SPECIAL ISSUE ARTICLE

.0991239, 2022, 18, Downloaded from https://onlinelibarry.viley.com/doi/10.1002/mc.5704 by Tel Avi University. Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.viley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

WILEY

Sampled-data implementation of extended PID control using delays

Jin Zhang | Emilia Fridman

School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

Correspondence

Jin Zhang, School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

Email: zhangjin1116@126.com

Funding information

Israel Science Foundation, Grant/Award Number: 673/19; Ministry of Science and Higher Education of the Russian Federation, Grant/Award Number: 075-15-2021-573; the Planning and Budgeting Committee (PBC) Fellowship from the Council for Higher Education, Israel

Abstract

We study the sampled-data implementation of extended PID control using delays for the nth-order stochastic nonlinear systems. The derivatives are approximated by finite differences giving rise to a delayed sampled-data controller. An appropriate Lyapunov–Krasovskii (L-K) method is presented to derive linear matrix inequalities (LMIs) for the exponential stability of the resulting closed-loop system. We show that with appropriately chosen gains, the LMIs are always feasible for small enough sampling period and stochastic perturbation. We further employ an event-triggering condition that allows to reduce the number of sampled control signals used for stabilization and provide L_2 -gain analysis. Finally, three numerical examples illustrate the efficiency of the presented approach.

KEYWORDS

 \mathcal{L}_2 -gain analysis, event-triggered control, PID control, sampled-data control, stochastic perturbations

1 | INTRODUCTION

Proportional-integral-derivative (PID) control is widely used in many industrial processes.^{1,2} Many results on the classical PID control have been established, for example, for the second-order systems³⁻⁵ and for the *n*th-order systems.⁶ The PID control depends on the output derivative that cannot be measured in practice. Instead, the derivative can be approximated by the finite-difference leading to a delayed feedback. The delay-induced stability was studied, for example, in Niculescu and Michiel⁷ and Ramírez et al.⁸ using frequency-domain technique. Alternatively, it can be studied using the LMI-based method⁹ that allows to cope with, for example, certain types of nonlinearities and stochastic perturbations¹⁰⁻¹² although being conservative.

Modern control usually employs digital technology for controller implementation, that is, sampled-data control. Moreover, sampled-data controller uses the sampled output only which is more practical. Thus, for practical application of PID control, its sampled-data implementation is important. By using consecutive sampled outputs, sampled-data implementation of PD control was presented for the nth-order deterministic¹³ and stochastic¹⁴ systems. Sampled-data implementation of PID control for the second-order deterministic systems was studied in Selivanov and Fridman. However, the idea of using consecutive sampled outputs has not been studied yet for extended PID control of the nth-order deterministic ($n \ge 3$) or stochastic ($n \ge 2$) systems.

In this present paper, we study extended PID control of the nth-order stochastic nonlinear systems. Differently from Zhao and Guo⁶ with the full knowledge of the system state, we consider sampled-data implementation of extended PID control by using the sampled outputs only. Following the improved approximation method¹³ with consecutive sampled outputs, we approximate the extended PID controllers depending on the output and its derivatives up to the order

10991239, 2022, 18, Downloaded from https://onlinelibarry.wiley.com/doi/10.1002/mc.5704 by Tel Aviv University, Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

n-1 as delayed sampled-data controllers. Extension to PID control of the nth-order stochastic systems is far from being straightforward for the following reasons:

- (i) Comparatively to the models under the PD control¹³ or the PID control, ^{15,16} we have additional errors to be compensated by employing additional terms in the corresponding Lyapunov functionals.
- (ii) The Lyapunov functionals of Selivanov and Fridman^{13,15,16} are not applicable in the stochastic case. This is because a solution of a stochastic system does not have a derivative.^{12,14} Thus, we propose novel Lyapunov functionals depending on the deterministic and stochastic parts of the system that lead to LMI-based stability conditions.

We show that the LMIs are always feasible for small enough sampling period and stochastic perturbation if the extended PID controller that employs the full-state stabilizes the system. Moreover, we employ an event-triggering condition $^{17-19}$ that allows to reduce the number of sampled control signals used for stabilization and provide L_2 -gain analysis. Finally, three numerical examples are presented to illustrate the efficiency of the presented approach.

1.1 | Notations and useful inequalities

Throughout this paper, \mathbb{N} denotes the set of positive integers and $\mathbb{N}_0 = \mathbb{N} \bigcup \{0\}$, I_n is the identity $n \times n$ matrix, the superscript T stands for matrix transposition. \mathbb{R}^n denotes the n dimensional Euclidean space with Euclidean norm $|\cdot|$, $\mathbb{R}^{n \times m}$ denotes the set of all $n \times m$ real matrices with the induced matrix norm $|\cdot|$. Denote by diag $\{\ldots\}$ and col $\{\ldots\}$ block-diagonal matrix and block-column vector, respectively. P > 0 implies that P is a positive definite symmetric matrix. C^i is a class of i times continuously differentiable functions.

We now present some useful inequalities:

Lemma 1. (Extended Jensen's inequality²⁰). Denote $G = \int_b^a f(s)x(s)ds$, where $f : [a,b] \to \mathbb{R}$, $x : [a,b] \to \mathbb{R}^n$ and the integration concerned is well defined. Then for any $n \times n$ matrix R > 0 the following inequality holds:

$$G^T RG \le \int_h^a |f(s)| ds \int_h^a |f(s)| x^T(s) Rx(s) ds.$$

Lemma 2. (Exponential Wirtinger's inequality²¹). Let $x(t):(a,b)\to\mathbb{R}^n$ be absolutely continuous with $\dot{x}\in L_2(a,b)$ and x(a)=0 or x(b)=0. Then the following inequality holds:

$$\int_{b}^{a} e^{2\alpha t} x^{T}(s) Wx(s) ds \leq e^{2|\alpha|(b-a)} \frac{4(b-a)^{2}}{\pi^{2}} \int_{a}^{b} e^{2\alpha t} \dot{x}^{T}(s) W\dot{x}(s) ds,$$

for any $\alpha \in \mathbb{R}$ and $n \times n$ matrix W > 0.

2 | EXTENDED PID CONTROL OF STOCHASTIC NONLINEAR SYSTEMS

Let $\{\Omega, \mathfrak{F}, \mathbf{P}\}$ be a probability space. A filtration is a family $\{\mathfrak{F}_t, t \geq 0\}$ of nondecreasing sub- σ -algebras of \mathfrak{F} , that is, $\mathfrak{F}_s \subset \mathfrak{F}_t$ for s < t and $\mathbf{P}\{\cdot\}$ be the probability of an event enclosed in the brackets. The mathematical expectation \mathbf{E} of a random variable $\xi = \xi(w)$ on the probability space $\{\Omega, \mathfrak{F}, \mathbf{P}\}$ is defined as $\mathbf{E}\xi = \int_{\Omega} \xi(w) d\mathbf{P}(w)$. The scalar standard Wiener process (also called Brownian motion) is a stochastic process w(t) with normal distribution satisfying w(0) = 0, $\mathbf{E}w(t) = 0$ (t > 0) and $\mathbf{E}w^2(t) = t$ (t > 0).

Consider the *n*th-order stochastic nonlinear system

$$dy^{(n)}(t) = \left[\sum_{i=0}^{n-1} a_i y^{(i)}(t) + bu(t) + g(t, y^{(0)}(t), \dots, y^{(n-1)}(t))\right] dt + \sum_{i=0}^{n-1} d_i y^{(i)}(t) dw(t). \tag{1}$$

Here $y(t) = y^{(0)}(t) \in \mathbb{R}^p$ is the output, $y^{(i)}(t)$ (i = 1, ..., n - 1) is the *i*th derivative of y(t), $a_i, d_i \in \mathbb{R}^{p \times p}$ and $b \in \mathbb{R}^{p \times q}$ are constant matrices and $g : \mathbb{R} \times \mathbb{R}^p \times ... \times \mathbb{R}^p \to \mathbb{R}^p$ is a locally Lipschitz continuous in arguments from the second to the

1.091239, 2022, 18, Downloaded from https://onlinelibary.viele.com.doi/10.1002/mc.5704 by Tel Aviv University. Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

last and satisfies for all $t \ge 0$ the inequality

$$|g(t, x_0, \dots, x_{n-1})|^2 \le \sum_{i=0}^{n-1} x_i^T M_i x_i \quad \forall x_i \in \mathbb{R}^p, \quad i = 0, \dots, n-1,$$
 (2)

with some matrices $0 < M_i \in \mathbb{R}^{p \times p}$ (i = 0, ..., n - 1).

In Zhao and Guo,⁶ an extended PID controller was designed as follows

$$u(t) = \left[\overline{K}_P y(t) + \overline{K}_I \int_0^t y(s) ds + \sum_{i=1}^{n-1} \overline{K}_{D_i} y^{(i)}(t) \right], \tag{3}$$

where \overline{K}_P , \overline{K}_I , and $\overline{K}_{D_i} \in \mathbb{R}^{q \times p}$ (i = 1, ..., n-1) are the controller gains. Differently from Zhao and Guo⁶ with the full knowledge of the system state (i.e., $y^{(i)}(t)$, i = 0, ..., n-1), we consider the output-feedback control, where $y^{(i)}(t)$, i = 1, ..., n-1 in (3) are not available. Moreover, for the practical implementation we assume that the output y(t) is available only at the discrete-time instants $t_k = kh$, where $k \in \mathbb{N}_0$ and h > 0 is the sampling period. As in Selivanov and Fridman, t_i^{15} we suggest the following approximations for $t \in [t_k, t_{k+1}), k \in \mathbb{N}_0$:

$$y(t) = \overline{y}(t) \approx \overline{y}(t_k), \quad \int_0^t y(s)ds \approx \int_0^{t_k} \overline{y}(s)ds \approx h \sum_{i=0}^{k-1} \overline{y}(t_i), \quad y^{(i)}(t) \approx \overline{y}^{(i)}(t) \approx \overline{y}^{(i)}(t_k), \quad i = 1, \dots, n-1,$$
 (4)

where we used $\int_0^{t_k} \overline{y}(s) ds = \sum_{j=0}^{k-1} \int_{t_j}^{t_{j+1}} \overline{y}(s) ds \approx \sum_{j=0}^{k-1} \int_{t_j}^{t_{j+1}} \overline{y}(t_j) ds = h \sum_{j=0}^{k-1} \overline{y}(t_j)$ for the approximation of the integral and applied the finite-difference method for $\overline{y}^{(i)}(t_k)$ (i = 1, ..., n-1) with

$$\overline{y}^{(i)}(t) = \frac{\overline{y}^{(i-1)}(t) - \overline{y}^{(i-1)}(t-h)}{h}, \quad i = 1, \dots, n-1, \quad \overline{y}^{(0)}(t) = \overline{y}(t) = y(t), \tag{5}$$

and y(t) = y(0) for t < 0. It is clear that via (5) we can compute $\overline{y}^{(1)}(t_k)$ (and thus, $\overline{y}^{(i)}(t_k)$, i = 2, ..., n - 1). Thus, we design in this paper the following sampled-data controller

$$u(t) = \overline{K}_{P}\overline{y}(t_{k}) + h\overline{K}_{I}\sum_{j=0}^{k-1}\overline{y}(t_{j}) + \sum_{i=1}^{n-1}\overline{K}_{D_{i}}\overline{y}^{(i)}(t_{k}), \quad t \in [t_{k}, t_{k+1}), \quad k \in \mathbb{N}_{0}.$$
 (6)

In order to study the stability of system (1) under the sampled-data controller (6), we first present the approximation errors $\bar{y}(t_k) - y(t)$ and $\bar{y}^{(i)}(t_k) - y^{(i)}(t)$ (i = 1, ..., n-1), where $t \in [t_k, t_{k+1})$, $k \in \mathbb{N}_0$, in a convenient form suitable for the later analysis via L-K functionals:

Proposition 1. If $y \in C^i$ and $y^{(i)}$ is absolutely continuous with i = 1, ..., n, then $\overline{y}(t_k)$ and $\overline{y}^{(i)}(t_k)$ (i = 1, ..., n-1) defined by (5) satisfy for $t \in [t_k, t_{k+1}), k \in \mathbb{N}_0$

$$\overline{y}(t_k) = y(t) - \int_{t_k}^t \dot{y}(s)ds,\tag{7}$$

$$\overline{y}^{(i)}(t_k) = y^{(i)}(t) - \int_{t-ih}^t \varphi_i(t-s)\dot{y}^{(i)}(s)ds - \int_{t_k}^t \dot{\overline{y}}^{(i)}(s)ds, \quad i = 1, \dots, n-1,$$
(8)

where

$$\varphi_{1}(v) = \frac{h - v}{h}, \quad v \in [0, h],$$

$$\varphi_{i+1}(v) = \begin{cases}
\frac{1}{h} \int_{0}^{v} \varphi_{i}(\lambda) d\lambda + \frac{h - v}{h}, & v \in [0, h] \\
\frac{1}{h} \int_{v - h}^{v} \varphi_{i}(\lambda) d\lambda, & v \in (h, ih). & i = 1, \dots, n - 2. \\
\frac{1}{h} \int_{v - h}^{ih} \varphi_{i}(\lambda) d\lambda, & v \in [ih, ih + h],
\end{cases}$$
(9)

0991233, 2022, 18, Downloaded from https://onlinelibray.wiley.com/doi/10.1002/mc.5704 by Tel Aviv University, Wiley Online Library on [10/11/1222]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Proof. We first introduce the errors due to the sampling:

$$y(t_k) = y(t) - \int_{t_k}^t \dot{y}(s)ds, \quad \overline{y}^{(i)}(t_k) = \overline{y}^{(i)}(t) - \int_{t_k}^t \dot{\overline{y}}^{(i)}(s)ds, \quad i = 1, \dots, n-1.$$
 (10)

Taking into account $y(t_k) = \overline{y}(t_k)$ in (4), together with the first equality in (10) we obtain (7). Then following arguments for the error $\overline{y}^{(i)}(t) - y^{(i)}(t)$ (i = 1, ..., n - 1) in Proposition 1 of Selivanov and Fridman,¹³ that is,

$$\overline{y}^{(i)}(t) = y^{(i)}(t) - \int_{t-ih}^{t} \varphi_i(t-s)\dot{y}^{(i)}(s)ds, \quad i = 1, \dots, n-1,$$
(11)

where $\varphi_i(\cdot)$ (i = 1, ..., n - 1) are defined by (9), we arrive at (8).

The functions $\varphi_i(\cdot)$ (i = 1, ..., n - 1) have the following properties (see the proof in Selivanov and Fridman¹³):

Proposition 2. The functions $\varphi_i(\cdot)$ (i = 1, ..., n-1) in (9) satisfy

1)
$$\varphi_i(0) = 1$$
, $\varphi_i(ih) = 0$; 2) $0 \le \varphi_i(v) \le 1$; 3) $\frac{d}{dv}\varphi_i(v) \in \left[-\frac{1}{h}, 0\right]$; 4) $\int_0^{ih} \varphi_i(v) dv = \frac{ih}{2}$. (12)

By noting that $y(t_i) = \overline{y}(t_i)$ (j = 0, ..., k - 1), via (7) and (8) the sampled-data controller (6) can be presented as

$$u(t) = \overline{K}_{P} \left[y(t) - \int_{t_{k}}^{t} \dot{y}(s)ds \right] + h\overline{K}_{I} \sum_{j=0}^{k-1} y(t_{j}) + \sum_{i=1}^{n-1} \overline{K}_{D_{i}} \left[y^{(i)}(t) - \int_{t-ih}^{t} \varphi_{i}(t-s)\dot{y}^{(i)}(s)ds - \int_{t_{k}}^{t} \dot{\overline{y}}^{(i)}(s)ds \right],$$

$$= Kx(t) + [\overline{K}_{P}, \overline{K}_{I}]\delta_{0}(t) + \sum_{i=1}^{n-1} \overline{K}_{D_{i}}(\delta_{i}(t) + \kappa_{i}(t)), \quad t \in [t_{k}, t_{k+1}), \quad k \in \mathbb{N}_{0},$$

$$(13)$$

where

$$x(t) = \operatorname{col} \left\{ y(t), y^{(1)}(t), \dots, y^{(n-1)}(t), (t - t_k)y(t_k) + h \sum_{j=0}^{k-1} y(t_j) \right\},$$

$$K = [\overline{K}_p, \overline{K}_{D_1}, \dots, \overline{K}_{D_{n-1}}, \overline{K}_I], \quad \delta_0(t) = -\int_{t_k}^t \left[H_0 \atop H_n \right] \dot{x}(s) ds,$$

$$\delta_i(t) = -\int_{t_k}^t \dot{\overline{y}}^{(i)}(s) ds, \quad \kappa_i(t) = -\int_{t-ih}^t \varphi_i(t - s) H_i \dot{x}(s) ds, \quad i = 1, \dots, n-1,$$

$$H_i = [0_{p \times ip}, I_p, 0_{p \times (n-i)p}], \quad i = 0, \dots, n.$$
(14)

Using (13) and (14), the system (1), (6) has the form

$$dx(t) = f(t)dt + Dx(t)dw(t), \quad t \in [t_k, t_{k+1}), \quad k \in \mathbb{N}_0,$$

$$\tag{15}$$

where

$$f(t) = (A + BK)x(t) + A_{1}\delta_{0}(t) + \sum_{i=1}^{n-1} B\overline{K}_{D_{i}}(\delta_{i}(t) + \kappa_{i}(t)) + H_{n-1}^{T}g(t, H_{0}x(t), \dots, H_{n-1}x(t)),$$

$$A = \begin{bmatrix} 0 & I_{p} & 0 & \dots & 0 & 0 \\ 0 & 0 & I_{p} & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & I_{p} & 0 \\ a_{0} & a_{1} & a_{2} & \dots & a_{n-1} & 0 \\ I_{p} & 0 & 0 & \dots & 0 & 0 \end{bmatrix}, \qquad A_{1} = \begin{bmatrix} 0_{(n-1)p \times p} & 0_{(n-1)p \times p} \\ b\overline{K}_{p} & b\overline{K}_{I} \\ I_{p} & 0_{p \times p} \end{bmatrix},$$

$$B = \operatorname{col}\{0_{(n-1)p \times p}, \overline{D}, 0_{p \times p}\},$$

$$D = \operatorname{col}\{0_{(n-1)p \times p}, \overline{D}, 0_{p \times p}\},$$

$$\overline{D} = [d_{0}, \dots, d_{n-1}, 0].$$

$$(16)$$

.0991239, 2022, 18, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/mc.5704 by Tel Aviv University, Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/term

on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Remark 1. In (15), we follow the transformation of Zhang and Fridman²³ that allowed to avoid an additional non-zero term $y^{(n-1)}(t_k) - y^{(n-1)}(t) = -\int_{t_k}^t H_{n-1}f(s)ds - \Pi$ with $\Pi = \int_{t_k}^t H_{n-1}Dx(s)dw(s)$. Note that the term Π has to be compensionally sated by additional terms in Lyapunov functional. Hence, the transformation in (15) (comparatively to Selivanov and Fridman^{15,16}) significantly simplifies the analysis in the stochastic case.

Comparatively to the system model (see e.g., (27) in Selivanov and Fridman¹³) under PD control, the system (15) includes additional term $A_1\delta_0(t)$ (due to the additional I control) that will be compensated by the additional term V_{δ_0} defined below (20). Note also that Lyapunov functional of Selivanov and Fridman¹³ depends on the *n*th-order derivative, and, thus, is not applicable in the stochastic case. This is because a solution of a stochastic system does not have a derivative. 12,14 We will present LMI conditions via novel Lyapunov functional that depends on the deterministic and stochastic parts of the system:

Theorem 1. Consider the stochastic nonlinear system (1) under the sampled-data controller (6). Given \overline{K}_P , \overline{K}_I , and \overline{K}_{D_i} $(i=1,\ldots,n-1)$ let the extended PID controller (3) exponentially stabilizes (1), where $d_i=0$ $(i=0,\ldots,n-1)$ and $g\equiv 0$, with a decay rate $\overline{\alpha} > 0$.

(i) Given tuning parameters h > 0, $\alpha \in (0, \overline{\alpha})$ and $p \times p$ matrices M_i (i = 0, ..., n-1), let there exist $(n+1)p \times (n+1)p$ matrix P > 0, $2p \times 2p$ $matrix W_0 > 0$, $p \times p$ $matrices W_i > 0$, $R_i > 0$ (i = 1, ..., n - 1), Q > 0, $F_1 > 0$ and $F_2 > 0$ and $F_3 > 0$

$$\Phi = \begin{bmatrix} \Phi_{11} & PA_1 & \Phi_{13} & \Phi_{14} & 0 & PH_{n-1}^T & h(A+BK)^T H_{n-1}^T \Xi & h[H_1^T, H_0^T] W_0 \\ * & -\frac{\pi^2}{4} e^{-2\alpha h} W_0 & 0 & 0 & 0 & 0 & hA_1^T H_{n-1}^T \Xi & h[0, [I_p, 0]^T] W_0 \\ * & * & \Phi_{33} & 0 & 0 & 0 & h\Phi_{37} & 0 \\ * & * & * & \Phi_{44} & \Phi_{45} & 0 & h\Phi_{47} & 0 \\ * & * & * & * & -e^{-2\alpha(n-1)h} (R_{n-1} + F_2) & 0 & 0 & 0 \\ * & * & * & * & * & -\lambda I_p & hH_{n-1} H_{n-1}^T \Xi & 0 \\ * & * & * & * & * & * & -\Xi & 0 \\ * & * & * & * & * & * & -W_0 \end{bmatrix} < 0, \quad (17)$$

$$\Psi = \begin{bmatrix} W_{n-1} - Q & W_{n-1} \\ * & W_{n-1} - \frac{(n-1)}{2} e^{-2\alpha(n-1)h} F_2 \end{bmatrix} < 0, \quad (18)$$

where

$$\Phi_{11} = P(A + BK) + (A + BK)^{T}P + 2\alpha P + \sum_{i=0}^{n-2} h^{2}e^{2\alpha ih}H_{i+1}^{T}W_{i}H_{i+1} + \sum_{i=1}^{n-2} \frac{(ih)^{2}}{4}H_{i+1}^{T}R_{i}H_{i+1}
+ D^{T}PD + \frac{(n-1)h}{2}D^{T}H_{n-1}^{T}(F_{1} + F_{2})H_{n-1}D + \lambda \sum_{i=0}^{n-1} H_{i}^{T}M_{i}H_{i},
\Phi_{13} = \Phi_{14} = PB[\overline{K}_{D_{1}}, \dots, \overline{K}_{D_{n-1}}], \qquad \Phi_{33} = -\frac{\pi^{2}}{4}e^{-2\alpha h}\operatorname{diag}\{W_{1}, \dots, W_{n-1}\},
\Phi_{44} = -\operatorname{diag}\{e^{-2\alpha h}R_{1}, \dots, e^{-2\alpha(n-1)h}R_{n-1}\}, \qquad \Phi_{45} = [0, -e^{-2\alpha(n-1)h}R_{n-1}]^{T},
\Phi_{37} = \Phi_{47} = [\overline{K}_{D_{1}}, \dots, \overline{K}_{D_{n-1}}]^{T}B^{T}H_{n-1}^{T}\Xi, \qquad \Xi = \frac{(n-1)^{2}}{4}R_{n-1} + e^{2\alpha(n-1)h}Q, \tag{19}$$

with A, B, A_1 and D given by (16), and K and H_i (i = 0, ..., n) given by (14). Then the sampled-data controller (6) exponentially mean-square stabilizes (1) with a decay rate α .

(ii) Given any $\alpha \in (0, \overline{\alpha})$, LMI (17) is always feasible for small enough h > 0, ||D|| and $||M_i||$ ($i = 0, \ldots, n-1$) (meaning that the sampled-data controller (6) exponentially mean-square stabilizes (1) with a decay rate α).

Proof. (i) We consider the functional

$$V = V_0 + V_{\delta_0} + \sum_{i=1}^{n-1} \left(V_{\delta_i} + V_{\bar{y}_i} + V_{\kappa_i} \right) + V_{\delta_n} + V_{F_1} + V_{F_2}, \tag{20}$$

where

$$V_0(x(t)) = x^T(t)Px(t),$$

$$V_{\delta_{i}}(t,\dot{x}_{t}) = \begin{cases} h^{2} \int_{t_{k}}^{t} e^{-2\alpha(t-s)} \dot{x}^{T}(s) \begin{bmatrix} H_{0} \\ H_{n} \end{bmatrix}^{T} W_{0} \begin{bmatrix} H_{0} \\ H_{n} \end{bmatrix} \dot{x}(s) ds - \frac{\pi^{2}}{4} e^{-2\alpha h} \int_{t_{k}}^{t} e^{-2\alpha(t-s)} \delta_{0}^{T}(s) W_{0} \delta_{0}(s) ds, & i = 0, \\ h^{2} \int_{t_{k}}^{t} e^{-2\alpha(t-s)} \left[\dot{\overline{y}}^{(i)}(s) \right]^{T} W_{i} \begin{bmatrix} \dot{\overline{y}}^{(i)}(s) \end{bmatrix} ds - \frac{\pi^{2}}{4} e^{-2\alpha h} \int_{t_{k}}^{t} e^{-2\alpha(t-s)} \delta_{i}^{T}(s) W_{i} \delta_{i}(s) ds, & i = 1, \dots, n-1, \end{cases}$$

$$V_{\overline{y}_i}(x_t) = h^2 e^{2\alpha i h} \int_{t-ih}^t e^{-2\alpha(t-s)} \varphi_i(t-s) x^T(s) H_{i+1}^T W_i H_{i+1} x(s) ds, \quad i=1, \ldots, n-2,$$

$$V_{\bar{y}_{n-1}}(f_t) = h^2 e^{2\alpha(n-1)h} \int_{t-(n-1)h}^t e^{-2\alpha(t-s)} \varphi_{n-1}(t-s) f^T(s) H_{n-1}^T Q H_{n-1} f(s) ds,$$

$$V_{\kappa_i}(x_t) = \frac{ih}{2} \int_{t-ih}^t e^{-2\alpha(t-s)} \phi_i(t-s) x^T(s) H_{i+1}^T R_i H_{i+1} x(s) ds, \quad i=1, \ldots, n-2,$$

$$V_{\kappa_{n-1}}(f_t) = \frac{(n-1)h}{2} \int_{t-(n-1)h}^t e^{-2\alpha(t-s)} \phi_{n-1}(t-s) f^T(s) H_{n-1}^T R_{n-1} H_{n-1} f(s) ds,$$

$$V_{F_1}(x_t) = \frac{(n-1)h}{2} \int_{t-(n-1)h}^{t} e^{-2\alpha(t-s)} \varphi_{n-1}(t-s) x^T(s) D^T H_{n-1}^T F_1 H_{n-1} Dx(s) ds,$$

$$V_{F_2}(x_t) = \int_{t-(n-1)h}^{t} e^{-2\alpha(t-s)} \phi_{n-1}(t-s) x^T(s) D^T H_{n-1}^T F_2 H_{n-1} Dx(s) ds$$

with P > 0, $W_i > 0$ (i = 0, ..., n - 1), $R_i > 0$ (i = 1, ..., n - 1), Q > 0, $F_1 > 0$, $F_2 > 0$ and

$$\phi_i(v) = \int_v^{ih} \varphi_i(\lambda) d\lambda, \quad i = 1, \dots, n-1.$$

Here $x_l(\theta)=x(t+\theta), \ \theta\in[-h,0]$. Since $\dot{\delta}_0(t)=-[H_0^T,H_n^T]^T\dot{x}(t), \ \delta_i(t)=-\dot{\overline{y}}^{(i)}(t) \ (i=1,\ldots,n-1)$ and $\delta_i(t_k)=0$ $(i=0,\ldots,n-1)$, Lemma 2 implies $V_{\delta_i}\geq 0$ for $i=0,\ldots,n-1$. Due to $\phi_i(\cdot)\geq 0$ and $\phi_i(\cdot)\geq 0$ we have the positivity of functional V(t) in (20). Note that the terms V_{δ_i} $(i=1,\ldots,n-1),\ V_{\overline{y}_i}$ and V_{κ_i} $(i=1,\ldots,n-2)$ are from Selivanov and Fridman, whereas the novel terms $V_{\overline{y}_{n-1}},\ V_{\kappa_{n-1}},\ V_{F_1}$, and V_{F_2} are stochastic extensions of Lyapunov functionals that depend on $\dot{x}(t)$.

Let L be the generator (see e.g., Shaikhet²² and Mao²⁴). We have along (15)

$$LV_0 + 2\alpha V_0 = 2x^T(t)Pf(t) + x^T(t)D^T P D x(t) + 2\alpha x^T(t)P x(t).$$
(21)

Moreover, we have

$$LV_{\delta_{i}} + 2\alpha V_{\delta_{i}} = \begin{cases} h^{2}\dot{x}^{T}(t) \begin{bmatrix} H_{0} \\ H_{n} \end{bmatrix}^{T} W_{0} \begin{bmatrix} H_{0} \\ H_{n} \end{bmatrix} \dot{x}(t) - \frac{\pi^{2}}{4}e^{-2\alpha h}\delta_{0}^{T}(t)W_{0}\delta_{0}(t), & i = 0, \\ h^{2} \left[\dot{\bar{y}}^{(i)}(t)\right]^{T} W_{i} \left[\dot{\bar{y}}^{(i)}(t)\right] - \frac{\pi^{2}}{4}e^{-2\alpha h}\delta_{i}^{T}(t)W_{i}\delta_{i}(t), & i = 1, \dots, n-1. \end{cases}$$
(22)

The terms $V_{\bar{y}_i}$, $i=1,\ldots,n-2$ are introduced to compensate $h^2\left[\dot{\bar{y}}^{(i)}(t)\right]^TW_i\left[\dot{\bar{y}}^{(i)}(t)\right]$, $i=1,\ldots,n-2$ in (22). By using Lemma 1, via (12) we have

$$LV_{\bar{y}_i} + 2\alpha V_{\bar{y}_i} = h^2 e^{2\alpha i h} x^T(t) H_{i+1}^T W_i H_{i+1} x(t) - h^2 e^{2\alpha i h} \int_{t-ih}^t e^{-2\alpha (t-s)} \left[\frac{d}{ds} \varphi_i(t-s) \right] x^T(s) H_{i+1}^T W_i H_{i+1} x(s) ds$$

doi/10.1002/mc.5704 by Tel Aviv University, Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://or

$$\leq h^{2}e^{2\alpha ih}x^{T}(t)H_{i+1}^{T}W_{i}H_{i+1}x(t) \\ -h^{2}\left(\int_{t-ih}^{t}d\varphi_{i}(t-s)\right)^{-1}\int_{t-ih}^{t}\left[\frac{d}{ds}\varphi_{i}(t-s)\right]x^{T}(s)H_{i+1}^{T}dsW_{i}\int_{t-ih}^{t}\left[\frac{d}{ds}\varphi_{i}(t-s)\right]H_{i+1}x(s)ds, \quad i=1,\ldots,n-2.$$
(23)

From (8), it follows that

$$\overline{y}^{(i)}(t) = y^{(i)}(t) - \int_{t-ih}^{t} \varphi_i(t-s)\dot{y}^{(i)}(s)ds, \quad i=1,\ldots,n-1.$$

Via (12) the latter implies

$$\dot{\bar{y}}^{(i)}(t) = \int_{t-i\hbar}^{t} \left[\frac{d}{ds} \varphi_i(t-s) \right] \dot{y}^{(i)}(s) ds = \int_{t-i\hbar}^{t} \left[\frac{d}{ds} \varphi_i(t-s) \right] H_i \dot{x}(s) ds, \quad i = 1, \dots, n-1.$$
 (24)

Noting that $\int_{t-ih}^{t} d\varphi_i(t-s) = \varphi_i(0) - \varphi_i(ih) = 1$ and $H_i\dot{x}(s) = H_{i+1}x(s)$ (i=0, ..., n-2), from (23) and (24) we have

$$LV_{\bar{y}_i} + 2\alpha V_{\bar{y}_i} \le h^2 e^{2\alpha i h} x^T(t) H_{i+1}^T W_i H_{i+1} x(t) - h^2 \left[\dot{\bar{y}}^{(i)}(t) \right]^T W_i \left[\dot{\bar{y}}^{(i)}(t) \right], \quad i = 1, \dots, n-2.$$
 (25)

Then the terms $-h^2\left[\dot{\overline{y}}^{(i)}(t)\right]^TW_i\left[\dot{\overline{y}}^{(i)}(t)\right]$ $(i=1,\ldots,n-2)$ in the above expression will cancel the positive term of $LV_{\delta_i}+2\alpha V_{\delta_i}$ $(i=1,\ldots,n-2)$. Note that the term $\dot{\overline{y}}^{(i)}(t)$ with i=n-1 in (24) has the following form:

$$\dot{\bar{y}}^{(n-1)}(t) = \int_{t-(n-1)h}^{t} \left[\frac{d}{ds} \varphi_{n-1}(t-s) \right] H_{n-1} \dot{x}(s) ds \stackrel{(15)}{=} \rho_1(t) + \rho_2(t), \tag{26}$$

where

$$\rho_1(t) = \int_{t-(n-1)h}^{t} \left[\frac{d}{ds} \varphi_{n-1}(t-s) \right] H_{n-1}f(s)ds, \quad \rho_2(t) = \int_{t-(n-1)h}^{t} \left[\frac{d}{ds} \varphi_{n-1}(t-s) \right] H_{n-1}Dx(s)dw(s).$$

Thus

$$LV_{\delta_{n-1}} + 2\alpha V_{\delta_{n-1}} \stackrel{(22)}{=} h^2 [\rho_1(t) + \rho_2(t)]^T W_{n-1} [\rho_1(t) + \rho_2(t)] - \frac{\pi^2}{4} e^{-2\alpha h} \delta_{n-1}^T(t) W_{n-1} \delta_{n-1}(t). \tag{27}$$

To compensate $\rho_1(t)$, we employ the term $V_{\overline{\nu}_{n-1}}$, that is,

$$LV_{\bar{y}_{n-1}} + 2\alpha V_{\bar{y}_{n-1}} = h^2 e^{2\alpha(n-1)h} f^T(t) H_{n-1}^T Q H_{n-1} f(t) - h^2 e^{2\alpha(n-1)h} \int_{t-(n-1)h}^t e^{-2\alpha(t-s)} \left[\frac{d}{ds} \varphi_{n-1}(t-s) \right] f^T(s) H_{n-1}^T Q H_{n-1} f(s) ds$$

$$\leq h^2 e^{2\alpha(n-1)h} f^T(t) H_{n-1}^T Q H_{n-1} f(t) - h^2 \rho_1^T(t) Q \rho_1(t), \tag{28}$$

where we applied Lemma 1 with (12). Note that (12) implies

$$\phi_i(0) = \int_0^{ih} \varphi_i(\lambda) d\lambda = \frac{ih}{2}, \quad \phi_i(ih) = 0, \quad i = 1, \dots, n-1.$$
 (29)

For the $\rho_2(t)$ -term, by using Itô isometry (see, e.g., Shaikhet²² and Mao²⁴), via (12) we have for any $p \times p$ matrix $F_1 > 0$

$$e^{-2\alpha(n-1)h}h\mathbf{E}\rho_{2}^{T}(t)F_{1}\rho_{2}(t) = e^{-2\alpha(n-1)h}h\mathbf{E}\int_{t-(n-1)h}^{t} \left[\frac{d}{ds}\varphi_{n-1}(t-s)\right]^{2}x^{T}(s)D^{T}H_{n-1}^{T}F_{1}H_{n-1}Dx(s)ds$$

$$\leq \mathbf{E}\int_{t-(n-1)h}^{t} e^{-2\alpha(t-s)}\left[\frac{d}{ds}\varphi_{n-1}(t-s)\right]x^{T}(s)D^{T}H_{n-1}^{T}F_{1}H_{n-1}Dx(s)ds.$$

0991239, 2022, 18, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/mc.5704 by Tel Aviv University, Wiley Online Library on [10/1/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

The latter together with (29) leads to

$$\mathbf{E}LV_{F_{1}} + 2\alpha \mathbf{E}V_{F_{1}} = \frac{(n-1)h}{2} \mathbf{E}x^{T}(t)D^{T}H_{n-1}^{T}F_{1}H_{n-1}Dx(t)$$

$$-\frac{(n-1)h}{2} \mathbf{E}\int_{t-(n-1)h}^{t} e^{-2\alpha(t-s)} \left[\frac{d}{ds}\varphi_{n-1}(t-s)\right] x^{T}(s)D^{T}H_{n-1}^{T}F_{2}H_{n-1}Dx(s)ds$$

$$\leq \frac{(n-1)h}{2} \mathbf{E}x^{T}(t)D^{T}H_{n-1}^{T}F_{1}H_{n-1}Dx(t) - \frac{(n-1)h^{2}}{2}e^{-2\alpha(n-1)h}\mathbf{E}\rho_{2}^{T}(t)F_{1}\rho_{2}(t). \tag{30}$$

By using Lemma 1, via (29) we have

$$LV_{\kappa_{i}} + 2\alpha V_{\kappa_{i}} = \frac{(ih)^{2}}{4} x^{T}(t) H_{i+1}^{T} R_{i} H_{i+1} x(t) - \frac{ih}{2} \int_{t-ih}^{t} e^{-2\alpha(t-s)} \varphi_{i}(t-s) x^{T}(s) H_{i+1}^{T} R_{i} H_{i+1} x(s) ds$$

$$\leq \frac{(ih)^{2}}{4} x^{T}(t) H_{i+1}^{T} R_{i} H_{i+1} x(t) - e^{-2\alpha ih} \kappa_{i}^{T}(t) R_{i} \kappa_{i}(t), \quad i = 1, \dots, n-2.$$

$$LV_{\kappa_{n-1}} + 2\alpha V_{\kappa_{n-1}} \leq \frac{(n-1)^{2} h^{2}}{4} f^{T}(t) H_{n-1}^{T} R_{n-1} H_{n-1} f(t)$$

$$- e^{-2\alpha(n-1)h} \left[\int_{t-(n-1)h}^{t} \varphi_{n-1}(t-s) f^{T}(s) H_{n-1}^{T} ds \right]^{T} R_{n-1} \left[\int_{t-(n-1)h}^{t} \varphi_{n-1}(t-s) H_{n-1} f(s) ds \right]$$

$$= \frac{(n-1)^{2} h^{2}}{4} f^{T}(t) H_{n-1}^{T} R_{n-1} H_{n-1} f(t) - e^{-2\alpha(n-1)h} [\kappa_{n-1}(t) + \rho_{3}(t)]^{T} R_{n-1} [\kappa_{n-1}(t) + \rho_{3}(t)],$$

$$(32)$$

where

$$\rho_3(t) = \int_{t-(n-1)h}^t \varphi_{n-1}(t-s) H_{n-1} Dx(s) dw(s).$$

To compensate $\rho_3(t)$, we employ the term V_{F_2} that leads to

$$\mathbf{E}LV_{F_{2}} + 2\alpha \mathbf{E}V_{F_{2}} \leq \frac{(n-1)h}{2} \mathbf{E}x^{T}(t)D^{T}H_{n-1}^{T}F_{2}H_{n-1}Dx(t) - \int_{t-(n-1)h}^{t} e^{-2\alpha(t-s)}\varphi_{n-1}(t-s)x^{T}(s)D^{T}H_{n-1}^{T}F_{2}H_{n-1}Dx(s)ds$$

$$\leq \frac{(n-1)h}{2} \mathbf{E}x^{T}(t)D^{T}H_{n-1}^{T}F_{2}H_{n-1}Dx(t) - e^{-2\alpha(n-1)h}\mathbf{E}\rho_{3}^{T}(t)F_{2}\rho_{3}(t). \tag{33}$$

where we applied Itô isometry with (12). From (2), we have

$$|g(t, H_0 x(t), \dots, H_{n-1} x(t))|^2 \le \sum_{i=0}^{n-1} x^T(t) H_i^T M_i H_i x(t).$$
 (34)

Hence, the following inequality holds:

$$\lambda \left[\sum_{i=0}^{n-1} x^{T}(t) H_{i}^{T} M_{i} H_{i} x(t) - |g(t, H_{0} x(t), \dots, H_{n-1} x(t))|^{2} \right] \ge 0, \tag{35}$$

for some constant $\lambda > 0$.

In view of (21), (22), (25), (27), (28), and (30)–(33), taking into account the relations $H_0\dot{x}(t) = H_1x(t)$ and $H_n\dot{x}(t) = y(t_k) = H_0x(t) + [I_P, 0]\delta_0(t)$ and applying S-procedure with (35) we obtain

$$\begin{split} \mathbf{E}LV + 2\alpha \mathbf{E}V &\leq \mathbf{E}\xi^{T}(t)\overline{\Phi}\xi(t) + h^{2}\mathbf{E}\eta^{T}(t)\Psi\eta(t) + h^{2}\mathbf{E}f^{T}(t)H_{n-1}^{T}\left[\frac{(n-1)^{2}}{4}R_{n-1} + e^{2\alpha(n-1)h}Q\right]H_{n-1}f(t) \\ &+ h^{2}\mathbf{E}\begin{bmatrix}H_{1}x(t)\\H_{0}x(t) + [I_{P},0]\delta_{0}(t)\end{bmatrix}^{T}W_{i}\begin{bmatrix}H_{1}x(t)\\H_{0}x(t) + [I_{P},0]\delta_{0}(t)\end{bmatrix} \end{split}$$

.0991239, 2022, 18, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/rnc.5704 by Tel Aviv University, Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/term

on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

$$\stackrel{(18)}{\leq} \mathbf{E}\xi^{T}(t)\overline{\Phi}\xi(t) + h^{2}\mathbf{E}f^{T}(t)H_{n-1}^{T} \left[\frac{(n-1)^{2}}{4}R_{n-1} + e^{2\alpha(n-1)h}Q \right] H_{n-1}f(t)
+ h^{2}\mathbf{E} \begin{bmatrix} H_{1}x(t) \\ H_{0}x(t) + [I_{P}, 0]\delta_{0}(t) \end{bmatrix}^{T} W_{i} \begin{bmatrix} H_{1}x(t) \\ H_{0}x(t) + [I_{P}, 0]\delta_{0}(t) \end{bmatrix},$$
(36)

where $\overline{\Phi}$ is obtained from Φ in (17) by taking away the last two block-columns and block-rows, Ψ is given by (18) and

$$\xi(t) = \operatorname{col}\{x(t), \delta_0(t), \dots, \delta_{n-1}(t), \kappa_1(t), \dots, \kappa_{n-1}(t), \rho_3(t), g(t, H_0x(t), \dots, H_{n-1}x(t))\}, \quad \eta(t) = \operatorname{col}\{\rho_1(t), \rho_2(t)\}. \tag{37}$$

Substituting (16) for f(t) and further applying Schur complement, we deduce that $\Phi < 0$ given by (17) guarantees $\mathbf{E}LV + 2\alpha\mathbf{E}V \leq 0$ implying that the sampled-data controller (6) exponentially mean-square stabilizes (1) with a decay rate α .

(ii) The system (1), (3) has the form

$$dx_c(t) = \left[(A + BK)x_c(t) + H_{n-1}^T g(t, H_0 x_c(t), \dots, H_{n-1} x_c(t)) \right] dt + Dx(t) dw(t),$$

$$x_c(t) = \operatorname{col} \left\{ y(t), y^{(1)}(t), \dots, y^{(n-1)}(t), \int_0^t y(s) ds \right\},$$

where A, B, D are given by (16) and K is given by (14). If the PID controller (3) exponentially stabilizes (1), where $g \equiv 0$ and $d_i = 0$ (i = 0, ..., n-1) (and thus, D = 0), with a decay rate $\overline{\alpha} > 0$, then there exists $0 < P \in \mathbb{R}^{(n+1)p \times (n+1)p}$ such that $P(A + BK) + (A + BK)^T P + 2\alpha P < 0$ for any $\alpha \in (0, \overline{\alpha})$. Thus,

$$P(A + BK) + (A + BK)^{T}P + 2\alpha P + D^{T}PD < 0,$$
 (38)

for small enough |D|. We choose in LMI (17) $W_0 = \frac{1}{\sqrt{h}}I_{2p}$, $R_i = W_i = Q = F_1 = F_2 = \frac{1}{\sqrt{h}}I_p$ $(i = 1, \dots, n-1)$ and $\lambda = \frac{1}{\sqrt{h}}I_p$. Applying Schur complement, $\overline{\Phi} < 0$ is equivalent to

$$P(A+BK) + (A+BK)^{T}P + 2\alpha P + D^{T}PD + \sqrt{h}(G_{1}+hG_{2}) + \frac{1}{\sqrt{h}} \sum_{i=0}^{n-1} H_{i}^{T}M_{i}H_{i} < 0,$$
(39)

where

$$G_{1} = (n-1)D^{T}H_{n-1}^{T}H_{n-1}D + \frac{4}{\pi^{2}}e^{2\alpha h}P[(A_{1} + B\overline{K}_{P})(A_{1} + B\overline{K}_{P})^{T} + \sum_{i=1}^{n-1}B\overline{K}_{D_{i}}\overline{K}_{D_{i}}^{T}B^{T} + B\overline{K}_{I}\overline{K}_{I}^{T}B^{T}]P$$

$$+ \sum_{i=1}^{n-2}e^{2ih}PB\overline{K}_{D_{i}}\overline{K}_{D_{i}}^{T}B^{T}P + 2e^{2(n-1)h}PB\overline{K}_{D_{n-1}}\overline{K}_{D_{n-1}}^{T}B^{T}P + PH_{n-1}^{T}H_{n-1}P,$$

$$G_{2} = \sum_{i=0}^{n-2}\left(e^{2\alpha ih} + \frac{i^{2}}{4}\right)H_{i+1}^{T}H_{i+1}.$$

Inequality (38) implies (39) for small enough h > 0 and $\|M_i\|$ (i = 0, ..., n-1) since $\sqrt{h}(G_1 + hG_2) \to 0$ and $\frac{1}{\sqrt{h}}\sum_{i=0}^{n-1}H_i^TM_iH_i = \sqrt{h}\sum_{i=0}^{n-1}H_i^TH_i \to 0$ for $h \to 0$ where we choose, for example, $M_i = hI_p$ (i = 0, ..., n-1), implying the feasibility of $\overline{\Phi} < 0$ for small enough h > 0 and $\|M_i\|$ (i = 0, ..., n-1). Finally, applying Schur complement to the last two block-columns and block-rows of Φ given by (17), we find that $\Phi < 0$ is feasible for small enough h > 0 if $\overline{\Phi} < 0$ is feasible. Thus, LMI (17) is always feasible for small enough h > 0, $\|D\|$ and $\|M_i\|$ (i = 0, ..., n-1).

For the deterministic case (i.e., the system (1) with $d_i=0$ $(i=0,\ldots,n-1)$), we consider the functional \tilde{V} that is obtained from V in (20) by setting $F_1=F_2=0$ and changing f(s) and Q respectively as $\dot{x}(s)$ and W_{n-1} . The latter includes additional terms V_{δ_i} , $V_{\overline{y}_i}$, V_{κ_i} $(i=2,\ldots,n-1)$ to compensate additional errors $\delta_i(t)$ and $\kappa_i(t)$ $(i=2,\ldots,n-1)$ in (15) comparatively to Selivanov and Fridman. ^{15,16}

10991239, 2022, 18, Downloaded from https://onlinelibary.viley.com/doi/10.1002/mc.5704 by Tel Aviv University, Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

Corollary 1. Consider the deterministic nonlinear system (1) with $d_i = 0$ (i = 0, ..., n - 1) under the sampled-data controller (6). Given \overline{K}_P , \overline{K}_I and \overline{K}_{D_i} (i = 1, ..., n - 1) let the extended PID controller (3) exponentially stabilizes (1), where $d_i = 0$ (i = 0, ..., n - 1) and $g \equiv 0$, with a decay rate $\overline{\alpha} > 0$.

(i) Given tuning parameters h > 0, $\alpha \in (0, \overline{\alpha})$ and $p \times p$ matrices M_i (i = 0, ..., n-1), let there exist $(n+1)p \times (n+1)p$ matrix P > 0, $2p \times 2p$ matrices $W_0 > 0$ and $p \times p$ matrices $W_i > 0$ and $R_i > 0$ (i = 1, ..., n-1) and scalar $\lambda > 0$ that satisfy

$$\tilde{\Phi} < 0, \tag{40}$$

where $\tilde{\Phi}$ is obtained from Φ in (17) by setting D=0, $F_1=F_2=0$, $Q=W_{n-1}$ and and taking away the fifth block-column and block-row. Then the sampled-data controller (6) exponentially stabilizes (1), where $d_i=0$ ($i=0,\ldots,n-1$), with a decay rate α .

(ii) Given any $\alpha \in (0, \overline{\alpha})$, LMI (40) is always feasible for small enough h > 0 and $||M_i||$ (i = 0, ..., n-1) (meaning that the sampled-data controller (6) exponentially stabilizes (1), where $d_i = 0$ (i = 0, ..., n-1), with a decay rate α).

Remark 2. Note that less conservative integral inequalities were introduced e.g. in Seuret et al.^{25,26} to improve the results via LMIs. However, the LMIs of Seuret et al.^{25,26} cannot be guaranteed to be always feasible. By contrast, we provide in (ii) of Theorem 1 and Corollary 1 (and Theorems 2 and 3 below) the feasibility guarantee of LMIs which were obtained by using Jensen's and Wirtinger's inequalities.

3 | EVENT-TRIGGERED PID CONTROL

Event-triggered control allows to reduce the number of signals transmitted through a communication network (see e.g., Tabuada, ¹⁷ Yue et al., ¹⁸ and Heemels et al. ¹⁹). The idea is to transmit the signal only when it satisfies some preselected event-triggering condition. For simplicity we here introduce an event-triggering condition with respect to the control signals: ¹⁵

$$[u(t_k) - \hat{u}_{k-1}]^T \Theta[u(t_k) - \hat{u}_{k-1}] > \sigma u^T(t_k) \Theta u(t_k), \tag{41}$$

where $\sigma \in [0,1)$ and $0 < \Theta \in \mathbb{R}^{q \times q}$ are the event-triggering parameters, $u(t_k)$ is from (6) and \hat{u}_{k-1} denotes the last transmitted control signal. Thus, $\hat{u}_0 = u(t_0)$ and

$$\hat{u}_k = \begin{cases} u(t_k), & \text{if (41) is true,} \\ \hat{u}_{k-1}, & \text{if (41) is false.} \end{cases}$$
(42)

Hence, the system (1) becomes

$$dy^{(n)}(t) = \left[\sum_{i=0}^{n-1} a_i y^{(i)}(t) + b\hat{u}_k + g(t, y^{(0)}(t), \dots, y^{(n-1)}(t))\right] dt + \sum_{i=0}^{n-1} d_i y^{(i)}(t) dw(t), \quad t \in [t_k, t_{k+1}), \quad k \in \mathbb{N}_0,$$
 (43)

with \hat{u}_k given by (42). Introduce the event-triggering error

$$e_k = \hat{u}_k - u(t_k). \tag{44}$$

Then following the modeling in the previous section, the system (43) under the event-triggered PID control (3), (41), (42) can be presented as (cf. (15))

$$dx(t) = [f(t) + Be_k]dt + Dx(t)dw(t), \quad t \in [t_k, t_{k+1}), \quad k \in \mathbb{N}_0.$$
(45)

Theorem 2. Consider the stochastic nonlinear system (1) under the event-triggered PID controller (6), (41), (42). Given \overline{K}_P , \overline{K}_I and \overline{K}_{D_i} ($i=1,\ldots,n-1$) let the extended PID controller (3) exponentially stabilizes (1), where $g\equiv 0$ and $d_i=0$ ($i=0,\ldots,n-1$), with a decay rate $\overline{\alpha}>0$.

(i) Given tuning parameters h > 0, $\alpha \in (0, \overline{\alpha})$, $\sigma \in [0, 1)$ and $p \times p$ matrices M_i (i = 0, ..., n - 1), let there exist $(n + 1)p \times (n + 1)p$ matrix P > 0, $2p \times 2p$ matrices $W_0 > 0$, $p \times p$ matrices $W_i > 0$, $R_i > 0$ (i = 1, ..., n - 1), Q > 0, $F_1 > 0$ and $F_2 > 0$,

10/19/2022, 18, Downloaded from https://onlinelibrary.viley.com/doi/10.1002/mc.5704 by Tel Avvi University. Wiley Online Library on [10/1/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea

 $q \times q$ matrix $\Theta > 0$ and scalar $\lambda > 0$ that satisfy (18) and

$$\Phi_{e} = \begin{bmatrix}
PB & \sigma K^{T} \Theta \\
0 & \sigma [\bar{K}_{P}, \bar{K}_{I}]^{T} \Theta \\
0 & \sigma [\bar{K}_{D_{1}}, \dots, \bar{K}_{D_{n-1}}]^{T} \Theta \\
0 & \sigma [\bar{K}_{D_{1}}, \dots, \bar{K}_{D_{n-1}}]^{T} \Theta \\
0 & 0 & 0 \\
0 & 0 & 0 \\
h \Xi H_{n-1} B & 0 & 0 \\
0 & 0 & 0 \\
\hline
* & -\Theta & 0 \\
* & -\sigma \Theta
\end{bmatrix} < 0, \tag{46}$$

where Φ and Ξ are respectively given by (17) and (19), K and H_{n-1} are given by (14) and B is given by (16). Then the event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate α .

(ii) Given any $\alpha \in (0, \overline{\alpha})$, LMI (46) is always feasible for small enough h > 0, $\sigma \in (0, 1)$, ||D|| and $||M_i||$ (i = 0, ..., n-1) (meaning that the event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate α).

Proof. (i) Using the triggering error (44), the event-triggering condition (41), (42) guarantees

$$0 \le \sigma u^{T}(t_{k})\Theta u(t_{k}) - e_{k}^{T}\Theta e_{k}. \tag{47}$$

Consider the functional V from (20) with f(t) changed by $f(t) + Be_k$. Following the proof of item (i) of Theorem 1, along (45) we have (cf. (36))

$$\mathbf{E}LV + 2\alpha \mathbf{E}V \overset{(47)}{\leq} \mathbf{E}LV + 2\alpha \mathbf{E}V + \sigma \mathbf{E}u^{T}(t_{k})\Theta u(t_{k}) - \mathbf{E}e_{k}^{T}\Theta e_{k}$$

$$\leq \mathbf{E}\xi_{e}^{T}(t)\overline{\Phi}_{e}\xi_{e}(t) + h^{2}\mathbf{E}(f(t) + Be_{k})^{T}H_{n-1}^{T}\left[\frac{(n-1)^{2}}{4}R_{n-1} + e^{2\alpha(n-1)h}Q\right]H_{n-1}(f(t) + Be_{k})$$

$$+ h^{2}\mathbf{E}\begin{bmatrix}H_{1}x(t)\\H_{0}x(t) + [I_{P}, 0]\delta_{0}(t)\end{bmatrix}^{T}W_{i}\begin{bmatrix}H_{1}x(t)\\H_{0}x(t) + [I_{P}, 0]\delta_{0}(t)\end{bmatrix} + \sigma \mathbf{E}u^{T}(t_{k})\Omega u(t_{k}), \tag{48}$$

where $\xi_e(t) = \operatorname{col}\{\xi(t), e_k\}$ with $\xi(t)$ given by (37), $\overline{\Phi}_e$ is obtained from Φ_e in (46) by taking away the *i*- and *j*-blocks with $i \in \{7, 8, 10\}$ or $j \in \{7, 8, 10\}$. Substituting (13) and (16), respectively, for $u(t_k)$ and f(t) and further applying Schur complement, we find that $\Phi_e < 0$ given by (46) guarantees $ELV + 2\alpha EV \le 0$ implying that the event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate α .

(ii) The proof of (ii) is similar to (ii) of Theorem 1.

Remark 3. To select the tuning parameters h, α , σ , M_i and d_i $(i=0,\ldots,n-1)$ we suggest the following algorithm: choose \overline{K}_P , \overline{K}_I and \overline{K}_{D_i} $(i=1,\ldots,n-1)$ via pole-placement such that the extended PID controller (1) exponentially stabilizes (13), where $g\equiv 0$ and $d_i=0$ $(i=0,\ldots,n-1)$, with a decay rate $\overline{\alpha}>0$. By solving the LMIs with $M_i=0$, $d_i=0$ $(i=0,\ldots,n-1)$, $\sigma=0$ and small enough h>0, we find a critical maximal value of α as $\alpha^*<\overline{\alpha}$. Then, by choosing $\alpha\in[0,\alpha^*]$ with $M_i=0$, $d_i=0$ $(i=0,\ldots,n-1)$ and small enough h>0, we find a critical maximum value of σ as σ^* . The same is done for M_i , d_i $(i=0,\ldots,n-1)$ that leads to critical maximum values of M_i , d_i $(i=0,\ldots,n-1)$, respectively, as M_i^* , d_i^* $(i=0,\ldots,n-1)$. Then for $\alpha\in[0,\alpha^*]$, $\sigma\in[0,\sigma^*]$, $M_i\in[0,M_i^*]$ and $d_i\in[0,d_i^*]$ $(i=0,\ldots,n-1)$, we can obtain a critical maximal value of $h=h^*$ such that for $h>h^*$ the LMI becomes unfeasible.

1.991239, 2022, 18, Downloaded from https://onlinelibary.v.iteje.com/doi/10.1002/mc.5704 by Tel Avi University. Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.vitey.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

4 | L_2 -GAIN ANALYSIS

The direct Lyapunov method is applicable not only to the stability but also to the performance analysis, 9 for example, L_2 -gain analysis. In this section, we consider L_2 -gain analysis of the perturbed systems, namely (cf. (43))

$$dy^{(n)}(t) = \left[\sum_{i=0}^{n-1} a_i y^{(i)}(t) + b\hat{u}_k + b_\nu v(t) + g(t, y^{(0)}(t), \dots, y^{(n-1)}(t))\right] dt + \sum_{i=0}^{n-1} d_i y^{(i)}(t) dw(t), \quad t \in [t_k, t_{k+1}), \quad k \in \mathbb{N}_0, \quad (49)$$

where $b_v \in \mathbb{R}^{p \times p_v}$ is a constant matrix and $v(t) \in \mathbb{R}^{p_v}$ is the external disturbance in $L_2[0, \infty)$.

The system (49) under the event-triggered PID control (3), (41), (42) has the form:

$$dx(t) = [f(t) + Be_k + B_{\nu}v(t)]dt + Dx(t)dw(t), \quad t \in [t_k, t_{k+1}), \quad k \in \mathbb{N}_0,$$
 (50)

where x(t) is given by (14), f(t), B and D are given by (16) and

$$B_{\nu} = \text{col}\{0_{(n-1)p \times p_{\nu}}, b_{\nu}, 0_{p \times p_{\nu}}\}. \tag{51}$$

Consider next the controlled output

$$z(t) = Cx(t) + C_{\nu}v(t), \quad z(t) \in \mathbb{R}^{l}, \tag{52}$$

where $C \in \mathbb{R}^{l \times (n+1)p}$ and $C_v \in \mathbb{R}^{l \times p_v}$ are constant matrices. For a prechosen $\gamma > 0$ we introduce the following performance index:

$$J = \int_0^\infty \left[z^T(t)z(t) - \gamma^2 v^T(t)v(t) \right] dt. \tag{53}$$

We seek conditions that will lead to $\mathbf{E}J \leq 0$ for all x(t) satisfying (50) with the zero initial condition x(0) = 0 and for all $0 \neq v \in L_2[0, \infty)$. In this case the system (50), (52) has L_2 -gain less than or equal to γ . Moreover, if the system (50) with $v \equiv 0$ is exponentially mean-square stable, then the system (50) is internally exponentially mean-square stable.

Lemma 3. 9 Given $\alpha \ge 0$ and $\gamma > 0$, let for V given by (20) the following inequality holds along the solutions of (50):

$$\mathbf{E}LV + 2\alpha \mathbf{E}V + \mathbf{E}z^{T}(t)z(t) - \gamma^{2}v^{T}(t)v(t) < 0 \quad \forall 0 \neq v(t) \in \mathbb{R}^{p_{v}} \text{ and } \forall t \geq 0.$$
 (54)

If (54) holds with $\alpha = 0$, then the system (50), (52) has L_2 -gain less than or equal to γ . Moreover, if (54) holds with $\alpha > 0$, then the system (50) is internally exponentially mean-square stable with a decay rate α .

Based on Lemma 3, we now present the following LMI conditions:

Theorem 3. Consider the stochastic nonlinear system (1) with an additive external disturbance v(t) under the event-triggered PID controller (6), (41), (42) leading to system (50), and the controlled output (52). Given \overline{K}_P , \overline{K}_I and \overline{K}_{D_i} ($i=1,\ldots,n-1$) let the extended PID controller (3) exponentially stabilizes (1), where $g \equiv 0$ and $d_i = 0$ ($i=0,\ldots,n-1$), with a decay rate $\overline{\alpha} > 0$.

(i) Given tuning parameters h>0, $\alpha\in(0,\overline{\alpha})$, $\sigma\in[0,1)$ and $\gamma>0$, and $p\times p$ matrices M_i $(i=0,\ldots,n-1)$, let there exist $(n+1)p\times(n+1)p$ matrix P>0, $2p\times 2p$ matrices $W_0>0$, $p\times p$ matrices $W_i>0$, $R_i>0$ $(i=1,\ldots,n-1)$, Q>0, $F_1>0$ and $F_2>0$, $q\times q$ matrix $\Theta>0$ and scalar $\lambda>0$ that satisfy (18) and

$$\Phi_{L_{2}} = \begin{bmatrix}
PB_{v} & C^{T} \\
0_{(2n+2)p \times p_{v}} & 0_{(2n+2)p \times p_{l}} \\
h\Xi H_{n-1}B_{v} & 0_{p_{v} \times p_{l}} \\
0_{2(p+q) \times p_{v}} & 0_{2(p+q) \times p_{l}} \\
\hline
* & -\gamma^{2}I_{v} & C_{v}^{T} \\
* & -I_{l}
\end{bmatrix} < 0,$$
(55)

10991239, 2022. 18, Downloaded from https://onlinelibary.wiley.com/doi/10.1002/mc.5704 by Tel Avi University. Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

TABLE 1 Maximum value of h via linear matrix inequalities

	Example 1			Example 2			Example 3		
d_1	0	0.2	0.5	0	0.2	0.5	0	0.01	0.02
Selivanov and Fridman ¹⁵	0.0047	_	_	_	_	_	_	_	_
Selivanov and Fridman ¹⁶	0.019	_	_	_	_	_	_	_	_
Corollary 1	0.019	_	_	0.105	_	_	0.084	_	_
Theorem 1	0.019	0.012	0.002	0.105	0.910	0.055	0.084	0.070	0.001

where H_{n-1} , Ξ , Φ_e and B_v are respectively given by (14), (19), (46), and (51), and C and C_v are given by (52). Then the event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate α , and the system (50), (52) has L_2 -gain less than or equal to γ .

(ii) Given any $\alpha \in (0, \overline{\alpha})$, LMI (55) is always feasible for small enough h > 0, $\sigma \in (0, 1)$, $\frac{1}{\gamma} > 0$, ||D|| and $||M_i||$ (i = 0, ..., n-1) (meaning that the event-triggered PID controller (6), (41), (42) exponentially mean-square stabilizes (1) with a decay rate α).

5 | EXAMPLES

To illustrate the efficiency, we present three examples including a servo positioning system.

Example 1. Consider system (1) with

$$a_0 = 0, \quad a_1 = -8.4, \quad b = 35.71, \quad g \equiv 0.$$
 (56)

The system is not stable if u = 0. The PID controller (3) with

$$\overline{K}_P = -10, \quad \overline{K}_I = -40, \quad \overline{K}_{D_1} = -0.65.$$
 (57)

stabilizes system (1) with (56) for small enough stochastic perturbations. Let $\alpha = 5$ be the desired decay rate. In the deterministic case (i.e., $d_0 = d_1 = 0$), LMIs of Corollary 1 and Selivanov and Fridman¹⁶ lead to the same result which is larger than that via Selivanov and Fridman.¹⁵ In the stochastic case, LMIs of Theorem 1 with $d_0 = 0$ and different values of d_1 lead to efficient results (see Table 1).

Consider now system (1) with (56) under the event-triggered PID control. For h = 0.005, $d_0 = 0$ and $d_1 = 0.2$, LMI of Theorem 2 is feasible for a maximum value of $\sigma = 0.074$. Sampled-data control requires to transmit 1/h + 1 = 201 control signals during 1 s of simulations. By performing numerical simulations with 10 randomly chosen initial conditions $||x(0)||_{\infty} \le 1$ where we applied Euler-Maruyama method²⁷ using a step size 10dt with $dt = 10^{-6}$, the event-triggered control requires to transmit on average 63.95 control signals. Thus, the even-triggering mechanism (41), (42) reduces the number of transmitted control signals by almost 69%.

Example 2. (Chain of three integrators). Consider system (1) with

$$a_i = 0, \quad i = 0, 1, 2, \quad b = 1, \quad g \equiv 0.$$
 (58)

Using the pole placement, we find that for (3) with

$$\overline{K}_P = -6.026, \quad \overline{K}_I = -1.716, \quad \overline{K}_{D_1} = -7.91, \quad \overline{K}_{D_2} = -4.6,$$
 (59)

the eigenvalues of A + BK are -1, -1.1, -1.2 and -1.3. Therefore, the PID controller (3) with (59) stabilizes system (1) with (58) for small enough stochastic perturbations.

Let $\alpha = 0.2$, $d_0 = d_2 = 0$. For different values of d_1 , the maximum values of h that preserve the exponential stability are presented in Table 1. It is clear that LMIs of Corollary 1 and Theorem 1 lead to efficient results whereas Selivanov

10991239, 2022, 18, Downloaded from https://onlinelibary.viley.com/doi/10.1002/mc.5704 by Tel Aviv University, Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

and Fridman^{15,16} fail. For h = 0.04 and $d_1 = 0.2$, LMIs of Theorem 2 are feasible for a maximum value of $\sigma = 0.119$. We next perform numerical simulations with 10 randomly chosen initial conditions $||x(0)||_{\infty} \le 1$ by using Euler–Maruyama method²⁷ with a step size 10dt and $dt = 10^{-6}$. One can find that the event-triggered control requires to transmit on average 96.8 control signals during 10 seconds. Note that the number of transmissions for the sampled-data control is given by 10/h + 1 = 251. Thus, the event-triggering mechanism (41), (42) reduces the number of transmitted control signals by over 61%.

Example 3. Consider the servo positioning system with a stochastic perturbation^{28,29}

$$\theta_1 dy^{(1)}(t) = \left[-\theta_4 y^{(1)}(t) + u(t) - F(y^{(1)}(t)) + b_\nu v(t) \right] dt + d_1 y^{(1)}(t) dw(t), \tag{60}$$

where $F(\dot{y}(t)) = \theta_2 \tanh(700\dot{y}(t)) + \theta_3 [\tanh(15\dot{y}(t)) - \tanh(1.5\dot{y}(t))]$, y(t) is the motor rotation angle, u(t) is the control input and w(t) is the load disturbance. Set $[\theta_1, \theta_2, \theta_3, \theta_4] = [0.0025, 0.02, 0.01, 0.205]$. Following the previous modeling, the system (60) under an event-triggered PID control can be written in the form of (45) with

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{\theta_4}{\theta_1} & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{1}{\theta_1} \\ 0 \end{bmatrix}, \quad B_{\nu} = \begin{bmatrix} 0 \\ b_{\nu} \\ 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{d_1}{\theta_1} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and with $g = -F(\dot{y}(t))$. Note that the latter nonlinearity satisfies (2) with $M_0 = 0$ and $M_1 = 14.13$. Moreover, the controlled output is given by (52) with C = [1, 0, 0] and $C_v = 2$. The PID controller (3) with

$$\overline{K}_P = -0.4980, \quad \overline{K}_I = -0.0255, \quad \overline{K}_{D_1} = -0.270,$$
(61)

exponentially stabilizes the system (60).

Set $\alpha=0.1$ and $d_0=0$. For different values of d_1 and $b_\nu=0$, LMIs of Corollary 1 and Theorem 1 lead to efficient results in Table 1. For h=0.05, $d_1=0.01$ and $b_\nu=0$, LMIs of Theorem 2 are feasible for a maximum value of $\sigma=0.04$. Sampled-data control requires to transmit 5/h+1=101 control signals during 5 s. By performing numerical simulations with 10 randomly chosen initial conditions $||x(0)||_{\infty} \leq 1$ where we applied Euler–Maruyama method²⁷ using a step size 10dt with $dt=10^{-6}$, the event-triggered control requires to transmit on average 32.6 control signals. Thus, the even-triggering mechanism (41), (42) reduces the number of transmitted control signals by over 67%. Moreover, for h=0.02, $d_1=0.01$, $b_\nu=1$ and $\sigma=0.04$, by LMIs of Theorem 3 a minimum value of $\gamma=2.02$ is obtained.

6 | CONCLUSIONS

In this paper, sampled-data implementation of extended PID control using delays has been presented for the nth-order stochastic nonlinear systems. We have employed an event-triggering condition that allows to reduce the number of sampled control signals used for stabilization and have studied L_2 -gain analysis. The suggested method may be useful for delay-induced consensus in multi-agent systems under an extended PID control. This may be a topic for the future research.

ACKNOWLEDGEMENTS

This work was supported by Israel Science Foundation (Grant No. 673/19) and by the Planning and Budgeting Committee (PBC) Fellowship from the Council for Higher Education, Israel, and Section 3 (event-triggered PID control) was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2021-573).

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

ORCID

10991239, 2022, 18, Downloaded from https://onlinelibary.viley.com/doi/10.1002/mc.5704 by Tel Aviv University, Wiley Online Library on [10/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

REFERENCES

- 1. Silva GJ, Datta A, Bhattacharyya SP. PID Controllers for Time-Delay Systems. Berlin, Germany: Springer Science & Business Media; 2007.
- 2. Ang KH, Chong G, Li Y. PID control system analysis, design, and technology. IEEE Trans Control Syst Technol. 2005;13(4):559-576.
- 3. Zhao C, Guo L. PID controller design for second order nonlinear uncertain systems. Sci China Inf Sci. 2017;60(2):022201.
- 4. Krstic M. On the applicability of PID control to nonlinear second-order systems. Natl Sci Rev. 2017;4(5):668-668.
- 5. Ma D, Chen J, Liu A, Chen J, Niculescu SI. Explicit bounds for guaranteed stabilization by PID control of second-order unstable delay systems. *Automatica*. 2019;100:407-411.
- Zhao C, Guo L. Control of nonlinear uncertain systems by extended PID. IEEE Trans Autom Control. 2020. https://doi.org/10.1109/TAC. 2020.3030876
- 7. Niculescu SI, Michiels W. Stabilizing a chain of integrators using multiple delays. IEEE Trans Autom Control. 2004;49(5):802-807.
- 8. Ramírez A, Mondié S, Garrido R, Sipahi R. Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems. *IEEE Trans Autom Control.* 2016;61(6):1688-1693.
- 9. Fridman E. Introduction to Time-Delay Systems: Analysis and Control. Basel, Switzerland: Birkhäuser; 2014.
- 10. Fridman E, Shaikhet L. Delay-induced stability of vector second-order systems via simple Lyapunov functionals. *Automatica*. 2016;74:288-296.
- 11. Fridman E, Shaikhet L. Stabilization by using artificial delays: an LMI approach. Automatica. 2017;81:429-437.
- 12. Fridman E, Shaikhet L. Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay. *Syst Control Lett.* 2019;124:83-91.
- 13. Selivanov A, Fridman E. An improved time-delay implementation of derivative-dependent feedback. Automatica. 2018;98:269-276.
- 14. Zhang J, Fridman E. Improved derivative-dependent control of stochastic systems via delayed feedback implementation. *Automatica*. 2020;119:109101.
- 15. Selivanov A, Fridman E. Sampled-data implementation of derivative-dependent control using artificial delays. *IEEE Trans Autom Control*. 2018;63(10):3594-3600.
- 16. Selivanov A, Fridman E. Robust sampled-data implementation of PID controller. Paper presented at: Proceedings of the IEEE Conference on Decision and Control (CDC); 2018:932-936.
- 17. Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Autom Control. 2007;52(9):1680-1685.
- 18. Yue D, Tian E, Han QL. A delay system method for designing event-triggered controllers of networked control systems. *IEEE Trans Autom Control*. 2012;58(2):475-481.
- 19. Heemels WH, Donkers M, Teel AR. Periodic event-triggered control for linear systems. IEEE Trans Autom Control. 2012;58(4):847-861.
- 20. Solomon O, Fridman E. New stability conditions for systems with distributed delays. Automatica. 2013;49(11):3467-3475.
- 21. Selivanov A, Fridman E. Observer-based input-to-state stabilization of networked control systems with large uncertain delays. *Automatica*. 2016;74:63-70.
- 22. Shaikhet L. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Berlin, Germany: Springer Science & Business Media; 2013.
- 23. Zhang J, Fridman E. Digital implementation of derivative-dependent control by using delays for stochastic multi-agents. *IEEE Trans Autom Control*. 2021. https://doi.org/10.1109/TAC.2021.3056364
- 24. Mao X. Stochastic Differential Equations and Applications. Chichester: Horwood; 2007.
- 25. Seuret A, Gouaisbaut F. Hierarchy of LMI conditions for the stability analysis of time-delay systems. Syst Control Lett. 2015;81:1-7.
- 26. Seuret A, Gouaisbaut F, Ariba Y. Complete quadratic Lyapunov functionals for distributed delay systems. Automatica. 2015;62:168-176.
- 27. Higham DJ. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 2001;43(3):525-546.
- 28. Yao J, Jiao Z, Ma D. RISE-based precision motion control of DC motors with continuous friction compensation. *IEEE Trans Ind Electron*. 2014;61(12):7067-7075.
- 29. Sanz R, García P, Fridman E, Albertos P. Robust predictive extended state observer for a class of nonlinear systems with time-varying input delay. *Int J Control.* 2020;93(2):217-225.

How to cite this article: Zhang J, Fridman E. Sampled-data implementation of extended PID control using delays. *Int J Robust Nonlinear Control*. 2022;32(18):9610-9624. https://doi.org/10.1002/rnc.5704