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1 | INTRODUCTION

Proportional-integral-derivative (PID) control is widely used in many industrial processes.!> Many results on the classical
PID control have been established, for example, for the second-order systems®> and for the nth-order systems.® The PID
control depends on the output derivative that cannot be measured in practice. Instead, the derivative can be approximated
by the finite-difference leading to a delayed feedback. The delay-induced stability was studied, for example, in Niculescu
and Michiel” and Ramirez et al.® using frequency-domain technique. Alternatively, it can be studied using the LMI-based
method® that allows to cope with, for example, certain types of nonlinearities and stochastic perturbations'®!? although
being conservative.

Modern control usually employs digital technology for controller implementation, that is, sampled-data control. More-
over, sampled-data controller uses the sampled output only which is more practical. Thus, for practical application of PID
control, its sampled-data implementation is important. By using consecutive sampled outputs, sampled-data implementa-
tion of PD control was presented for the nth-order deterministic'® and stochastic!* systems. Sampled-data implementation
of PID control for the second-order deterministic systems was studied in Selivanov and Fridman.'>!¢ However, the idea
of using consecutive sampled outputs has not been studied yet for extended PID control of the nth-order deterministic
(n > 3) or stochastic (n > 2) systems.

In this present paper, we study extended PID control of the nth-order stochastic nonlinear systems. Differently from
Zhao and Guo® with the full knowledge of the system state, we consider sampled-data implementation of extended
PID control by using the sampled outputs only. Following the improved approximation method*?® with consecutive sam-
pled outputs, we approximate the extended PID controllers depending on the output and its derivatives up to the order
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n — 1 as delayed sampled-data controllers. Extension to PID control of the nth-order stochastic systems is far from being
straightforward for the following reasons:

(i) Comparatively to the models under the PD control'® or the PID control,'>!® we have additional errors to be
compensated by employing additional terms in the corresponding Lyapunov functionals.

(ii) The Lyapunov functionals of Selivanov and Fridman!*!>16 are not applicable in the stochastic case. This is because
a solution of a stochastic system does not have a derivative.'>!* Thus, we propose novel Lyapunov functionals
depending on the deterministic and stochastic parts of the system that lead to LMI-based stability conditions.

We show that the LMIs are always feasible for small enough sampling period and stochastic perturbation if the
extended PID controller that employs the full-state stabilizes the system. Moreover, we employ an event-triggering condi-
tion!”'? that allows to reduce the number of sampled control signals used for stabilization and provide L,-gain analysis.
Finally, three numerical examples are presented to illustrate the efficiency of the presented approach.

1.1 | Notations and useful inequalities

Throughout this paper, N denotes the set of positive integers and Ny = N | J{0}, I, is the identity n x n matrix, the
superscript T stands for matrix transposition. R” denotes the n dimensional Euclidean space with Euclidean norm | - |,
R™™ denotes the set of all n X m real matrices with the induced matrix norm || - ||. Denote by diag{ ... } and col{ ... }
block-diagonal matrix and block-column vector, respectively. P > 0 implies that P is a positive definite symmetric matrix.
C! is a class of i times continuously differentiable functions.

We now present some useful inequalities:

Lemma 1. (Extended Jensen’s inequality®®). Denote G = fbaf(s)x(s)ds, where f : [a,b] — R, x : [a,b] - R" and the inte-
gration concerned is well defined. Then for any n X n matrix R > 0 the following inequality holds:

GTRG < / a[f(s)lds / a[f(s)le(s)Rx(s)ds.
b b

Lemma 2. (Exponential Wirtinger’s inequality®"). Let x(t) : (a,b) — R" be absolutely continuous with x € Ly(a,b) and
x(a) = 0 or x(b) = 0. Then the following inequality holds:

y4(b — a)?

a
/ xT () Wa(s)ds < e?lalb—a >
b /4

b
/ 25T () Wx(s)ds,
a

forany @ € R and n X n matrix W > 0.

2 | EXTENDED PID CONTROL OF STOCHASTIC NONLINEAR SYSTEMS

Let {Q, &, P} be a probability space. A filtration is a family {&,t > 0} of nondecreasing sub-c-algebras of §, that is,
&s C & for s < r and P{-} be the probability of an event enclosed in the brackets. The mathematical expectation E of a
random variable £ = £(w) on the probability space {Q, &, P} is defined as E¢ = fQ E(w)dP(w). The scalar standard Wiener
process (also called Brownian motion) is a stochastic process w(t) with normal distribution satisfying w(0) = 0, Ew(t) = 0
(t > 0) and Ew?(t) = ¢ (t > 0).2?

Consider the nth-order stochastic nonlinear system

n—1 n-1
") = | Y, ey + bu(®) + g6,y O, ... .y V@) | di+ Y, dy®(tydwe). ey
i=0 i=0

Here y(t) = yO(t) € RP is the output, y?(¢) (i = 1, ... ,n — 1) is the ith derivative of y(t), a;,d; € RP® and b € RP*4 are
constant matricesand g : RXRP x ... X R? — RP is a locally Lipschitz continuous in arguments from the second to the
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last and satisfies for all ¢ > 0 the inequality

n-1
lg(t, X0, ... ,xp)|?> < Z xMpx; Vx; €RP, i=0,..,n-1, 2)
i=0

with some matricesO < M; € RP*P (i=0, ... ,n—1).
In Zhao and Guo,® an extended PID controller was designed as follows

t n—1
u(t) = lEPy(t) +K; /0 yods+ Y fu,,y@(t)] , ®3)
i=1
where Kp, K;, and ED,. €RPP (i=1, ... ,n—1) are the controller gains. Differently from Zhao and Guo® with the
full knowledge of the system state (i.e., y?(t), i =0, ... ,n — 1), we consider the output-feedback control, where y®(¢),
i=1,...,n—1in (3) are not available. Moreover, for the practical implementation we assume that the output y(¢) is
available only at the discrete-time instants ty = kh, where k € Ny and h > 0 is the sampling period. As in Selivanov and
Fridman,> we suggest the following approximations for ¢ € [ty, ty+1), k € No:

¢ 4 k-1 ) . )
() = () » Fto), / Y(s)ds ~ / yods~hY ¥, Yo 3O ~3"w), i=1,..,n-1, )
0 0 j=0

where we used /Ot"f(s)ds = 2}1;—()1 f”}(s)ds ~ 2}:01 f“i(g)ds =h J’F;(}y(t,-) for the approximation of the integral and
J J

applied the finite-difference method for y(i)(tk) (i=1,...,n—1)with
¥ P -3 -h

¥ = - ,i=1..,n-1, Y20 =50 =y, (5)

and y(t) = y(0) for t < 0. It is clear that via (5) we can compute f(l)(tk) (and thus, i(i)(tk), i=2,..,n—1).
Thus, we design in this paper the following sampled-data controller

k-1 n—1
w(t) = Key(t) + hKr Y, ¥t) + > Kpy(t),  t € [, tia),  k € N, (6)
j=0 i=1

In order to study the stability of system (1) under the sampled-data controller (6), we first present the approximation
errors y(t) — y(t) and i(l)(tk) —yO@®) (=1, ...,n—1), where t € [t, t1), k € Ny, in a convenient form suitable for the
later analysis via L-K functionals:

Proposition 1. If y € C and y® is absolutely continuous withi = 1, ... ,n, then 3(te) and Yy (t) (i = 1, ... ,n — 1) defined
by (5) satisfy for t € [tx, tx+1), k € Ny

t
() = y(©) = / (s)ds, (7
b
0 ® ’ 0 ‘) )
Vit =y"®- [ @t-spT(ds— [y (sds, i=1,..,n-1, (®)
t—ih t
where
aw="=2 vepn,
Lo eihdi+ B2 velo,h]
Pi(V) =171/ @i(DdA, v e (h, ih). i=1,..,n-2. (9)

ﬁﬁﬂ@&ﬁ& v € [ih, ih + h],
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Proof. We first introduce the errors due to the sampling:

t ) ) i
Y(te) = () — / ys)ds, ¥ =y"@ - / yods, i=1 .. .n—1 (10)
b b

Taking into account y() = y(f) in (4), together with the first equality in (10) we obtain (7). Then following arguments
for the error y2(1) = y?()) i = 1, ... ,n—1)in Proposition 1 of Selivanov and Fridman,'® that is,

. . t .
7w =y - / ot -y V)ds, i=1,..,n-1, (11)
t—ih
where @;(-) i=1, ... ,n —1) are defined by (9), we arrive at (8). [
The functions @;(-) (i = 1, ... ,n — 1) have the following properties (see the proof in Selivanov and Fridman!3):

Proposition 2. The functions @;(-) (i=1, ... ,n — 1) in (9) satisfy

ih .
D@i(0)=1, @i(ih)=0; 2)0<¢(v)<1; 3) i<0i(v) € [—l,0> ;4 / pi(v)dv = i (12)
dv h 0 2
By noting that y(tj)) = y(t;)) =0, ... ,k — 1), via (7) and (8) the sampled-data controller (6) can be presented as

k-1 n—1

t t g
u(t) = K [y(t) - / ys)ds| + K1 Y y(6) + Y, Kp, [y<“(r> - / it = 9y"(5)ds - / i )<s>ds] ,
[ Jj=0 i=1 =i I
n-1
= Kx(t) + [Kp, K1160(0) + Y, Kp,(58) + ki(D), 1 € [t tis1),  k € No, (13)
i=1

where

k-1
x(t) = col {y(t),y”)(t), Y@, (= By + R Y y(tj)} ,

J=0

- _ - t[H,
K =I[K,.Kp,, ... ,Kp, ,,K1], 6o(t) = —
4 |H

n

] x(s)ds,

t . t
5,(t) = — / 3 o)ds,  Ki(t) = — / ot —H&S)ds, i=1,....n—1,
5 t—i

—ih
H; = [Opxip, Ip, Opx(n-ipls:  1=0, ... ,n. (14)

Using (13) and (14), the system (1), (6) has the form

where

n—1

f® = (A + BK)x(t) + A160(t) + Z BEDi(éi(t) + K«;(t)) + Hf_lg(t, Hox(¢), ... ,Hp_1x(2)),
i=1

L 0 0o 0 Om-1pxp  On-1ypxp
0 I, .. 0 0 Ar=| bKp bK; |
Al o e ] 1, Opsp 16)
0o 0 0 .. I, 0 B = col{O-1)pxg: D, Opxq }»
a a; ay ... a1 O D= col{O(n_l)po,B, Opsp }»
I, 0 0 .. 0 0 D=I[dy, ... ,dn_1,0].
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Remark 1. In (15), we follow the transformation of Zhang and Fridman?? that allowed to avoid an additional non-zero
term y*V(t) — yD() = — f[:Hn_]f (s)ds — TT with TT = f[:Hn_le(s)dw(s). Note that the term IT has to be compen-
sated by additional terms in Lyapunov functional. Hence, the transformation in (15) (comparatively to Selivanov and
Fridman'>'%) significantly simplifies the analysis in the stochastic case.

Comparatively to the system model (see e.g., (27) in Selivanov and Fridman'®) under PD control, the system (15)
includes additional term A;8o(f) (due to the additional I control) that will be compensated by the additional term Vi,
defined below (20). Note also that Lyapunov functional of Selivanov and Fridman'® depends on the nth-order derivative,
and, thus, is not applicable in the stochastic case. This is because a solution of a stochastic system does not have a deriva-
tive.1214 We will present LMI conditions via novel Lyapunov functional that depends on the deterministic and stochastic
parts of the system:

Theorem 1. Consider the stochastic nonlinear system (1) under the sampled-data controller (6). Given Kp, K;, and ED,-
(i=1, ... ,n—1)let the extended PID controller (3) exponentially stabilizes (1), whered; =0({ =0, ... ,n—1)and g =0,
with a decay rate a > 0.

(i) Given tuning parameters h > 0, a € (0, @) and p X p matrices M; (i =0, ... ,n — 1), let there exist (n+ 1)p X (n + 1)p
matrix P > 0, 2p X 2p matrix Wy > 0, p X p matrices W; > 0,R; >0({ =1, ... ,n—1),Q > 0, F; > 0and F, > 0 and scalar
A > 0 that satisfy

@y PA, ®; Oy 0 PHT | hA+BK)'H! 2 h[HT,HI|W, |
«  —Zehyy, 0 0 0 hATHT (2 hIO,[I,,01"1W,
k *k (1)33 0 0 0 h(I)37 0
% * ¥ @ ) 0 h® 0
® = 44 N Y <0, (17)
# * € %  —e 20-Dh(R 4+ F,) 0 0 0
* * * * * =, hH,,_lHZ_lE 0
* * * * * * —= 0
% * % % % % * -Ws
Wi —Q W1
p=| " (n_l’)‘ e | <O (18)
* Wn_1 — 78_ a(n-1) F2
where
n-2 n-2 (ll’l)z
@y = P(A + BK) + (A + BK)'P+ 2aP + ) W H], WiH;11 + ) THL.LR,»HL-H
i=0 i=1
T (n=Dh 1 1 5 T
+D'PD + ————D"H}_(F\ + F)H,..D+ Ay HM;H,
i=0
— —_ 2
@3 = @14 = PBKp,. ... .Kp, . 53 = — - diag (Wi, ... W),
Dy = —diag{e >Ry, ... e VIR, 4}, @ys = [0,—e VIR, ],
— — —1)?
®3; = ®y; = [Kp,, ... ,Kp_I"B'H; B, E= =D R, +anviQ, (19)

with A, B, A; and D given by (16), and K and H; (i=0, ... ,n) given by (14). Then the sampled-data controller (6)
exponentially mean-square stabilizes (1) with a decay rate a.

(ii) Given any a € (0, @), LMI (17) is always feasible for small enough h > 0, ||D|| and ||[M;|| i =0, ... ,n — 1) (meaning
that the sampled-data controller (6) exponentially mean-square stabilizes (1) with a decay rate ).

Proof. (i) We consider the functional

n-1
V=Vo+ Vs + D (Vs + V5 + Vi) + Vs, + Vi, + Vi, (20)
i=1
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where

Vo(x(t)) = x (t)Px(t),

T
H,
2 [fe22=95T(5) | | W, i(s)ds — T [ 5T () Wodg(s)ds,  i=0,
b H Hn b

n

VS,(th) =
hzf —2a(t-s) [y (s )] [y (s)] ds — ‘2‘”’/ e 25T (5)Wi5i(s)ds, i=1,..,n-1,

i+1

t
V5, (%) = hzez"ih/ e 2 g (t — T ($)HL ,WiHi1x(s)ds, i=1, ... ,n—2,
t—ih

V5, (f) = P2t / e g (t = $)f () Hy_ QHp1f(5)ds,

(n=1)h

i+1

. t
Ve () = % / e 2yt — s)xT(H.  RiHix(s)ds, i=1,...,n—2,
t—ih
(n—Dh ' —2a(t—s) T T
VKn_l(ﬁ) = — e Pp1(t = 9)f (&H,_ R, 1Hp_1f (s)ds,
t—(n—1)h
-1 t
V() = Q / e g, 1 (¢t — s)x"(s)DTH!_ F1H,_1Dx(s)ds,
t—(n—1)h
t
Vi, () = / e 21 (t — $)x"(s)DTHL | FrH,_1Dx(s)ds
t

—(n—1)h

withP>0,W;>0(i=0,...,n—1),R;>0(=1,...,n—-1),Q>0,F, >0,F, >0and
ih
¢i(\))=/ @i(Ddi, i=1,...,n-1.
v

Here x,(0) =x(t+80), 6 €[-h,0]. Since &y(t) = —[H',H1"x(t), 6i(t) = —y;(l)(t) i=1,..,n=1) and 6i(tx) =0
(i=0,...,n—1), Lemma 2 implies V5, > 0 for i = 0, ... ,n— 1. Due to ¢;(-) > 0 and ¢;(-) > 0 we have the positivity of
functional V(¢) in (20). Note that the terms V5 (i=1, ... ,n—1), V5 and Vi, (i=1, ... ,n—2) are from Selivanov and
Fridman,'® whereas the novel terms V.o Vi VE, and Vp, are stochastic extensions of Lyapunov functionals that
depend on x(t).

Let L be the generator (see e.g., Shaikhet?> and Mao?*). We have along (15)

LV + 2aVy = 2xT ()Pf(t) + xT (t)DT PDx(t) + 2ax” (t)Px(t). (21)
Moreover, we have
T
2% (1) lHO] Wo [H ] x(t) - = ‘Z“héT(t)Woéo(t) i=o0,
() (1) _ .
h? [y (t)] [y (t)] e HOVA0) i=1,...n—1

G T (i
The terms Vi,i=1,...,n—2are introduced to compensate h? [y(l)(t)] Wi [}m(t)], i=1,...,n—2in (22). By using
Lemma 1, via (12) we have

i+1 i+1

t
LV; + 2aV; = h*"xT ()H! | WiH 1 x(t) — k2> / e=2a(=9) [di(pi(t—s)] xT($)HT  W;H,,1x(s)ds
' ' t—ih S
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< h2€2aith(t)H_T

ip1 WiHip1x(t)

t

-1 t
- h2< JL deit — s)) / [i(pi(t - s)] x"()H] dsW; [i(pi(z - s)] Higx(s)yds, i=1,..,n-2.
! ¢ ds ! ds

—ih t—ih
(23)
From (8), it follows that
(') - t -
¥ =y - / et —s)yP(s)ds, i=1,..,n-1
t—ih
Via (12) the latter implies
(i) ! d - (i) ‘ d ; ;
y (0= — @it —s)| Yy (s)ds = —@i(t=s)| Hix(s)ds, i=1,...,n—1. (24)
i—in | S t—in L dS
Noting that fl[_ihd@(t —5) = @i(0) — @i(ih) = 1 and Hix(s) = Hi11x(s) (i=0, ... ,n — 2), from (23) and (24) we have
. -(i T =i
LV, +2aV5, < W T oH] Witlx@ - [ o] wi o], =1 n-2 (25)

iy 1T L
Then the terms —h? [ﬁ(l)(t)] W; [}m(r)] (i=1, ... ,n-2)in the above expression will cancel the positive term of LV, +

2aVs (i=1, ... ,n—2). Note that the term §(i)(t) with i = n — 1 in (24) has the following form:

. n_ t
7w = / [i(pn_l(t - s)] Hyak(s)ds S pu(6) + pa(t), (26)
t—(n-1)h ds
where
t d t d
() = / [_(Pn—l([ - S)] Hyaf(s)ds,  pa(t) = / [_(pn—l(t - S)] Hy—1Dx(s)dw(s).
t~(n-1h [ dS i—(n=Dh | dS
Thus

22) 2w
LVs  +2aVs = h*[p1(0) + p2()) W1 [p1(D) + p2 (D] — %e 20h T (W18 (0). (27)

To compensate p; (t), we employ the term V5, that is,

t
LV5, , +2aV5, = W I T(OH] QHyf (1) — W2 1" / e 2= [%(pn_l(r - s)] fH($)H,_QHy1f(s)ds
t—(n—1)h

< WO (OH] | QHanr f(8) — o] (DQp1 (D), (28)
where we applied Lemma 1 with (12). Note that (12) implies

ih .
$i(0) =/ @i(Mdi = % ¢iih)=0, i=1,..,n—-1 (29)
0

For the p,(t)-term, by using Itd isometry (see, e.g., Shaikhet*? and Mao?*), via (12) we have for any p X p matrix F; > 0
t d 2
e 2D RE T (O F, py(t) = e "VhpE / [a(pn_l(t - s)] x"(s)D'H | F1H,_1Dx(s)ds
t—(n—1)h

t
<E / e~20(=s) i(pn_l(t—s) x"(s)D"H!_ | FyH,_1Dx(s)ds.
—(n-h ds
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The latter together with (29) leads to

ELVy, +2aEVp, = uExT(t)DTHT 1F1Hy 1 Dx(t)
_(-Dhp / e2a=s) iqo,,_l(t —s)| x"(s)D"H_ | F,H,_1Dx(s)ds
2 t—(n—1)h ds
-1 - 1h?
< DR 0pTHE 1 Dvtt) - P g ) o), (30)
By using Lemma 1, via (29) we have
. t
LV, +2aV, _ G ) ——x"(OH}, | RiH; 1 x(1) — %/ e 2 it — s)x" ($)H,, | RiHi1X(s)ds
t—ih
< —(l ) xT(OH] RiHpax(D) — e[ (ORixi(), i=1,...,n-2. (31)
(n )2h2 Ty T
LV,  +2aV, < ————f (OH,_ Ry-1Hu-1f(0)
t
— g720(n=Dh [ /tt_(n_l)h @n-1(t — )T (HL 1ds] n-1 [ /t _(n_l)h(Pn—l(t = $)Hy1f(s)ds
- 1)%h?
= ) ————fTOH,_ Ry Hyr f(0) = € iy 1 (1) + p3(0)] R [k0a () + p30), (32)

where

t
p3(t) = / @n-1(t — $)Hy—1 Dx(s)dw(s).
t—(n—1)h

To compensate p3(t), we employ the term Vp, that leads to

-1 ¢
ELVE, + 2aEVp, < uExT(r)DTHT JF2H,1Dx(t) — / e g, 1(t — )x"(s)D"H!_ | F;H,_1Dx(s)ds
2 t—(n—=1h
< @ExT(t)DTHT \F>H,_1Dx(t) — e VRE pT (1)) Fy s (). (33)
where we applied It6 isometry with (12). From (2), we have
n-1
|8t Hox(1). ... . Hy_yx(t)|* < ) x"()H MiHix(t). (34)
i=0
Hence, the following inequality holds:
n—1
Y, x"(OH] MiHx(t) - |g(t, Hox(D), ... ,Hn_lx(t))lzl >0, (35)
i=0

for some constant A > 0.
In view of (21), (22), (25), (27), (28), and (30)-(33), taking into account the relations HoXx(t) = Hix(t) and H,x(t) =
Y(tx) = Hox(t) + [Ip, 0]60(t) and applying S-procedure with (35) we obtain

ELV +2aEV < EET(O®E(L) + W2 EnT ()®n(H) + WEfT(OH!_, [(" Ry_q + ¥ W'Q] H,_1f(0)

5 Hix() ' Hix(¢)
Hox(t) + [Ip, 0150(t) l Hox(t) + [Ip, 015o(t)
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(n—1)>*

(lsg) EET (@) + WEfT(HHE, [ R,1 + ez"("‘l)hQ] Ho_1f (1)

T
+ th H1X(t) W/l H1X(t) ’ (36)
Hox(t) + [Ip, 0]60(1) Hox(t) + [Ip, 0]60(t)

where @ is obtained from ® in (17) by taking away the last two block-columns and block-rows, ¥ is given by (18) and

g(t) = COl{x(t)’ 50(0’ LRI 5?’1—1(07 Kl(t)9 LR Kn—l(t)s p3(t)s g(t’ HOx(t)s (X} »Hn—lx([))}’ ’7({) = COl{pl(t)s pZ([)} (37)

Substituting (16) for f(¢) and further applying Schur complement, we deduce that ® < 0 given by (17) guarantees ELV +
2¢EV < 0 implying that the sampled-data controller (6) exponentially mean-square stabilizes (1) with a decay rate a.
(ii) The system (1), (3) has the form

dxe(t) = [(A + BK)X(t) + Hy_,8(t, Hoxe(0), ... , Hyo1Xe(1))] dt + Dx(t)dw(?),

n

t
x.(t) = col {y(t),y(”(t), oY), / y(s)ds},
0

where A, B, D are given by (16) and K is given by (14). If the PID controller (3) exponentially stabilizes (1), where g = 0
andd; =0(i =0, ... ,n—1) (and thus, D = 0), with a decay rate @ > 0, then there exists 0 < P € R**DPx(n+p gych that
P(A + BK) + (A + BK)TP + 2aP < 0 for any « € (0, ). Thus,

P(A+BK)+ (A+BK)'P+2aP+D"PD < 0, (38)
. 1 1 . 1
for small enough |D|. We ChO(fe in LMI(17) W, = lep, Ri=W;=Q=F,=F, = WIP i=1,...,n—1)and A = T
Applying Schur complement, ® < 0 is equivalent to
1 n-1
P(A + BK) + (A + BK)'P +2aP + D"PD + Vh(Gy + hGy) + —= Y. H'M;H; < 0, (39)

hi=o

where

n—1
— — — —T — —T
Gi=(n-1D"H! H,.D+ izez"hP[(Al + BKp)(A; + BKp)T + Z BKp Kp,B' + BKK; B"|P
4 i=1
n-2 T T
+ Y e"PBKp Kp B"P + 2" V"PBKp, Kp, B'P+ PH,_ H, P,
i=1

n-2 0
— 2aih , L T
G, = ; <€ oy Z) Hi+1Hi+1-

Inequality (38) implies (39) for small enough h >0 and ||M;|]| (i=0, ... ,n—1) since \/E(Gl + hG,) - 0 and
ﬁZ?:_olHiTMiHi = \/EZ?:_()lHiTHi — 0for h — 0 where we choose, for example, M; = hl, (i =0, ... ,n — 1), implying the

feasibility of ® < 0 for small enough h > 0 and [|M;|| (i =0, ... ,n — 1). Finally, applying Schur complement to  the last
two block-columns and block-rows of @ given by (17), we find that ® < 0 is feasible for small enough 7 > 0if ® < 0 is
feasible. Thus, LMI (17) is always feasible for small enough h > 0, ||D|| and ||M;]| (i=0, ... ,n —1). (]

For the deterministic case (i.e., the system (1) with d; =0 (i = 0, ... ,n — 1)), we consider the functional V that is
obtained from V in (20) by setting F; = F, = 0 and changing f(s) and Q respectively as x(s) and W,,_;. The latter includes
additional terms Vj, V3, Vi, (i=2, ... ,n—1) to compensate additional errors §;(f) and x;(t) (i=2, ... ,n—1) in (15)
comparatively to Selivanov and Fridman.!>1¢
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Corollary 1. Consider the deterministic nonlinear system (1) with d; =0 (i =0, ... ,n — 1) under the sampled-data con-
troller (6). Given Kp, Kr and Kp, (i =1, ... ,n—1) let the extended PID controller (3) exponentially stabilizes (1), where
di=0@{=0,...,n—1)andg = 0, with a decay rate a > 0.

(i) Given tuning parameters h > 0, a € (0, @) and p X p matrices M; (i =0, ... ,n — 1), let there exist (n + 1)p X (n + 1)p
matrix P > 0, 2p X 2p matrices Wy > 0 and p X p matrices W; > 0andR; > 0(i =1, ... ,n — 1) and scalar A > 0 that satisfy
® <0, (40)

where @ is obtained from ® in (17) by setting D = 0, F; = F, = 0, Q = W,_; and and taking away the fifth block-column and
block-row. Then the sampled-data controller (6) exponentially stabilizes (1), where d; =0 (i =0, ... ,n — 1), with a decay
rate a.

(ii) Given any a € (0, a), LMI (40) is always feasible for small enough h > 0 and ||M;|| i =0, ... ,n — 1) (meaning that
the sampled-data controller (6) exponentially stabilizes (1), whered; =0 (i =0, ... ,n — 1), with a decay rate a).

Remark 2. Note that less conservative integral inequalities were introduced e.g. in Seuret et al.>>?® to improve the results
via LMIs. However, the LMIs of Seuret et al.>>%% cannot be guaranteed to be always feasible. By contrast, we provide in
(ii) of Theorem 1 and Corollary 1 (and Theorems 2 and 3 below) the feasibility guarantee of LMIs which were obtained
by using Jensen’s and Wirtinger’s inequalities.

3 | EVENT-TRIGGERED PID CONTROL

Event-triggered control allows to reduce the number of signals transmitted through a communication network (see e.g.,
Tabuada,'” Yue et al.,'® and Heemels et al.'”). The idea is to transmit the signal only when it satisfies some preselected
event-triggering condition. For simplicity we here introduce an event-triggering condition with respect to the control
signals:!

[(t) — W1 17O [ulty) — k1] > ou” (5)Ou(ty), (41)

where ¢ € [0,1) and 0 < ® € R?1 are the event-triggering parameters, u(ty) is from (6) and #i;_; denotes the last
transmitted control signal. Thus, iy = u(ty) and
u(ty), if (41) is true,
oy = (tr) (41) 42)
k-1, if (41) is false.

Hence, the system (1) becomes

n-1 n-1

dy™() = | Y ay®@) + bite + g6,y @), .. y”"”(t))] di+ ) dy®(Odw(t), € [t tisa), k€N, (43)
i=0 i=0

with #; given by (42). Introduce the event-triggering error

e = Ox — u(ty). (44)

Then following the modeling in the previous section, the system (43) under the event-triggered PID control (3), (41), (42)
can be presented as (cf. (15))

dx(t) = [f(¢) + Beldt + Dx(t)dw(t), t € [tk,tks1), k € Np. (45)

Theorem 2. Consider the stochastic nonlinear system (1) under the event-triggered PID controller (6), (41), (42). Given
Kp, K; and I?Di (i=1, ... ,n—1) let the extended PID controller (3) exponentially stabilizes (1), where g=0 and d; =0
i=0, ... ,n—1), with a decay rate a > 0.

(i) Given tuning parametersh > 0, « € (0, a), ¢ € [0,1) and p X p matrices M; (i =0, ... ,n — 1), let there exist (n + 1)p X
(n + 1)p matrix P > 0, 2p X 2p matrices Wy > 0, p X p matrices W; > 0,R; >0(i=1, ... ,n—1),Q>0,F;, >0and F, > 0,
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g X q matrix © > 0 and scalar A > 0 that satisfy (18) and

( PB cK'®
0 olKp,K;]7O®
0  olRp.....ERp_1"®
0 o[Kp,,....Kp, 170
O] 0 0
o, = <0, (46)
0 0
hZH, 1B 0
0 0
* -0 0
] * —-0c® |

where @ and E are respectively given by (17) and (19), K and H,_, are given by (14) and B is given by (16). Then the
event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate a.

(ii) Given any a € (0, ), LMI (46) is always feasible for small enough h > 0, 6 € (0,1), ||D|| and [|[M;]| i =0, ... ,n—1)

(meaning that the event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate a).

Proof. (i) Using the triggering error (44), the event-triggering condition (41), (42) guarantees
0 < ou’ (tx)Ou(ty) — e Oey. 47)

Consider the functional V from (20) with f(t) changed by f(¢) + Bex. Following the proof of item (i) of Theorem 1, along
(45) we have (cf. (36))

(47)
ELV + 2aEV < ELV + 2aEV + oEu’ (t,)Ou(t;) — Ee/ Oe;
(n—1)?

< EEl(DDe&,(t) + W*E(f(t) + Bey)"H_, [

T
L RE Frx(t) W, v T oBu"(1)Qut), (48)
Hox(t) + n, 0160(®) | | Hox(t) + [T, 01600

Ry + e““‘“hcg] H,_1(f(¢) + Bey)

where &,(t) = col{&(¢), e, } with &(f) given by (37), @, is obtained from @, in (46) by taking away the i- and j-blocks with
i€ {7,8,10} orj € {7,8,10}. Substituting (13) and (16), respectively, for u(ty) and f(t) and further applying Schur com-
plement, we find that ®, < 0 given by (46) guarantees ELV + 2«¢EV < 0 implying that the event-triggered PID controller
(6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate a.

(ii) The proof of (ii) is similar to (ii) of Theorem 1. [
Remark 3. To select the tuning parameters h, «, o, M; and d; (i=0, ... ,n — 1) we suggest the following algorithm:
choose Kp, K; and EDi (i=1, ... ,n—1)via pole-placement such that the extended PID controller (1) exponentially sta-
bilizes (13), whereg=0and d; =0 (i =0, ... ,n — 1), with a decay rate « > 0. By solving the LMIs with M; =0, d; =0
i=0,...,n—1), c =0 and small enough h > 0, we find a critical maximal value of @ as a* < «. Then, by choosing
a € [0,a*]withM; =0,d; =0(i =0, ... ,n—1)and small enough h > 0, we find a critical maximum value of ¢ as 6*. The
same is done for M;, d; (i =0, ... ,n — 1) that leads to critical maximum values of M;, d; (i =0, ... ,n — 1), respectively, as

M, df (i=0,...,n—1). Thenfora € [0,a"],c €[0,6"], M; € [0,M;] and d; € [0,d]] (i =0, ... ,n — 1), we can obtain
a critical maximal value of h = h* such that for 1 > h* the LMI becomes unfeasible.
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4 | L,-GAIN ANALYSIS

The direct Lyapunov method is applicable not only to the stability but also to the performance analysis,” for example,
L,-gain analysis. In this section, we consider L,-gain analysis of the perturbed systems, namely (cf. (43))

n—1 n—1
Ay () = | Y, ay®(®) + bitg + by(t) + g&yO®), ... .y V(@O | det+ Y dyP(Odw(t), ¢ € [t 1), k€ No,  (49)
i=0 i=0

where b, € RP*P» is a constant matrix and v(t) € RP» is the external disturbance in L,[0, o).
The system (49) under the event-triggered PID control (3), (41), (42) has the form:

dx(t) = [f(t) + Bey + Byv(t)]dt + Dx(t)dw(t), t€E [ty,tkr1), k € Ny, (50)
where x(t) is given by (14), f(t), B and D are given by (16) and
By, = col{0¢—1)pxp,» bvs Opxp, } - (51)
Consider next the controlled output
2(6) = Cx(O) + Cu(D),  z(t) € R, (52)

where C € R*"*+DP and C, € R™P» are constant matrices. For a prechosen y > 0 we introduce the following performance
index:

J= / [2" (Dz(t) — YT (0)v(t))] dt. (53)
0

We seek conditions that will lead to EJ < 0 for all x(t) satisfying (50) with the zero initial condition x(0) = 0 and for all
0 # v € L,[0, o0). In this case the system (50), (52) has L,-gain less than or equal to y. Moreover, if the system (50) with
v = 0 is exponentially mean-square stable, then the system (50) is internally exponentially mean-square stable.

Lemma 3. ° Given a > 0 and y > 0, let for V given by (20) the following inequality holds along the solutions of (50):

ELV + 2aEV + Ez"(H)z(t) — yT(Hv(t) <0 VO # v(t) € RP and V¢ > 0. (54)

If(54) holds with a = 0, then the system (50), (52) has L,-gain less than or equal to y. Moreover, if (54) holds with « > 0, then
the system (50) is internally exponentially mean-square stable with a decay rate a.

Based on Lemma 3, we now present the following LMI conditions:

Theorem 3. Consider the stochastic nonlinear system (1) with an additive external disturbance v(t) under the event-triggered
PID controller (6), (41), (42) leading to system (50), and the controlled output (52). Given Kp, K;and EDL, i=1,..,n-1)
let the extended PID controller (3) exponentially stabilizes (1), whereg =0and d; =0 (i =0, ... ,n — 1), with a decay rate
a>0.

(i) Given tuning parametersh > 0, « € (0, @), c € [0,1)andy > 0, and p X p matrices M; (i =0, ... ,n — 1), let there exist
(n+ 1)p X (n+ 1)p matrix P > 0, 2p X 2p matrices Wy > 0, p X p matrices W; >0, R; >0(i=1, ... ,n—1),Q>0,F; >0
and F, > 0, ¢ X g matrix ® > 0 and scalar A > 0 that satisfy (18) and

PB, cT

Ocn+2pxp,  O@n+2)pxp,

@, | hEH, 1B,  Opsxp,
@, =

2

<0, (55)
O2prgixp,  O20p+g)xp,

* —y2I, cr

* —Il
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TABLE 1 Maximum value of h via linear matrix inequalities

Example 1 Example 2 Example 3
d, 0 0.2 0.5 0 0.2 0.5 0 0.01 0.02
Selivanov and Fridman®® 0.0047 — — — — — — — —
Selivanov and Fridman'® 0.019 — — — — — — — —
Corollary 1 0.019 — — 0.105 — — 0.084 — —
Theorem 1 0.019 0.012 0.002 0.105 0.910 0.055 0.084 0.070 0.001

where Hy,_1, E, ®, and B, are respectively given by (14), (19), (46), and (51), and C and C, are given by (52). Then the
event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate a, and the system
(50), (52) has L,-gain less than or equal to y.
(ii) Given any a € (0,a), LMI (55) is always feasible for small enough h >0, ¢ € (0, 1), % >0, |D|| and ||M;||
(i=0, ... ,n—1) (meaning that the event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1)
with a decay rate «).

5 | EXAMPLES

To illustrate the efficiency, we present three examples including a servo positioning system.

Example 1. Consider system (1) with
=0, a;=-84, b=3571, g=0. (56)
The system is not stable if u = 0. The PID controller (3) with
Kp=-10, K;=-40, Kp, =-0.65. (57)

stabilizes system (1) with (56) for small enough stochastic perturbations. Let « = 5 be the desired decay rate. In the deter-
ministic case (i.e., dy = d; = 0), LMIs of Corollary 1 and Selivanov and Fridman'® lead to the same result which is larger
than that via Selivanov and Fridman.'® In the stochastic case, LMIs of Theorem 1 with d, = 0 and different values of d;
lead to efficient results (see Table 1).

Consider now system (1) with (56) under the event-triggered PID control. For & = 0.005, dy = 0 and d; = 0.2, LMI of
Theorem 2 is feasible for a maximum value of 6 = 0.074. Sampled-data control requires to transmit 1/h + 1 = 201 con-
trol signals during 1 s of simulations. By performing numerical simulations with 10 randomly chosen initial conditions
[1X(0)||e < 1 where we applied Euler-Maruyama method?’ using a step size 10dt with dt = 107°, the event-triggered con-
trol requires to transmit on average 63.95 control signals. Thus, the even-triggering mechanism (41), (42) reduces the
number of transmitted control signals by almost 69%.

Example 2. (Chain of three integrators). Consider system (1) with
=0, i=0,1,2, b=1 g=0. (58)
Using the pole placement, we find that for (3) with
Kp=-6.026, K;=-1.716, Kp =-791, Kp =—46, (59)
the eigenvalues of A + BK are —1, —1.1, —1.2 and —1.3. Therefore, the PID controller (3) with (59) stabilizes system (1)
with (58) for small enough stochastic perturbations.

Let « = 0.2, dy = d, = 0. For different values of d;, the maximum values of h that preserve the exponential stability
are presented in Table 1. It is clear that LMIs of Corollary 1 and Theorem 1 lead to efficient results whereas Selivanov
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and Fridman'>'° fail. For h = 0.04 and d; = 0.2, LMIs of Theorem 2 are feasible for a maximum value of ¢ = 0.119. We
next perform numerical simulations with 10 randomly chosen initial conditions ||x(0)|| < 1 by using Euler-Maruyama
method?’” with a step size 10dt and dt = 10°. One can find that the event-triggered control requires to transmit on average
96.8 control signals during 10 seconds. Note that the number of transmissions for the sampled-data control is given by
10/h + 1 = 251. Thus, the event-triggering mechanism (41), (42) reduces the number of transmitted control signals by

over 61%.

Example 3. Consider the servo positioning system with a stochastic perturbation®®%’

01dyV (1) = [=02yD (&) + u(t) = FOD(0) + byu(t)]de + diyV(H)dw(®), (60)
where F(j(t)) = 6, tanh(700y(¢)) + 0s[tanh(15)(¢)) — tanh(1.5)(¢))], y(¢) is the motor rotation angle, u(f) is the control

input and w(¢) is the load disturbance. Set [6,, 02, 83, 64] = [0.0025,0.02,0.01, 0.205]. Following the previous modeling, the
system (60) under an event-triggered PID control can be written in the form of (45) with

0o 1 0 0 0 0 0 O

= _b = =X = = 4
A=10 , 0], Ar=|0|, B= o | B,=|b,|, D= , 0
1 0 O 1 0 0 0 0 O

and with g = —F(y(¢)). Note that the latter nonlinearity satisfies (2) with My = 0 and M; = 14.13. Moreover, the controlled
output is given by (52) with C = [1,0, 0] and C, = 2. The PID controller (3) with

Kp=-0.4980, K;=-0.0255 Kp =-0.270, (61)

exponentially stabilizes the system (60).

Set « = 0.1 and dy = 0. For different values of d; and b, = 0, LMIs of Corollary 1 and Theorem 1 lead to effi-
cient results in Table 1. For h = 0.05, d; = 0.01 and b, = 0, LMIs of Theorem 2 are feasible for a maximum value of
o = 0.04. Sampled-data control requires to transmit 5/h + 1 = 101 control signals during 5 s. By performing numeri-
cal simulations with 10 randomly chosen initial conditions ||x(0)||, < 1 where we applied Euler-Maruyama method?’
using a step size 10dt with dt = 107°, the event-triggered control requires to transmit on average 32.6 control sig-
nals. Thus, the even-triggering mechanism (41), (42) reduces the number of transmitted control signals by over
67%. Moreover, for h = 0.02, d; = 0.01, b, =1 and ¢ = 0.04, by LMIs of Theorem 3 a minimum value of y = 2.02 is
obtained.

6 | CONCLUSIONS

In this paper, sampled-data implementation of extended PID control using delays has been presented for the nth-order
stochastic nonlinear systems. We have employed an event-triggering condition that allows to reduce the number of sam-
pled control signals used for stabilization and have studied L,-gain analysis. The suggested method may be useful for
delay-induced consensus in multi-agent systems under an extended PID control. This may be a topic for the future
research.
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