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a b s t r a c t

This paper addresses a switched sampled-data control design for stabilization of Kuramoto-Sivashinsky
equation under the Dirichlet/periodic boundary conditions with spatially scheduled actuators. It is
supposed that discrete-time point-like or averaged measurements are available. The system is known
to be stabilizable by static output-feedback employing several distributed in space actuators and
sensors, but is not stabilizable by only one of the actuator–sensor pairs. Does there exist a switching
stabilizing static output-feedback such that at all times, only one actuator–sensor pair is active? We
give a positive answer and find the appropriate switching sampled-data control law. The proposed
switching controller can be implemented either by N actuators and sensors placed in each subdomain
(here switching control may reduce the energy that the system spends) or by using one actuator–
sensor pair that can move to the active subdomain. For implementation of the control law by moving
actuators and sensors, we take into account a moving time by treating it as an additional switching
between the open-loop system and the closed-loop switched system. The guidance of active (or mobile)
actuators and sensors is provided by using output-dependent switching. Constructive conditions are
derived to ensure that the resulting closed-loop system is regionally stable by means of the Lyapunov
approach. Numerical example illustrates the efficiency of the method.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, substantial efforts have been taken to de-
elop switched control of partial differential equations (PDEs)
see e.g. Iftime and Demetriou (2009) and Zuazua (2010)). In If-
ime and Demetriou (2009), optimal and switching policies of
patially scheduled actuators were suggested that were based
n finite horizon Linear Quadratic Regulator problem. In Zuazua
2010) the following problem was formulated: assuming that one
an control a system using two or more actuators, does there
xist a control strategy such that at all times, only one actuator is
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active? The positive answer for the controllability of some classes
of PDEs along with the corresponding switching laws was given
in Zuazua (2010).

The switching control laws can be implemented either by
stationary actuators or by one moving actuator that can move to
the active subdomain in the negligible time (Iftime & Demetriou,
2009). In Butkovskiy and Pustyl’nikov (1987) and Demetriou
(2010, 2012), moving actuators and sensors guiding laws were
suggested for PDEs. Intermittent control of reaction–diffusion
equation by time-dependent switching between all working pairs
of collocated mobile actuators and sensors and the rest (all not
working) has been studied in Wu and Zhang (2019). Further-
more, Wu and Zhang (2020) has dealt with the stabilization prob-
lem of linear reaction–diffusion equation with time-varying delay
via the projection modification algorithm using collocated mobile
actuators and sensors. In Zhao, Lin, and Xue (2012), switching
control of closed quantum systems governed by Schrödinger
equation has been proposed for the degenerate case via multiple
Lyapunov function technique. Note that the mentioned above
methods for switching control or for control by mobile actua-
tors and sensors may be inefficient for the unstable open-loop

systems, which motivates our study.
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Control of Kuramoto-Sivashinsky equation (KSE) has attracted
extensive attention owing to their wide range of applications (Ar-
maou & Christofides, 2000; Christofides & Armaou, 2000; El-Farra,
Lou, & Christofides, 2003). KSE models a variety of physical–
chemical systems including falling liquid films, chemical reactors
and interfacial instabilities in viscous flows (El-Farra et al., 2003).
Active control of fluid flow which is modeled by KSE can be
achieved by injection of polymers, mass transport through porous
walls (e.g. blowing/ suction) and application of electro-magnetic
forcing. In these cases actuators and sensors are in-domain.

In-domain control of KSE with a large number of in-domain
actuators and sensors has received significant research atten-
tion (Armaou & Christofides, 2000; Christofides & Armaou, 2000;
El-Farra et al., 2003). Particularly, El-Farra et al. (2003) studied
the motion of a liquid film falling down on a vertical wall, where
in-domain control actuators were introduced to suppress the
unstable behavior of the falling liquid films. There are also many
fruitful works on the boundary control of KSE (see e.g. Cerpa
(2010) and Cerpa and Mercado (2011)). In El-Farra et al. (2003)
and Ghantasala and El-Farra (2012), for KSE, a switching law
reconfigured the control actuators following fault detection. It
should be noticed that stabilization by switching of open-loop
unstable PDE with several actuators, where the system is not
stabilizable by using only one actuator, has not been achieved yet.
Thus, the design of a switching controller for open-loop unstable
parabolic PDEs is a challenging topic.

Stabilization of unstable systems by switching is a classical,
challenging and well-studied problem for ordinary differential
equations (ODEs) (Liberzon, 2003). Thus, for linear switched sys-
tems with a stable convex combination, stabilization can be
achieved by state or output-dependent switching (see e.g.
Deaecto (2016) and Hetel and Fridman (2013) and the references
therein). The key idea of switching control design for PDEs is
to schedule the position of the actuator and sensor in order to
achieve the control goal.

This paper addresses a switched sampled-data control design
for stabilization of KSE under the Dirichlet/periodic boundary
conditions with spatially scheduled actuators. It is supposed that
discrete-time point-like or averaged measurements are available.
The system is known to be stabilizable by static output-feedback
employing several distributed in space actuators and sensors, but
is not stabilizable by only one of the actuator–sensor pairs. Does
there exist a stabilizing switching static output-feedback such
that at all times, only one actuator–sensor pair is active? We give
a positive answer and find the appropriate switching sampled-
data control law. The proposed switching static output-feedback
can be implemented either by N actuators and sensors placed
in each subdomain (here the switching control may reduce the
energy that the system spends) or by using one actuator–sensor
pair that can move to the active subdomain. The guidance of
active (or mobile) actuators and sensors is provided by using
output-dependent switching. Constructive conditions are derived
to ensure that the resulting closed-loop system is regionally sta-
ble by means of the Lyapunov approach. For implementation of
the control law by moving actuators and sensors, we take into
account a moving time by treating it as an additional switching
between the open-loop system and the closed-loop switched
system. Consistent simulation results that support the proposed
theoretical statements are provided. Preliminary results on global
stabilization by switching of 1-D semilinear heat equation under
averaged measurements were presented in Kang, Fridman, and
Liu (2021).

This work is organized as follows. Section 2 presents some
preliminaries. In Sections 3 and 4, the switching control strategy
for KSE is proposed under the point-like measurements and main
theoretical results are presented, whereas extensions to the case
of periodic boundary conditions and the case of averaged state
measurements are presented in Section 5. Section 6 provides
simulation results and Section 7 gives conclusions.
2

2. Mathematical preliminaries

Notation. Throughout the paper the support of a function
is denoted by suppg , and conv(suppg) represents the convex
ull of suppg . L2(0, L) stands for the Hilbert space of square
ntegrable scalar functions f (x) on (0, L) with the corresponding
orm ∥f ∥L2(0,L) = [

∫ L
0 f 2(x)dx]

1
2 . L∞(0, L) denotes the space of

essentially bounded function f (x) on (0, L) with the corresponding
norm ∥f ∥L∞(0,L) = esssupx∈[0,L] |f (x)|. The Sobolev space Hk(0, L)
with k ∈ Z is defined as Hk(0, L) = {f : f (α) ∈ L2(0, L), ∀ 0 ≤

|α| ≤ k} with norm ∥f ∥Hk(0,L) = {
∑

0≤|α|≤k ∥f (α)∥2
L2(0,L)

}
1
2 . More-

ver, Hk
0(0, L) = {f ∈ Hk(0, L)|f (0) = f ′(0) = · · · = f (k−1)(0) =

, f (L) = f ′(L) = · · · = f (k−1)(L) = 0}. Z+ denotes the set of
onnegative numbers.

emma 2.1 (Poincaré’s Inequality Fridman & Bar Am, 2013; Hardy,
ittlewood, & Pólya, 1988). For a < b, let g ∈ H1(a, b) be a scalar
unction with

∫ b
a g(x)dx = 0. Then ∥g∥

2
L2(a,b)

≤
(b−a)2

π2 ∥g ′
∥
2
L2(a,b)

.

Cauchy-Schwartz’s inequality leads to the next lemma:

Lemma 2.2 (Jensen’s Inequality Fridman, 2014). For a < b, let
c : [a, b] → [0,∞) and g : [a, b] → R be such that the

integration concerned is well defined. Then
[∫ b

a c(x)g(x)dx
]2

≤∫ b
a c(x)dx

∫ b
a c(x)g2(x)dx.

Lemma 2.3 (Sobolev’s Embedding and Inequality). The embedding
H1(0, L) ⊂ C([0, L]) is compact and for any z ∈ H1

0 (0, L), it holds
∥z∥L∞(0,L) ≤

√
L∥z ′

∥L2(0,L).

3. Problem formulation

Let 0 = t0 < t1 < · · · < tk < tk+1 < . . . , limk→∞ tk = ∞

be a sequence of sampling instants. Consider the following plant
governed by KSE:{zt (x, t) + zxx(x, t) + νzxxxx(x, t) + z(x, t)zx(x, t)

= bσk (x)uσk (t), x ∈ (0, L), t ∈ [tk, tk+1),
z(x, 0) = z0(x),

(3.1)

where k ∈ Z+, under the Dirichlet boundary conditions:

z(0, t) = z(L, t) = 0, zx(0, t) = zx(L, t) = 0, t > 0. (3.2)

Here z(x, t) is the state of KSE, z0(x) is the initial state, and uσk (t)
is the control input. The switching function σk : k ∈ Z+ →

{1, . . . ,N} selects at each sampling time tk one of the N available
actuators corresponding to the shape function bσk (x) that will be
shortly defined. We make the following assumptions:

• Spatial sampling: Similar to Azouani and Titi (2014), Frid-
man and Bar Am (2013), Fridman and Blighovsky (2012)
and Lunasin and Titi (2017), we assume that the points
0 = x0 < x1 < · · · < xN = L divide [0, L] into N equal-
length subintervals Ωj = [xj−1, xj) such that ∪jΩj = [0, L]
and |Ωj| =

L
N meaning that all the subintervals have the

same length. The shape functions bj(x) are chosen to be
characteristic functions bj(x) of Ωj as follows:{
bj(x) = 0, x /∈ Ωj,

bj(x) = 1, otherwise, j = 1, . . . ,N. (3.3)

• Time sampling: The length of sampling subintervals in time
is supposed to be uniformly bounded:

0 < h0 ≤ tk+1 − tk ≤ h, ∀k ∈ Z+. (3.4)

• Moving time: The moving time δ ∈ (0, h0) for sensors
and actuators to the appropriate domain Ωσk is taken into
account.
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Fig. 1. Subdomains Ω̄j of point-like measurements.

e first consider sensors that provide the discrete-time point-
ike measurements:

j(tk) =
∫
Ωj

cj(x)z(x, tk)dx, k ∈ Z+ (3.5)

ith
≤ cj ∈ L2(Ωj),

∫
Ωj

cj(x)dx = 1, (3.6)

cj(x) =

⎧⎨⎩
1
ε
, if x ∈ Ω̄j,

0, otherwise,
j = 1, . . . ,N, (3.7)

here Ω̄j is subinterval of Ωj with the length ε independent of j
see Fig. 1, where x̄j is the midpoint of Ωj).

We will also consider the averaged state measurements

j(tk) =

∫
Ωj

z(x,tk)dx

|Ωj|
=

N
L

∫
Ωj

z(x, tk)dx,
j = 1, . . . ,N, k ∈ Z+.

(3.8)

ifferently from point-like measurements, the sensors in the
ase of averaged measurements cover the whole subdomain.
owever, our method under the averaged measurements leads
o a smaller number of actuators and sensors or allow larger
ampling in time (see comparison in Table 1 in Section 6). Note
hat the presented method under the averaged measurements
an be extended to N − D PDEs for any N (on the basis of static
utput-feedback without switching presented in Bar and Frid-
an (2014)), whereas such extension under the point-like mea-
urements is questionable (see Selivanov and Fridman (2019),
here non-switched static output-feedback for heat equation
nder point-like measurements is confined to N ≤ 2).
For both measurements, our aim is to find a sampled-data

witching law and a sampled-data regionally exponentially sta-
ilizing controller for KSE (3.1) implemented by zero-order hold
evice. As already mentioned, in this paper we will take into
ccount the moving time δ for sensors and actuators. For the
ctuators moving time, we consider additional switching between
he open-loop system (when the actuator is moving) during the
art of the sampling interval and the closed-loop switched system
uring the remaining part of the interval, where

σk (t) =

{
0, t ∈ [tk, tk + δ),
−Kyσk (tk), t ∈ [tk + δ, tk+1)

(3.9)

ith some K > 0. The switching signal σk is calculated at time tk,
hereas it takes δ seconds for actuators and sensors to move to
he domain Ωσk .

Our main objective is to find an appropriate output-depending
witching law. Denote the characteristic function of the time
nterval [tk, tk+δ] by χ[tk,tk+δ](t). Consider first the case of the av-
raged state measurements (3.8), where the closed-loop system
3.1), (3.9) has the form

t (x, t) + zxx(x, t) + νzxxxx(x, t) + z(x, t)zx(x, t)
−

KN
L (1 − χ[tk,tk+δ](t))bσk (x)

∫
Ωσk

z(x, tk)dx,
x ∈ (0, L), t ∈ [tk, tk+1)

(3.10)

subject to (3.2). Note that if bσk (x)uσk (t) in (3.1) is changed by∑N
j=1 bj(x)uj(t), then there exists K > 0 that regionally expo-

nentially stabilizes the system by uj(t) = −Kyj(t) (Kang & Frid-
man, 2018). The latter means that the average of systems (3.1)
 a

3

with bσk (x)uσk (t) changed by bj(x)uj(t) is stabilizable by the static
output-feedback (3.9). Similar to state-dependent switching for
ODEs in the case of stable convex combination of systems (Hetel
& Fridman, 2013), we will define a min-type switching function
by using the corresponding Lyapunov function V (t) according to

σk ≈ argmin V̇ (t)

for t ∈ [tk + δ, tk+1) along the closed-loop system. Thus, for
V (t) =

∫ L
0 z2(x, t)dx we have

V̇ (t) = −
KN
L

∫
Ωj

z(x, t)dx
∫
Ωj

z(x, tk)dx

−
∫ L
0 z(x, t) [zxx(x, t) + νzxxxx(x, t) + z(x, t)zx(x, t)] dx

that leads (for small enough h) to

argmin V̇ (t) = argmin
j

[
−

∫
Ωj

z(x, t)dx
∫
Ωj

z(x, tk)dx

]

≈ argmax
j

[∫
Ωj

z(x, tk)dx

]2

i.e. to the following discrete-time switching law:

σk = argmax
j

[∫
Ωj

z(x, tk)dx

]2

. (3.11)

Similarly to (3.11) for the point-like measurements we choose

σ k = argmax
j

[∫
Ωj

cj(x)z(x, tk)dx

]2

. (3.12)

Our sampled-data switching law (3.12) with (3.4) and limk=∞ tk
= ∞ rules out the possibility of Zeno behavior. Note that (3.12)
is calculated at time tk. The law (3.12) means that the σk-th mode
is active if[∫
Ωj

cj(x)z(x, tk)dx
]2

≤

[∫
Ωσk

cσk (x)z(x, tk)dx
]2
,

∀j = 1, . . . ,N.
(3.13)

4. Main results

In this section, we will analyze the well-posedness and re-
gional exponential stability of the system (3.1) under the static
output-feedback (3.9) and the switching law (3.9) (where cj = 1
in the case of averaged measurements).

4.1. Well-posedness of the controlled system

We establish the existence, uniqueness and regularity of the
system (3.1) under the switching control law (3.9), (3.12) and
Dirichlet boundary conditions (3.2) by using the step method (see
e.g. Section 1.2 in Fridman (2014)). For the switching law (3.9),
(3.12), we assume that the σk-th mode is active. We first consider
t ∈ [0, δ]. Then (3.1), (3.2) becomes⎧⎪⎨⎪⎩

zt (x, t) + zxx(x, t) + νzxxxx(x, t) + z(x, t)zx(x, t) = 0,
x ∈ (0, L), t ∈ [0, δ],

z(0, t) = z(L, t) = 0, zx(0, t) = zx(L, t) = 0,
z(x, 0) = z0(x).

(4.1)

Define the system operator A : D(A) ⊂ L2(0, L) → L2(0, L) as
follows:{
Af = −ν

[
∂4f
∂x4

]
,

D(A) = H4(0, L) ∩ H2
0 (0, L).

t is well-known that A is a dissipative operator, and A generates
n analytic semigroup. Operator −A is positive implying that its
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1
2 is also positive. Moreover, D((−A)

1
2 ) = H2

0 (0, L)
ith the norm ∥f ∥

D((−A)
1
2 )

= ν
1
2 ∥f ′′

∥L2(0,L). Then the system (4.1)
an be represented as an evolution equation:⎧⎨⎩
d
dt

z(·, t) = Az(·, t) + F (z(·, t)),

z(·, 0) = z0(·),
(4.2)

here the nonlinear term F is defined on function z(·, t) accord-
ing to

F (z(·, t)) = −z(x, t)zx(x, t) − zxx(x, t), t ∈ [0, δ].

t should be noticed that the nonlinear term F is locally Lipschitz
ontinuous, that is, there exists a positive constant l(M) such that

F (z1) − F (z2)∥L2(0,L) ≤ l(M)∥z1 − z2∥H2
0 (0,L)

olds for z1, z2 ∈ H2
0 (0, L) with ∥z1∥H2

0 (0,L)
≤ M , ∥z2∥H2

0 (0,L)
≤ M .

herefore, Theorem 3.3.3 of Henry (1981) is applicable to (4.2).
or any initial condition z0 ∈ H2

0 (0, L), there exists a unique local
trong solution of (4.2) on some interval [0, T ] ⊂ [0, δ], where
= T (z0) > 0:

∈ C([0, T ];H2
0 (0, L)) ∩ L2([0, T ];D(A)),

˙ ∈ L2([0, T ]; L2(0, L)).

rom Theorem 6.23.5 of Krasnoselskii, Zabreiko, Pustylii, and
obolevskii (1976), we obtain that if the solution admits a priori
stimate (i.e. bounded), then it exists on the entire interval [0, δ].
he a priori estimate on the solutions will be guaranteed by the
onditions that we will provide (see Theorem 1).
For t ∈ [δ, t1], the system (3.1) under the switching control

aw (3.9), (3.12) can be also written in the form of (4.2) with the
ollowing nonlinearity

(z(·, t)) = −z(x, t)zx(x, t) − zxx(x, t)
Kbσk (x)

∫
Ωσk

cσk (x)z0(x)dx, t ∈ [δ, t1].

ince F is locally Lipschitz continuous, the same line of reasoning
s applied to the time interval [δ, t1]. The strong solution exists
n [δ, t1] due to a priori estimate on the solutions starting from
he domain of attraction, which is guaranteed by the stability
onditions of Theorem 1.

.2. Stability analysis of the switched system

By the mean-value theorem, from (3.6) it follows that there
xists x̄tj ∈ conv(suppcj) (see Fig. 1) such that

Ωj
cj(x)z(x, t)dx = z(x̄tj , t), t ∈ [tk, tk+1).

enote

j(x, t) ≜ z(x, t) − z(x̄tj , t), t ∈ [tk, tk+1), (4.3)

j(t) ≜
∫
Ωj

∫ t
tk
cj(x)zs(x, s)dsdx, t ∈ [tk, tk+1). (4.4)

hen the switching controller (3.9) can be rewritten as

σk (t) =

{
0, t ∈ [tk, tk + δ),
−K [z(x, t) − fσk (x, t) − ρσk (t)], t ∈ [tk + δ, tk+1)

(4.5)

hereas the switching law chooses σk that satisfies

Ωj

[
z(x, t) − fj(x, t) − ρj(t)

]2 dx
≤

∫
Ωσk

[
z(x, t) − fσk (x, t) − ρσk (t)

]2 dx, j = 1, 2, . . . ,N.
(4.6)

Thus, under the controller (4.5), the closed-loop system becomes

zt (x, t) + zxx(x, t) + νzxxxx(x, t) + z(x, t)zx(x, t)
= −Kbσk (x)(1 − χ[tk,tk+δ](t))[z(x, t) − fσk (x, t) − ρσk (t)],

x ∈ (0, L), t ∈ [tk, tk+1),
(4.7)

subject to (3.2), (3.12).
4

Note that (3.1) may be not stabilizable with a desired decay
rate by the non-switched control. The challenge in the stability
analysis is to take efficiently into account the switching condi-
tion (3.12) in order to derive feasible stability conditions (see
(4.24) below and the resulting expression in (4.25)).

Now we focus on the stability of the closed-loop system that
switches at times tk and tk + δ. Consider the following Lyapunov-
Krasovskii functional:

V (t) = VP1 (t) + VP2 (t) + VR(t), t ∈ [tk, tk+1) (4.8)

where

VP1 (t) = P1
∫ L
0 z2(x, t)dx,

VP2 (t) = P2ν
∫ L
0 z2xx(x, t)dx,

VR(t) = R 4h2

π2

N∑
j=1

∫
Ωj

∫ t
tk
e−2α(t−s)

[ρjs(s)]2dsdx

− Re−2αh
N∑
j=1

∫
Ωj

∫ t
tk
e−2α(t−s)

[ρj(s)]2dsdx

with P1 > 0, P2 > 0, R > 0. Here ρjs(s) is the derivative of ρj(s)
ith respect to s. By Wirtinger’s inequality, VR(t) is non-negative
see Lemma 1 in Selivanov and Fridman (2013)), it does not grow
n the switching times tk and it is continuous in the switching
imes tk + δ. Moreover, VR extends the corresponding terms
n Selivanov and Fridman (2019) to Wirtinger-based Lyapunov
unctional.

For z(·, t) ∈ H2
0 (0, L) we define

z(·, t)∥2
V = P1∥z(·, t)∥2

L2(0,L) + P2ν∥zxx(·, t)∥2
L2(0,L)

ith P1 > 0, P2 > 0.

emark 4.1. In order to find a bound on the domain of attraction
or closed-loop system (4.7) subject to (3.2), we use positive
nvariance principle in Theorem 1: we show that if Ψ0 < 0,
Ψ1 < 0 and Ψ2 < 0, where Ψ0, Ψ1, Ψ2 are given by (4.12)–(4.14),
then V (t) ≤ V (0) for all t ≥ 0. Matrices Ψ0, Ψ1, Ψ2 are affine in zx.
et C > 0 be the upper bound of zx, i.e., maxx∈[0,L] |zx(x, t)| ≤ C
for all t ≥ 0. Then it is sufficient to verify the matrix inequalities
Ψ0 < 0, Ψ1 < 0 and Ψ2 < 0 in the vertices zx = ±C (see
(4.9)–(4.11)).

The following result provides sufficient stability conditions in
the form of linear matrix inequalities (LMIs) for the closed-loop
system (4.7), (3.2), (3.12):

Theorem 1. Consider the closed-loop system (4.7) subject to (3.2)
and the switching law (3.12). Given positive scalars h, α, K and
tuning parameter C > 0, α0 > 0 such that αh0 > (α0 + α)δ, let
there exist scalars R > 0, Pn > 0, λn ≥ 0 (n = 1, 2, 3) that satisfy
the inequalities:

Ψ1|zx=±C < 0, (4.9)

Ψ2|zx=±C < 0, (4.10)

Ψ0|zx=±C < 0, (4.11)

where

Ψ1 =

⎡⎢⎢⎢⎢⎣
ψ11 ψ12 ψ13

λ1
N−1

λ1
N−1

∗ ψ22 −P2 0 0
∗ ∗ ψ33 0 0
∗ ∗ ∗ −λ2 −

λ1
N−1 −

λ1
N−1

−2αh λ1

⎤⎥⎥⎥⎥⎦ , (4.12)
∗ ∗ ∗ ∗ −Re − N−1
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Ψ

ψ

ψ

(
h

∥

M

∥

2 =

⎡⎢⎢⎢⎣
ψ̃11 ψ̃12 ψ13 P3K − λ1 P3K − λ1
∗ ψ22 −P2 P2K P2K
∗ ∗ ψ33 0 0
∗ ∗ ∗ λ1 − λ2 λ1
∗ ∗ ∗ ∗ λ1 − Re−2αh

⎤⎥⎥⎥⎦ , (4.13)

Ψ0 =

⎡⎣−2α0P1 P1 − P4 − P2zx −P4
∗ −2P2 + R 4h2

π2
L
Nε −P2

∗ ∗ −2α0P2ν − 2P4ν

⎤⎦ , (4.14)

11 = 2αP1 − λ3
π4

L4
−

λ1
N−1 ,

ψ12 = P1 − P3 − P2zx,

ψ13 = −P3 −
λ2(

L
N +ε)2

2π2 ,

ψ22 = R 4h2

π2
L
Nε − 2P2,

33 = 2αP2ν − 2P3ν + λ3,

ψ̃11 = 2αP1 − λ3
π4

L4
− 2P3K + λ1,

ψ̃12 = P1 − P3 − P2zx − P2K .
Let α1 be subject to

0 < α1h0 ≤ αh0 − (α0 + α)δ. (4.15)

Then for any initial function z0 ∈ H2
0 (0, L) that satisfies the bound

∥z0∥V <

√
P2ν
L C, the closed-loop system (4.7) subject to (3.2) and

3.12) is exponentially stable with a decay rate α1, i.e. the following
olds

z(·, t)∥2
V ≤ V (t) ≤ e−2α1(t−h)+2α0δV (0).

Proof. Step 1: Let us only highlight that there exists a unique
local strong solution of (4.1) on some interval [0, T ] ⊂ [0, δ],
where T = T (z0). Due to Theorem 6.23.5 of Krasnoselskii et al.
(1976), the solution exists on the entire interval [0, δ] provided it
is bounded. Therefore, by applying the same arguments at [δ, t1]
and any step k ∈ N, one can conclude that the strong solution
exists for all t ≥ 0.

Step 2: Assume formally that strong solution of (4.7) subject
to (3.2) starting from ∥z0∥V <

√
P2ν
L C exists for all t ≥ 0.

We first derive sufficient LMI-based conditions to guarantee that
V̇ + 2αV ≤ 0 for [tk + δ, tk+1). Differentiating V (t) along the
solution of the closed-loop system and integrating by parts, we
obtain

V̇ (t) + 2αV (t) = 2P1
∫ L
0 z(x, t)zt (x, t)dx

+2αP1
∫ L
0 z2(x, t)dx + 2αP2ν

∫ L
0 z2xx(x, t)dx

+2P2ν
∫ L
0 zxx(x, t)zxxt (x, t)dx

+R 4h2

π2

N∑
j=1

∫
Ωj

[ρjt (t)]2dx − Re−2αh
N∑
j=1

∫
Ωj

[ρj(t)]2dx.

(4.16)

Jensen’s inequality leads to∫
Ωj

[ρjt (t)]2dx =
L
N

(∫
Ωj

cj(x)zt (x, t)dx
)2

≤
L
N

∫
Ωj

cj(x)dx
∫
Ωj

cj(x)z2t (x, t)dx ≤
L
Nε

∫
Ωj

z2t (x, t)dx.
(4.17)

Note that fj(x, t) ≜ z(x, t) − z(x̄tj , t) and fjx(x, t) = zx(x, t). Then,
application of Wirtinger’s inequality yields∫

Ωj
f 2j (x, t)dx

=
∫ x̄tj
xj−1 [z(x, t) − z(x̄tj , t)]

2dx +
∫ xj
x̄tj

[z(x, t) − z(x̄tj , t)]
2dx

≤
( L
N +ε)2 ∫

z2(x, t)dx.

(4.18)
π2 Ωj x

5

oreover, we obtain

z(·, t)∥2
L2(0,L)

≤

(
L2

π2

)2
∥zxx(·, t)∥2

L2(0,L)
. (4.19)

Therefore, (4.6), (4.18) and (4.19) lead to

−
λ1

N−1

∑N
j̸=σk

∫
Ωj

[z(x, t) − fj(x, t) − ρj(t)]2dx
+λ1

∫
Ωσk

[z(x, t) − fσk (x, t) − ρσk (t)]
2dx ≥ 0,

(4.20)

λ2

[
( L
N +ε)2

π2 ∥zx(·, t)∥2
L2(0,L)

−
∑N

j=1 ∥fj(·, t)∥2
L2(Ωj)

]
= λ2

[
( L
N +ε)2

π2

∑N
j̸=σk

∫
Ωj
z2x (x, t)dx −

∑N
j̸=σk

∫
Ωj
f 2j (x, t)dx

]
+λ2

[
( L
N +ε)2

π2

∫
Ωσk

z2x (x, t)dx −
∫
Ωσk

f 2σk (x, t)dx
]

≥ 0,

(4.21)

λ3

[
∥zxx(·, t)∥2

L2(0,L)
−

(
π2

L2

)2
∥z(·, t)∥2

L2(0,L)

]
= λ3

[∑N
j̸=σk

∫
Ωj
z2xx(x, t)dx −

(
π2

L2

)2 ∑N
j̸=σk

∫
Ωj

z2(x, t)dx
]

+λ3

[∫
Ωσk

z2xx(x, t)dx −

(
π2

L2

)2 ∫
Ωσk

z2(x, t)dx
]

≥ 0.

(4.22)

We further apply the descriptor method (see Section 3.5 in Frid-
man (2014)), where the left-hand side of the following equation

2
∫ L
0 [P3z(x, t) + P2zt (x, t)]{−zt (x, t) − zxx(x, t)

−z(x, t)zx(x, t) − νzxxxx(x, t)
−Kbσk (x)[z(x, t) − fσk (x, t) − ρσk (t)]}dx = 0

(4.23)

with some P3 > 0 is added to V̇ . Then adding the left-hand sides
of (4.20)–(4.22) to (4.16) and taking into account (4.17), we obtain

V̇ (t) + 2αV (t) ≤ (2P1 − 2P3)
N∑

j̸=σk

∫
Ωj

z(x, t)zt (x, t)dx

+

(
2αP1 − λ3

π4

L4

) N∑
j̸=σk

∫
Ωj

z2(x, t)dx

−

[
2P3 +

λ2( L
N + ε)2

π2

]
N∑

j̸=σk

∫
Ωj

z(x, t)zxx(x, t)dx

+ (2αP2ν − 2P3ν + λ3)
N∑

j̸=σk

∫
Ωj

z2xx(x, t)dx

+

(
R
4h2

π2

L
Nε

− 2P2

) N∑
j̸=σk

∫
Ωj

z2t (x, t)dx

− 2P2
N∑

j̸=σk

∫
Ωj

zt (x, t)[z(x, t)zx(x, t) + zxx(x, t)]dx

+ (2P1 − 2P3)
∫
Ωσk

z(x, t)zt (x, t)dx (4.24)

+

(
2αP1 − λ3

π4

L4

)∫
Ωσk

z2(x, t)dx

−

[
2P3 +

λ2( L
N + ε)2

π2

]∫
Ωσk

z(x, t)zxx(x, t)dx

+ (2αP2ν − 2P3ν + λ3)
∫
Ωσk

z2xx(x, t)dx

+

(
R
4h2

2

L
− 2P2

)∫
z2t (x, t)dx
π Nε Ωσk
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≤
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h
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R
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ε
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Ψ

− 2P2

∫
Ωσk

zt (x, t)[z(x, t)zx(x, t) + zxx(x, t)]dx

− 2P3K
∫
Ωσk

z(x, t)[z(x, t) − fσk (x, t) − ρσk (t)]dx

− 2P2K
∫
Ωσk

zt (x, t)[z(x, t) − fσk (x, t) − ρσk (t)]dx

− Re−2αh
∫
Ωσk

ρ2
σk
(t)dx − λ2

∫
Ωσk

f 2σk (x, t)dx

−
λ1

N − 1

N∑
j̸=σk

∫
Ωj

[z(x, t) − fj(x, t) − ρj(t)]2dx

+ λ1

∫
Ωσk

[z(x, t) − fσk (x, t) − ρσk (t)]
2dx.

From (4.24), we have

V̇ (t) + 2αV (t) ≤

N∑
j̸=σk

∫
Ωj
ηT1Ψ1η1dx +

∫
Ωσk

ηT2Ψ2η2dx,

t ∈ [tk + δ, tk+1),

(4.25)

where η1 = col{z(x, t), zt (x, t), zxx(x, t), fj(x, t), ρj(x, t)}, η2 =

col{z(x, t), zt (x, t), zxx(x, t), fσk (x, t), ρσk (x, t)}, Ψi (i = 1, 2) are
given by (4.12), (4.13) respectively.

Let us first assume that

max
x∈[0,L]

|zx(x, t)| < C, ∀t ≥ 0. (4.26)

Under the assumption (4.26), we have

V̇ (t) + 2αV (t) ≤ 0, (4.27)

if Ψ1 < 0 and Ψ2 < 0 hold for all −C ≤ zx ≤ C .
Matrices Ψi (i = 1, 2) given by (4.12) and (4.13) are affine in

zx. Hence, Ψ1 < 0 and Ψ2 < 0 for all −C ≤ zx ≤ C if these
inequalities hold in the vertices zx = ±C , i.e., if LMIs (4.9) and
(4.10) are feasible.

Step 3: Now we derive sufficient LMI-based conditions to
guarantee that V̇ (t) − 2α0V (t) ≤ 0 for [tk, tk + δ).

Differentiating V (t) along (4.7) subject to (3.2), we have

V̇ (t) − 2α0V (t) = 2P1
∫ L
0 z(x, t)zt (x, t)dx

−2α0P1
∫ L
0 z2(x, t)dx − 2α0P2ν

∫ L
0 z2xx(x, t)dx

+2P2ν
∫ L
0 zxx(x, t)zxxt (x, t)dx + R 4h2

π2

N∑
j=1

∫
Ωj

[ρjt (t)]2dx

−Re−2αh
N∑
j=1

∫
Ωj

[ρj(t)]2dx − 2(α + α0)VR(t).

We further apply the descriptor method, where the left-hand side
of the following equation

2
∫ L
0 [P4z(x, t) + P2zt (x, t)][−zt (x, t) − zxx(x, t)

−z(x, t)zx(x, t) − νzxxxx(x, t)]dx = 0

with some P4 > 0 is added to V̇ .
Using (4.17), we obtain

V̇ (t) − 2α0V (t) ≤
∫ L
0 η

T
0Ψ0η0dx, t ∈ [tk, tk + δ),

where η0 = col{z(x, t), zt (x, t), zxx(x, t)}.
Step 4: From Step 1-Step 3, we obtain if ∥z0∥V <

√
P2ν
L C , then

he feasibility of LMIs (4.9)–(4.11) implies that any strong solution
f (4.7), (3.2) initialized with z0 admits a priori estimate

(t) ≤ e2α0(t−tk)V (tk), ∀t ∈ [tk, tk + δ),
−2α(t−tk−δ) (4.28)
(t) ≤ e V (tk + δ), ∀t ∈ [tk + δ, tk+1).

6

Since α1 < α and tk+1 − tk ≥ h0, (4.15) implies

α1 − α)(tk+1 − tk) ≤ (α1 − α)h0 ≤ −(α0 + α)δ,

hich together with (4.28) leads to

(tk+1) ≤ e2α0δe−2α(tk+1−tk−δ)V (tk)
e−2α1(tk+1−tk)V (tk).

(4.29)

rom (4.28) it follows

(t) ≤ e2α0δV (tk), t ∈ [tk, tk + δ);
(t) ≤ V (tk + δ) ≤ e2α0δV (tk), t ∈ [tk + δ, tk+1).

herefore, for t ∈ [tk, tk+1)

(t) ≤ e2α0δV (tk) ≤ e2α0δ−2α1(tk−tk−1)V (tk−1)
e2α0δ−2α1(t−tk−1−h)V (tk−1)
e2α0δ−2α1(t−tk−2−h)V (tk−2)
· · · ≤ e2α0δ−2α1(t−h)V (0).

ence,

(t) ≤ e−2α1(t−h)+2α0δV (0), ∀t ≥ 0.

The latter bound guarantees the existence of these strong solu-
ions for all t ∈ [0, t1]. Then using step method (Fridman, 2014),
e conclude that the strong solution exists for all t ≥ 0.
We will prove next that (4.26) holds. On one hand, for t = 0,

nequality (4.26) holds by hypothesis in Theorem 1. On the other
and, let (4.26) be false for some t > 0 and let t∗ be the smallest
nstant such that V (t∗) ≥

P2ν
L C2. Since V is continuous in time,

we have V (t∗) =
P2ν
L C2 and V (t) <

P2ν
L C2 for t ∈ [0, t∗).

Since zx(0, t) = 0, the Sobolev inequality (Lemma 2.3) implies:
maxx∈[0,L] |zx(x, t)|2 ≤ L∥zxx(·, t)∥2

L2
≤

L
P2ν

V (t) ≤
L

P2ν
V (0) =

L
P2ν

∥z0∥2
V < C2 for t ∈ [0, t∗). Thus, the feasibility of LMIs (4.9)–

(4.11) guarantees that (4.27) is true for all t ∈ [0, t∗). Hence,
by continuity, V (t) ≤ V (0) < P2ν

L C2 for all t ∈ [0, t∗], which
ontradicts the definition of t∗. Therefore, (4.26) holds.

emark 4.2. The LMIs in Theorem 1 are always feasible for
ppropriate decision variables and small enough α, α0, h, δ, C ,
, P2 and large enough N such that P2K and K

N−1 are small.
Indeed, consider Ψ1, Ψ2 and Ψ0 given by (4.12), (4.13) and (4.14)
respectively. We will show that strict inequalities (4.9)–(4.11)
hold with α = h = C = 0. Then LMIs (4.9)–(4.11) hold with
mall enough α > 0, h > 0 and C > 0. Set R = λ2 > 2K ,
1 = P3 = P4 = 1, λ1 = K such that ψ12 = P1 − P3 = 0 and
3K − λ1 = 0. By applying Schur complement, for small enough
and large enough N , we obtain

1|zx=0 < 0 ⇐⇒

⎡⎢⎣ψ11 +
2( K

N−1 )
2

λ2+2 K
N−1

ψ13

∗ ψ33 +
P2
2

⎤⎥⎦ < 0,

Ψ2 < 0 ⇐⇒ λ2 − 2K > P2K 2,⎡⎢⎢⎢⎣
ψ̃11 +

P2K 2

2 −
2P2K2

λ2−2K

ψ13 +
P2K

2 −
2P2K2

λ2−2K

∗ ψ33 +
P2

2 −
2P2K2

λ2−2K

⎤⎥⎥⎥⎦ < 0,

Ψ0 < 0 ⇐⇒

[
−2α0 0 −1

∗ −2P2 −P2
∗ ∗ −2α0P2ν − 2ν

]
< 0,

where

ψ11 = −λ3
π4

L4
−

K
N − 1

, ψ13 = −1 −
λ2( L

N + ε)2

2π2 ,

ψ33 = −2ν + λ3, ψ̃11 = −λ3
π4

− K .

L4
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hen the latter LMIs are feasible with appropriate ν−
√
ν2 −

L4
π4 <

3 < ν +

√
ν2 −

L4
π4 , small enough α0, ε, P2 and large enough N

uch that P2K 2, K
N−1 are small.

Remark 4.3. Technically our Lyapunov-based approach employs
the following novel tools compared to Kang and Fridman (2018):
(a) The inequality (3.13) (that results from the switching law) and
(4.20) that allow to derive feasible LMIs.
(b) For the moving time we have derived a new LMI that guaran-
tees a bound on V in step 3 of Theorem 1 proof (see p.7) and the
bound on the dwelling time δ in step 4.
c) For point-like measurements that were not considered in Kang
nd Fridman (2018), we use a mean value theorem ((4.3)) and
urther Wirtinger’s inequality in (4.18), which is different from
he direct application of the Poincaré inequality in Kang and
ridman (2018) for the averaged measurements. Moreover, we
mploy the Wirtinger-based Lyapunov functional for sampled-
ata control with ρj which includes cj, which leads to simpler
MIs comparatively to Lyapunov functional of Kang and Fridman
2018) with cj = 1.

Under the averaged state measurements (3.8) we have the
ollowing result:

heorem 2. Consider the closed-loop system (3.10) subject to (3.2)
nd the switching law (3.12) with cj = 1. Given positive scalars h, α,
and tuning parameter C > 0, α0 > 0 such that αh0 > (α0 + α)δ,

let there exist scalars R > 0, Pn > 0, λn ≥ 0 (n = 1, 2, 3) that
satisfy the LMIs:

Θ1|zx=±C < 0, (4.30)

Θ2|zx=±C < 0, (4.31)

Ψ0|zx=±C < 0, (4.32)

where

Θ1 = Ψ1 +Π, (4.33)

Θ2 = Ψ2 +Π, (4.34)

where Ψ1,Ψ2,Ψ0 are given by (4.12),(4.13), (4.14) respectively, and

Π =

⎡⎢⎢⎣
0 0 λ2

2π2

( 2Lε
N + ε2

)
0 R 4h2

π2

(
1 −

L
Nε

)
0 03×2

0 0 0
∗ 02×2

⎤⎥⎥⎦ (4.35)

Then for any initial function z0 ∈ H2
0 (0, L) subject to ∥z0∥V <√

P2ν
L C, the closed-loop system (3.10) subject to (3.2) is exponen-

tially stable with a decay rate α1 > 0 which is subject to (4.15).

roof. See the Appendix.

emark 4.4. For the negligible moving time with δ → 0, the LMI
conditions of Theorem 1 are reduced to (4.9) and (4.10), and the
LMI conditions of Theorem 2 are reduced to (4.30) and (4.31).

5. Extensions

The proposed method is efficient for various classes of PDEs.
In this section we will discuss its extension to KSE under the peri-
odic boundary conditions and to the reaction–diffusion equation.
7

Consider (3.10) under the periodic boundary conditions:

∂mz
∂xm

(0, t) =
∂mz
∂xm

(L, t), t > 0, m = 0, 1, 2, 3 (5.1)

and the switching law (3.12). The well-posedness under the pe-
riodic boundary conditions can be established similar to the case
of Dirichlet boundary conditions. Denote

H2
per (0, L) ≜ {g ∈ H2(0, L)|g(0) = g(L), g ′(0) = g ′(L)}.

We employ the extension of Sobolev’s inequality (Kang & Frid-
man, 2018, 2019):

Lemma 5.1. Let z ∈ H1(0, L) be a scalar function. Then

max
x∈[0,L]

|z(x, t)|2 ≤ (1 +
1
L
)∥z(·, t)∥2

L2(0,L) + ∥zx(·, t)∥2
L2(0,L).

Note that Wirtinger’s inequality cannot be applied for the
case of the periodic boundary conditions (5.1). Therefore, from
Lemma 5.1 we directly obtain the following result:

• If the LMI conditions of Theorem 1/Theorem 2 with λ3 = 0
hold, then for the initial function z0 ∈ H2

per (0, L) satisfying

∥z0∥V <

√
L

(L+1)M C , there exists a unique strong solution of
the corresponding closed-loop system and the closed-loop
system is stable, where M ≜ max

{
1

2P1
, 3

2P2ν

}
.

Remark 5.1. In the companion conference paper (Hetel & Frid-
man, 2013), the presented switching control sampled-data con-
trol was presented for the semilinear heat equation

zt (x, t) =
∂

∂x
[a(x)zx(x, t)] + ϕ(z(x, t))z(x, t) + bσk (x)uσk (t),

under the averaged measurements and the Dirichlet boundary
conditions z(0, t) = z(1, t) = 0, t > 0. The functions a and
ϕ are of class C1 and may be unknown. Global sampled-data
stabilization by switching was achieved under assumption that
the inequalities a(x) ≥ a0 > 0, ϕm ≤ ϕ ≤ ϕM hold with known
bounds a0, ϕm and ϕM .

6. Numerical example

In this section, we present a numerical example which verifies
the effectiveness of the proposed method for KSE. For the heat
equation see example in Kang et al. (2021).

6.1. Case of the Dirichlet boundary conditions

Consider KSE (3.1) under the Dirichlet boundary conditions
(3.2) with L = 2π and instability parameter ν = 0.8 < 1. The
initial function is chosen as follows:

z(x, 0) = z0(x) = 0.015(1 − cos x) sin x.

Fig. 2 demonstrates the profile of the open-loop system initialized
by z0(x). It is shown that the unforced system is unstable.

We choose K = 25, α0 = 0.32, α = 0.07, C = 1 and
verify LMIs of Theorems 1 and 2 under point-like and averaged
measurements. The results are given in Table 1, which shows that
as N increases, the maximum value of h increases. Since the aver-
aged measurements contain more information than the point-like
measurements, the corresponding switched closed-loop system
under the averaged measurements preserves the stability for
larger h. Note that e.g. for N = 15 and ε = π/30 the closed-loop
system preserves the exponential stability within a given domain
of initial conditions ∥z0∥V < 0.743 for 0.0059 ≤ tk+1 − tk ≤ h ≤

0.006. Note also that for the choice of K we used trials and errors
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Table 1
Maximal values of h, δ under the Dirichlet boundary conditions.

Averaged measurements Point-like measurements

N h δ ε h δ

10 0.020 0.003 π/90 0.0033 0.0005
π/30 0.0038 0.0006

13 0.027 0.004 π/90 0.0045 0.0007
π/30 0.0054 0.0009

15 0.030 0.005 π/90 0.0050 0.0008
π/30 0.0060 0.0010

Fig. 2. State of unforced system: Dirichlet boundary conditions.

o minimize N for h = 0 and C = 1. Then, we increased h and
he corresponding value of N .

We further provide numerical simulations of the solutions to
he corresponding closed-loop systems with N = 15, K = 25,
= 0.07:

a) A finite difference method was utilized for numerical simu-
ations of the solution to the closed-loop system (4.7) subject to
3.2) under the output-feedback

σk (t) =

{
0, t ∈ [tk, tk + δ),
−25

∫
Ωσk

cσk (x)z(x, tk)dx, t ∈ [tk + δ, tk+1)

ia the switching law (3.9), (3.12) with tk+1 − tk = 0.006,
ε = π/30, |Ωσk | =

2π
15 , and the moving time for sensors and

actuators δ = 0.001. The steps in time and space were set as
x = π/30 and dt = 10−5, respectively. Fig. 3 shows the time

evolution of ∥z(·, t)∥H2 of the closed-loop and open-loop systems.
Note that the closed-loop system with switching controller is
stable, whereas the closed-loop system under only one stationary
actuator is unstable.
(b) Next, a finite difference method is utilized to compute the
numerical solution of the closed-loop system (3.10) subject to
(3.2) under the output-feedback

uσk (t) =

{
0, t ∈ [tk, tk + δ),
−

375
2π

∫
Ωσk

z(x, tk)dx, t ∈ [tk + δ, tk+1)

via the switching law (3.9), with tk+1 − tk = 0.030, |Ωσk | =
2π
15 ,

nd the moving time for sensors and actuators δ = 0.005. Set
the steps in time and space as dx = π/30 and dt = 10−5,
espectively. Fig. 4 shows the profile of the closed-loop system.
he locations of sensor/actuator under the switching control law
re given in Fig. 5.

.2. Case of the periodic boundary conditions

We proceed further with the case of periodic boundary condi-
ions (5.1) under the same initial conditions. For the switching
ontroller (3.9) via (3.12), by using the Yalmip, we verify LMI
onditions of Theorem 1 with λ = 0, N = 15, K = 25, C = 1,
3

8

Fig. 3. H2-norm ∥z(·, t)∥H2 of the open-loop system, closed-loop system under
ne stationary actuator located at Ω7 and switched closed-loop system: Dirichlet
oundary conditions.

Fig. 4. State response of closed-loop system under the averaged measurements
and Dirichlet boundary conditions.

Fig. 5. Sensor/actuator locations for N = 15, tk+1 − tk = 0.030.

= 0.07, α0 = 0.32, δ = 0.001, and ε = π/30. We find that
he closed-loop system (4.7), (5.1) preserves exponential stability
ithin a given domain of initial conditions ∥z0∥V < 0.773 for
.0059 ≤ tk+1 − tk ≤ h ≤ 0.006. In the numerical simulation,
finite difference method is utilized to compute the numerical
olution of the closed-loop system (4.7), (5.1) under the output-
eedback (3.9) via the switching law (3.12) with |Ωσk | =

2π
15 and

tk+1 − tk = 0.006. Numerical simulations of the solutions confirm
the theoretical results that follow from LMIs.
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. Conclusions

The present paper introduced stabilization by switched
ampled-data controller of parabolic PDEs via the employment
f either stationary or moving actuating devices that can move
o the active subdomain. Extension of the results to other PDEs
ay be a topic for future research.

ppendix. Proof of Theorem 2

For the case of switched controller under the averaged mea-
urements, by arguments of Theorem 1, the well-posedness of
3.10) subject to (3.2) can be established via the step method.

Denote f̃j(x, t) ≜ z(x, t) −

∫
Ωj

z(x,t)dx

|Ωj|
,

ρ̃j(t) ≜
∫
Ωj

∫ t
tk

zs(x,s)dsdx

|Ωj|
, where |Ωj| =

L
N
.

Then the switching controller (3.9) via the switching law (3.12)
ith cj = 1 can be rewritten as

σk (t) = −K [z(x, t) − f̃σk (x, t) − ρ̃σk (t)]. (A.1)

e choose the Lyapunov function V with ρ̃j instead of ρj. Differ-
ntiating V along the solution of the closed-loop system (3.10)
ubject to (3.2), we get (4.16) with ρ̃j instead of ρj. The substi-
ution fj → f̃j and ρj → ρ̃j in Theorem leads to the following
hanges:

Ωj
[ρ̃jt (t)]2dx =

1
|Ωj|

(∫
Ωj

zt (x, t)dx
)2

≤
∫
Ωj

z2t (x, t)dx,

−
λ1

N−1

N∑
j̸=σk

∫
Ωj

[z(x, t) − f̃j(x, t) − ρ̃j(t)]2dx

+λ1
∫
Ωσk

[z(x, t) − f̃σk (x, t) − ρ̃σk (t)]
2dx ≥ 0,

(A.2)

λ2L2

N2π2 ∥zx(·, t)∥2
L2(0,L)

− λ2

N∑
j=1

∥f̃j(·, t)∥2
L2(Ωj)

≥ 0 (A.3)

or any λ1 ≥ 0, λ2 ≥ 0.
Set η̃1 = col{z(x, t), zt (x, t), zxx(x, t), f̃j(x, t), ρ̃j(x, t)}, η̃2 =

col{z(x, t), zt (x, t), zxx(x, t), f̃σk (x, t), ρ̃σk (x, t)}, η0 = col{z(x, t),
zt (x, t), zxx(x, t)}. Applying descriptor method and adding the left-
hand sides of (A.2)–(4.22) and (A.3) to V̇ , we finally obtain

V̇ (t) + 2αV (t) ≤

N∑
j̸=σk

∫
Ωj
η̃T1Θ1η̃1dx +

∫
Ωσk

η̃T2Θ2η̃2dx,

t ∈ [tk + δ, tk+1),
V̇ (t) − 2α0V (t) ≤

∫ L
0 η

T
0Ψ0η0dx, t ∈ [tk, tk + δ),

where Θl (l = 1, 2) and Ψ0 are given by (4.33), (4.34) and (4.14),
respectively.

Hence, V̇ (t) + 2αV (t) ≤ 0, V̇0(t) − 2αV0(t) ≤ 0, if Θl < 0(l =

1, 2) and Ψ0 < 0 hold for all −C ≤ zx ≤ C . Matrices Θl(l = 1, 2)
and Ψ0 given by (4.33), (4.34) and (4.14) are affine in zx. Hence,
Θl < 0(l = 1, 2) and Ψ0 < 0 for all −C ≤ zx ≤ C if these
inequalities hold in the vertices zx = ±C , i.e. if LMIs (4.30)–(4.32)
are feasible.
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