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a b s t r a c t

The concept of practical fixed-time input-to-state stability for neutral time-delay systems with
exogenous perturbations is introduced. Lyapunov–Krasovskii theorems are formulated in explicit and
implicit ways. Further, the problem of static nonlinear output-feedback stabilization of a linear system
with parametric uncertainties, external bounded state and output disturbances by using artificial delays
is considered. The constructive control design consists in solving linear matrix inequalities with only
four tuning parameters to be chosen. It is shown both, theoretically and numerically, that the system
governed by the proposed controller converges faster to the given invariant set than in the case of
using its linear counterpart.
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1. Introduction

Stabilization of dynamical systems with a faster than expo-
ential rate of convergence has become one of the main trends
n modern control theory (Lopez-Ramirez, Efimov, Polyakov, &
erruquetti, 2018; Polyakov, Efimov and Perruquetti, 2015). Fre-
uently, such an approach allows systems to be stabilized at
he origin in a finite time. For example, for homogeneous au-
onomous systems, a special class of nonlinear ones, the type of
onvergence is defined by their degree of homogeneity (Bernuau,
fimov, Perruquetti, & Polyakov, 2014). For perturbed systems
his concept can be extended to non-asymptotic input-to-state
tability (ISS) (Hong, Jiang, & Feng, 2010) when the steady-state
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error is upper bounded by the norm of external disturbance.
In Bernuau, Polyakov, Efimov, and Perruquetti (2013) robustness
of homogeneous systems with respect to bounded exogenous
perturbations was studied.

However, finite-time stabilization is hard to obtain for time-
delay systems (Efimov, Polyakov, Fridman, Perruquetti, & Richard,
2014; Moulay, Dambrine, Yeganefar, & Perruquetti, 2008). For
instance, to ensure such a property the delays have to diminish
proportionally to the norm of the state vector and vanish at the
origin, or time-delay terms have to be multiplied by the instan-
taneous state vector. But in many applications it is sufficient
to stabilize a system in finite time only in the vicinity of the
origin, the radius of which depends on the time delay and ex-
ternal perturbations, and following (Efimov, Fridman, Perruquetti,
& Richard, 2020) such a problem is investigated in this work.
In Efimov et al. (2020) the homogeneity theory was extended to
neutral type systems and it was shown how the convergence can
be accelerated by selecting a non-zero degree of homogeneity.
Nevertheless, it is worth mentioning that for linear systems any
stable set is reachable in a finite time also and the settling time
can be reduced by feedback gains increasing. But differently from
the delay-free case, this approach has limited use for time-delay
systems: for any given delay h sufficiently large gains make
the closed-loop system unstable, which motivated (Efimov et al.,
2020).
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Stability analysis of time-delay systems could be done by
using different methods (Fridman, 2014; Gu, Kharitonov, & Chen,
2003; Hale, 1977; Kolmanovskii & Myshkis, 1992). For exam-
ple, in Kharitonov, Niculescu, Moreno, and Michiels (2005) Hur-
witz stability of transcendental polynomials has been studied.
However, such an approach is difficult to use for the synthe-
sis of control systems with delays due to its complexity. An-
other conventional tools are Krasovskii (1963) or Razumikhin
(1956) methods. They impose restrictions on the time derivative
of an auxiliary functional or function, respectively, with respect
to the differential equation of the system. Being well-developed
for analysis, both of them do not provide a constructive way
for control design in the nonlinear case. On the contrary, their
implicit extensions are free of such a drawback: all stability
conditions can be checked directly by analyzing some algebraic
equations, which implicitly define Lyapunov functionals (func-
tions) (Polyakov, Efimov, Perruquetti and Richard, 2015). More-
over, control parameters can be obtained by solving a system of
linear matrix inequalities (LMIs).

The goal of this work is to extend the exponential ISS concept
for neutral time-delay systems to its fixed-time analog. Both,
Lyapunov–Krasovskii theorem and its implicit counterpart, are
introduced. Then the proposed approach is applied to static
nonlinear output-feedback stabilization of a non-delayed lin-
ear system in the controllable canonical form with parametric
uncertainties, external bounded state and output disturbances.
To this end, the unmeasured states are approximated by finite
differences (Borne, Kolmanovskii, & Shaikhet, 2000; Fridman &
Shaikhet, 2016, 2017), i.e., an artificial delay is induced. In Seliv-
anov and Fridman (2018) it was shown that in this case closed-
loop system has a neutral time-delay representation. Moreover,
since no observers/predictors are introduced, the control law
is static, which essentially simplifies its practical implementa-
tion. Differently from Efimov et al. (2020), in this paper (1)
the homogeneity is not used to prove non-asymptotic rate of
convergence, (2) the designed control system is practically fixed-
time stable and (3) feedback gains are explicitly calculated. In
a conference version of this paper (Nekhoroshikh et al., 2020)
fixed-time stability has not been considered and the influence of
parametric uncertainties, external state and output disturbances
has not been studied.

The outline of this work is as follows. Notation and auxiliary
lemmas are given in Section 2. Practical fixed-time ISS concept
of neutral time-delay systems and Lyapunov–Krasovskii theorems
are introduced in Section 3. Output stabilization of a linear per-
turbed system is considered in Section 4. Results of numerical
simulations and comparison with a linear analog of the proposed
controller are discussed in Section 5. Finally, all the proofs can be
found in the Appendices.

2. Preliminaries

2.1. Notation

(1) Sets: Denote by N and R the sets of natural and real
numbers, respectively, R⋆

+
= {x : x > 0}, R+ = R⋆

+
∪ 0. A series

of natural numbers up to n is defined as 1, n.
(2) Spaces: Lm

∞
is the space of Lebesgue measurable essen-

ially bounded functions d : [0,+∞) → Rm with the norm
d∥∞ := ess supt∈[0,+∞) ∥d(t)∥ < +∞, where ∥·∥ is the Euclidean
orm in Rn. For h̄ > 0 denote the space of Lebesgue square
ntegrable functions χ : [−h̄, 0] → Rn with the norm ∥χ∥2 :=∫ 0

−h̄ ∥χ (τ )∥2dτ < +∞ by L2h̄ . The Banach space W1
h̄ of absolutely

continuous functions χ : [−h̄, 0] → Rn has the norm ∥χ∥W :=

maxτ∈[−h̄,0] ∥χ (τ )∥ + ∥χ̇∥2. W
1,0
h̄ = {χ ∈ W1

h̄ : χ (0) = 0} is a
subspace of W1.
h̄ d

2

(3) Matrices: For symmetric matrices P ∈ Rn×n notations P ≻ 0
(P ≺ 0) and P ≽ 0 (P ≼ 0) mean that P is positive (negative)
definite and semidefinite, respectively. The minimal and maximal
eigenvalues of a symmetric matrix are symbolized by λmin(P) and
λmax(P). Block diagonal matrices are indicated as diag{λi}nj=1 or
diag{λ1, . . . , λn} with λi ∈ Rni×ni . Identity and zero n×n matrices
are marked as In and On, respectively. A zero column is denoted
by on ∈ Rn×1.

(4) Functions: Denote by C i a class of i times continuously
differentiable functions R⋆

+
→ R.

2.2. Comparison functions

A continuous function w : R+ → R+ belongs to the class K
if it is strictly increasing on R⋆

+
and w(0) = 0; if additionally

it is unbounded then w belongs to K∞. A continuous function
w : R+ → R+ is said to be a generalized class-K function (GK
function) if it is strictly increasing on (s0,+∞) and w(s) = 0 for
all s ∈ [0, s0] for some s0 ∈ R+. A function ν : R+ × R+ → R+

is a generalized class-KL function (GKL function) if for each fixed
t ≥ 0 the function ν(·, t) is a class-GK function, and for each fixed
p ≥ 0 the function ν(p, ·) is continuous, strictly decreasing and
there exists some T̄ (p) ∈ R+ such that ν(p, t) → 0 as t → T̄ .

Definition 1 (Polyakov, Efimov, Perruquetti, Richard, 2015). A func-
tion q : R⋆2

+
→ R, (ρ, s) ↦→ q(ρ, s) is said to be of the class IK∞

if and only if: (1) q is continuous on R⋆2
+
; (2) for any s ∈ R⋆

+

there exists ρ ∈ R⋆
+

such that q(ρ, s) = 0; (3) for any fixed
s ∈ R⋆

+
the function q(·, s) is strictly decreasing on R⋆

+
; (4) for

any fixed ρ ∈ R⋆
+
the function q(ρ, ·) is strictly increasing on R⋆

+
;

(5) lims→0+ ρ = 0, limρ→0+ s = 0 and lims→∞ ρ = ∞ for all
(ρ, s) ∈ Γ = {(ρ, s) ∈ R⋆2

+
: q(ρ, s) = 0}.

In other words, Definition 1 states that there exists a unique
function ρ ∈ K∞ such that q(ρ(s), s) = 0 for all s ∈ R⋆

+
.

2.3. Auxiliary lemmas

Lemma 1 (Jensen’s Inequality Solomon & Fridman, 2013). Let φ :

[a, b] → R and ϖ,ϑ : [a, b] → [0,∞) be such that integration
concerned is well-defined. Then:(∫ b

a ϑ(s)φ(s)ds
)2

≤
∫ b
a
ϑ(s)
ϖ (s)ds

∫ b
a ϖ (s)ϑ(s)φ2(s)ds.

Lemma 2 (Lopez-Ramirez et al., 2018). For ∀s ∈ [0, s̄], β ∈ R⋆
+

\{1}
the function gβ (s) := |sβ − s| admits the following estimate

max
∈[0,s̄]

gβ (s) ≤ ḡ(s̄, β) := max{gβ (β1/(1−β)), gβ (s̄)}.

. Input-to-state stability of neutral systems

Consider a functional differential equation of neutral type with
xternal disturbance:{
ẋ(t) = f (xt , ẋt , d(t)), t > 0,
x(τ ) = Φ(τ ), τ ∈ [−h̄, 0], (1)

where x(t) ∈ Rn is the instantaneous state; xt ∈ W1
h̄ is the

tate function defined by xt (τ ) := x(t + τ ), τ ∈ [−h̄, 0] with
˙t ∈ L2h̄; d(t) ∈ Rm is the external disturbance, d ∈ Lm

∞
. The

ontinuous operator f : W1
h̄ × L2h̄ × Rm

→ Rn is Lipschitz in
he second variable with a constant smaller than one, ensuring
orward uniqueness and existence of the system solutions at least
ocally in time (Kolmanovskii & Nosov, 1986). Assume that the
rigin is an equilibrium point of the system (1), i.e., f (0, 0, 0) = 0.
solution of the system (1) with the initial function Φ ∈ W1

h̄ is
enoted by x(t,Φ, d) ∈ Rn or x (Φ, d) ∈ W1.
t h̄
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Following Hong et al. (2010), we present the concept of prac-
tical fixed-time ISS stability of neutral time-delay systems with
external inputs.

Definition 2. The system (1) is called (γ , κ)-practically locally
fixed-time ISS,1if there exist a constant v ≥ 0 and functions w ∈

K, ν ∈ GKL with the settling time estimate T := supp<γ T̄ (p) <
∞ such that:

x(t,Φ, d)∥ ≤ ν(∥Φ∥W, t) + v + w(∥d∥∞), ∀t ≥ 0, (2)

or all Φ ∈ X := {Φ ∈ W1
h̄ : ∥Φ∥W < γ } and d ∈ D := {d ∈ Lm

∞
:

d∥∞ < κ}.
If v = 0, then system (1) is called (γ , κ)-locally fixed-time ISS.

f additionally γ = κ = +∞, then system (1) is called fixed-time
SS.

The following theorem (see the proof in Appendix A) provides
ufficient conditions to check (γ , κ)-practical local fixed-time ISS
roperty (2) by using Lyapunov–Krasovskii functionals. For any
∈ W1

h̄ and d ∈ Rm we define the upper-right Dini derivative
f functional Vk : W1

h̄ → R+, k = 1, 2, with respect to Eq. (1) as
ollows:
+Vk1(χ, d) := lim sup∆t→0+

Vk(x∆t (χ,d̃))−Vk(χ )
∆t ,

here x∆t (χ, d̃) is the solution of (1) with initial conditions χ ∈

W1
h̄ and the input d̃ = d for all t ∈ [0,∆t).

Theorem 1. Let there exist constants v̄ ∈ [0, 1), γ̄ > 1, µ1 ∈

(−1, 0), µ2 > 0, θk > 0, functions ρ1,k, ρ2,k ∈ K∞, w̄ ∈ K and
continuous functionals Vk : W1

h̄ → R+, k = 1, 2, such that for all
χ ∈ W1

h̄ and d ∈ D:

ρ1,k(∥χ (0)∥) ≤ Vk(χ ) ≤ ρ2,k(∥χ∥W); (3a)

1(χ ) ≤ 1 ⇔ V2(χ ) ≤ 1; (3b)
max{v̄, w̄(∥d∥∞)} < V1 ≤ 1 ⇒

D+V1(χ, d) ≤ −θ1V
1+µ1
1 (χ );

(3c)

max{1, w̄(∥d∥∞)} < V2 < γ̄ ⇒

D+V2(χ, d) ≤ −θ2V
1+µ2
2 (χ ).

(3d)

Then the system (1) is (γ , κ)-practically locally fixed-time ISS (2)
with γ , κ , T , v, w(s) and ν(p, t) given by

γ = ρ̃2,2(γ̄ ), κ = w̃(γ̄ ), T =
1

µ2θ2
+

1
|µ1|θ1

,

= ρ̃1,1(v̄), w(s) =

{
ρ̃1,1(w̄(s)), if w̄(s) < 1,

ρ̃1,2(w̄(s)), if w̄(s) ≥ 1,

(p, t) =

⎧⎪⎨⎪⎩
ν2(p, t), t ∈ [0, T2(p)),

ν1(p, t), t ∈ [T2(p), T2(p) + T1(p)),

0, t ≥ T2(p) + T1(p),

(4)

here functions w̃, ρ̃1,1, ρ̃1,2 and ρ̃2,2 are inverse of w̄, ρ1,1, ρ1,2 and
2,2, respectively, and

1(p, t) = ρ̃1,1((µ1θ1(t − T2(p) − T1(p)))−1/µ1 ),

ν2(p, t) = ρ̃1,2((µ2θ2(t − T2(p)) + 1)−1/µ2 ),

T1(p) = max{0, (min{1, ρ−µ1
2,1 (p)})/(−µ1θ1)},

T2(p) = max{0, (1 − ρ
−µ2
2,2 (p))/(µ2θ2)}.

One can see that conditions (3c) and (3d) in general are
hard to check, especially in a control design scenario. As it has
been shown in Polyakov, Efimov, Perruquetti, Richard (2015),
this problem can be overcome by defining functionals Vk in

1 Hereinafter, ISS also stands for ‘‘input-to-state stable’’.
3

Theorem 1 implicitly. To this end, we first need to introduce
Fréchet derivatives.

Definition 3. An operator F : U → V is called Fréchet
differentiable at χ ∈ U if there exists a bounded linear operator
DFχ : U → V such that:

lim∆χ→0
∥F(χ+∆χ )−F(χ )−DFχ (∆χ )∥V

∥∆χ∥U
= 0,

where ∥ · ∥U and ∥ · ∥V are norms in the Banach spaces U and V,
respectively.

Denote by Q ′

V ,k(Vk, χ ) and Q ′

t,k(Vk, χ, d) derivatives of func-
tions Vk ↦→ Qk(Vk, χ ) and t ↦→ Qk(Vk, xt (χ, d)), where x(t)
satisfies (1) with initial conditions Φ = χ , respectively.

Theorem 2. Let there exist constants v̄ ∈ [0, 1), γ̄ > 1, µ1 ∈

(−1, 0), µ2 > 0, θk > 0, functions q1,k, q2,k ∈ IK∞, w̄ ∈ K and
continuous functionals Qk : R⋆

+
× W1

h̄ → R, k = 1, 2 such that:

(C1) Qk(Vk, χ ) are continuously Fréchet differentiable for all Vk ∈

R⋆
+

and χ ∈ W1
h̄;

(C2) for any χ ∈ W1
h̄ there exist Vk ∈ R⋆

+
such that Qk(Vk, χ ) = 0;

(C3) Q ′

V ,k(Vk, χ ) < 0 for all (Vk, χ ) ∈ Ωk = {(Vk, χ ) ∈ R⋆
+

×W1
h̄ :

Qk(Vk, χ ) = 0};
(C4) for all (Vk, χ ) ∈ Ωk and d ∈ D:

q1,k(Vk, ∥χ (0)∥) ≤ Qk(Vk, χ ), ∀χ ∈ W1
h̄ \ W1,0

h̄ ,

Qk(Vk, χ ) ≤ q2,k(Vk, ∥χ∥W), ∀χ ∈ W1
h̄ \ {0};

(5a)

Q1(1, χ ) = Q2(1, χ ); (5b)
max{v̄, w̄(∥d∥∞)} < V1 ≤ 1 ⇒

Q ′

t,1(V1, χ, d) ≤ θ1V
1+µ1
1 Q ′

V ,1(V1, χ );
(5c)

max{1, w̄(∥d∥∞)} < V2 < γ̄ ⇒

Q ′

t,2(V2, χ, d) ≤ θ2V
1+µ2
2 Q ′

V ,2(V2, χ ).
(5d)

Then the system (1) is (γ , κ)-practically locally fixed-time ISS (2)
with γ , κ , T , v, w(s) and ν(p, t) given by (4), where functions ρi,k(s)
implicitly defined by qi,k(ρi,k(s), s) = 0, respectively, i, k = 1, 2.

The proof of Theorem 2 can be found in Appendix B.
Despite the seeming complexity of conditions (5c) and (5d), in

the next section we will show how Theorem 2 can be successfully
applied to design a control law.

4. Nonlinear delay-induced control

4.1. Problem statement

Consider a system in the controllable canonical form with a
relative degree n ≥ 2, matched parametric uncertainties, state
disturbances and output perturbations:{
ẋ(t) = Ax(t) + B

(
u(t) + d1(t) + ax(t)

)
,

y(t) = Cx(t) + d2(t),
(6)

where x(t) ∈ Rn is the state vector; u(t) ∈ R is the control input;
y(t) ∈ R is the output available for measurements; d1(t) ∈ R
and d2(t) ∈ R are the external state and output disturbances,
respectively, d = [d1, d2]⊤ ∈ D := {d ∈ L2

∞
: ∥d∥∞ < κ};

a ∈ R1×n is the vector of unknown coefficients such that aa⊤
≤ ϵ;

A =

[
on−1 In−1
0 o⊤

n−1

]
, B =

[
on−1
1

]
, C =

[
1 o⊤

n−1

]
.

Note that all linear single-input single-output controllable sys-
tems with a relative degree n can be rewritten in the canonical
form (6) by applying a linear coordinate transformation. More-
over, for many nonlinear systems, such as a pendulum (n = 2), a
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agnetic suspension system (n = 3) or a single link manipulator
with flexible joints and negligible damping (n = 4), there is a
change of variables that transforms them into the form (6) (Khalil,
2002).

The goal is to design a static output-feedback control practi-
cally stabilizing the system (6) with the rate of convergence faster
than exponential.

4.2. Control design

Inspired by Lopez-Ramirez et al. (2018), we will define a
nonlinear control law in the following form:

u(ỹ) =
∑n

j=1 Kj⌈ỹj⌋αj(∥ỹ∥), (7a)

αj(∥ỹ∥) =

⎧⎪⎪⎨⎪⎪⎩
1
r2,j
, if ∥ỹ∥ ≥ b2,

1
r1,j
, if ∥ỹ∥ ≤ b1,

r1,j−r2,j
r1,jr2,j

∥ỹ∥−b1
b2−b1

+
1
r1,j
, otherwise,

(7b)

k,j(µk) = 1 − (n + 1 − j)µk, k = 1, 2, (7c)

here ỹ ∈ Rn with ỹ1(t) := y(t), ỹi+1(t) is the approximation
of the ith output derivative y(i)(t), i = 1, n − 1, µ1 = −µ and

2 = µ are degrees of nonlinearity with µ ∈ (0, 1/n), b1 > 1
and b2 > b1 are switch thresholds, Kj < 0, j = 1, n are feedback
ains, K := [K1, . . . , Kn], ⌈·⌋α := sign(·)| · |

α is the signed power.
Instead of introducing a state observer, in this paper, we

approximate the output derivatives by finite differences ỹi+1(t) ≈
(i)(t), i = 1, n − 1:

ỹi+1(t) :=
ỹi(t) − ỹi(t − h)

h
=

1
hi

i∑
s=0

(−1)s
i!

s!(i − s)!
y(t − sh), (8)

where h > 0 is a time delay. Since the value of y(t − sh) is
undefined for t ∈ [0, sh), then we set it equal to y(0).

Selection of approximation (8) follows from the well-known
fact: if h → 0 then ỹi+1(t) → y(i)(t). It is worth noting that
the proposed scheme is similar to a high-gain observer (Khalil,
2002), since only for sufficiently small delays h > 0 deriva-
tive estimates ỹi+1(t) can be used in stabilizing feedback (Frid-
man & Shaikhet, 2016, 2017). But differently from the conven-
tional observer-based control, approximation (8) is fully static
and, therefore, easy to implement. Nevertheless, to apply Theo-
rem 2, first we have to present ỹi+1(t) in a different form.

Proposition 1 (Selivanov & Fridman, 2018). If y ∈ C i and y(i) is
absolutely continuous, i ∈ N, then ỹi+1(t) defined in (8) satisfies:

ỹi+1(t) = y(i)(t) −
∫ t
t−ih ϕi

( t−s
h

)
y(i+1)(s)ds, (9)

where ϕ1(ξ ) := 1 − ξ and for i ∈ N \ {1}:

ϕi(ξ ) :=

⎧⎪⎪⎨⎪⎪⎩
∫ ξ
0 ϕi−1(λ)dλ+ 1 − ξ, ξ ∈ [0, 1],∫ ξ
ξ−1 ϕi−1(λ)dλ, ξ ∈ (1, i − 1),∫ i−1
ξ−1 ϕi−1(λ)dλ, ξ ∈ [i − 1, i].

(10)

Since x1 ∈ Cn, x(n)1 is absolutely continuous and approximation
8) is linear, it follows from (9) that ỹi+1(t) = xi+1(t) + δi(t) +

d̃2,i+1(t), i = 1, n − 1, where

δi(t) : = −
∫ t
t−ih ϕi

( t−s
h

)
ẋi+1(s)ds, (11a)

d̃2,i+1(t) : =
d̃2,i(t)−d̃2,i(t−h)

h (11b)

with d̃2,1(t) := d2(t). Therefore, the closed-loop system (6), (7)
is in the form (1) and Theorem 2 can be applied. To this end,
4

Fig. 1. Plots of ϕi(ξ ) for i = 1, 5.

introduce two implicit Lyapunov–Krasovskii functionals (ILKFs)
Qk(Vk, χ ), k = 1, 2, by the equality:

Qk(Vk, χ ) := −1 + χ⊤(0)Λ−rk
Vk

PΛ−rk
Vk
χ (0)

+
∑n−1

i=1
i

2Si
V−2rk,i+2+µk
k

∫ 0
−ih ψi(−τ

h )χ̇2
i+1(τ )dτ ,

(12)

where P = P⊤
≻ 0, Λ−rk

Vk
:= diag{V

−rk,j
k }

n
j=1, Si > 0, i = 1, n − 1.

Note that in a linear case (µk = 0), equation Qk(Vk, χ ) = 0 defines
a Lyapunov–Krasovskii functional Vk(χ ) =√
χ⊤(0)Pχ (0) +

∑n−1
i=1

i
2Si

∫ 0
−ih ψi(−τ

h )χ̇2
i+1(τ )dτ .

For the following Lyapunov–Krasovskii analysis we will utilize
ome characteristics of the functions ϕi(ξ ) (see Fig. 1) and their
ntegrals ψi(ξ ) :=

∫ i
ξ
ϕi(λ)dλ which are summarized below (see

he proof in Appendix C).

roposition 2. The functions ϕi(ξ ) defined in (10) and their
ntegrals ψi(ξ ) possess the following properties:

(P1) ϕ′

i (ξ ) < 0 on ξ ∈ (0, i);
(P2) 0 ≤ ϕi(ξ ) ≤ 1 for all ξ ∈ [0, i];
(P3) ϕi(ξ ) + ϕi(i − ξ ) = 1 for all ξ ∈ [0, i];
(P4) ϕ′′

i (ξ ) < 0 on ξ ∈ (0, i/2) and ϕ′′

i (ξ ) > 0 on ξ ∈ (i/2, i) for
i ≥ 2;

(P5) ψi(0) = i/2 and ψi(i) = 0;
(P6) ψi(ξ ) ≤ (i/2)ϕi(ξ ) for all ξ ∈ [0, i];
(P7) for all i ∈ N the following integral is well-defined:

ζi :=
∫ i
0 ψ

−1
i (ξ )ϕ2

i (ξ )dξ . (13)

emark 1. It is worth mentioning that parameters ζi are in-
ependent of time delay h > 0 and, thus, can be calculated
n advance. For example, direct computation of ζ1 gives a quite
imple result: ζ1 = 2. The other values of ζi can be found by
umerical integration (see Table 1).

Now we are ready to present the restrictions on constructive
election of adjustable parameters µ, h, b1 and b2 such that
heorem 2 holds for ILKFs (12) with respect to the system (6),
7) (see the proof in Appendix D).

heorem 3. Given ϵ > 0, let there exist µ ∈ (0, 1/n), h > 0,
1 > 1, b2 > b1 such that the system of LMIs:

≺ XHrk + HrkX ≼ 2ωkX, (14a)

ax{∥σ∥, b0}In ≼ X ≼ In/2, (14b)
Ξ11 Ξ12 Y⊤

∗ Ξ22 Ξ⊤

12B

∗ ∗ −
4Sn−1
(n−1)2

⎤⎥⎦ ≼ 0,
[
Z X
∗ M

]
≽ 0,

[
N Nϱ
∗ Xϱ

]
≽ 0,

(14c)
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Table 1
Values of ζi for i = 1, 5.
i 1 2 3 4 5

ζi 2 2.1577 2.3282 2.4614 2.5680

where Hrk := diag{rk,j}nj=1, ω1 := 1+(n+1)µ, ω2 := 1, ϱ := h1−
√
µ,

b0 := b21 − 1, ∥σ∥ := maxk=1,2 ∥σk∥, σ1,j := ḡ(b1, 1/r1,j), σ2,j :=

ḡ(b1, 1/r2,j) + ḡ(b
1/r2,j
2 , r2,j/r1,j),

Ξ11 := XA⊤
+ Y⊤B⊤

+ AX + BY + Z +
2

n−1X,

12 :=
[
BY

√
ϱ, BY

√
∥σ∥, BY

√
b0, B, B

√
ϵ
]
,

22 := −
1

n−1 diag
{
(1 − ϱ)X, 1

2X,
1
2X,

c1
4 ,

1
2

}
,

:= diag
{
c2, c3,

4Si
i2

}n−2
i=1 , N :=

1
n−1 diag

{
c4, Si

}n−1
i=1 ,

s feasible for some cl > 0, 0 < Si ≤
i

4ζiϱ
, X = X⊤

∈ Rn×n,
Y ∈ R1×n, Z = Z⊤

∈ Rn×n, with ζi and rk,j defined by (13) and
(7c), respectively, i = 1, n − 1, j = 1, n, k = 1, 2, l = 1, 4.

Then the closed-loop system (6), (7) with K = YX−1 is (γ , κ)-
ractically locally fixed-time ISS (2) with γ , κ , T , v and w(s) given
y

=
h−r2,1/

√
µ

√
max{∥σ∥−1, h

√
µS0}

, κ =
h−r2,1/

√
µ

η
,

T =
1

4(n−1)µ

( 1
ω1

+
1
ω2

)
, v =

hr1,n/
√
µ

√
2
,

w(s) =
1

√
2

{
(ηs)r1,n/r1,1 , if ηs < 1,
(ηs)r2,n/r2,1 , if ηs > 1,

here S0 := maxi=1,n−1
i2
4Si

, η :=

√
max{c1,

(2/h)2n−1
(2/h)2−1

/b20}.

Let us give some comments on the choice of tuning parame-
ers. Firstly, LMIs (14) are always feasible provided ϵ, µ, h, b1 and
2 are sufficiently small. Obviously, this is true for ϵ = µ = h = 0
nd b1 = b2 = 1. Indeed, taking into account that in this case
σ∥ = ϱ = b0 = 0 and rk,j = ωk = 1, one can see that LMIs (14)
old for some 0 ≺ X ≼ In/2, Y , Z ≽ 0 and sufficiently large cl,
i. Clearly, LMIs (14) remain feasible for some positive nonzero ϵ,
, h and 1 < b1 < b2 since rk,j, ωk, σk,j, ρ and b0 are continuous
unctions of µ, h, b1 and b2.

Secondly, it follows from Theorem 3 that the settling time T is
inversely proportional to parameter µ. Thus, the best strategy of
parameter tuning consists in maximizing µ, for which LMIs (14)
are feasible for given ϵ. On the other hand, note that γ = γ (h)
and v = v(h) are the functions of the time delay h for the fixed
nonlinear degree µ. Obviously, γ (v) can be enlarged (decreased)
by reducing time delay h and in the limit case: γ → +∞ (v →

0+) as h → 0+. However, in practice, time delay h cannot be
chosen arbitrarily small due to related implementation problems.

Remark 2. Note that, similar to high-gain observers, approx-
imation (8) is sensitive to high-frequency output perturbations
(Khalil & Priess, 2016). In order to show this, let us assume that
d2(t) is a Lipschitz continuous function of time, i.e., there exists a
positive constant L such that |d2(t1) − d2(t2)| ≤ L∥d2∥∞|t1 − t2|
or all t1, t2 ∈ R. Taking into account (11b), it can be shown
hat in this case η =

√
max{c1,

(
1 + L2 (2/h)2(n−1)−1

(2/h)2−1

)
/b20}, which

coincides with the one given in Theorem 3 if hL = 2. Thus,
the slower the output disturbance d2 changes (the smaller L),
he smaller the steady-state error. Nevertheless, the problem of
aking approximation (8) more robust to high-frequency out-
ut perturbations (e.g., by introducing low-pass filters (Furtat &
ekhoroshikh, 2017; Khalil & Priess, 2016)) is out of the scope of
his work.
5

Let us show what is the main advantage of the proposed
control law (7) compared to its linear analog (µ = 0) with the
same gains K .

Proposition 3. Let the conditions of Theorem 3 be fulfilled. Then
there are h0 ∈ (0, h] and γ0 ∈ (0, γ (h0)] such that for all Φ ∈

0 := {X : ∥Φ∥W ≥ γ0} and d ∈ D the system (6), (7) with time
elay h0 converges faster to the set A := {x ∈ Rn

: ∥x(t,Φ, d)∥ ≤

+ w(∥d∥∞)} than its linear counterpart (µ = 0).

The proof of Proposition 3 is given in Appendix E.
In other words, for sufficiently large initial conditions or suf-

iciently small perturbations the proposed control system always
onverges faster to the vicinity of the origin than its linear analog.

. Numerical simulations

Let n = 3 and ϵ = 0.05. Then LMIs (14) are feasible for
µ = 0.01, h = 0.02, b1 = 1.001 and b2 = 1.1. Therefore,
K = [−3.11,−5.95,−4.14], γ = 1.25 · 1015, v = 5 · 10−18,
η = 5 · 106 and κ = 6 · 109. For further comparison we set
a = [1, 1, 1] · 0.125 such that aa⊤

= 0.047 < ϵ. The numerical
simulation of the closed-loop system (1), (7) has been done in
MATLAB Simulink by using the explicit Euler method with a state-
dependent step (Efimov, Polyakov, & Aleksandrov, 2019). The
basic and minimum discretization steps, the maximum number
of iterations and the homogeneous norm have been defined as
∆t0 = 10−2, ∆tmin = 10−4, Nmax = 2 · 104 and ∥x∥hom :=

(
∑n

j=1 |xj|αj/α1 )α1 , respectively.
First, we will show that the proposed control scheme (6), (7)

is indeed (γ , κ)-practically fixed-time stable. To this end, we will
compare it with its linear analog (µ = 0) when ∥d∥∞ = 0.
Choosing initial conditions as Φ(τ ) = [0, 1,−0.5]·108−2i, i = 0, 3
for all τ ∈ [−0.04, 0], we guarantee that ∥Φ∥W < γ . The norm of
the solutions x(t,Φ, 0) is depicted in Fig. 2(a) in the logarithmic
scale, where solid lines correspond to the proposed control law
(7) and dashed ones represent its linear counterpart (µ = 0). The
dotted magenta line defines the radius of the set A. The results
illustrate Proposition 3: the solutions of the nonlinear system (6),
(7) converge faster to the set A than its linear analog. However,
the superiority of the proposed control over its linear counterpart
is not so evident due to the smallness of µ. Recall that this param-
eter should be chosen as large as possible to ensure the feasibility
of LMIs (14). Since our Lyapunov analysis is rather conservative,
one might expect that the closed-loop system (6), (7) remain
fixed-time stable even for larger µ. To demonstrate this, we chose
µ = 0.1 and kept other control parameters the same. The results
of this numerical comparison are depicted in Fig. 2(b). Clearly, the
proposed control significantly does outperform the linear one.

Now we compare performance of the proposed control system
(6), (7) with its linear counterpart in the presence of the state
disturbance d1(t) = cos(t) and the output perturbation d2(t) =

0.1 sin(10t). As a result, w(∥d∥∞) = (η
√
1.01)r2,n/r2,1 = 7 · 106.

he norm of the solutions x(t,Φ, d) is depicted in Fig. 3(a) in the
logarithmic scale, where the initial conditions Φ are chosen the
same as for the disturbance-free case. Again the obtained results
go with Proposition 3. As well as in the disturbance-free case, for
larger values of µ the difference between nonlinear and linear
approaches becomes clearer (see Fig. 3(b)).

6. Conclusion

The paper introduces the concept of practical fixed-time input-
to-state stability for neutral time-delay systems with exogenous
perturbations. Related Lyapunov–Krasovskii theorems have been
formulated explicitly and implicitly. The latter has been applied
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Fig. 2. The norm of the solutions x(t,Φ, 0) (disturbance-free case).

o solve the problem of static output-feedback delay-induced
tabilization of a linear system in the controllable canonical
orm with parametric uncertainties, bounded state and output
isturbances. The control design consists in solving linear matrix
nequalities with only four tuning parameters to be chosen. It
as been shown that for sufficiently large initial conditions or
ufficiently small perturbations the proposed control scheme
onverges to the stable set faster than its linear counterpart. The
umerical simulation has verified the theoretical results. One of
he directions for future research may be the search for new,
ess conservative LMI constraints on nonlinear degree µ and time
elay h.

ppendix A. Proof of Theorem 1

Let xt = χ , satisfying (1). If w̄(∥d∥∞) < 1, then applying
the Comparison Lemma (Lemma 3 in Moulay et al. (2008)) to
the function V̄2(t) := V2(xt ) from (3d) on interval t ∈ [0, T2),
where T2 = inf{t ≥ 0 : V̄2(t) ≤ 1}, we get V̄2(t) ≤ (µ2θ2t +

V̄−µ2
2 (0))−1/µ2 . Obviously, T2 ≤ (1 − V̄−µ2

2 (0))/(µ2θ2). Hence, if
2,2(∥Φ∥W) ≤ 1, then (3a) implies V̄2(t) ≤ 1 and T2 = 0. Other-

wise, ∥x(t)∥ ≤ ρ̃1,2(V̄2(t)) for t ∈ [0, T2) and V̄2(0) ≤ ρ2,2(∥Φ∥W)
due to (3a). On the other hand, if w̄(∥d∥∞) ≥ 1, then there exists
a moment of time T ′

2 ∈ [0, T2) such that V̄2(t) ≤ w̄(∥d∥∞) for t ≥

T ′

2. Thus, one can conclude that ∥x(t)∥ ≤ ν2(∥Φ∥W, t) +w(∥d∥∞)
for all t ∈ [0, T ). Moreover, V̄ (0) < γ̄ if ∥Φ∥ < ρ̃ (γ̄ ).
2 2 W 2,2

6

Fig. 3. The norm of the solutions x(t,Φ, d)(disturbed case).

If w̄(∥d∥∞) < 1, then (3b) implies V̄1(t) := V1(xt ) ≤ 1 for
t ≥ T2. Assume first that max{v̄, w̄(∥d∥∞)} = 0. Applying the
omparison Lemma to the function V̄1(t) from (3c) on interval
∈ [T2, T2 + T1), where T2 + T1 = inf{t ≥ 0 : V̄1(t) = 0},
e get V̄1(t) ≤ (µ1θ1(t − T2) + V̄−µ1

1 (T2))−1/µ1 . It is clear that
T1 ≤ V̄−µ1

1 (T2)/(−µ1θ1), where V̄1(T2) ≤ 1 if T2 > 0 or V̄1(T2) ≤

2,1(∥Φ∥W) if T2 = 0. Hence, ∥x(t)∥ ≤ ρ̃1,1(V̄1(t)) ≤ ν1(∥Φ∥W, t)
for t ∈ [T2, T2 + T1) and ∥x(t)∥ = 0 for t ≥ T2 + T1 due to
(3a). Now assume that 0 < max{v̄, w̄(∥d∥∞)} < 1. Then there
xists a moment of time T ′

1 ∈ [T2, T2 + T1) such that V̄1(t) ≤

ax{v̄, w̄(∥d∥∞)} for t ≥ T ′

1. Thus, ∥x(t)∥ ≤ ν1(∥Φ∥W, t) + v +

(∥d∥∞) for all t ≥ T2. □

ppendix B. Proof of Theorem 2

In order to prove the theorem it is sufficient to show that
here exist functionals Vk : W1

h̄ → R+, satisfying conditions of
heorem 1. Indeed, (C2) and (C3) guarantee existence of unique
unctionals Vk : W1

h̄ \ {0} → R⋆
+

such that Qk(Vk(χ ), χ ) = 0 for
ny χ ∈ W1

h̄ \ {0}. Moreover, Theorem 1 from Polyakov, Efimov,
erruquetti, Richard (2015) and (C1) guarantee that functionals
k are continuously Fréchet differentiable on W1

h̄ \ {0}.
From (5a) it follows that q1,k(Vk(χ ), ∥χ (0)∥) ≤ Qk(Vk(χ ), χ ) =

= q1,k(ρ1,k(∥χ (0)∥), ∥χ (0)∥) for all χ ∈ W1
h̄ \ W1,0

h̄ and
2,k(ρ2,k(∥χ∥W), ∥χ∥W) = 0 = Qk(Vk(χ ), χ ) ≤ q2,k(Vk(χ ), ∥χ∥W)
or all χ ∈ W1

\ {0}. Due to properties of IK functions, the
h̄ ∞
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btained inequalities imply ρ1,k(∥χ (0)∥) ≤ Vk(χ ) for all χ ∈

W1
h̄ \W1,0

h̄ and Vk(χ ) ≤ ρ2,k(∥χ∥W) for all χ ∈ W1
h̄ \ {0}. Thus, the

functional Vk(χ ) can be extended by continuity to W1
h̄ as follows

V (0) = 0. Taking into account that 0 = ρ1,k(∥χ (0)∥) < Vk(χ ) for
ll χ ∈ W1,0

h̄ \ {0}, we finally derive condition (3a).
Conditions (5b) and (C3) guarantee that (3b) holds. Indeed, if

1(χ ) ≤ 1, then Q2(1, χ ) = Q1(1, χ ) ≤ Q1(V1(χ ), χ ) = 0 =

2(V2(χ ), χ ) and, consequently, V2(χ ) ≤ 1.
Let xt = χ be a solution of (1). Consider the functions

¯k(t) := Vk(xt ), Q̄k(Vk, t) := Qk(Vk, xt ) and d
dt V̄k(t) :=

d
dt Vk(xt ).

Clearly, Q̄k(V̄k(t), t) = 0 for all t ≥ 0 such that xt ̸= 0.
Then the implicit function theorem (Courant & John, 1974, p.
221) for Euclidean spaces and (5c), (5d) imply that d

dt V̄k(t) =

Q̄ ′

t,k(Vk, t)/Q̄ ′

V ,k(Vk, t) ≤ −θkV̄
1+µk
k (t). Thus, all steps of the proof

f Theorem 1 can be repeated. □

ppendix C. Proof of Proposition 2

(P1)–(P2) First, it is clear to see that ϕ′

1(ξ ) = −1 < 0 for all
ξ ∈ [0, 1]. Differentiating (10) with respect to ξ , we obtain:

ϕ′

i (ξ ) :=

⎧⎨⎩
ϕi−1(ξ ) − 1, ξ ∈ [0, 1],
ϕi−1(ξ ) − ϕi−1(ξ − 1), ξ ∈ (1, i − 1),
−ϕi−1(ξ − 1), ξ ∈ [i − 1, i].

(C.1)

Obviously, using induction, one can prove that ϕ′

i (ξ ) < 0 on
ξ ∈ (0, i) for i ≥ 2. Indeed, if ϕ′

i−1(ξ ) < 0 on ξ ∈ (0, i − 1),
then ϕi−1(ξ ) is strictly decreasing. Then taking into account that
(10) implies ϕi(0) = 1 and ϕi(i) = 0, we finish the proof.

(P3) Property (4) from Proposition 2 in Selivanov and Fridman
(2018) postulates that ϕ̄i(hξ ) + ϕ̄i(h(i − ξ )) = 1, where functions
ϕ̄i(hξ ) are such that ϕ̄i(hξ ) = ϕi(ξ ). Thus, ϕi(ξ ) + ϕi(i − ξ ) = 1.

(P4) Differentiating (C.1) with respect to ξ , we get:

ϕ′′

i (ξ ) :=

⎧⎨⎩
ϕ′

i−1(ξ ), ξ ∈ [0, 1],
ϕ′

i−1(ξ ) − ϕ′

i−1(ξ − 1), ξ ∈ (1, i − 1),
−ϕ′

i−1(ξ − 1), ξ ∈ [i − 1, i].

For i = 2 it is obvious that ϕ′′

2 (ξ ) < 0 on ξ ∈ [0, 1) and
ϕ′′

2 (ξ ) > 0 on ξ ∈ (1, 2], since ϕ′

1(ξ ) = −1 < 0 for all ξ ∈ [0, 1].
Moreover, ϕ′

2(ξ ) is strictly decreasing and strictly increasing on
corresponding intervals.

Applying property (P1) for i > 2, it is sufficient to prove
by using induction that function ϕ′′

i (ξ ) has the unique zero at
ξ0i = i/2. Indeed, ϕ′′

i−1((i − 1)/2) = 0 implies that ϕ′

i−1(ξ ) is
strictly decreasing on ξ ∈ (0, (i − 1)/2) and strictly increasing
on ξ ∈ ((i − 1)/2, 1). Therefore, ϕ′′

i (ξ ) has the only one zero on
ξ ∈ (0, i). Let us show that ξ0i = i/2. Using (C.1), the condition
ϕ′′

i (i/2) = ϕ′

i−1(i/2) − ϕ′

i−1(i/2 − 1) = 0 can be equivalently
rewritten as
2ϕ1(1/2) = 1 for i = 3,

2ϕi−2
( i−2

2

)
= ϕi−2

( i
2

)
+ ϕi−2

( i−4
2

)
for i ≥ 4,

ince 3/2 ∈ [1, 2] and (3/2 − 1) ∈ [0, 1] for i = 3, i/2 and
i/2−1) ∈ [1, i−1] for i ≥ 4. Applying property (P3), one can see
hat these relations hold and, therefore, ξ0i = i/2 is the unique
nflection point of ϕi(ξ ) for i > 2.

(P5) It is obvious that ψi(i) = 0. Then using the change
f variable λ̃ = i − λ and property (P3), we obtain ψi(0) =
i/2
0 ϕi(λ)dλ +

∫ i
i/2 ϕi(λ̃)dλ̃ =

∫ i/2
0 ϕi(λ)dλ +

∫ i/2
0 ϕi(i − λ)dλ =

i/2
0 [ϕi(λ) + ϕi(i − λ)]dλ = i/2.
(P6) Function ψi(ξ ) could be rewritten as follows:

i(ξ ) =

{
i
2 −

∫ ξ
0 ϕi(λ)dλ, ξ ∈ [0, i/2],∫ i

ϕ (λ)dλ, ξ ∈ [i/2, i].

ξ i

7

Taking into account property (P4), integral terms can be esti-
ated by the area of a trapezoid from below and a triangle from
bove, respectively:

i(ξ ) ≤

{
i/2 − ξ [1 + ϕi(ξ )]/2, ξ ∈ [0, i/2],
(i − ξ )ϕi(ξ )/2, ξ ∈ [i/2, i].

Since i − ξ ≤ iϕi(ξ ) for [0, i/2] and i − ξ ≤ i for all ξ ∈ [0, i],
e conclude the proof.
(P7) Since function ϕ̃i(ξ ) := ψ−1

i (ξ )ϕ2
i (ξ ) is continuous on

∈ [0, i), it is sufficient to prove that ϕ̃i(i + 0−) < ∞. Indeed,
pplying L’Hôpital’s rule, we get ϕ̃i(i + 0−) = −2ϕ′

i (i). From (C.1)
t follows that ϕ′

i (i) = ϕi−1(i − 1) = 0. Therefore, ζi =
∫ i
0 ϕ̃i(ξ )dξ

s well-defined and function ϕ̃i(ξ ) can be prolonged to ξ = i by
efining ϕ̃i(i) = 0. □

ppendix D. Proof of Theorem 3

Let us show that ILKFs (12) satisfy all conditions of Theorem 2.

.1. Proof of conditions (C1) –(C3), (5a) and (5b)

The functionals Qk(Vk, χ ) defined by (12) are continuously
réchet differentiable on R⋆

+
× W1

h̄ , where h̄ = (n − 1)h. Indeed,
he following operators

Qk,V (∆Vk) := −(∆Vk/Vk)
(
χ (0)⊤Λ−rk

Vk
DkΛ

−rk
Vk
χ (0)∑n−1

i=1
imk(i)
2Si

V−2rk,i+2+µk
k

∫ 0
−ih ψi(−τ

h )χ̇2
i+1(τ )dτ

)
,

DQk,χ (∆χ ) := 2χ⊤(0)Λ−rk
Vk

PΛ−rk
Vk
∆χ (0)

+
∑n−1

i=1
i
Si
V−2rk,i+2+µk
k

∫ 0
−ih ψi(−τ

h )χ̇i+1(τ )
d∆χi+1(τ )

dτ dτ ,

where ∆Vk ∈ R⋆
+
, ∆χ ∈ W1

h̄ , Dk := HrkP + PHrk and mk(i) :=

2rk,i+2 − µk, i = 1, n − 1, are continuous partial Fréchet deriva-
tives of function Vk ↦→ Qk(Vk, χ ) and functional χ ↦→ Qk(Vk, χ ),
respectively, for all Vk ∈ R⋆

+
and χ ∈ W1

h̄ .
Since P ≻ 0, then the following inequalities

λmin(P)∥χ (0)∥2

max{V 2−2µk
k , V 2−2nµk

k }

− 1 ≤ Qk(Vk, χ )

≤

λmax(P)∥χ (0)∥2
+

∑n−1
i=1

i2
4Si

V−µk
k

∫ 0
−(n−1)h |χ̇i+1(τ )|2dτ

min{V 2−2µk
k , V 2−2nµk

k }

− 1

hold for all Vk ∈ R⋆
+

and χ ∈ W1
h̄ . Hence, it is easy to see that for

any χ ∈ W1
h̄ there exist Vk ∈ R⋆

+
such that Qk(Vk, χ ) = 0. Taking

nto account (14b), introduce the functions q1,k, q2,k ∈ IK∞ by
he formulas

1,k(ρ1,k, s) =
2s2

max{ρ2−2µk
1,k , ρ

2−2nµk
1,k }

− 1,

q2,k(ρ2,k, s) =

max{ 1
∥σ∥
, ρ

−µk
2,k maxi=1,n−1

i2

4Si
}s2

min{ρ
2−2µk
2,k , ρ

2−2nµk
2,k }

− 1,

where ρ1,k, ρ2,k, s ∈ R⋆
+
. The obtained estimates also guarantee

that q1,k(Vk, ∥χ (0)∥) ≤ Q (Vk, χ ) ≤ q2,k(Vk, ∥χ∥W) for all Vk ∈ R⋆
+

and χ ∈ W1
h̄ . Moreover, condition (5b) obviously holds.

One can see that mk(i) ≤ 2ωk and 0 ≺ Dk ≼ 2ωkP due to
(14a). Taking into account that by definition Q ′

V ,k(Vk, χ )∆Vk =

DQk,V (∆Vk), we conclude that

− 2ωk ≤ VkQ ′

V ,k(Vk, χ ) < 0, ∀(Vk, χ ) ∈ Ωk. (D.1)

Therefore, the condition (C3) of Theorem 2 holds. □
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.2. Proof of conditions (5c) and (5d)

If xt = xt (Φ, d) is the solution of the system (6), (7), then using
roperty (P5), we obtain
′

t,k(Vk, xt , d) = R1,k + R2,k + R3,k, (D.2)

here

1,k := 2x⊤Λ
−rk
Vk

PΛ−rk
Vk

f (xt , ẋt , d),

2,k := Vµk
k

∑n−1
i=1

i2
4Si

V−2rk,i+2
k ẋ2i+1(t),

3,k := −
∑n−1

i=1
i

2hSi
V−2rk,i+2+µk
k

∫ t
t−ih ϕi(

t−s
h )ẋ2i+1(s)ds.

Taking into account that Λ−rk
Vk

A = Vµk
k AΛ−rk

Vk
, Λ−rk

Vk
B = V−rk,n

k B =

V−1+µk
k B and (11), R1,k could be rewritten as follows:

R1,k = 2Vµk
k x⊤Λ

−rk
Vk

P
(
(A + BK )Λ−rk

Vk
x

+BK (dh,k + dµ,k + dy,k) + BV−1
k (d1 + ax)

)
,

where disturbance terms dh,k := Λ
−rk
Vk

[0, δ1, . . . , δn−1]
⊤, dµ,k :=

V−1
k

[
⌈ỹ1⌋α1(∥ỹ∥), . . . , ⌈ỹn⌋αn(∥ỹ∥)

]⊤
− Λ

−rk
Vk

ỹ and dy,k := Λ
−rk
Vk

[d̃2,1, d̃2,2, . . . , d̃2,n]⊤ represent finite-difference approximation
error, nonlinear deviation of feedback and presence of the output
perturbation, respectively.

Since c2, c3 > 0, then R2,k has the following estimate:

R2,k ≤ Vµk
k x⊤Λ

−rk
Vk

M−1Λ
−rk
Vk

x + Vµk
k

(n−1)2
4Sn−1

(V−1
k ẋn)2.

Note that V−1
k ẋn = Θzk with Θ := [Y , B⊤Ξ12] and

zk =

[
x⊤Λ

−rk
Vk

P,
d⊤
h,kP
√
ϱ
,

d⊤
µ,kP

√
∥σ∥
,

d⊤
y,kP√
b0
,

d1
Vk
, x⊤a⊤

Vk
√
ε

]⊤

.

Term R3,k either can be upper-bounded by using (P6):

3,k ≤ −2h−1(1 − x⊤Λ
−rk
Vk

PΛ−rk
Vk

x)/(n − 1) (D.3)

r by applying Lemma 1 with ϑ = ϕi, φ = ẋi+1,ϖ = 1 and noting
that d⊤

h,kC
⊤Cdh,k = 0:

R3,k ≤ −V−µk
k h−2d⊤

h,kN
−1dh,k/(n − 1). (D.4)

Adding and subtracting corresponding terms to (D.2) to con-
struct a quadratic form with respect to the vector zk and matrix
Ξ :=

[
Ξ11 Ξ12
∗ Ξ22

]
, we obtain

′

t,k(Vk, xt , d) ≤ Vµk
k z⊤

k

(
Ξ +Θ⊤ (n−1)2

4Sn−1
Θ

)
zk

Vµk
k x⊤Λ

−rk
Vk

(
M−1

− PZP
)
Λ

−rk
Vk

x

+

(
ϱR3,k + Vµk

k
2

n−1 (1 − x⊤Λ
−rk
Vk

PΛ−rk
Vk

x)
)

+(1 − ϱ)
(
R3,k + Vµk

k
1

(n−1)ϱd
⊤

h,kPdh,k
)

+Vµk
k

1
4(n−1)

(
c1(V−1

k d1)2 +
2
ϵ
(V−1

k ax)2 − 2
)

+Vµk
k

1
2(n−1)

(
1
b0
d⊤

y,kPdy,k +
1

∥σ∥
d⊤

µ,kPdµ,k − 2
)

Vµk
k

1
2(n−1) .

(D.5)

et us show that first six terms in (D.5) are nonpositive for all
Vk, xt ) ∈ Ωk such that V1 ∈ (max{v̄, w̄(∥d∥∞)}, 1] and V2 ∈

max{1, w̄(∥d∥∞)}, γ̄ ). Firstly, applying Schur complement to the
irst and the second terms, it is easy to see that they are not
ositive due to (14c).
Secondly, it follows from (D.3) that the third term in (D.5) is

egative if ϱ/h > Vµk
k , i.e. if v̄ = γ̄−1

= h1/
√
µ. Taking into

ccount that (14c) implies N−1 ≽ ϱP , it is obvious that the fourth
erm is negative due to (D.4).
 i

8

Thirdly, for all (Vk, xt ) ∈ Ωk ILKFs (12) and (14b) imply
(V−1

k ax)2 ≤ (ϵ/2)max{V 2(rk,1−1)
k , V 2(rk,n−1)

k }. Since r1,1 > r1,n > 1
and r2,1 < r2,n < 1, then it is clear that (V−1

k ax)2 ≤ ϵ/2 for
V1 ≤ 1 and V2 > 1. Moreover, one can see that c1(V−1

k d1)2 ≤
2(V−1

k d)2 ≤ 1 if w̄(s) ≥ ηs. Thus, the fifth term is also negative.
Finally, taking into account (11b), it can be proven that |d̃2,j| ≤

2/h)j−1
∥d2∥∞ for j = 1, n. As a result, ∥dy,k∥2

≤
(2/h)2n−1
(2/h)2−1

∥d∥2
∞

ax{V−2rk,1
k , V−2rk,n

k } and d⊤

y,kPdy,k ≤ b0 if w̄(s) ≥ max{(ηs)1/r1,1 ,
(ηs)1/r2,1}. Then assuming that ∥dµ,k∥2

≤ ∥σk∥
2 (see the proof

in the next subsection), it is clear that the sixth term in (D.5) is
negative due to (14c).

Since (D.1) implies that −1 ≤ Vk
1

2ωk
Q ′

V ,k(Vk, xt ), one can con-
lude that conditions (5c) and (5d) are proven with v̄ = γ̄−1

=
1/

√
µ, w̄(s) = max{(ηs)1/r1,1 , (ηs)1/r2,1} and θ−1

k = 4(n − 1)ωk.
aking into account formulas of q1,k and q2,k, k = 1, 2 parameters
γ , κ, T , v and function w ∈ K can be easily calculated using
(4). □

D.3. Proof of the estimate ∥dµ,k∥2
≤ ∥σk∥

2

The disturbance term ∥dµ,k∥2 can be rewritten as:

∥dµ,k∥2
=

∑n
j=1

((
V−1
k |ỹj|

1/rk,j − |V
−rk,j
k ỹj|

)
+ V−1

k

(
|ỹj|

αj(∥ỹ∥) − |ỹj|
1/rk,j

))
2.

(D.6)

irst, applying Lemma 1 with ϑ = ϕi, φ = ẋi+1, ϖ = ψi/ϕi to
12) for all (Vk, xt ) ∈ Ωk such that V−µk

k ϱ/h > 1, we deduce that:

x⊤Λ
−rk
Vk

PΛ−rk
Vk

x +
∑n−1

i=1
i

2ϱζiSi

(
V−rk,i+1
k δi

)2
≤ 1.

Due to (14b) and upper bound on Si the following holds:

2Vk
−2rk,1x21 + 2

∑n−1
i=1 Vk

−2rk,i+1 (x2i+1 + δ2i ) ≤ 1.

Then ∥Λ
−rk
Vk

ỹ∥2
≤ 1 + 2∥dy,k∥2

≤ 1 + b0 = b21. So it follows
that ∥ỹ∥ ≤ b1 max{V rk,1

k , V rk,n
k } and |V

−rk,j
k ỹj| ≤ b1. Thus, applying

Lemma 2, the first term in (D.6) can be bounded as follows:

|V
−rk,j
k ỹj|

1/rk,j
− |V

−rk,j
k ỹj| ≤ ḡ(b1, 1/rk,j). (D.7)

Since V1 ≤ 1 implies that ∥ỹ∥ ≤ b1, we deduce that αj(∥ỹ∥) =

/r1,j for V1 ≤ 1. Therefore, the second term in (D.6) is zero and
∥dµ,1∥2

≤ ∥σ1∥
2.

On the other hand, if |ỹj| ≥ b2 > b1 for all j = 1, n, then
ỹ∥ ≥ b2 and αj(∥ỹ∥) = 1/r2,j. Thus, the second term in (D.6) for
2 > 1 and |ỹj| ≤ b2 could be estimated as:

V−1
2 (|ỹj|αj(∥ỹ∥) − |ỹj|1/r2,j )

max|ỹ|∈[0,b2] ||ỹj|1/r1,j − |ỹj|1/r2,j | = ḡ(b
1/r2,j
2 ,

r2,j
r1,j

).

aking into account (D.7), one can finally conclude that ∥dµ,2∥2
≤

σ2∥
2. □

ppendix E. Proof of Proposition 3

It is a well-known fact (Selivanov & Fridman, 2018) that the
ystem (6), (7) with µ = 0 is exponentially ISS with a decay rate
∈ (0, β0), where β0 > 0 is the decay rate of the corresponding

tate-feedback control, i.e. for all Φ ∈ W1
h̄ and d ∈ D̃ := {d ∈

Lm
∞

: ∥d∥∞ < κ̃} there exist a constant c0 > 0 and a function
w̃ ∈ K such that

x(t,Φ, d)∥ ≤ c0∥Φ∥We−βt
+ w̃(∥d∥∞), ∀t ≥ 0.

Define by T0 the moment of time when the system (6), (7)
with time delay h0 and µ = 0 reaches the set A, i.e. T0 =

nf{t ≥ 0 : ∥x(t,Φ, d)∥ ≤ v + w(∥d∥ )}. Obviously, T ≥
∞ 0
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m

C

R

B

B

B

C

E

E

E

ax{0, β−1
0 ln(c0∥Φ∥W/(v + w(κ)))} if v + w(∥d∥∞) ≥ w̃(∥d∥∞).

Otherwise, the set A is unreachable. Therefore, it is easy to see
that T ≤ T0 if

∥Φ∥W ≥ γ0 := eβ0
2+(n+1)µ

4(n−1)(1+(n+1)µ)µ (v + w(κ))/c0.

learly, there is a small enough h0 such that γ ≥ γ0. □
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