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a b s t r a c t

We first study stabilization of heat equation with globally Lipschitz nonlinearity. We consider the point
measurements with constant delay and use spatial decomposition. Inspired by recent developments
in the area of ordinary differential equations (ODEs) with time-delays, for the stability analysis, we
suggest an augmented Lyapunov functional depending on the state derivative that is based on Legendre
polynomials. Global exponential stability conditions are derived in terms of linear matrix inequalities
(LMIs) that depend on the degree N of Legendre polynomials. The stability conditions form a hierarchy
of LMIs: if the LMIs hold for N , they hold for N + 1. The dual observer design problem with constant
delay is also formulated. We further consider stabilization of Korteweg–de Vries–Burgers (KdVB)
equation using the point measurements with constant delay. Due to the third-order partial derivative
in KdVB equation, the Lyapunov functionals that depend on the state derivative are not applicable
here, which is different from the case of heat equation. We suggest a novel augmented Lyapunov
functional depending on the state only that leads to improved regional stability conditions in terms
of LMIs. Finally, numerical examples illustrate the efficiency of the method.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Control of partial differential equations (PDEs), e.g. heat equa-
ion, becomes an active research topic [1,2]. It is of interest
o design a control law for PDEs using delayed inputs/outputs.
onstructive conditions in terms of LMIs for delayed control of
DEs were presented in [3,4]. The derived conditions allow to give
n upper bound on the delay preserving the performance (e.g. ex-
onential decay rate). Moreover, KdVB equation has been derived
s the governing evolution equation for waves propagating in
luid-filled elastic or viscoelastic tubes incorporating the effects of
ispersion, dissipation and nonlinearity [5]. The objective of the
resent work is the derivation of less conservative LMI conditions
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for the stability analysis of heat and KdVB equations with time-
delay. In application to chain of sub-observers as used in [6], such
conditions will allow to reduce the order of the chain.

For the stability analysis of ODEs with time-delay, Jensen’s
inequality [7,8] and Wirtinger-based integral inequality [9] were
usually employed. Several contributions to derive less conserva-
tive integral inequalities for time-delay systems were provided
in [10,11]. Recently, a novel integral inequality so-called Bessel–
Legendre (B–L) inequality that encompasses Jensen’s inequality
and Wirtinger-based integral inequality as particular cases was
introduced in [12] by using Legendre polynomials. The latter
presented a hierarchy of LMI conditions that are competitive
with [7–11] in terms of conservatism and of complexity. In [13],
stability analysis of a coupled ODE-heat equation was presented
via a new B–L inequality.

In the present work, we consider stabilization of heat and
KdVB equations in the presence of constant output delay. Note
that in the case of constant delay, input delay can be always
moved to output by changing the time. We first study stabi-
lization of heat equation under the point measurements with
constant delay by using spatial decomposition approach (as intro-
duced in [4]). For the stability analysis of the closed-loop system,
we suggest an augmented Lyapunov functional depending on the
state derivative and that is based on Legendre polynomials. Such

functionals extend the Lyapunov constructions of [4,6]. Sufficient
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tability conditions are derived in terms of LMIs that are param-
terized by the degree N of the polynomials. The same LMIs are

also applicable to the case of stabilization under the spatially
averaged measurements with constant delay. As a by-product, for
the stability analysis of heat equation with constant state delay,
we present the LMIs that appear to guarantee the exponential
stability of delayed ODEs and that in the numerical example
recover the analytical upper bounds on delay with a finite degree
of the polynomials. We also formulate the dual observer design
problem.

We further consider stabilization of KdVB equation under the
point measurements with constant delay as studied in [14]. Due
to the third-order partial derivative in KdVB equation, the Lya-
punov functionals that depend on the state derivative are not
applicable here, which is different from the case of heat equation.
We suggest a novel augmented Lyapunov functional encompass-
ing the Lyapunov functional introduced in [14] as a particular case
that leads to improved regional stability conditions.

As in [12,15], the derived stability conditions form a hierarchy
of LMIs: if the LMIs hold for N , they hold for N +1. By solving the
LMIs, improved upper bounds on delay that preserve the stability
are found. Finally, numerical examples illustrate the efficiency of
the method. Some preliminary results for the scalar heat equation
were presented in [16].

1.1. Notation and preliminaries

Throughout the paper, Rn denotes the n-dimensional Eu-
clidean space with the vector norm |·|, Rn×m is the space of all
n×m real matrices. The notation P > 0, for P ∈ Rn×n means that P
is symmetric and positive definite. 0n×m (0n) stands for the matrix
in Rn×m (Rn×n) whose entries are zero. For any square matrix X ,
He{X} = X + XT . L2(0, l) stands for the Hilbert space of square
integrable vector (or scalar for n = 1) functions z : (0, l) → Rn

with the norm ∥z∥L2(0,l) =

√∫ l
0 z

T (x)z(x)dx. Hi(0, l) (i = 1, 2) are

the Sobolev space: Hi(0, l) = {z :
djz
dxj

∈ L2(0, l) ∀0 ≤ j ≤ i} with

the norm ∥z∥Hi(0,l) =

√∑i
j=0 ∥

djz
dxj

∥
2
L2(0,l)

.
The notation

(
k
i

)
refers to the binomial coefficients given by

k!
(k−i)!i! . Let Lk(s) (k ∈ N0) be the shifted Legendre polynomials over
nterval [−h, 0]:

Lk(s) =

k∑
i=0

(−1)i+k
(

k
i

)(
k+i
i

)(
s + h
h

)i

. (1.1)

hese polynomials satisfy the following properties:

roperty 1.1. (i) Orthogonality:

∀k, i ∈ N0,
∫ 0

−h Lk(s)Li(s)ds =

{
0, k ̸= i,

h
2k+1 , k = i.

(1.2)

ii) Boundary conditions:

∀k ∈ N0, Lk(0) = 1, Lk(−h) = (−1)k. (1.3)

(iii) Differentiation:

L̇k(s) =

{
0, k = 0,∑k−1

i=0
2i+1
h (1 − (−1)k+i)Li(s), k ≥ 1.

(1.4)

We will employ extended Bessel–Legendre inequality that is
obtained by integration in x ∈ [0, l] of the inequality of Lemma 3
of [12]:
2

Lemma 1.1. Consider a function z ∈ L2([−h, 0]; L2(0, l)), and
calars h > 0 and l > 0. Then for any n × n matrix R > 0, the
ollowing inequality holds for all N ∈ N0:∫ l

0

∫ 0
−h z

T (x, t + s)Rz(x, t + s)dsdx

≥

N∑
k=0

2k + 1
h

∫ l

0
(Θk(x, t))TRΘk(x, t)dx,

(1.5)

here Θk(x, t) (k ∈ N0) correspond to the projection of z(x, t + s)
ver Lk(s) given by (1.1):

Θk(x, t) =
∫ 0

−h Lk(s)z(x, t + s)ds, k ∈ N0. (1.6)

. Stabilization of heat equation with an output delay

.1. Problem formulation

Consider the following semilinear diffusion equation:

zt (x, t) = △Dz(x, t) − βzx(x, t) + Az(x, t)

+φ(z(x, t), x, t) + B
N∑
j=1

bj(x)uj(t),

t ≥ 0, x ∈ [0, l], l > 0

(2.1)

nder the Dirichlet boundary conditions

z(0, t) = z(l, t) = 0. (2.2)

ere z(x, t) = [z1(x, t), . . . , zn(x, t)]T ∈ Rn is the state, uj(t) ∈ Rr

(j = 1, . . . ,N) are the control inputs, A ∈ Rn×n and B ∈ Rn×r

are constant matrices and β ∈ Rn×n is the diagonal matrix of
convection coefficients. The diffusion term is given by

△Dz(x, t) =
[

∂
∂x (d1(x)z

1
x (x, t)), . . . ,

∂
∂x (dn(x)z

n
x (x, t))

]T (2.3)

with di(x) ∈ C1 satisfying 0 < di0 ≤ di(x) (i = 1, . . . , n) for
x ∈ [0, l].

Following [17], we assume that for some positive definite Ψ ∈

Rn×n, function φ ∈ C1 satisfies

φT (z, x, t)φ(z, x, t) ≤ zTΨ z (2.4)

for all z ∈ Rn, x ∈ [0, l], t ≥ 0. It is well known that the open-
loop system (2.1) (with uj(t) ≡ 0) under the Dirichlet boundary
conditions (2.2) may become unstable if ∥Ψ ∥ in (2.4) is large
enough (see [1] for φ(z, x, t) = φMz).

As in [3,4], the control inputs uj(t) enter (2.1) through the
shape functions

bj(x) =

{
1, x ∈ Ωj,

0, otherwise,
j = 1, . . . ,N, (2.5)

where Ωj = [xj−1, xj) (j = 1, . . . ,N) divide the domain [0, l] into
N sub-intervals. Here points 0 = x0 < x1 < · · · < xN = l satisfy
xj − xj−1 = ∆j ≤ ∆, where ∆ > 0 is a known parameter. Such
shape functions correspond to actuation covering all the domain
[0, l].

Assume that N sensors are placed in the middle of each inter-
val Ωj given by

x̄j =
xj−1+xj

2 , j = 1, . . . ,N. (2.6)

In addition, the measurement is affected by a time-delay which
is assumed to be constant, denoted hereafter by h > 0. For
the control design, our method works also for unknown but
constant h that belongs to a prescribed interval [h1, h2]. Then,
oint measurements are provided by N sensors distributed over
he whole domain [0, l]:

yj(t) =

{
0, t ≤ h,

j = 1, . . . ,N. (2.7)

z(x̄j, t − h), t > h,
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ote that our model (2.1) may present a metal bar of the length
f l that is heated along its length. In this case we measure the
emperature in the spatial points along the bar (see e.g. Example
.1.2 in [1]). Another application of spatially sampled measure-
ents was recently given in application to multi-agents in [18],
here the measurements are provided by leaders placed in the
oints x̄j.
We design for system (2.1) a stabilizing controller

uj(t) = −Kyj(t), t ≥ 0, j = 1, . . . ,N (2.8)

ith the gain K ∈ Rr×n. Denote by the errors between the delayed
tate z(x, t − h) and point measurements z(x̄j, t − h):

fj(x, t − h) ∆
= z(x, t − h) − z(x̄j, t − h)

=
∫ x
x̄j
zξ (ξ, t − h)dξ, x ∈ Ωj, j = 1, . . . ,N.

(2.9)

Then the closed-loop system (2.1), (2.7), (2.8) has the form:

zt (x, t) = △Dz(x, t) − βzx(x, t) + Az(x, t)
+φ(z(x, t), x, t) − BK (1 − χ[0,h](t))
×[z(x, t − h) − fj(x, t − h)], t ≥ 0,

(2.10)

where x ∈ Ωj, j = 1, . . . ,N and χ[0,h](t) denotes the characteristic
function of the time interval [0, h].

Now we consider the well-posedness of system (2.10). Let
H1

0(0, l) = {θ ∈ H1(0, l) : θ (0) = θ (l) = 0} and

D(A) = {θ ∈ H2(0, l) : θ (0) = θ (l) = 0}.

By using the step method (see e.g. [4]), it can be shown that for
any initial condition z(·, 0) ∈ H1

0(0, l), there exists a unique strong
solution of (2.10) such that

z ∈ L2(0, ∞;D(A)) ∩ C([0, ∞);H1
0(0, l)),

zt ∈ L2(0, ∞; L2(0, ∞)) and Eq. (2.10) hold almost everywhere on
[h, ∞).

2.2. Improved stability conditions

For the stability analysis of system (2.10), we suggest the
following augmented Lyapunov functional (that extends the Lya-
punov constructions of [4,6]):

VN (t) = VPN + VP2 + VS1 + VS2 + VR, t ≥ h, (2.11)

where N ∈ N0, and

VPN =
∫ l
0 ζ T

N (x, t)PN ζN (x, t)dx,

VP2 =

n∑
i=1

∫ l

0
P i
2di(x)(z

i
x(x, t))

2dx,

VS1 =
∫ l
0

∫ t
t−h e

−2α(t−s)zT (x, s)S1z(x, s)dsdx,

VS2 =
∫ l
0

∫ t
t−h e

−2α(t−s)zTx (x, s)S2zx(x, s)dsdx,

VR = h
∫ l
0

∫ t
t−h e

−2α(t−s)(s − t + h)zTs (x, s)Rzs(x, s)dsdx

(2.12)

with

ζN (x, t) = col{z(x, t), Θ0(x, t), . . . , ΘN−1(x, t)} (2.13)

and with (N + 1)n × (N + 1)n matrix PN , n × n matrices P2 =

diag{P1
2 , . . . , Pn

2 } > 0, S1 > 0, S2 > 0, R > 0, a scalar α > 0
and Θk(x, t) (k = 0, . . . ,N −1) given by (1.6). The terms VS1 and
VR are the PDE extensions of the standard Lyapunov functionals
for delay-dependent analysis [19,20]. The term VS2 is introduced
to compensate

∫ l
0 zx(x, t − h)dx (instead of Halanay’s inequality

employed in [4] for the case of time-varying delays). Note that
z(·, s) for s ∈ [0, h] in (2.12) is defined as solution of (2.10), (2.2)
with the initial condition z(·, t) ∈ H1

0(0, l).
3

Theorem 2.1. For given positive scalars h, l, ∆, α and a positive
integer N , assume that there exist (N + 1)n× (N + 1)n matrix PN ,
n × n matrices P1 = diag{P1

1 , . . . , Pn
1 }, P2 = diag{P1

2 , . . . , Pn
2 } > 0,

S1 > 0, S2 > 0, R > 0, W > 0 and a scalar λφ > 0 that satisfy

P̄N > 0, (2.14)

ΥN + ΛN + UN ≤ 0, (2.15)

W − e−2αhS2 ≤ 0, (2.16)

where

P̄N = PN +
1
h e

−2αhS1diag{0, 1, . . . , 2N − 1},
ΥN = He{GT

NPNHN } + 2αGT
NPNGN

−e−2αh
N∑
k=0

(2k + 1)Γ T
N (k)RΓN (k),

GN =

[
In 0n×5n 0n×Nn

0Nn×n 0Nn×5n hINn

]
,

HN =
[

F T
N Γ T

N (0) . . . Γ T
N (N − 1)

]T
,

FN =
[

0n In 0n×(N+4)n
]
,

ΓN (k) =
[
In, 0n×2n, (−1)k+1In, 0n×2n, γ

0
N kIn, . . . , γ

N−1
N k In

]
,

γ
j
N k =

{
−(2j + 1)(1 − (−1)k+j), if j ≤ k,
0, if j > k,

UN =
π2

l2
diag{03n,W − e−2αhS2, 0(N+2)n}

(2.17)

and ΛN = {Λij} is symmetric matrix composed of

Λ11 = He{P1A} + S1 + λφΨ , Λ12 = −P1 + ATP2,
Λ14 = −Λ16 = −P1BK , Λ15 = P1,
Λ22 = −2P2 + h2R, Λ23 = −P2β,

Λ24 = −Λ26 = −P2BK , Λ25 = P2,
Λ33 = S2 + He{D0(αP2 − P1)}, Λ44 = −e−2αhS1,

Λ55 = −λφ In, Λ66 = −
π2

∆2 W , Λ77 = 0Nn

(2.18)

with Ψ given by (2.4) and D0 = diag{d10, . . . , d
n
0}. Then there exists

M0 > 0 such that a unique strong solution of (2.10), (2.2) initialized
with z(·, t) ∈ H1

0(0, l) for t ∈ [0, h] satisfies the inequality

∥z(·, t)∥2
H1

0(0,l)
≤ M0e−2α(t−h)

∫ h
0 [∥z(·, s)∥2

H1
0(0,l)

+∥zs(·, s)∥2
L2(0,l)

]ds, t ≥ h,
(2.19)

meaning that (2.10), (2.2) is exponentially stable with a decay rate
α. The bound in (2.19) is finite for the strong solutions of (2.10),
(2.2) on [0, h]. Moreover, if the strict inequalities (2.14)–(2.16) are
feasible with α = 0, then (2.10) (2.2) is exponentially stable with a
small enough decay rate α = α0 > 0.

Proof. Consider Lyapunov functional VN (t) given by (2.11).
Lemma 1.1 gives a lower bound as follows

VN (t) ≥
∫ l
0 ζ T

N (x, t)PN ζN (x, t)dx

+
∫ l
0

∫ t
t−h e

−2α(t−s)zT (x, s)S1z(x, s)dsdx,

≥
∫ l
0 ζ T

N (x, t)PN ζN (x, t)dx

+e−2αh
∫ l
0

∫ t
t−h z

T (x, s)S1z(x, s)dsdx

≥
∫ l
0 ζ T

N (x, t)P̄N ζN (x, t)dx.

Thus, the positivity of V (t) results from P̄ > 0 given by (2.14).
N N
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For t ≥ h, differentiating VPN along (2.10) yields

V̇PN = 2
∫ l
0 ζ T

N (x, t)PN ζ̇N (x, t)dx, (2.20)

where

ζ̇N (x, t) = col{zt (x, t), Θ0
t (x, t), . . . , ΘN−1

t (x, t)}.

Via (2.10) and (2.13), the definitions of GN and FN given by (2.17)
yield

ζN (x, t) = GNηN ,j, zt (x, t) = FNηN ,j, (2.21)

where
ηN ,j = col{z(x, t), zt (x, t), zx(x, t), z(x, t − h),

φ(z(x, t), x, t), fj(x, t − h), 1
hΘ

0(x, t), . . . , 1
hΘ

N−1(x, t)}

with fj(x, t − h) defined by (2.9).
Then, an integration by parts ensures that

Θk
t (x, t) = Lk(s)z(x, t + s)|0s=−h

−
∫ 0

−h

[ d
dsLk(s)

]
z(x, t + s)ds

= ΓN (k)ηN ,j, k = 0, . . . ,N ,

(2.22)

where we applied (1.3) and (1.4) with ΓN (k) given by (2.17). From
2.20), (2.21) and (2.22), it follows that

V̇PN = 2
N∑
j=1

∫ xj

xj−1

ηT
N ,jG

T
NPNHNηN ,jdx, (2.23)

here HN is given by (2.17).
We have

V̇P2 = 2
n∑

i=1

∫ l

0
P i
2di(x)z

i
x(x, t)z

i
xt (x, t)dx, (2.24)

V̇S1 + 2αVS1 =
∫ l
0 z

T (x, t)S1z(x, t)dx

−e−2αh
∫ l
0 z

T (x, t − h)S1z(x, t − h)dx,
(2.25)

V̇S2 + 2αVS2 =
∫ l
0 z

T
x (x, t)S2zx(x, t)dx

−e−2αh
∫ l
0 z

T
x (x, t − h)S2zx(x, t − h)dx.

(2.26)

Note that z ixt (i = 1, . . . , n) in V̇P2 are well-defined as in Remark
.1 of [3].
Further by using Lemma 1.1 and taking into account (2.22), we

btain

V̇R + 2αVR = h2
∫ l
0 z

T
t (x, t)Rzt (x, t)dx

−h
∫ l
0

∫ t
t−h e

−2α(t−s)zTs (x, s)Rzs(x, s)dsdx

≤ h2
∫ l
0 z

T
t (x, t)Rzt (x, t)dx − e−2αh

N∑
k=0

(2k + 1)

×

N∑
j=1

∫ xj

xj−1

ηT
N ,jΓ

T
N (k)RΓN (k)ηN ,jdx.

(2.27)

To cancel the term on the right hand side of (2.24), we employ
the descriptor method [4,19], where the right-hand side of

0 = 2
∫ l
0[z

T (x, t)P1 + zTt (x, t)P2][ − zt (x, t)
+△Dz(x, t) − βzx(x, t) + Az(x, t) + φ(z(x, t), x, t)

−BKz(x, t − h)]dx + 2
N∑
j=1

∫ xj

xj−1

[zT (x, t)P1

+zTt (x, t)P2]BKfj(x, t − h)dx

(2.28)

with some n × n matrix P1 = diag{P1
1 , . . . , Pn

1 } is added to
V̇ (t) + 2αV (t).
N N

4

An integration by parts and substitution of the Dirichlet
boundary conditions (2.2) lead to

2
∫ l
0[z

T (x, t)P1 + zTt (x, t)P2]△Dz(x, t)dx

= 2
n∑

i=1

∫ l

0
[P i

1z
i(x, t) + P i

2z
i
t (x, t)]

∂

∂x
(di(x)z ix(x, t))dx

= −2
n∑

i=1

∫ l

0
P i
1di(x)(z

i
x(x, t))

2dx − V̇P2 ,

(2.29)

−
∫ l
0 z

T (x, t)P1βzx(x, t)dx =
∫ l
0 z

T
x (x, t)P1βz(x, t)dx.

Thus, by noting that matrix P1β is diagonal, we have

2
∫ l
0 z

T (x, t)P1βzx(x, t)dx = 0. (2.30)

To ‘‘compensate’’ the cross terms in (2.28) with fj(x, t−h) given
by (2.9), for any n × n matrix W > 0 application of Wirtinger’s
inequality (see e.g. (3.177) in [19]) yields∫ xj

xj−1
f Tj (x, t − h)Wfj(x, t − h)dx

=
∫ xj
x̄j

[∫ x
x̄j
zTξ (ξ, t − h)dξ

]
W

[∫ x
x̄j
zξ (ξ, t − h)dξ

]
dx

+
∫ x̄j
xj−1

[∫ x
x̄j
zTξ (ξ, t − h)dξ

]
W

[∫ x
x̄j
zξ (ξ, t − h)dξ

]
dx

≤
∆2

π2

∫ xj
xj−1

zTx (x, t − h)Wzx(x, t − h)dx, j = 1, . . . ,N.

hus, the following inequality holds:
N∑
j=1

∫ xj

xj−1

[
zTx (x, t − h)Wzx(x, t − h)

−
π2

∆2 f Tj (x, t − h)Wfj(x, t − h)
]
dx ≥ 0.

(2.31)

From (2.4) we have

0 ≤ λφ

∫ l
0

[
zT (x, t)Ψ z(x, t) − φT (z, x, t)φ(z, x, t)

]
dx (2.32)

with some scalar λφ > 0.
Condition ΥN + ΛN + UN ≤ 0 in (2.15) implies S2 +

e{D0(αP2 − P1)} ≤ 0, thus, αP2 − P1 ≤ 0. Taking into account
i
0 ≤ di(x) (i = 1, . . . , n) we have

2
n∑

i=1

∫ l

0
di(x)(αP i

2 − P i
1)(z

i
x(x, t))

2dx

≤
∫ l
0 z

T
x (x, t)He{D0(αP2 − P1)}zx(x, t)dx.

(2.33)

Finally, in view of (2.23)–(2.27), (2.29), (2.30) and (2.33),
adding the right-hand side of (2.28) to V̇N (t) + 2αVN (t) and
applying S-procedure with (2.31) and (2.32), we have

V̇N (t) + 2αVN (t)

≤

N∑
j=1

∫ xj

xj−1

ηT
N ,j(ΥN + ΛN )ηN ,jdx

−
∫ l
0 z

T
x (x, t − h)(e−2αhS2 − W )zx(x, t − h)dx

≤

N∑
j=1

∫ xj

xj−1

ηT
N ,j(ΥN + ΛN + UN )ηN ,jdx, t ≥ h,

(2.34)

where we applied Wirtinger’s inequality with (2.16). Here ΥN
and UN are given by (2.17) and ΛN is composed of (2.18). Thus,
from (2.15) we have V̇N (t) + 2αVN (t) ≤ 0 for all t ≥ h implying
VN (t) ≤ e−2α(t−h)VN (h) for all t ≥ h. Due to the positivity of
VN (t), there exists some M1 > 0 such that

VN (t) ≥ M1∥z(·, t)∥2
1 , t ≥ h. (2.35)
H0(0,l)
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oreover, VN (h) can be upper bounded by

VN (h) ≤ M2
∫ h
0 [∥z(·, s)∥2

H1
0(0,l)

+ ∥zs(·, s)∥2
L2(0,l)

]ds (2.36)

for some M2 > 0, where the bound is finite due to the well-
posedness. Then (2.19) follows from (2.35) and (2.36) with M0 =
M2
M1

.
The feasibility of the strict inequalities (2.14)–(2.16) with α =

implies the feasibility of (2.14)–(2.16) with the same decision
ariables and with small enough α = α0 > 0, and thus guarantees

a small enough decay rate. □

Remark 2.1. Note that direct substitution of zt (x, t) by the right-
hand side of (2.10) leads to the quadratic variable diffusion term
∥△Dz(x, t)∥2

L2(0,l)
that cannot be compensated under the Dirich-

let boundary conditions (2.2). Therefore, the descriptor method
(e.g. in (2.28)) allows to overcome this difficulty.

Remark 2.2. For the case of the averaged measurements

yj(t) =

{
0, if t ≤ h,
1
∆j

∫ xj
xj−1

z(ξ, t − h)dξ, if t > h, j = 1, . . . ,N,

we obtain (2.10) with

fj(x, t − h) ∆
=

1
∆j

∫ xj
xj−1

[z(x, t − h) − z(ξ, t − h)]dξ . (2.37)

Since
∫ xj
xj−1

fj(ξ, t − h)dξ = 0 and d
dx fj(x, t − h) = zx(x, t − h), for

ny n × n matrix W > 0 the Poincaré’s inequality [21] leads to∫ xj
xj−1

f Tj (x, t − h)Wfj(x, t − h)dx

≤
∆2

π2

∫ xj
xj−1

[
d
dx

√
f Tj (x, t − h)Wfj(x, t − h)

]2
dx

≤
∆2

π2

∫ xj
xj−1

[ d
dx f

T
j (x, t − h)

]
W

[ d
dx fj(x, t − h)

]
dx,

=
∆2

π2

∫ xj
xj−1

zTx (x, t − h)Wzx(x, t − h)dx, j = 1, . . . ,N.

Then, we obtain (2.31) with fj(x, t−h) given by (2.37). Thus, LMIs
of Theorem 2.1 are applicable to the case of spatially point or
averaged measurements with time-delay.

Consider next di(x) ≡ di0 (i = 1, . . . , n), φ(z, x, t) ≡ 0, β = 0
and the measurement

y(t) =

{
0, if t ≤ h,
z(x, t − h), if t > h.

(2.38)

Thus, system (2.1) becomes

zt (x, t) = △Dz(x, t) + Az(x, t) + Bu(t),
t ≥ 0, x ∈ [0, l], l > 0

(2.39)

that is stabilized by a state-feedback

u(t) = −Ky(t), t ≥ 0 (2.40)

with y(t) given by (2.38) and K ∈ Rr×n. Then the resulting
closed-loop system has the form

zt (x, t) = D0zxx(x, t) + Az(x, t)
−BK (1 − χ[0,h](t))z(x, t − h), t ≥ 0

(2.41)

with D0 = diag{d10, . . . , d
n
0} and constant matrices A ∈ Rn×n,

B ∈ Rn×r , K ∈ Rr×n and χ[0,h](t) defined below (2.10). Since the
diffusion term in (2.41) is constant, we choose P1 in (2.28) as a
non-diagonal matrix (see e.g. [22]):∫ l

0 z
T (x, t)He{P1D0}zxx(x, t)dx

= −
∫ l
0 z

T
x (x, t)He{P1D0}zx(x, t)dx.

Then based on Theorem 2.1, we easily obtain the following sta-
bility result with an arbitrary N ∈ N:
5

Corollary 2.1. Given positive scalars h, l, ∆ and α, let there
exist (N + 1)n × (N + 1)n matrix PN , n × n matrices P1, P2 =

iag{P1
2 , . . . , Pn

2 } > 0, S1 > 0, S2 > 0 and R > 0 that satisfy (2.14)
nd

Υ̃N + Λ̃N + ŨN ≤ 0, (2.42)

here Υ̃N , Λ̃N = [Λij] and ŨN are obtained from ΥN , ΛN and UN

y setting W = 0 and Λ11 = He{P1A+
π2

l2
D0(αP2−P1)}+S1+

π2

l2
S2

and taking away the third, fifth and sixth block-columns and block-
rows respectively. Then system (2.41) under the Dirichlet boundary
conditions (2.2) is exponentially stable with a decay rate α > 0.
Moreover, if the strict inequalities (2.14) and (2.42) are feasible with
α = 0, then system (2.41) under the Dirichlet boundary conditions
(2.2) is exponentially stable with a small enough decay rate α =

0 > 0.

Remark 2.3. LMIs of Corollary 2.1 with l = π guarantee the
exponentially stability of the vector ODE with delay

˙̄z(t) + (D0 − A)z̄(t) + BK z̄(t − h) = 0. (2.43)

Note that system (2.43) corresponds to the first modal dynam-
ics (with k = 1) in the modal representation of the Dirichlet
boundary-value problem (2.2), (2.41) with l = π

˙̄zk(t) + (k2D0 − A)z̄k(t) + BK z̄k(t − h) = 0,
k = 1, 2, . . .

(2.44)

rojected on the eigenfunctions of the operator D0
∂2

∂x2
(this oper-

ator has eigenvalues −k2D0, see e.g. [23]). The stability of (2.2),
(2.41) implies the stability of (2.44). Thus, LMIs of Corollary 2.1
are tight [20].

2.3. The dual observation problem

Consider the semilinear diffusion equation

zt (x, t) = △Dz(x, t) − βzx(x, t) + Az(x, t) + u(t)
+σ (z(x, t), x, t), t ≥ 0, x ∈ [0, l], l > 0

(2.45)

nder the Dirichlet boundary conditions (2.2) with the state
(x, t) ∈ Rn and the control input u(t) ∈ Rn. The diffusion term is
iven by (2.3) and σ is a known function of class C1 satisfying
T
z σz ≤ Ψ with some positive definite Ψ ∈ Rn×n, where σz
enotes the partial derivative of a function σ (z, x, t) with respect
o z.

We suggest a nonlinear observer of the form

ẑt (x, t) = △Dẑ(x, t) − β ẑx(x, t) + Aẑ(x, t) + u(t)

+σ (ẑ(x, t), x, t) + L
N∑
j=1

bj(x)[yj(t) − ẑ(x̄j, t − h)],

t ≥ 0, x ∈ [0, l], l > 0

(2.46)

nder the Dirichlet boundary conditions

ẑ(0, t) = ẑ(l, t) = 0, (2.47)

here yj(t) (j = 1, . . . ,N) are given by (2.7), L ∈ Rn×n is an
bserver gain and ẑ(x, t) = 0 for t ∈ [−h, 0].
Then using function χ[0,h](t) defined below (2.10), the estima-

ion error ê(x, t) = z(x, t)− ẑ(x, t) satisfies the Dirichlet boundary
alue problem

êt (x, t) = △Dê(x, t) − β êx(x, t) + Aê(x, t) + φ(ê(x, t), x, t)

−L
N∑
j=1

bj(x)(1 − χ[0,h](t))ê(x̄j, t − h), t ≥ 0,
(2.48)
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here
φ(ê, x, t) = σ (z, x, t) − σ (ẑ, x, t)

=
∫ 1
0 σz(ẑ + ξ ê, x, t)dξ ê

with
φT (ê, x, t)φ(ê, x, t)

≤ êT
[∫ 1

0 σ T
z (ẑ + ξ ê, x, t)σz(ẑ + ξ ê, x, t)dξ

]
ê

≤ êTΨ ê.

Note that in the latter we applied Jensen’s inequality [7,8]. Thus,
Theorem 2.1, where BK = L, gives sufficient conditions for
the exponential stability of (2.48) under the Dirichlet boundary
conditions.

2.4. Hierarchy of LMIs

Following arguments for Hierarchy of LMIs in [12,15], we find
that the stability conditions of Theorem 2.1 (and of Corollary 2.1
and Theorem 3.1) form a hierarchy of LMIs.

Theorem 2.2. Given positive scalars h and α. If LMIs of Theorem 2.1
(and of Corollary 2.1 and Theorem 3.1) are feasible for N , then they
are also feasible for N + 1.

Remark 2.4. Theorem 2.2 implies that LMIs of the order N + 1
lead to, at least, the same results as LMIs of the order N . Thus, the
augmented Lyapunov functional (see e.g. (2.11) and (3.7)) with
extended B–L inequality (1.5) may improve the results via the
corresponding simple Lyapunov functional (i.e. (2.11) and (3.7)
with N = 0) and Jensen’s inequality [7,8].

3. Regional stabilization of KdVB equation with an output
delay

3.1. Problem formulation

Consider the following KdVB equation:

zt (x, t) = −z(x, t)zx(x, t) + λz(x, t) + βzxx(x, t)

−zxxx(x, t) +

N∑
j=1

bj(x)uj(t), t ≥ 0, x ∈ (0, l), l > 0
(3.1)

under the periodic boundary conditions

z(0, t) = z(l, t), zx(0, t) = zx(l, t), zxx(0, t) = zxx(l, t), (3.2)

where z(x, t) ∈ R is the state, uj(t) ∈ R (j = 1, . . . ,N) are the
control inputs that enter (3.1) through the shape functions bj(x)
(j = 1, . . . ,N) given by (2.5), λ and β are positive constants
and the initial condition is given by z(x, 0) = z0(x). Note that
for λ = 0, the open-loop system (3.1) has constant solutions,
whereas for λ > 0 the open-loop system may become unstable.

We study the KdVB equation (3.1) under the delayed stabi-
lizing controller (2.8) with K ∈ R that leads to the closed-loop
system for t ≥ 0

zt (x, t) = −z(x, t)zx(x, t) + λz(x, t) + βzxx(x, t)
−zxxx(x, t) − K (1 − χ[0,h](t))[z(x, t − h) − fj(x, t − h)],

(3.3)

where x ∈ Ωj, j = 1, . . . ,N , fj(x, t−h) is given by (2.9) and χ[0,h](t)
is defined below (2.10).

Now we consider the well-posedness of system (3.3). The
solution of system (3.3) under the periodic boundary conditions
(3.2) should be understood in the weak sense. Namely, we define
the space{

H1
per (0, l) = {g ∈ H1(0, l) : g(0) = g(l)},

∥g∥
2

1 = P11
∫ l g2(x)dx + P

∫ l
[g ′(x)]2dx,

(3.4)

Hper 0 0

6

where P11 and P are positive constants that are related to the
Lyapunov functional (see (3.7)). Given T > 0, a weak solution of
(3.3) on [0, T ] is a function z(x, t) ∈ C(0, T ;H1

per (0, l)) such that
zt ∈ L∞(0, T ; L2(0, l)) ∩ L2(0, T ;H1

per (0, l)) and

d
dt

∫ l
0 z(ξ, t)φ(ξ )dξ = −

∫ l
0 z(ξ, t)zx(ξ, t)φ(ξ )dξ

+λ
∫ l
0 z(ξ, t)φ(ξ )dξ + β

∫ l
0 zξ (ξ, t)φξ (ξ )dξ

−
∫ l
0 zξξ (ξ, t)φξ (ξ )dξ − K

N∑
j=1

∫ xj

xj−1

(1 − χ[0,h](t))

×[z(ξ, t − h) − f (ξ, t − h)]φ(ξ )dξ

(3.5)

old for any φ ∈ H1
per (0, 1) and almost all t ∈ [0, T ].

The condition (3.5) is motivated via the integration-by-parts
ormula. Based on the Galerkin approximation method
see, e.g. [2]), one can show that (3.3) has a unique weak solution
or all T > 0 provided the initial value z0 ∈ H3(0, l) ∩ H1

per (0, l)
atisfies the compatible conditions [14]:

z ′

0(0) = z ′

0(l), z ′′

0 (0) = z ′′

0 (l). (3.6)

.2. Improved regional stability conditions

For the stability analysis of system (3.3), an augmented Lya-
unov functional depending on the state z(x, t) only (rather than
he state derivative zt (x, t)) was introduced in [14] to derive the
tability conditions in terms of LMIs that allow to find an upper
ound on the delay that preserves regional stability. To obtain
mproved regional stability conditions, we here consider a novel
ugmented Lyapunov functional via Legendre polynomials:

V̄N (t) = V̄PN + V̄P +

2∑
i=1

(V̄Si + V̄Ri ), N ∈ N0, (3.7)

here

V̄PN =
∫ l
0 ζ̄ T

N (x, t)PN ζ̄N (x, t)dx,

V̄P = P
∫ l
0 z

2
x (x, t)dx,

V̄S1 = S1
∫ l
0

∫ t
t−h e

−2α(t−s)z2(x, s)dsdx,

V̄S2 = S2
∫ l
0

∫ t
t−h e

−2α(t−s)z2x (x, s)dsdx,

V̄R1 = R1
∫ l
0

∫ t
t−h e

−2α(t−s)(s − t + h)z2(x, s)dsdx,

V̄R2 = R2
∫ l
0

∫ t
t−h e

−2α(t−s)(s − t + h)z2x (x, s)dsdx

ith

ζ̄N (x, t) = [z(x, t), Θ0(x, t), . . . , ΘN (x, t)]T ,

nd with (N + 2) × (N + 2) matrix PN = {Pij}, scalars P > 0,
i > 0, Ri > 0 (i = 1, 2) and α > 0. Here Θk(x, t) (k = 0, . . . ,N )
re given by (1.6). For N = 0, V̄N (t) coincides with the Lyapunov
unctional introduced in [14].

Since the solution of (3.3) does not depend on the values of
(x, t) for t < 0 [24], we redefine the initial condition to be a
unction

z(x, t) = z0(x), t ≤ 0.

hus, we have

V̄N (0) = [P11 + 2P12h + P22h2
+ S1h +

R1h2

2 ]
∫ l
0 z

2
0 (x)dx

+(P + S2h +
R2h2

2 )
∫ l
0[z

′

0(x)]
2dx,

where we applied (1.2). Note that the latter coincides with that
for the case of N = 0 considered in [14]. Thus, we employ
the following results borrowed from [14] that guarantee simple
bounds on V̄N (h) and z(x, t), and that present a solution of (3.3):



J. Zhang, W. Kang, E. Fridman et al. Systems & Control Letters 156 (2021) 105003

L

w
s
p

a

h

i

emma 3.1 ([14]).
Consider system (3.3) and the functionals V̄N (t) and V̄(t) respec-

tively given by (3.7) and

V̄(t) = P11
∫ l
0 z

2(x, t)dx + P
∫ l
0 z

2
x (x, t)dx (3.8)

with scalars P11 > 0 and P > 0 that are related to the functional
V̄N (t). Denote

M ≜ max
{
(P11 + 2P12h + P22h2

+ S1h +
R1h2

2 )P−1
11 ,

(P + S2h +
R2h2

2 )P−1
}

+e2α1h − 1,

here Si (i = 1, 2) are from functional V̄N (t), h and α are positive
calars, and α1 is a positive tuning parameter. Given positive tuning
arameters C and C1.
(i) Assume that along (3.3)

˙̄V(t) − 2α1V̄(t) ≤ 0, t ∈ [0, h], (3.9)

˙̄VN (t) + 2αV̄N (t) − 2α1V̄(t) ≤ 0, t ∈ [0, h], (3.10)

nd

MC2 < C2
1 , (3.11)

old. Then

V̄N (h) ≤ M
[
P11

∫ l
0 z

2
0 (x)dx + P

∫ l
0[z

′

0(x)]
2dx

]
< C2

1

f ∥z0∥2
H1

per
= P11

∫ l
0 z

2
0 (x)dx + P

∫ l
0[z

′

0(x)]
2dx < C2.

Assume additionally that along (3.3)

˙̄VN (t) + 2αV̄N (t) ≤ 0, t > h (3.12)

holds. Then the solution of (3.3) satisfies

V̄N (t) ≤ Me−2α(t−h)
[
P11

∫ l
0 z

2
0 (x)dx + P

∫ l
0[z

′

0(x)]
2dx

]
(3.13)

for all t ≥ h.
(ii) If, in addition to the conditions of (i), there exist scalars P > 0,

ρ > 0 and ϱ > 0 such that

V̄N (t) ≥ ρ
∫ l
0 z

2(x, t)dx + P
∫ l
0 z

2
x (x, t)dx, (3.14)

ϱ ≥ 1 + ρ,

[
−P 1
∗ −ρ

]
< 0. (3.15)

Then

z(x, t) ∈ (−C1, C1) ∀x ∈ [0, 1], t ≥ 0. (3.16)

We now present improved conditions in terms of LMIs to
guarantee (3.9), (3.10), (3.12) and (3.14):

Theorem 3.1. Given positive scalars h, l, ∆, α, K > λ, and
positive tuning parameters α1 > λ, C and C1, let there exist scalars
(N + 2) × (N + 2) matrix PN = {Pij} and scalars P > 0, Si > 0,
Ri > 0 (i = 1, 2), W > 0, W1, ρ > 0 and ϱ > 0 such that (2.16),
(3.15) and

P̄N > 0, (3.17)

ΞN (−C1) ≤ 0, ΞN (C1) ≤ 0, (3.18)

ΥN1 + ΛN (−C1) ≤ 0, ΥN1 + ΛN (C1) ≤ 0, (3.19)

Υ + Φ (−C ) ≤ 0, Υ + Φ (C ) ≤ 0, (3.20)
N2 N 1 N2 N 1

7

where

P̄N = PN + diag
{
−ρ, S1 e−2αh

h , . . . , S1 e−2αh(2N+1)
h

}
,

ΞN (z) =

⎡⎢⎣−P11(α1 − λ) 0 1
2W1

∗ −P11β − P(α1 − λ) + W1
1
2Pz

∗ ∗ −Pβ

⎤⎥⎦ ,

ΥN i = He{ḠT
N iPN H̄N i} + 2αḠT

N iPN ḠN i, i = 1, 2,

ḠN i =

[
1 01×3 01×(N+1) 01×(N+i)

0(N+1)×1 0(N+1)×3 hIN+1 0(N+1)×(N+i)

]
,

H̄N i =
[

0(2N+i+5)×1 Γ̄ T
N i(0) . . . Γ̄ T

N i(N )
]T

,

Γ̄N i(k) =
[

1 (−1)k+1 01×2 γ 0
N k . . . γN

N k 01×(N+i)
]

(3.21)

with γ
j
N k (j = 1, . . . ,N ) given by (2.17), ΛN (z) = {Λij} and

ΦN (z) = {Φij} are symmetric matrices composed of

Φ11 = 2P11λ + S1 + R1h, Λ11 = Φ11 − 2α1P11,

Φ12 = −Φ17 = −P11K , Φ14 = Λ14 = W1,

Φ15 = Λ15 = [ P12 . . . P1(N+2) ]hλ,

Φ22 = Λ22 = −S1e−2αh, Φ24 = −Φ47 = PK ,

Φ25 = −ΦT
57 = −[ P12 . . . P1(N+2) ]hK ,

Φ33 = −2P11β + 2Pλ + 2αP + S2 + R2h + 2W1,

Λ33 = Φ33 − 2α1P, Φ34 = Λ34 = Pz,
Φ35 = Λ35 = −[ P12 . . . P1(N+2) ]hz,
Φ36 = Λ36 = −[ P12 . . . P1(N+2) ]hβ,

Φ44 = Λ44 = −2Pβ, Φ77 = −W π2

∆2 ,

Φ46 = Λ46 = [ P12 . . . P1(N+2) ]h,

Φ55 = Λ55 = −R1he−2αhdiag{1, . . . , 2N + 1},
Φ66 = Λ66 = −R2he−2αhdiag{1, . . . , 2N + 1},

(3.22)

other blocks are zero matrices. If (3.11) holds, then for any initial
state z0 ∈ H3(0, l) ∩ H1

per (0, l) satisfying the compatible conditions
(3.6) with ∥z0∥H1

per
< C, system (3.3) under the periodic boundary

conditions (3.2) possesses a unique weak solution in the sense that
for any T > 0, z(x, t) ∈ C(0, T ;H1

per (0, l)). Moreover, the solution of
(3.3) satisfies (3.13) for all t ≥ h.

Proof. First, Lemma 1.1 ensures the following inequality

V̄PN + V̄S1 ≥
∫ l
0 ζ̄ T

N (x, t)P̄N ζ̄N (x, t) + ρ
∫ l
0 z

2(x, t)dx,

where matrix P̄N > 0 is given in (3.21) and guarantees

V̄N (t) ≥ V̄PN + V̄S1 + P
∫ l
0 z

2
x (x, t)dx

≥ ρ
∫ l
0 z

2(x, t)dx + P
∫ l
0 z

2
x (x, t)dx,

which, together with ρ > 0 and P > 0, implies the positivity
of V̄N (t). In the next step, the objective is to show that LMIs
(3.18)–(3.20) guarantee (3.9), (3.10) and (3.12) respectively.

For any t ≥ 0, differentiating V̄PN along the trajectories of
(3.3) yields

˙̄VPN = 2
∫ l
0 ζ̄ T

N (x, t)PN
˙̄ζN (x, t)dx,

=
∫ l
0 η̄T

N ῩN1η̄N dx + 2P11
∫ l
0 z(x, t)zt (x, t)dx

+2
N+2∑

P1k

∫ l

Θk−2(x, t)zt (x, t)dx

(3.23)
k=2 0
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w
(

A

here (3.5) has been used with φ = z, and with ῩN1 given by
3.3) and the augmented vector

η̄N = [z(x, t), z(x, t − h), zx(x, t), zxx(x, t), 1
hΘ

0(x, t),

. . . , 1
hΘ

N (x, t), 1
hΘ

0
x (x, t), . . . ,

1
hΘ

N
x (x, t)]T .

(3.24)

Substituting zt (x, t) by the right-hand side of (3.3) in (3.23),
integrating by parts and using the periodic boundary conditions
(3.2) lead to

˙̄VPN =
∫ l
0 η̄T

N (x, t)Ῡ η̄N (x, t)dx

+2P11λ
∫ l
0 z

2(x, t)dx − 2P11β
∫ l
0 z

2
x (x, t)dx

+2
N+2∑
k=2

P1kλ

∫ l

0
z(x, t)Θk−2(x, t)dx

−2
N+2∑
k=2

P1k

∫ l

0
z(x, t)zx(x, t)Θk−2(x, t)dx

−2
N+2∑
k=2

P1kβ

∫ l

0
zx(x, t)Θk−2

x (x, t)dx

+2
N+2∑
k=2

P1k

∫ l

0
zxx(x, t)Θk−2

x (x, t)dx

−2K (1 − χ[0,h](t))
N∑
j=1

∫ xj

xj−1

[P11z(x, t)

+

N+2∑
k=2

P1kΘ
k−2(x, t)][z(x, t − h) − fj(x, t − h)]dx.

(3.25)

Concerning the other terms of the Lyapunov functional, we have

˙̄VP = 2P
∫ l
0 zx(x, t)zxt (x, t)dx

= −2P
∫ l
0 zxx(x, t)zt (x, t)dx

= 2Pλ
∫ l
0 z

2
x (x, t)dx − 2Pβ

∫ l
0 z

2
xx(x, t)dx

+2P
∫ l
0 z(x, t)zx(x, t)zxx(x, t)dx

+2PK (1 − χ[0,h](t))
N∑
j=1

∫ xj

xj−1

zxx(x, t)

×[z(x, t − h) − fj(x, t − h)]dx,

(3.26)

and

˙̄VS1 + 2αV̄S1 = S1
∫ l
0 z

2(x, t)dx

−S1e−2αh
∫ l
0 z

2(x, t − h)dx,
(3.27)

˙̄VS2 + 2αV̄S2 = S2
∫ l
0 z

2
x (x, t)dx

−S2e−2αh
∫ l
0 z

2
x (x, t − h)dx.

(3.28)

Then the application of Lemma 1.1 leads to

˙̄VR1 + 2αV̄R1 = R1h
∫ l
0 z

2(x, t)dx

−R1
∫ l
0

∫ t
t−h e

−2α(t−s)z2(x, s)dsdx

≤ R1h
∫ l
0 z

2(x, t)dx

−R1e−2αh
N∑ 2k + 1

h

∫ l

[Θk(x, t)]2dx,

(3.29)
k=0 0

8

and
˙̄VR2 + 2αV̄R2 = R2h

∫ l
0 z

2
x (x, t)dx

−R2
∫ l
0

∫ t
t−h e

−2α(t−s)z2x (x, s)dsdx

≤ R2h
∫ l
0 z

2
x (x, t)dx

−R2e−2αh
N∑
k=0

2k + 1
h

∫ l

0
[Θk

x (x, t)]
2dx.

(3.30)

dditionally, we note that for any W1 in R, we have

2W1
∫ l
0[z(x, t)zxx(x, t) + z2x (x, t)]dx = 0. (3.31)

Two cases may occur. When t is in the first delay interval [0, h]
(i.e. χ[0,h](t) = 1), then adding (3.31) to ˙̄VN (t) + 2αV̄N (t) yields,
in light of (3.23)–(3.30), for all t ∈ [0, h]

˙̄VN (t)+2αV̄N (t)−2α1V(t) ≤
∫ l
0 η̄T

N [ΥN1 + ΛN (z)]η̄N dx.

(3.32)

When t > h (i.e. χ[0,h](t) = 0), we additionally apply an S-
procedure with (2.31), with parameter W > 0, to compensate
for fj(x, t − h) in (2.9) that leads to

˙̄VN (t) + 2αV̄N (t)

≤

N∑
j=1

∫ xj

xj−1

η̃T
N ,j[ΥN2 + ΦN (z)]η̃N ,jdx

−(S2e−2αh
− W )

∫ l
0 z

2
x (x, t − h)dx

≤

N∑
j=1

∫ xj

xj−1

η̃T
N ,j[ΥN2 + ΦN (z)]η̃N ,jdx, t > h,

(3.33)

where we applied (2.16). Here ΥN i (i = 1, 2) and η̄N are respec-
tively given by (3.21) and (3.24), η̃N ,j = [η̄T

N , fj(x, t − h)]T , and
ΛN (z) and ΦN (z) are symmetric matrices composed of (3.22).

Similarly, differentiating V̄(t) in (3.8) along the trajectories of
(3.3) yields

˙̄V(t) − 2α1V̄(t) = 2
∫ l
0 κTΞN (z)κdx, t ∈ [0, h], (3.34)

where κ = [z(x, t), zx(x, t), zxx(x, t)]T and ΞN (z) is given by
(3.21).

Since ΞN (z), ΛN (z) and ΦN (z) are affine in z, ΞN (z) ≤ 0,
ΥN1+ΛN (z) ≤ 0 and ΥN2+ΦN (z) ≤ 0 hold for all z ∈ (−C1, C1)
given by (3.16) if LMIs (3.18)–(3.20) are feasible. From (3.32)–
(3.34), it follows that LMIs (3.18)–(3.20) guarantee (3.9), (3.10)
and (3.12) respectively.

Finally, assertion of Theorem 3.1 follows from Lemma 3.1. □

4. Numerical examples

Example 4.1. Consider the chemical reactor model from [25,26]
governed by heat equation (2.1) under the Dirichlet boundary
conditions (2.2) with the measurements (2.7), where n = 2,
r = 1, l = 10, D0 = diag{0.01, 0.005}, β = diag{0.011, 1.1},
φ = [φ1(z1), 0]T , Ψ = diag{10−4, 0} and

A =

[
0 0.01

−0.45 −0.2

]
, B =

[
1
1

]
, K =

[
1 0

]
.

This model accounts for an activator temperature z1 that under-
goes reaction, advection and diffusion, and for a fast inhibitor
concentration z2, which may be advected by the flow [25].

Assume that there are N = 20 in-domain sensors transmitting
measurements (2.7) at x̄j =

2j−1
2N , j = 1, . . . ,N (the centers of

Ω = [
j−1

,
j )) implying ∆ = 0.5. LMIs of Theorem 2.1 with
j N N
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able 4.1
aximal value of h via Theorem 2.1 (Example 4.1).

hmax No. of decision variables

N = 0 0.5139 5n2+9n+2
2

N = 1 0.5904 4n2
+ 5n + 1

N ≥ 2 0.5909 (N 2
+2N+5)n2+(N+9)n+2

2

Table 4.2
Maximal value of h via Corollary 2.1 (Example 4.2).

N = 0 N = 1 N = 2 N = 3 N ≥ 4

hmax 1.9999 3.0344 3.1362 3.1414 3.1415

various values of N and α = 0 lead to the maximal value of h
(see Table 4.1) that preserves the stability. As expected, better
results are obtained as the degree of the polynomial N increases,
but at the cost of additional decision variables. Moreover, the
maximal value of h remains as 0.5909 when N ≥ 2. Clearly, an
improvement close to 15% is achieved.

Example 4.2. Consider heat equation (2.41) under the Dirichlet
boundary conditions (2.2) with l = π , D0 = I2 and

A =

[
1 1

−1 0

]
, BK =

[
0 0
0 1

]
.

LMIs of Corollary 2.1 with various values of N and α = 0 lead
o the maximal value of h shown in Table 4.2. As explained in
emark 2.3, the latter results correspond also to the stability of
he following ODE with time-delay

˙̄z(t) +

[
0 −1
1 1

]
z̄(t) +

[
0 0
0 1

]
z̄(t − h) = 0.

ote that the analytical upper bound for the asymptotic stability
f the latter ODE is h = π (see Chapter 2.3.2 in [19]). It is clear
hat our method recovers the analytical upper bound with a finite
egree N = 4 of the polynomials.

xample 4.3. Consider KdVB equation (3.1) under the periodic
oundary conditions (3.2) with λ = 15, β = 0.5 and l = 1.
ssume that there are N = 10 in-domain sensors transmitting
oint measurements (2.7) at x̄j =

2j−1
2N , j = 1, . . . ,N implying

= 0.1. By using the point measurements (2.7), we study system
3.1) under the control law (2.8) with K = 20.

LMIs of Theorem 3.1 with various values of N , α = 1, α1 = 20,
C = 0.044 and C1 = 0.05 lead to the maximal value of h (see
Table 4.3) that preserves the exponential stability of the closed-
loop system for any initial values satisfying ∥z0∥H1

per
< 0.044.

It is clear that the improvement on the upper bound of delay is
achieved as the degree N of the polynomial increases and the
maximal value of h remains as 2.4442 × 10−3 when N ≥ 3. We
find also the feasible solutions of the LMIs, e.g.

N = 3 : P11 = 189.4785, P = 2.1978.

The latter allows to choose a larger initial condition (compara-
tively to z0(x) = 0.0025 sin(2πx), 0 ≤ x ≤ 1 in [14]), e.g. z0(x) =

.0037 sin(2πx), 0 ≤ x ≤ 1 satisfying

∥z0∥2
H1

per
= 189.4785∥z0∥2

L2(0,1)
+ 2.1978∥z ′

0∥
2
L2(0,1)

< 0.0442.

5. Conclusions

In this paper, stabilization of heat equation and KdVB equation
under constant output delay has been studied. By constructing
9

Table 4.3
Maximal value of h via Theorem 3.1 (Example 4.3).

hmax

Kang & Fridman [14] 1.9 × 10−3

Theorem 3.1 with N = 0 1.9 × 10−3

N = 1 2.4431 × 10−3

N = 2 2.4437 × 10−3

N ≥ 3 2.4442 × 10−3

two augmented Lyapunov functionals that respectively depend
on the state derivative and the state only, sufficient conditions
in terms of LMIs that preserve the exponential stability have
been derived. The resulting LMI conditions show improvements
in numerical examples. The suggested augmented Lyapunov func-
tionals can be used for delayed control of various PDEs via spatial
decomposition method: Kuramoto–Sivashinsky equation (as con-
sidered in [27]), damped wave and beam equations (see e.g. [18,
28]).
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