫ t
t−T

∫ ξ

ξ−T v2(ξ ) ˙̃P(θ )dθdξ )2

≤
k2pv4M
k2i T

4 (
∫ t
t−T

∫ ξ

ξ−T
˙̃P(θ )dθdξ )2

≤
k2pv4M
k2i T

2

∫ t
t−T

∫ ξ

ξ−T
˙̃P2(θ )dθdξ,

(B.10)

Y 2
=

1
T4

(
∫ t
t−T

∫ ξ

ξ−T

∫ t
θ

v2(ξ ) ˙̃P(τ )dτdθdξ )2

≤
v4M
T4

(
∫ t
t−T

∫ ξ

ξ−T

∫ t
θ

˙̃P(τ )dτdθdξ )2

≤
v4M
T

∫ t
t−T

∫ ξ

ξ−T

∫ t
θ

˙̃P2(τ )dτdθdξ

(B.11)

ith vM given by (14). To compensate the G-term, similarly
o Fridman and Shaikhet (2016), we will use

VG =
ki
T r

∫ t
t−T (ξ − t + T )2 ˙̃P2(ξ )dξ, r > 0. (B.12)

We have

V̇G = kirT
˙̃P2(t) −

2ki
T r

∫ t
t−T (ξ − t + T ) ˙̃P2(ξ )dξ . (B.13)

hen, due to (B.9)

˙ ˙̃ 2 4ki 2 (B.14)
VG ≤ kirTP (t) − T rG .

6

For the X-term, we consider

VX =
k2p
kiT3

r1
∫ t
t−T

∫ ξ

ξ−T (ξ − t + T ) ˙̃P2(θ )dθdξ, r1 > 0. (B.15)

hen,

V̇X =
k2p
kiT3

r1(T
∫ t
t−T

˙̃P2(ξ )dξ −
∫ t
t−T

∫ ξ

ξ−T
˙̃P2(θ )dθdξ ). (B.16)

ia (B.10), we have

V̇X ≤
k2p
kiT2

r1
∫ t
t−T

˙̃P2(ξ )dξ −
ki

v4M T
r1X2. (B.17)

To compensate the positive term in the right-hand side of (B.17),
we employ

ṼX =
k2p
ki
s
∫ t
t−T (ξ − t + T ) ˙̃P2(ξ )dξ, s > 0. (B.18)

e have
˙̃VX =

k2p
ki
s(T ˙̃P2(t) −

∫ t
t−T

˙̃P2(ξ )dξ ). (B.19)

rom (B.17) and (B.19), it follows that

V̇X +
˙̃VX ≤

k2pT
ki

s ˙̃P2(t) −
ki

v4M T
r1X2

−
k2p
ki
(s −

1
T2

r1)
∫ t
t−T

˙̃P2(ξ )dξ .

(B.20)

o compensate Y in (B.8), we consider

VY =
ki
T2

q
∫ t
t−T

∫ ξ

ξ−T

∫ t
θ
(ξ − t + T ) ˙̃P2(τ )dτdθdξ, q > 0. (B.21)

Then,

V̇Y =
ki
T q

∫ t
t−T

∫ ξ

ξ−T dθdξ ·
˙̃P2(t)

+
ki
T q

∫ t
t−T

∫ t
θ

˙̃P2(τ )dτdθ

−
ki
T2

q
∫ t
t−T

∫ ξ

ξ−T

∫ t
θ

˙̃P2(τ )dτdθdξ

=
kiT
2 q ˙̃P2(t) +

ki
T q

∫ t
t−T

∫ t
θ

˙̃P2(τ )dτdθ

−
ki
T2

q
∫ t
t−T

∫ ξ

ξ−T

∫ t
θ

˙̃P2(τ )dτdθdξ .

urther, by using (B.11) we have

V̇Y ≤
kiT
2 q ˙̃P2(t) +

ki
T q

∫ t
t−T

∫ t
θ

˙̃P2(τ )dτdθ −
ki

v4M T
qY 2. (B.22)

To cancel the double integral term in the right-hand side of (B.22),
we additionally employ

ṼY =
ki
T q

∫ t
t−T

∫ t
θ
(θ − t + T ) ˙̃P2(τ )dτdθ. (B.23)

hen,
˙̃VY =

ki
T q

∫ t
t−T (θ − t + T )dθ ˙̃P2(t)

−
ki
T q

∫ t
t−T

∫ t
θ

˙̃P2(τ )dτdθ

=
kiT
2 q ˙̃P2(t) −

ki
T q

∫ t
t−T

∫ t
θ

˙̃P2(τ )dτdθ.

(B.24)

rom (B.14), (B.20), (B.22) and (B.24), we obtain

V̇G + V̇X +
˙̃VX + V̇Y +

˙̃VY

≤ kiT (r + q+
k2p
k2i
s) ˙̃P2(t) −

4ki
T rG2

−
ki

v4M T
r1X2

−
ki

v4M T
qY 2

−
k2p
ki
(s −

1
T2

r1)
∫ t
t−T

˙̃P2(ξ )dξ .

(B.25)

mploying (B.2) and further using Young’s inequality and Jensen’s
nequality (3.87) in Fridman (2014) we have

˙̃P2(t) ≤
v4M
T2

[kp
∫ t
t−T

˙̃P(ξ )dξ + ki
∫ t
t−T P̃(ξ )dξ ]

2

≤
2v4M
T2

[k2p(
∫ t
t−T

˙̃P(ξ )dξ )2 + k2i (
∫ t
t−T P̃(ξ )dξ )

2
]

2v4M 2
∫ t ˙̃ 2 2

∫ t ˜ 2

(B.26)
≤ T [kp t−T P (ξ )dξ + ki t−T P (ξ )dξ ]
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ith vM given by (14). Substitution of (B.26) into (B.25) leads to
he term 2k3i v

4
M (r+q+

k2p
k2i
s)

∫ t
t−T P̃

2(ξ )dξ . To cancel the latter term,
we additionally employ

VvM = 2k3i v
4
M (r + q +

k2p
k2i
s)

∫ t
t−T (ξ − t + T )P̃2(ξ )dξ (B.27)

hat leads to

V̇vM = 2k3i v
4
M (r + q +

k2p
k2i
s)(T P̃2(t) −

∫ t
t−T P̃

2(ξ )dξ ). (B.28)

Define a Lyapunov functional as

V := Vz + VG + VX + ṼX + VY + ṼY + VvM , (B.29)

where Vz , VG, VX , ṼX , VY , ṼY and VvM are given by (B.7), (B.12),
(B.15), (B.18), (B.21), (B.23) and (B.27), respectively. Note that
Jensen’s inequality (3.87) in Fridman (2014)∫ t

t−T φ2(ξ )dξ ≥
1
T [

∫ t
t−T φ(ξ )dξ ]

2

ith φ(s) = (ξ − t + T ) ˙̃P(ξ ) leads to VG ≥ kirG2, whereas Jensen’s
inequality (D.1) leads to ṼX ≥

2k2p
ki

sG2. Hence

V ≥ Vz + VG + ṼX

≥

[
P̃(t)
G

]⊤
[
1 −1

∗ 1 + kir +
2k2p
ki

s

][
P̃(t)
G

]
≥ cP̃2(t)

with T -independent c > 0. Thus, V is positive definite. Taking
into account (B.8), (B.25) and (B.28), via (12), we arrive at

V̇ ≤ kiη⊤Ξ (kp, ki)η +
k2p
ki
[ − s + 2v4

M (k2i (r + q)

+k2ps) +
1
T2

r1]
∫ t
t−T

˙̃P2(ξ )dξ

≤ kiη⊤Ξ (kp, ki)η, η := col{P̃(t),G, Y , X},

where Ξ (·, ·) is defined by (13). Therefore, conditions (7) are
satisfied.

Since kp and ki appear only in the positive terms of (12) and
Ξ11(·, ·), the feasibility of LMIs (12) and (13) with the maximum
value of kMp > 0 and kMi > 0 implies their feasibility for all
−kMp ≤ kp ≤ kMp and 0 < ki ≤ kMi .
(ii) For kMp = 0, (B.5) holds with X = 0, whereas (B.26) is changed
by

˙̃P2(t) ≤
k2i v4M
T2

[
∫ t
t−T P̃(ξ )dξ ]

2
≤

k2i v4M
T

∫ t
t−T P̃

2(ξ )dξ .

Then choosing V as in (B.29) with VX = ṼX = 0 and with VvM
changed by 1

2VvM , and using arguments of (i) we arrive at the
result. □

Appendix C. Proof of Corollary 1

(i) Averaging of (B.2) over [t −
T
2 , t] for t ≥

T
2 leads to (B.5) with

G =
2
T

∫ t
t− T

2
(ξ − t +

T
2 )

˙̃P(ξ )dξ,

Y =
2
T2

∫ t
t− T

2

∫ ξ

ξ−T

∫ t
θ

v2(ξ ) ˙̃P(τ )dτdθdξ,

X = −
2kp ∫ t

T
∫ ξ

v2(ξ ) ˙̃P(θ )dθdξ .

kiT2 t− 2 ξ−T

7

hen, choosing Lyapunov functional

V = z2(t) +
2ki
T r

∫ t
t− T

2
(ξ − t +

T
2 )

2 ˙̃P2(ξ )dξ

+
2k2p
kiT3

r1
∫ t
t− T

2

∫ ξ

ξ−T (ξ − t +
T
2 )

˙̃P2(θ )dθdξ

+
k2p
ki
s
∫ t
t−T (ξ − t + T ) ˙̃P2(ξ )dξ

+
8ki
3T2

q
∫ t
t− T

2

∫ ξ

ξ−T

∫ t
θ
(ξ − t +

T
2 )

˙̃P2(τ )dτdθdξ

+
4ki
3T q

∫ t
t−T

∫ t
θ
(θ − t + T ) ˙̃P2(τ )dτdθ

+2k3i v
4
M ( r2 + q +

k2p
k2i
s)

∫ t
t−T (ξ − t + T )P̃2(ξ )dξ

(C.1)

with r > 0, r1 > 0, s > 0 and q > 0, we arrive at

V̇ ≤ kiη⊤Ξ̂ (kp, ki)η, η := col{P̃(t),G, Y , X},

where Ξ̂ (·, ·) is given by (17).
(ii) The proof of (ii) is similar to (ii) of Proposition 2. □

Appendix D. Jensen’s inequalities

Lemma 1. Denote

G :=
∫ b
a f (ξ )x(ξ )dξ, X :=

∫ t
t−T

∫ ξ

ξ−T x(θ )dθdξ,

Y :=
∫ t
t−T

∫ ξ

ξ−T

∫ t
θ
x(τ )dτdθdξ,

where a ≤ b, f : [a, b] → R, x(τ ) ∈ Rn and the integration
concerned is well defined. Then, for any n × n matrix R > 0 the
following Jensen’s inequalities hold:

G⊤RG ≤

∫ b

a
|f (ξ )|dξ

∫ b

a
|f (ξ )|x⊤(ξ )Rx(ξ )dξ, (D.1)

X⊤RX ≤ T 2
∫ t

t−T

∫ ξ

ξ−T
x⊤(θ )Rx(θ )dθdξ, (D.2)

and

Y⊤RY ≤ T 3
∫ t

t−T

∫ ξ

ξ−T

∫ t

θ

x⊤(τ )Rx(τ )dτdθdξ . (D.3)

roof. Inequality (D.1) was proved in Solomon and Fridman
2013). We will prove (D.2) and (D.3). By Schur complement, the
ollowing holds[

x⊤(τ )Rx(τ ) x⊤(τ )
∗ R−1

]
≥ 0. (D.4)

ntegration of (D.4), respectively, from ξ − T to ξ in θ , from t − T
o t in ξ , and from θ to t in τ , from ξ − T to ξ in θ , from t − T to
in ξ , where
t

t−T

∫ ξ

ξ−T
dθdξ = T 2,

∫ t

t−T

∫ ξ

ξ−T

∫ t

θ

dτdθdξ = T 3,

nd application of Schur complement leads to (D.2) and (D.3). □
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