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a b s t r a c t

Deployment of the first-order and second-order nonlinear multi agent systems over desired open
(and, as a particular case, closed) smooth curves in 2D or 3D space is considered. The considered
nonlinearities are globally Lipschitz. We assume that the agents have access to the local information
of the desired curve and to their positions with respect to their closest neighbors (as well as to their
velocities for the second-order systems), whereas in addition a leader agent is able to measure its
absolute position. We assume that a small number of leaders (distributed in the spatial domain)
transmit their measurements to other agents through a communication network. We take into account
the following network imperfections: variable sampling, transmission delay and quantization. We
propose a static output-feedback controller and model the resulting closed-loop system as a disturbed
(due to quantization) nonlinear heat equation (for the first-order systems) or damped wave equation
(for the second-order systems) with delayed point state measurements, where the state is the relative
position of the agents with respect to the desired curve. In order to cope with the open curve we
consider Neumann boundary conditions that ensure mobility of the boundary agents. We derive linear
matrix inequalities (LMIs) that guarantee the input-to-state stability (ISS) of the system. The advantage
of our approach is in the simplicity of the control law and the conditions. Numerical examples illustrate
the efficiency of the method.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Deployment of a large-scale multi agent system (MAS), where
group of agents rearrange their positions into a target spatial
onfiguration in order to achieve a common goal, has recently
ttracted attention of many researchers, e.g. Mesbahi and Egerst-
dt (2010) and Oh, Park, and Ahn (2015). This is due to vast
pplications, such as cooperative movement of robots or vehi-
les (Ren, Beard, & Atkins, 2007), biochemical reaction networks,
nimal flocking behavior (see Olfati-Saber, 2006), search-and-
escue, environmental sensing and monitoring (Dunbabin & Mar-
ues, 2012), etc. The majority of the existing works in the field
f MAS is concentrated on deploying of interconnected agents,
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modeled by ordinary differential equations (ODEs) that provide
efficient methods when the number of agents is low.

When the number of agents is large, a methodology based on
partial differential equations (PDEs) becomes efficient. In Frihauf
and Krstic (2010) and Meurer (2012), the agents were treated
as a continuum, and the collective dynamics was modeled by a
reaction–diffusion PDE, under the boundary control. Feedforward
control combined with backstepping-based boundary controller
was implemented in Freudenthaler and Meurer (2020), where the
collective dynamics was modeled by a modified viscous Burger’s
equation. Finite-time deployment formations along predefined
spatiotemporal paths by means of boundary control were con-
templated in Meurer and Krstic (2011). The problem of driving
the state of a network of agents, modeled by boundary con-
trolled heat equations, toward a common steady state profile was
addressed in Pilloni, Pisano, Orlov, and Usai (2015). Formation
tracking problem using complex-valued PDE with an input-to-
state stability (ISS) type of convergence was considered in Jie,
Feng, and Jinpeng (2015). Formation tracking control of a MAS,
where the collective dynamics was modeled by a wave PDE
was studied in Tang, Qi, and Zhang (2017). Control of collective
dynamics of a large-scale MAS moving in a 3D space under

the occurrence of an arbitrarily large boundary input delay was
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onsidered in Qi, Wang, Fang, and Diagne (2019). All the above
ethods employ boundary control of linear PDEs.
In the case of measurements of the leaders’ absolute positions,

he majority of PDE-based results employ the PDE observer for
utput-feedback control. The latter may be difficult for imple-
entation. Recently a simple static output-feedback controller
as suggested in Wei, Fridman, and Johansson (2019), where it
as proposed to transmit the leader’s absolute positions with
espect to the desired curve to all the agents by using commu-
ication network. The network-based results of Wei et al. (2019)
ere confined to the first-order integrators and to deployment
nto the closed curves. Among the network imperfections, the
uantization effects were neglected. Moreover, in the case of
everal leaders a common delay (i.e. synchronized transmissions
n the same time with the same network-induced delay) was
onsidered, which may be restrictive. As most of the PDE-based
esults, Wei et al. (2019) considered linear models of agents.

In this paper we study deployment of the first and second-
rder nonlinear multi agent systems onto open curves. We as-
ume that the agents have access to their target position on the
esired curve and their positions with respect to their closest
eighbors, whereas a small number of leaders is able to measure
heir absolute position with respect to the desired curve. For the
econd-order MAS all agents measure their velocities. As in Wei
t al. (2019), our design is based on spatial decomposition method
ntroduced in Fridman and Blighovsky (2012) for stabilization of
emilinear heat equations. For the globally Lipschitz in the state
onlinearities (as considered in the present paper), the spatial de-
omposition method leads to global stabilization. We propose to
ransmit the leaders’ absolute positions to other agents by using a
ommunication network. However, leaders may use independent
etworks and their transmissions are not synchronous, which
eads to multiple delays in the closed-loop system. Moreover, we
ake into account the quantization effect (see Liberzon, 2003).

By applying the time-delay approach to networked control
ystems (see Chapter 7 of Fridman, 2014), we model the re-
ulting closed-loop systems as a disturbed (due to quantization)
onlinear heat equation (for the first-order MAS) and damped
ave equation (for the second-order MAS) with the delayed point
tate measurements. In order to cope with open target curves
e consider Neumann boundary conditions that ensure mobility
f the boundary agents. Neumann boundary conditions are also
pplicable to the closed curves. Note that the existing results on
patial decomposition under the point delayed measurements are
onfined to a single delay and unperturbed systems (see Fridman
Blighovsky, 2012; Kang & Fridman, 2019; Terushkin & Fridman,
019). In this paper, we introduce delayed input-to-state stabi-
ization via spatial decomposition under the point measurements,
here ISS analysis of the closed-loop system is based on combi-
ation of the Lyapunov–Krasovskii method with the generalized
alanay’s inequality (Wen, Yu, & Wang, 2008). Moreover, the
ase of multiple delays is treated. We derive LMI conditions that
uarantee ISS. The advantage of our approach is in the simplicity
f the control law and conditions. Numerical examples of de-
loyment onto smooth open and closed curves in 3D illustrate
he efficiency of the method. Some preliminary results confined
o the second-order MAS have been presented in Terushkin and
ridman (2020b).

otation. Throughout the paper the notation P > 0 with
∈ Rn×n means that P is symmetric and positive definite.

he symmetric elements of a symmetric matrix will be denoted
y ∗. Functions, continuous (continuously differentiable) in all
rguments, are referred to as of class C (of class C1). L2(0, L) is
he Hilbert space of square integrable functions z(ξ ), ξ ∈ [0, L]

ith the corresponding norm ∥z∥2
L2 =

∫ L

z2(ξ )dξ . H1(0, L) is

0

2

he Sobolev space of absolutely continuous scalar functions z :

[0, L] → R such that z ′
∈ L2(0, L) with the norm ∥z∥2

H1
=

z∥2
L2

+∥z ′
∥
2
L2
. H2(0, L) is the Sobolev space of scalar functions z :

[0, L] → R with absolutely continuous z ′ and with z ′′
∈ L2(0, L).

1.1. Mathematical preliminaries

The following inequalities will be useful:

Lemma 1.1 (Wirtinger’s Inequality Fridman & Blighovsky, 2012). Let
z∈H1

[a, b] be a scalar function with z(a) = 0 or z(b) = 0. Then∫ b

a
z2(ξ )dξ ≤ 4

(b − a)2

π2

∫ b

a
[z ′(ξ )]2dξ (1.1)

emma 1.2 (Sobolev’s Inequality Kang & Fridman, 2019). Let z(x) ∈
1(0, L) be a scalar function. Then, for all C > 0

max
x∈[0,L]

z2(x) ≤ (L + C)
∫ L

0
z2(ξ )dξ +

1
C

∫ L

0
[z ′(ξ )]2dξ . (1.2)

emma 1.3 (Generalized Halanay’s Inequality Wen et al., 2008). Let
: [t0 − τM ,∞) −→ R+ be absolutely continuous function, and
: [t0,∞) −→ R be a bounded continuous function satisfying

w(t)| ≤ ∆w for all t ≥ t0, where ∆w > 0 is given. If there exists
< α1 < α0 and γ 2 such that

˙ (t)+2α0V (t) − 2α1 sup
−τM≤θ≤0

V (t + θ ) − γ 2
|w(t)|2≤ 0

olds almost for all t ≥ t0, then

(t) ≤ exp
(
−2α(t − t0)

)
sup

−τM≤θ≤0
V (t0 +θ )+

γ 2

ε
∆2
w, t ≥ t0, (1.3)

here ε = 2(α0 − α1) > 0, and α > 0 is a unique positive solution
of α = α0 − α1 exp(2ατM ).

2. Deployment of the first-order MAS

2.1. Problem formulation

Consider a group of N agents, governed by the first-order
ynamics, that can move in space Rn, n ∈ {2, 3}. The agents are

located on the initial C1 curve Γ0 : [0, L] −→ Rn in the points
Γ0(h), . . . ,Γ0(hN) with h =

L
N . Our objective is to deploy the

agents onto the desired C2 curve Γ : [0, L] −→ Rn. If Γ (0) ̸=

Γ (L), the curve Γ is open. We assume that the curves Γ0 and Γ
are without intersections. N points are assigned on the desired
curve with constant spacing h =

L
N , namely Γ (h), . . . ,Γ (hN)

hich will give the final desired position of each agent. For
implicity, we assume that the desired curve does not evolve
ver time. We neglect collision avoidance as we assume agents
f zero volume operating within a large workspace. Furthermore,
e assume that no static or moving obstacles are present in the
perating workspace.
The dynamics of each agent is given by

ż ji = uj
i + f j(zi, t), j ∈ {1, . . . , n}, n = 2, 3,

i = 1, . . . ,N, t ≥ t0,
(2.1)

here the nonlinearities f j are of class C2. Here z ji ∈ R and uj
i are

components of the position and control for ith agent, respectively.
For brevity, the super-script j will be further omitted. We assume
that the derivative fz(z, t) is uniformly bounded by a constant
ρ1 > 0 :

|fz(z, t)|≤ ρ1, ∀(z, t) ∈ R × [0, L] × [t0,∞). (2.2)

The leader-enabled deployment of mobile agents is considered
under the following assumptions:
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(1) Agents i = 2, . . . ,N − 1 measure their positions with
respect to the closest neighbors i−1, i+1. They have access
to Γ ((i − 1)h),Γ (ih) and Γ ((i + 1)h). The boundary agents
with i = 1 and i = N measure the relative positions of
the agents 2 and N −1 and have access to Γ (h),Γ (2h) and
Γ ((N − 1)h),Γ (Nh) respectively.

(2) No agent can measure its global position zi except for the
leader agents labeled zim , m ∈ {1, . . . ,M}.

(3) The adjacent agents keep their order.

Prior to the deployment procedure, the agents know their desired
position on the curve Γ (ih) (i = 1, . . . ,N) as well as their
orresponding closest neighbors desired curve positions (e.g. this
ata can be sent through the communication network). Our
bjective is to deploy the agents onto the desired curve Γ by
xploiting M ≪ N leaders.

.2. Controller design and heat equation model

We propose a leader–follower displacement-based control,
here the position measurements of the leader agents are trans-
itted through communication network to other agents. Define

0(t) = z2(t), zN+1(t) = zN−1(t), (2.3)
(0) = Γ (2h), Γ ((N + 1)h) = Γ ((N − 1)h).

We consider the following static output-feedback controller:

ui(t) =
υ2

h2 [zi+1(t) − 2zi(t) + zi−1(t)] (2.4)

−
υ2

h2

[
Γ

(
(i + 1)h

)
− 2Γ

(
ih

)
+ Γ

(
(i − 1)h

)]
− f (Γ (ih), t) + ūi(t), i = 1, . . . ,N.

Here ūi will be found below as the product of a constant gain
K > 0 on the corresponding leaders’ position measurements.

Denote the error

ei(t) = zi(t) − Γ (ih), i = 0, . . .N + 1, t ≥ t0.

We have
f (zi, t) − f (Γ (ih), t) = ρ(ei, t)ei(t),

ρ(ei, t) =
∫ 1
0 fz (θei + Γ (ih), t) dθ,

(2.5)

where due to (2.2)

|ρ| ≤ ρ1 ∀(ei, t) ∈ R × [t0,∞). (2.6)

The closed-loop system (2.1), (2.4) has a form:

ėi(t) =
υ2

h2 [ei+1(t) − 2ei(t) + ei−1(t)]

+ ρ(ei, t)ei(t) + ūi(t)

(i = 1, . . . ,N). (2.7)

We further treat the large-scale MAS (2.1) as a continuumwith
spatial domain x ∈ [0, L]. Following Fridman and Blighovsky

2012) and Wei et al. (2019), we divide x ∈ [0, L] into M sampling
ntervals

= x0 < x1 < · · · < xM = L, (2.8)

ith the equal length

m − xm−1 = ∆ =
L
M
, m = 1, . . . ,M. (2.9)

e place the leader agent in the middle x̂m = 0.5(xm − xm−1) of
each interval [xm−1, xm] (see Fig. 1). Note that if in discretization,
the number Nm of agents located on [xm−1, xm] is even, then
leader may be located in such a way that it has 0.5N −1 agents
m w

3

Fig. 1. MAS: leader location.

on [xm−1, xm] from the left (or right) and 0.5Nm from the right (or
left).

The leader zim sends his absolute (relative to Γ ) position zim −

Γ (imh) to all the agents zi located on [xm−1, xm) through commu-
nication network. The measurements are subject to quantization
effect, sampling and delays (Fridman & Dambrine, 2009; Liberzon,
2003). A quantizer is a piecewise constant function q : R → R
uch that

q(y) − y| ≤ ∆q, (2.10)

here ∆q is the quantization error bound.
Let sm0 < sm1 < · · · be the sampling times of the measurements

ith limk→∞ smk = ∞ and ηmk are network-induced delays. We
ssume that smk + ηmk < smk+1 + ηmk+1 for all k. The agents zi from
he interval [xm−1, xm] employ the controller

ūi(t) = ūm(t) = −Kq(zim (s
m
k ) − Γ (imh))

t ∈ [smk + ηmk , s
m
k+1 + ηmk+1),

(2.11)

here ūi(t) = 0 for t < t0. As in Wei et al. (2019), the network-
ased controller (2.4), (2.11) contains two gains: υ2 (larger υ2

llows to reduce the number of the leaders), and K (stabilizes the
ystem and compensates the destabilizing effect of the nonlinear-
ty f ). Given υ2, we aim to achieve the deployment with as small
s possible number of leaders M .
Define characteristic functions χm

m(x) =

{
1, x ∈ [xm−1, xm]

0, x ̸∈ [xm−1, xm]
,m = 1, . . . ,M. (2.12)

hen the closed-loop system (2.7), (2.11) can be considered as a
iscretization in the spatial variable x ∈ [0, L] of the heat equation

t = υ2exx + ρ(e, t)e +

M∑
m=1

χm(x)ūm(t),

x ∈ (0, L), t ≥ t0,

¯
m(t) =

{
−Kq(e(x̂m, smk )), t ∈ [smk + ηmk , s

m
k+1 + ηmk+1),

0, t ≤ t0,
(2.13)

where x̂m = 0.5(xm − xm−1), under the Neumann boundary
onditions

x(0, t) = ex(L, t) = 0. (2.14)

ote that (2.3) with e0 = e2 and eN+1 = eN−1 corresponds to spa-
ial discretization under the Neumann boundary conditions. The
nitial condition e(·, t0) is determined by the difference between
he initial agents’ positions and their target positions on the curve
. Error system (2.13) with K = 0 under the Neumann boundary
onditions is unstable even for ρ = 0 (having constant solutions).
hus, K stabilizes the system compensating its nonlinearity.

emark 2.1. For open curves, spatial discretization under the
eumann boundary conditions allows moving boundary agents

ith i = 1 and i = N and recover their dynamics given by
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2.1) (as opposed to the commonly used for deployment Dirichlet
oundary conditions (Meurer & Krstic, 2011), that impose immo-
ility on the boundary agents). In Wei et al. (2019), for the case
f open curve and fi = 0 the following boundary conditions that

correspond to boundary control were suggested

et (0, t) = −κe(0, t), et (L, t) = −κe(L, t) (2.15)

ith some κ > 0. Note that in the nonlinear case, an additional
erm "ρe" would be added to the right-hand side of (2.15) that
ay lead to instability. Moreover, as mentioned in Wei et al.

2019), even for ρ = 0, it is difficult to show robustness of this
ontroller with respect to small delay. Finally periodic boundary
onditions are appropriate for deployment on the closed smooth
urves only (Wei et al., 2019), whereas the present controller that
mploys Neumann boundary conditions allows to deploy on both
pen and closed curves.

Well-posedness of (2.13), (2.14) can be proved similar to Frid-
an and Blighovsky (2012) and Fridman and Bar Am (2013). We
an order all smk + ηmk , k = 0, 1, . . . , m = 1, . . . ,M as t0, t1, . . ..
ote that ūm(t) ≡ ūm(tk −ηk) for all t ∈ [tk, tk+1). We will use the
tep method for solution of time-delay systems (see e.g. Chapter
of Fridman, 2014). For t ∈ [t0, t1] we consider

t = υ2exx + ρ(e, t)e +

M∑
m=1

χm(x)ūm(t0 − η0). (2.16)

et H = L2(0, L) be a Hilbert space with the inner product ⟨·, ·⟩
nd induced norm ∥·∥L2 . We define an unbounded linear operator
: D(A) ⊂ H → H as follows:{
Aζ = υ2ζ ′′, ∀ζ ∈ D(A),
D(A) = {ζ ∈ H2(0, L) : ζx(0) = ζx(L) = 0}.

(2.17)

t is well-known that A is a sectorial operator, and A generates
n analytic semigroup (Pazy, 1983). The nonlinear term F :
1(0, L) × [t0, t1] → L2(0, L) is defined on functions ζ (·, t)
ccording to

(ζ , t) = ρ(ζ , t)ζ +

M∑
m=1

χm(x)ūm(t0 − η0). (2.18)

ystem (2.16), (2.14) can be written as an evolution equation in
:

˙ (t) = Aζ (t) + F (ζ (t), t), t ≥ t0. (2.19)

A strong solution of (2.19) on [t0, T ] is a function

∈ L2((t0, T );D(A)) ∩ C([t0, T ];H1(0, L)), (2.20)

uch that ζ̇ ∈ L2((t0, T ); L2(0, L)) and (2.19) holds almost every-
here on [t0, T ].
Since the function f is of class C2, the nonlinear term F is lo-

ally Lipschitz continuous, that is, there exists a positive constant
(µ) such that the following inequality

∥F (ζ 1, t1) − F (ζ 2, t2)∥L2 ≤ l(µ)
[
|t1 − t2| + ∥(ζ 1 − ζ 2)∥L2

]
olds for t1, t2 ∈ [t0, t1] and ζ 1, ζ 2 ∈ L2(0, L) with ∥ζ i∥L2 ≤ µ
nd |t i| ≤ µ (i = 1, 2). Moreover, since |ρ| ≤ ρ1 and ūm(t0) is
onstant, the following holds with some c > 0:

F (ζ , t)∥L2 ≤ c
[
1 + ∥ζ∥L2

]
.

hen, by Theorem 3.3.3 of Henry (1981), system (2.16), (2.14)
as a unique strong solution for the initial condition ζ (t0) =

(·, t0) ∈ H1(0, L) and all t ∈ [t0, t1] with ζ (t1) ∈ H1(0, L). By
onsidering next t ∈ [tk, tk+1), k = 1, 2, . . . we conclude that
2.13), (2.14) has a unique strong solution for all t ≥ t0. Similarly,
y Theorem 6.1.5 of Pazy (1983) for e(·, t0) ∈ D(A) there exists
unique classical solution ζ ∈ C([t0,∞);H1(0, L)) such that
∈ C1([tk, tk+1); L2(0, L)) for all k = 0, 1, . . . and ζ (t) ∈ D(A)

or all t ≥ t .
0
4

2.3. ISS analysis of the closed-loop heat equation

By using the time-delay approach to networked control sys-
tems (see Chapter 7 of Fridman, 2014), denote

τm(t) = t − smk , t ∈ [smk + ηmk , s
m
k+1 + ηmk+1), k = 0, 1, . . .

where τm(t) ≤ τM ∀m = 1, . . . ,M and τM is the sum of maximum
transmission interval and maximum allowable delay. Then the
controller (2.11) can be presented as

ūi(t) = eim (t − τm(t)) + wm(t), t ≥ t0,
wm(t) = q(eim (t − τm(t))) − eim (t − τm(t))

(2.21)

with

|wm(t)| ≤ ∆q, ∀t ≥ t0. (2.22)

Hence (2.13) can be rewritten as

et = υ2exx+ρe−K
M∑

m=1

χm
[
e(x̂m, t−τm(t))+wm(t)

]
,

x ∈ (0, L), t ≥ t0. (2.23)

Following Section 5.4 of Fridman (2014), for the ISS analysis we
consider the initial condition for (2.23), (2.14) as

e(·, t) ≡ e(·, t0) ∈ H1(0, L), t < t0. (2.24)

Note that similarly to Bar Am and Fridman (2014), heat equa-
tion (2.23) may be considered as a system with spatially and
time varying delay τ (x, t) =

∑M
m=1 χm(x)τm(t), which is upper-

bounded by τM . In Bar Am and Fridman (2014) the direct
Lyapunov–Krasovskii method was applied, where the stability
analysis was the same as for identical delays τ (t) = τ 1(t) = · · · =

τM (t). In this paper, due to application of Halanay’s inequality,
he stability analysis for the case of different τ 1(t), . . . , τM (t)
becomes more challenging. Note also that the quantization error
wm(t) is discontinuous in time, whereas Halanay’s inequality is
pplicable to continuous in time disturbances. Since (2.22) yields
M∑

m=1

∫ xm

xm−1

|wm(t)|2dx ≤ ∆2
qL, (2.25)

e will apply Halanay’s inequality with the continuous function
(t) ≡ ∆2

qL.
In order to derive the ISS conditions for (2.23) we employ

yapunov functional of the form

(t) = V1(t) + Vs(t) + Vr (t), t ∈ [tk, tk+1), k = 0, 1, 2, . . . (2.26)

here V1(t) is given by

1(t) =

∫ L

0

[
p1e2 + p3υ2e2x

]
dx, p1, p3 > 0 (2.27)

nd

Vs(t) = s
∫ L

0

∫ t

t−τM

e2α0(s−t)e2(x, s)ds dx, (2.28)

r (t) = rτM

∫ L

0

∫ t

t−τM

e2α0(s−t)(τM + s − t)e2s (x, s)ds dx

ith some scalars s, r ≥ 0. Here, Vs and Vr treat time-delay terms.
or the strong solution of (2.23) and (2.14), the functional V is
ell-defined and continuous.

heorem 2.1. Consider the error Eq. (2.23) under the Neumann
oundary conditions (2.14) initialized by (2.24) with the bounds
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M , ρ1 and ∆q. Given α0 > α1 > 0, υ2, K > ρ1 let there exist
, q and positive p1, p2, p3, s, r that satisfy the LMIs

=

[
r q
∗ r

]
≥ 0, (2.29)

p2 − α0p3 ≥ 0, (2.30)

and
Ξ|ρ=±ρ1 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ11 ξ12 ξ13 s exp(−2α0τM ) Kp2 −Kp2
∗ ξ22 Kp3 0 Kp3 −Kp3
∗ ∗ ξ33 ξ34 0 0

∗ ∗ ∗ ξ44 0 0

∗ ∗ ∗ ∗ ξ55 0

∗ ∗ ∗ ∗ ∗ −γ 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0,

(2.31)

here αM =
α1
M ,∆ =

L
M and

ξ11 =2α0p1+2p2(ρ − K )+s (1 − exp(−2α0τM ))− 2αMp1,

ξ12 = p1 − p2 + p3(ρ − K ),

ξ13 = s exp(−2α0τM ) + Kp2 + 2αMp1,

ξ22 = τ 2Mr − 2p3,

ξ33 = −(r + s) exp(−2α0τM ) − 2αMp1,

ξ34 = −(q + s) exp(−2α0τM ),

ξ44 = −(r + s) exp(−2α0τM ),

ξ55 = −2αMp3υ2(π2/∆2).

Then (1.3) holds for V defined by (2.26) on the strong solution of
2.23) and (2.14), where ε = 2(α0 − α1) and α > 0 is a unique
positive solution of α = α0 − α1 exp(2ατM ). Thus, (2.23) is ISS,
i.e. there exist c0 > 0 and γ0 > 0 such that for all t ≥ t0

1
L+1 maxx∈[0,L] e2(x, t) ≤ ∥e(·, t)∥2

H1

≤ c0 exp
(
−2α(t−t0)

)
∥e(·, t0)∥2

H1 +γ0∆
2
qL.

(2.32)

Moreover, if the strict inequalities (2.29), (2.30) and (2.31) are
feasible with α0 = α1 > 0, then the error system (2.23), (2.14)
is ISS with a small enough decay rate.

Proof. Denote

ν1 = e(x, t) − e(x, t − τm(t)), (2.33)

ν2 = e(x, t − τm(t)) − e(x, t − τM ).

y employing the relations

(x, t − τm(t)) = e(x, t) − ν1(x, t), (2.34)

e(x̂m, t) = e(x, t) −

∫ x

x̂m
eζ (ζ , t)dζ ,

the error system can be represented as

et = υ2exx + (ρ − K )e (2.35)

+ K
M∑

m=1

χm

[
ν1 +

∫ x

x̂m
eζ (ζ , t − τm(t))dζ − wm(t)

]
.

For the strong solution of (2.19), the functional V (t) given by
(2.26) is well-defined and absolutely continuous. We have almost
5

for all t ≥ t0

V̇1(t) +2α0V1(t) =

2
∫ L
0

[
p1eet + υ2p3exext + α0p1e2 + α0υ

2p3e2x
]
dx.

Note that the derivative ext is defined in the distributional sense,
where ext = etx almost for all x and t (cf. Remark A.1 of Fridman &
Bar Am, 2013). We further apply the descriptor method (Fridman
& Blighovsky, 2012), where the right-hand side of the following
expression

0 ≡ 2
M∑

m=1

∫ xm

xm−1

[p2e + p3et ]

×

[
−et + υ2exx + (ρ − K )e

+ Kχm

(
ν1 +

∫ x

x̂m
eζ (ζ , t − τm(t))dζ − wm(t)

) ]
dx,

with some constant p2 > 0 is added to V̇1. Integrating by parts,
nd taking into account the boundary conditions (2.14) we have∫ L

0
(p2e + p3et )exxdx = −2

∫ L

0
(p2e2x + p3exext )dx

and arrive at

V̇1(t) +2α0V1(t) = 2
∫ L
0

{
(p1 − p2)eet − p3e2t

+ υ2(α0p3 − p2)e2x + α0p1e2
}
dx

+ 2
∫ L
0 [p2e + p3et ](ρ − K )e dx

+ 2K
M∑

m=1

∫ xm

xm−1

[p2e + p3et ]×[
ν1 +

∫ x
x̂m

eζ (ζ , t − τm(t))dζ − wm(t)
]
dx.

(2.36)

By differentiating Vs and Vr we have

˙s+2α0Vs = s
M∑

m=1

∫ xm

xm−1

(
e2(x, t)−e−2α0τM e2(x, t−τM )

)
dx (2.37)

ith e2(x, t−τM ) = [e(x, t) − ν1 − ν2]2 and

V̇r + 2α0Vr ≤ τ 2Mr
M∑

m=1

∫ xm

xm−1

e2t (x, t)dx

− τMre−2α0τM
M∑

m=1

∫ xm

xm−1

∫ t

t−τM

e2s (x, s)ds dx.

(2.38)

ote that in (2.38) we used the inequality∫ t

t−τM

e−2α0(s−t)e2s (x, s)ds ≤ −e−2α0τM

∫ t

t−τM

e2s (x, s)ds.

hen, under (2.29) by Lemma 3.4 of Fridman (2014) we find

−τMr
M∑

m=1

∫ xm

xm−1

∫ t

t−τM

e2sds dx≤−

M∑
m=1

∫ xm

xm−1

[ν1 ν2]R[ν1 ν2]Tdx. (2.39)

e will further apply the generalized Halanay’s inequality (1.3)
ith continuous w(t) ≡ ∆2

qL and some 0 < α1 < α0. Note that

sup
−τM≤θ≤0

V (t + θ ) ≥
1
M

M∑
m=1

sup
−τM≤θ≤0

V1(t + θ )

≥
1
M

M∑
V1(t − τm(t))dx.

(2.40)
m=1
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Then, employing (2.25), we have

W ∆
= V̇ (t) + 2α0V (t) − 2α1 sup

−τM≤θ≤0
V (t + θ )

−γ 2∆2
qL

≤ V̇ (t)+2α0V (t)− γ 2
M∑

m=1

∫ xm

xm−1

|wm(t)|2dx

−2αM

M∑
m=1

∫ xm

xm−1

[
p1e2(x, t−τm(t))

+p3υ2e2x (x, t−τ
m(t))

]
dx, αM =

α1

M
.

(2.41)

By Wirtinger’s inequality (1.1) we have∫ xm
xm−1

e2x (x, t − τm(t))dx =∫ x̂m
xm−1

e2x (x, t − τm(t))dx +
∫ xm
x̂m

e2x (x, t − τm(t))dx

≥
π2

∆2

[ ∫ x̂m
xm−1

[e(x, t − τm(t)) − e(x̂m, t − τm(t))]2dx

+
∫ xm
x̂m

[e(x, t − τm(t)) − e(x̂m, t − τm(t))]2dx
]

≥
π2

∆2

∫ xm
xm−1

[e(x, t − τm(t)) − e(x̂m, t − τm(t))]2dx

=
π2

∆2

∫ xm
xm−1

(∫ x
x̂m

eξ (ξ, t − τm(t))dξ
)2

dx.

(2.42)

Denote

1 = [e et ν1 ν2

∫ x

x̂m
eξ (ξ, t − τm(t))dξ wm(t)].

By taking into account (2.37)–(2.39), (2.41) and (2.42), we arrive
at

W ≤ V̇ (t) + 2α0V (t) − γ 2 ∑M
m=1

∫ xm
xm−1

|wm(t)|2dx
−2αM

∑M
m=1

∫ xm
xm−1

[p1(e − ν1)2 + p3υ2e2x (x, t−τ
m(t))]dx

≤−2υ2(p2−α0p3)
∫ L
0 e

2
xdx +

∑M
m=1

∫ xm
xm−1

η1Ξη
T
1dx ≤ 0

if Ξ ≤ 0, where Ξ is given by (2.31). Note that Ξ is affine in ρ.
Thus, it is sufficient to verify (2.31) in the vertices ±ρ1.

Due to Halanay’s inequality, (1.3) holds under (2.29)–(2.31)
implying (2.32) due to Sobolev’s inequality (1.2) with C = 1. The
feasibility of strict LMIs with α0 = α1 = 0 implies their feasibility
with a slightly larger ᾱ0 = α0 + δ > 0, where δ > 0 is small, that
completes the proof.

Remark 2.2. Differently from the existing works on distributed
sampled-data control under point measurements (Fridman &
Blighovsky, 2012; Terushkin & Fridman, 2019; Wei et al., 2019),
we consider the point measurements (2.21) under the different
delays τm(t) that leads to more restrictive conditions via Ha-
lanay’s inequality with αM =

α1
M instead of α1 for equal delays

1
= · · · = τM . Note that still it is easier to satisfy the resulting

conditions for M ≫ 1 than for M = 1 since the main stabilizing
term with the coefficient −

α1
M p3υ2 in (2.41) after application of

irtinger’s inequality in (2.42) leads to

55 = −
α1

M
p3υ2 π

∆2 = −α1Mp3υ2 π

L2
H⇒
M→∞

−∞.

emark 2.3. Given M and Mα0 ≥ αM > 0, LMIs (2.29), (2.30) and
2.31) are always feasible for K > ρ1 +α0 −αM and large enough
2, γ 2 and τ−1

M . Indeed, let us choose s = q = 0, p1 = p2 ≥ α0
nd p3 = 1. For τM → 0, γ 2

→ ∞ and υ2
→ ∞ these LMIs are

easible if

0 =

⎡⎣2p1(α0 − αM + ρ − K ) ρ − K (K + 2αM )p1
∗ −2 K
∗ ∗ −r − 2αMp1

⎤⎦ < 0.

e choose p1 such that 2p1(α0−αM +ρ1−K )+0.5(ρ1+K )2 < 0.
Then, by Schur complement, Ψ < 0 for large enough r > 0. With
0 B

6

Fig. 2. Open curve: deployment of N = 49 agents from Γ0 (blue) to Γ (pink),
with M = 2 leaders (trajectories in cyan). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

the chosen p1 and r , LMIs (2.29), (2.30) and (2.31) hold for large
enough υ2, γ 2 and τ−1

M .

Remark 2.4. The PDE-based approach to MAS leads to novel
control laws (ūi(t)-term in (2.4), (2.11) in the present paper). One
an directly derive LMI stability conditions for the N-dimensional
ODE system (2.1) with an appropriate control law. Then, there
will be N × N decision variables (instead of the scalar ones in
our approach). For large N , it may be difficult to verify the LMIs
feasibility in Matlab. Moreover, new LMIs should be derived for
a new value of N . Therefore, the PDE-based approach gives new
control laws and simplified lower-order LMI conditions that are
appropriate for all large enough N .

2.4. Numerical simulations: first-order MAS

In the sequel, we validate the proposed control for agents
governed by the first-order dynamics in R3. Throughout the
simulations we consider a group of N = 49 agents, whereas
in all the figures of the deployment, the pink dashed lines are
the desired positions, and the blue dashed lines are the initial
positions.

Consider a group of N agents, governed by (2.1) with a non-
linear function f j = sin(z j) with j ∈ {1, 2, 3}, where ρ1 = 1 in
2.2). Our objective is deployment from initial positions on Γ0(x),
arameterized by x ∈ [0, π], onto desired positions of open curve
(x) (x ∈ [0, π]) defined as (see Fig. 2)

0(ih) = [sin(ih), cos(ih), 0] , h =
π

N
, i = 1, . . . ,N

Γ (ih)= [sin(ih)+2 cos(2ih),cos(ih)+2 sin(ih), 2+cos(2ih)],
(2.43)

or from initial positions on Γ0(x) onto desired positions of closed
curve Γ (x) with x ∈ [0, 2π ] given by (see Fig. 3)

Γ0(ih) = [sin(ih), cos(ih), 0] , h =
2π
N
, i = 1, . . . ,N

(ih) =

[
0.8 sin3(ih), 0.015

(
12 cos(ih) − 6 cos(2ih)

−3 cos(3ih) − cos(4ih)
)
, 3.5

]
. (2.44)

e design a controller with the gains
2

= 4, K = 2. (2.45)

MIs of Theorem 2.1 are verified in both vertices ρ = ±ρ1 = ±1.
y verifying the LMIs of Theorem 2.1 with α = α = 0.4, we find
0 1
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Fig. 3. Closed curve: deployment of N = 49 agents from Γ0 (blue) to Γ (pink),
with M = 2 leaders (trajectories in cyan). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

that the closed-loop system led by two (M = 2) agents placed in
the middle of the sampling intervals of the length ∆ (∆ =

π
2 in

he case of open curve and ∆ = π in the case of closed curve) is
SS provided τM ≤ 0.3. Note that increasing υ2 till 6, results in 1
eader being sufficient for deployment if τM ≤ 0.24.

We further show simulations of the deployment for M = 2,
τM = 0.3, where the network induced delays are bounded by
ηmk ≤ 0.02, and quantization error is bounded by ∆q = 0.01.
he agents are divided into two groups: (1) leader zi1 = z13

amidst agents z1, . . . , z24 and (2) leader zi2 = z37 amidst agents
z25, . . . , z49. Figs. 2–3 depict the transitions of a system driven by
two leaders from initial (marked blue) to final (marked pink) open
or closed curves, given by (2.43)–(2.44). Trajectories of the leaders
are shown in cyan, whereas the trajectories of the followers are
shown in gray. From simulations, the ISS is preserved till larger
τM = 1.6, which illustrates the conservatism of LMIs.

3. Deployment of the second-order MAS

3.1. Problem formulation and controller design

Consider now a group of N agents, governed by the second-
order dynamics, that can move in space Rn, n ∈ {2, 3}. The
dynamics of each agent is given by

z̈ ji = uj
i + f j(zi, t), j ∈ {1, . . . , n}, n = 2, 3,

i = 1, . . . ,N, t ≥ t0,
(3.1)

here the nonlinearities f j are of class C2. Here z ji ∈ R and uj
i are

omponents of the position and control for ith agent, respectively.
or brevity, the super-script j will be further omitted. We assume
he derivative fz(z, t) is uniformly bounded by a constant ρ1 > 0
as given in (2.2).

Our aim is to deploy N agents onto a C2 curve Γ : [0, L] −→
n. We suppose that all assumptions of Section 2.1 hold. Addi-
ionally to (1)-(3), for the second-order MAS we assume
4) All the agents measure their own velocity żi with respect to
the global coordinate system.

Our objective is to deploy the agents onto the desired curve
Γ by exploiting M ≪ N leaders. We propose the following static
output-feedback controller

ui(t) =
υ2

h2 [zi+1(t) − 2zi(t) + zi−1(t)] (3.2)

−
υ2

h2

[
Γ

(
(i + 1)h

)
− 2Γ

(
ih

)
+ Γ

(
(i − 1)h

)]
− β żi(t) − f (Γ (ih), t) + ūi(t), i = 1, . . . ,N,
7

where the network-based controller ūi is defined in Section 2.2
and is given by (2.11). Note that the proposed controller (3.2),
(2.11) contains three gains: υ2 which allows to reduce the num-
ber of the leaders, β > 0 which improves the convergence and
K > 0 which compensates the destabilizing effect of the nonlin-
earity f . By denoting the error ei(t) = zi(t) − Γ (ih) and taking
nto account (2.5), we can represent the closed-loop system (2.1),
3.2) as:

¨i(t) =
υ2

h2 [ei+1(t) − 2ei(t) + ei−1(t)] (3.3)

− βet + ρ(ei, t)ei(t) + ūi(t), i = 1, . . . ,N,

where the network-based control ūi(t) based on the measure-
ments of M leaders is defined in Section 2.2 and is given by
(2.21).

System (3.3), (2.21) can be considered as a discretization in the
spatial variable of the damped wave equation

ett (x, t) = υ2exx(x, t) − βet (x, t) + ρ(e, t)e(x, t)

+

M∑
m=1

χm(x)ūm(t), x ∈ (0, L), t ≥ t0,

ūm(t) =

{
−Kq(e(x̂m, smk )), t ∈ [smk + ηmk , s

m
k+1 + ηmk+1),

0, t ≤ t0,
(3.4)

here χm(x) is defined by (2.12), under the Neumann bound-
ry conditions (2.14). The initial condition e(·, t0) is determined
y the difference between the initial agents positions and their
arget positions on the curve Γ , whereas et (·, t0) is determined
y the initial agents’ velocities. Due to (2.2) the inequality (2.6)
olds. For the well-posedness, we present the state of (3.5), (2.14)
s ζ (t) = [ζ0(t) ζ1(t)]T = [e et (t)]T . Consider the Hilbert space
= H1(0, L) × L2(0, L) and ∥ζ∥2

H = ∥ζ0x∥
2
L2

+ ∥ζ1∥
2
L2
. Denote

=

[
0 I

υ2 ∂2

∂x2
−βI

]
.

The operator A with the dense domain

D(A) =

{[
ζ0 ζ1

]T
∈ H2(0, L) × H1(0, L)⏐⏐⏐⏐ ζ0x(0) = ζ0x(L) = 0

}
enerates a strongly continuous semigroup (Pazy, 1983).
We order smk + ηmk , k = 0, 1, . . . , m = 1, . . . ,M as t0, t1, . . .

y employing the step method for t ∈ [t0, t1], t ∈ [t1, t2]
nd applying Theorems 6.1.2 and 6.1.5 from Pazy (1983) (see
etails in Terushkin & Fridman, 2019), we find that a unique
ild solution exists in C([t0,∞),H) for (3.5), (2.14), initialized by

e(·, t0) et (·, t0)]T ∈ H. Moreover, if [e(·, t0) et (·, t0)]T ∈ D(A), then
here exists a unique classical solution ζ ∈ C([t0,∞);H) such
hat ζ ∈ C1([tk, tk+1);H) for all k = 0, 1, . . . and ζ (t) ∈ D(A) for
all t ≥ t0.

.2. ISS analysis of the closed-loop wave equation

By employing the time-delay representation of ūi given by
(2.21), we rewrite (3.4) as

ett (x, t) = υ2exx(x, t) − βet (x, t) + ρ(e, t)e(x, t)

− K
M∑

m=1

χm
[
e(x̂m, t − τm(t)) + wm(t)

]
, (3.5)

β > 0, x ∈ (0, L), t ≥ t0.
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e assume τm(t) ≤ τM , whereas wm is subject to (2.22). Consider
he following initial conditions for (3.5), (2.14):

(·, t) ≡ e(·, t0) ∈ H1(0, L), t ≤ t0

et (·, t) ≡ et (·, t0) ∈ L2(0, L). (3.6)

or the choice of the controller gains β and K we follow Remark
.1 of Terushkin and Fridman (2019), where larger β and K =

1 +
β2

4 lead to a faster convergence.
In order to derive the ISS conditions for (3.5), (2.14) we employ

Lyapunov functional of the form (Terushkin & Fridman, 2019)

V (t) = V0(t) + Vs(t) + Vr (t), t ∈ [tk, tk+1), k = 0, 1, 2, . . . (3.7)

here V0(t) is given by

0(t)=p3υ2
∫ L

0
e2xdx+

∫ L

0
[e et ]P0[e et ]Tdx, (3.8)

ith P0 given by

0 =

[
p1 p2
∗ p3

]
> 0, (3.9)

nd Vs and Vr are defined by (2.28). This functional is defined on
he mild solutions of (3.5), (2.14), and due to (3.9) it is positive
efinite with V (t) ≥ c ′(∥ex(·, t)∥2

L2
+ ∥et (·, t)∥2

L2
) for some c ′ > 0.

Theorem 3.1. Consider the damped wave equation (3.5) under the
Neumann boundary conditions (2.14) initialized by (3.6) with the
bounds τM , ρ1 and ∆q. Given α0 > α1 > 0, υ2, β > α0, K =

ρ1 +
β2

4 , let there exist γ , s > 0, r > 0, q and p1, p2, p3 that satisfy
the LMIs (2.29), (3.9),

p2 − α0p3 ≥ 0, (3.10)

and

Ψ|ρ=±ρ1 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 ψ12 ψ13 ψ14 Kp2 −2αMp2 −Kp2
∗ ψ22 Kp2 + τ 2Mr 0 Kp2 0 −Kp2
∗ ∗ ψ33 ψ34 0 2αMp2 0
∗ ∗ ∗ ψ44 0 0 0
∗ ∗ ∗ ∗ ψ55 0 0
∗ ∗ ∗ ∗ ∗ −2αMp3 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0,

(3.11)

where αM =
α1
M ,∆ =

L
M and

ψ11 = 2p2(ρ − K ) + 2(α0 − αM )p1 + s(1 − exp(−2α0τM )),

12 = p1 + p2(2α0 − β) + p3(ρ − K ),

13 = Kp2 + s exp(−2α0τM ) + 2αMp1,

14 = s exp(−2α0τM ), ψ22 = 2p2 + 2p3(α0 − β),

33 = −(s + r) exp(−2α0τM ) − 2αMp1,

34 = −(s + q) exp(−2α0τM ),

44 = −(s + r) exp(−2α0τM ), ψ55 = −2αMp3υ2(π2/∆2).

hen (1.3) holds for V defined by (3.7) on the mild solutions of (3.5)
nd (2.14), where ε = 2(α0 − α1) and α > 0 is a unique positive
olution of α = α0−α1 exp(2ατM ). Thus, (3.5), (2.14) is ISS, i.e. there
xist c0 > 0 and γ0 > 0 such that for all t ≥ t0

1
L+1 maxx∈[0,L] e2(x, t) ≤

[
∥e(·, t)∥2

H1 + ∥et (·, t)∥2
L2

]
≤ c0 exp

(
−2α(t−t0)

) [
∥e(·, t0)∥2

H1 + ∥et (·, t0)∥2
L2

]
2

(3.12)

+γ0∆qL.
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Moreover, if the strict inequalities (3.9)–(3.11) are feasible with
α0 = α1 > 0, then the error system (3.5), (2.14) is ISS with a small
enough decay rate.

Proof. By employing (2.33) and (2.34), the error dynamics can
be represented as

ett = υ2exx − βet + (ρ − K )e (3.13)

+ K
M∑

m=1

χm

[
ν1 +

∫ x

x̂m
eζ (ζ , t − τm(t))dζ − wm(t)

]
.

As in Fridman (2013), we consider first [e(·, t0), et (·, t0)]T ∈

D(A). Then we can differentiate V (t) defined by (3.7) along the
classical solutions of the wave equation. We proceed with differ-
entiation of (3.7) along (3.5). Note that integration by parts and
substitution of boundary conditions leads to∫ L

0
(p2e + p3et) exxdx= −

∫ L

0

(
p2e2x + p3exext

)
dx.

Then

V̇0 + 2α0V0 ≤2υ2(α0p3−p2)
∫ L

0
e2xdx

+

∫ L

0
[e et ]G[e et ]Tdx + 2

M∑
m=1

∫ xm

xm−1

K (p2e + p3et )

×

[
ν1 +

∫ x

x̂m
eζ (ζ , t − τm(t))dζ − wm(t)

]
dx

here
∆
=

[
2p2(ρ − K ) + 2α0p1 p1 + p2(2α0 − β) + p3(ρ − K )

∗ 2p2 + 2p3(α0 − β)

]
.

We will further apply the generalized Halanay’s inequality
(1.3) for some 0 < α1 < α0. Taking into account (2.40) with V1
hanged by V0 and (2.25), we have
∆
= V̇ (t) + 2α0V (t) − 2α1 sup

−τM≤θ≤0
V (t + θ ) − γ 2∆2

qL

≤ V̇ (t)+2α0V (t)−2αMp3υ2
M∑

m=1

∫ xm

xm−1

e2x (x, t−τ
m(t))dx

− γ 2
M∑

m=1

∫ xm

xm−1

|wm(t)|2dx, αM =
α1

M
. (3.14)

Let ν1 and ν2 be given by (2.33). Denote

η=[e et ν1 ν2

∫ x

x̂m
eξ (ξ, t − τm(t))dξ et (x, t − τm(t)) wm(t)].

Then, (3.10), (3.14), (2.37)–(2.39) and (2.42) yield

W ≤ 2υ2(α0p3 − p2)
∫ L

0
e2xdx +

M∑
m=1

∫ xm

xm−1

ηΨ ηTdx ≤ 0

if Ψ ≤ 0, where Ψ is given by (3.11). Note that Ψ is affine in ρ.
Thus, it is sufficient to verify (3.11) in the vertices ±ρ1. The rest
of the proof is similar to Theorem 2.1.

Remark 3.1. Consider K = ρ1 +
β2

4 . Assume that the following
LMIs hold: (3.9) and Ψ 0

|ρ=±ρ1
< 0, where

Ψ 0 ∆
=

[
2p2(ρ − K ) + 2α0p1 ψ12

∗ 2p2 + 2p3(α0 − β)

]
.

Then, by arguments of Theorem 3.1 in Terushkin and Fridman
(2019), the LMIs (2.29), (3.9), (3.10) and (3.11) are feasible for any
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Fig. 4. Deployment of N = 49 agents from Γ0 (blue) to Γ (pink), with M = 2
eaders (trajectories in cyan). (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

1 < α0 and large enough υ2, γ 2 and τ−1
M . Note that Ψ 0

|ρ=ρ1
< 0

and P0 > 0 are always feasible, whereas Ψ 0
|ρ=±ρ1

< 0 and P0 > 0
are feasible for small enough ρ1.

3.3. Numerical simulations: second-order MAS

We validate the proposed control approach in a simulation
with N = 49 agents in R3. Consider a group of N agents, governed
by (3.1) with a linear f j = z j with j ∈ {1, 2, 3}, where ρ1 = 1
in (2.2). Our objective is deployment from initial positions on
Γ0(x)(x ∈ [0, π]) to desired positions on a smooth open curve
Γ (x)(x ∈ [0, π]) given by (2.43). We design a controller with the
gains

υ2
= 4.1, β = 3, K = 1 + β2/4. (3.15)

For the linear system, LMI (3.11) of Theorem 3.1 is verified only
in one vertex ρ = ρ1 = 1. We find that the LMIs of Theorem 3.1
are feasible for M ≥ 2 leaders. By further verifying the LMIs
of Theorem 3.1 with α0 = α1 = 0.4, we find that the system
with two leaders (M = 2) is ISS provided τM ≤ 0.52. Note that
increasing υ2 till 5.1, results in one leader being sufficient for
deployment if τM ≤ 0.29.

We further show simulations of the deployment for M = 2,
τM = 0.52, where the network induced delays are bounded by
ηmk ≤ 0.02, and quantization error is bounded by ∆q = 0.01.
As in Section 2.4, the agents are divided into two groups: (1)
leader zi1 = z13 amidst agents z1, . . . , z24 and (2) leader zi2 =

z37 amidst agents z25, . . . , z49. Fig. 4 depicts the transitions of a
system driven by two leaders from initial (marked blue) to final
(marked pink) open curves. Trajectories of the leaders are shown
in cyan, whereas the trajectories of the followers are shown in
gray. From simulations, the ISS is preserved till essentially larger
τM = 2.1, which illustrates the conservatism of LMI conditions.

4. Conclusions

We presented a network-based deployment of a large-scale
first and second-order nonlinear MAS onto a smooth (open or
closed) curve. A static output-feedback controller was designed
by employing the measurements by each agent of his position
with respect to the closest neighbors (and his velocity for the
second-order agents) as well as the measurements of the lead-
ers’ absolute positions with respect to the curve that were sent
through communication network to other agents. The proposed
method can be extended in the future to locally Lipschitz non-
linearities and to constrained (e.g. due to quantization) network-
based control ūi(t) that should lead to regional results (similar
to Terushkin & Fridman, 2020a).
9
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