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a b s t r a c t

Recently, a constructive method for the finite-dimensional observer-based control of deterministic
parabolic PDEs was suggested by employing a modal decomposition approach. In this paper, for the
first time we extend this method to the stochastic 1D heat equation with nonlinear multiplicative
noise. We consider the Neumann actuation and study the observer-based as well as the state-feedback
controls via the modal decomposition approach. We employ either trigonometric or polynomial
dynamic extension. For observer-based control we consider a noisy boundary measurement. First,
we show the well-posedness of strong solutions to the closed-loop systems. Then by suggesting a
direct Lyapunov method and employing Itô’s formula, we provide mean-square L2 exponential stability
analysis of the full-order closed-loop system, leading to linear matrix inequality (LMI) conditions for
finding the observer dimension and as large as possible noise intensity bound for the mean-square
stabilizability. We prove that the LMIs are always feasible for small enough noise intensity and large
enough observer dimension (for observer-based control). We further show that in the case of state-
feedback and linear noise, the system is always stabilizable for noise intensities that guarantee the
stabilizability of the stochastic finite-dimensional part of the closed-loop system with deterministic
measurement. Numerical simulations are carried out to illustrate the efficiency of our method. For
both state-feedback and observer-based controls, the trigonometric extension always allows for a larger
noise than the polynomial one in the example.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic PDEs are natural generalizations of PDEs and their
heory has motivations coming from both mathematics and nat-
ral sciences: physics, chemistry, biology and mathematical fi-
ance (Da Prato & Zabczyk, 2014). In the application aspects,
ecause of the inherent complexity of the underlying physical
rocessing, many control systems in reality (such as that in the
icroelectronics industry, in the atmospheric motion, in com-
unications and transportation, and so on) exhibit very complex
ynamics, including substantial model uncertainty, actuator and
tate constraints, and high dimensionality (usually infinite). These
ystems are often best described by stochastic PDEs (Murray,
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2003, P. 61). As stated in Lü and Zhang (2021, P. 5), control
theory for stochastic PDEs is still at its very beginning stage and
many tools and methods, which are effective in the deterministic
case, do not work anymore in the stochastic setting. In Barbu
(2018, Sec. 5.4), an infinite-dimensional internal state-feedback
stabilizer was provided for stochastic parabolic PDEs with linear
multiplicative noise, for small levels of noise and large enough
gain. Inspired by Fridman and Blighovsky (2012), the control
designs for stochastic PDEs with linear multiplicative noise by
spatial decomposition have been reported (Kang, Wang, Wu, Li,
& Liu, 2021; Wu & Zhang, 2020). However, spatial decomposition
requires many sensors and actuators, covering the whole spatial
domain.

In Duncan, Maslowski, and Pasik-Duncan (1994), adaptive
boundary/point control of a linear stochastic PDE with addi-
tive noise was presented. In Liang and Wu (2022), a boundary
state-feedback controller is designed for stochastic Korteweg–de
Vries–Burgers equations with linear multiplicative noise, where
the controller depends on the full information of the state. In
Christofides, Armaou, Lou, and Varshney (2008) and Hu, Lou,
and Christofides (2008), finite-dimensional state-feedback and
output-feedback controllers for stochastic PDEs with additive
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oise under nonlocal actuation were designed by the modal
ecomposition approach. A singular perturbation approach that
educes the controller design to a finite-dimensional slow sys-
em was suggested, but constructive conditions for finding the
imension of the slow system that guarantees a desired closed-
oop performance were not provided. In Munteanu (2018, 2019),
unteanu presented the first results on finite-dimensional
oundary state-feedback stabilization for the stochastic heat
quation with nonlinear multiplicative noise and stochastic Burg-
rs equations with linear multiplicative noise, respectively, by
sing a fixed point argument, where the stability can be guar-
nteed no matter how large the level of the noise is. However,
he results in Munteanu (2018, 2019) that employ modal decom-
osition are qualitative — for large enough number of modes
he proposed controller stabilizes the system. Moreover, it is
orth mentioning that the method in Munteanu (2018, 2019)
equires full state knowledge and is nontrivial for only partial
tate knowledge (see the conclusions of Munteanu (2018, 2019)).
onstructive methods for boundary or nonlocal control of sys-
ems with multiplicative noise that allows finding a bound on
he number of modes (and on the observer dimension for the
utput-feedback case) with guaranteed performance are missing.
Finite-dimensional observers and the resulting controllers, are

ery attractive in applications compared to controllers that use
DE observers and need further approximation. For deterministic
arabolic PDEs, recently, a constructive LMI-based method for
inite-dimensional observer-based controller was introduced via
odal decomposition (Katz & Fridman, 2020). A direct Lyapunov
ethod was suggested resulting in simple LMI conditions for

inding the observer dimension. In Katz and Fridman (2021) and
hachemi and Prieur (2022), the method was extended to both
nbounded operators by employing dynamic extension (Curtain
Zwart, 2012; Prieur & Trélat, 2019). Note that the above results
re all focused on the linear PDEs since the nonlinearity may
ause additional spillover behavior (Hagen & Mezic, 2003). In
atz and Fridman (2023), the state-feedback global stabilization
f semilinear parabolic PDEs under nonlocal or Dirichlet actuation
ia modal decomposition approach was suggested, where the
onlinear terms are compensated by using Parseval’s inequality.
owever, the corresponding results in Katz and Fridman (2020,
021, 2023) and Lhachemi and Prieur (2022) cannot be extended
o the stochastic case directly. The challenges for the stochastic
DEs are as follows: (i) The well-posedness and the regularity
f solutions to the closed-loop stochastic PDE systems are es-
entially more challenging than in the deterministic case; (ii)
ifferently from the deterministic case, in the Lyapunov analysis,
e cannot take generator (also called the differential operator
ssociated with the considered stochastic equation (see Klebaner
2005, P.149) and Mao (2007, P.110))) term by term in the infinite
um since the mean-square L2 convergence of the generators sum
annot be guaranteed. Instead, we present the Lyapunov function
n the form of the one for the stochastic PDE and the other one
or finite-dimensional stochastic ODEs and apply the generator to
ach part. Moreover, treatment of the nonlinear noise function σ1
s challenging and is different from the treatment of nonlinearity
n the deterministic case (see, e.g., Katz and Fridman (2023)) due
o a quadratic term that appears in the expression for generator
see ΣT(t)PΣ(t) in (2.49), such term does not appear in the
eterministic setting); (iii) To prove the mean-square exponential
tability, we employ corresponding Itô’s formulas for stochastic
DEs and (strong solutions of) PDEs, respectively.
In this paper we aim to develop the constructive LMI-based

esign for stochastic parabolic PDEs. We suggest
inite-dimensional observer-based and state-feedback controllers
or the 1D stochastic heat equation with nonlinear multiplicative
noise. We consider the Neumann actuation and noisy bound-
ary measurement and study the mean-square L2 exponential
2

stability. We use the modal decomposition method via either
trigonometric or polynomial dynamic extension. We also provide
results for the linear multiplicative noise and show that for the
state-feedback case, the system is always stabilizable for noise
intensities that guarantee the stabilizability of the stochastic
finite-dimensional part of the closed-loop system with determin-
istic measurement. The efficiency of the method is demonstrated
by numerical simulations. For both state-feedback and observer-
based controllers, the trigonometric extension always allows a
larger noise than the polynomial one. The contribution of the
present paper is listed as follows:

• Differently from the previous works on boundary control
of stochastic PDEs that prove the well-posedness of mild
solutions (see, e.g., Duncan et al. (1994) and Munteanu
(2018, 2019)), in this paper, we apply the dynamic extension
(inspired by Curtain and Zwart (2012), Karafyllis (2021) and
Katz and Fridman (2021)) to get equivalent stochastic PDEs
and show the well-posedness for strong solutions to the
closed-loop systems. The latter allows us to employ Itô’s
formula.

• Differently from existing works on the finite-dimensional
control of stochastic PDEs by a singular perturbation ap-
proach (Christofides et al., 2008; Hu et al., 2008) or a fixed
point argument (Munteanu, 2018, 2019), we suggest for the
first time a direct Lyapunov method for the mean-square L2
exponential stabilization of stochastic parabolic PDEs with
nonlinear multiplicative noise by finite-dimensional bound-
ary control. Moreover, the results of Christofides et al. (2008)
and Munteanu (2018, 2019) were confined to state-feedback
case, whereas we present output-feedback design based on
noisy boundary measurements.

• Compared with the qualitative results in Christofides et al.
(2008), Hu et al. (2008) and Munteanu (2018, 2019), our
method is constructive and quantitative (differently from
perturbation-based approaches) with easily implementable
and efficient LMI conditions for finding the number of
modes of controller and observer and as large as possible
noise intensity bound for the mean-square stabilizability.
We prove that the derived LMIs are always feasible for
small enough noise intensity and large enough number of
controller and observer modes.

Preliminary results on observer-based control for deterministic
boundary measurement via polynomial dynamic extension were
reported in Wang, Katz, and Fridman (2022).

Notations: Let (Ω,F,P) be a complete probability space with a
filtration {Ft}t≥0 of increasing sub σ -fields of F (see Da Prato and
Zabczyk (2014, P. 71)) and let E{·} be the expectation operator.
For f ∈ C([0, 1]), let ∥f ∥[0,1] = maxx∈[0,1] |f (x)|. Denote by
L2(0, 1) the space of square integrable functions with inner prod-
uct ⟨f , g⟩ =

∫ 1
0 f (x)g(x)dx and induced norm ∥f ∥2

L2
= ⟨f , f ⟩. Let

L2(Ω; L2(0, 1)) be the set of all F0-measurable random variables
z ∈ L2(0, 1) with E∥z∥2

L2
< ∞. H1(0, 1) is the Sobolev space

of functions f : [0, 1] −→ R with a square integrable weak
derivative. The norm defined in H1(0, 1) is ∥f ∥2

H1 = ∥f ∥2
L2

+∥f ′
∥
2
L2
.

et N denote the set of positive integers. The Euclidean norm is
denoted by | · |. For P ∈ Rn×n, P > 0 means that P is symmetric
and positive definite. The symmetric elements of a symmetric
matrix will be denoted by ∗. For 0 < P ∈ Rn×n and x ∈ Rn, we
write |x|2P = xTPx. For A ∈ Rn×n, let ∥A∥ be the operator norm of
A induced by | · |. Let I denote the identity matrix of appropriate
size.

Recall the Sturm–Liouville operator

A1φ = −
d
dx (p(x)

d
dxφ(x)) + q(x)φ(x),
2 ′

(1.1)

D(A1) = {φ ∈ H (0, 1)|φ(0) = φ (1) = 0},
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where p ∈ C2([0, 1]) and q ∈ C1([0, 1]) satisfy

< p∗ ≤ p(x) ≤ p∗, 0 ≤ q(x) ≤ q∗, x ∈ [0, 1]. (1.2)

he Sturm–Liouville operator (1.1) has a sequence of eigenvalues
1 < · · · < λn < . . . satisfying (see Orlov (2017))
2(n − 1)2p∗ ≤ λn ≤ π2n2p∗

+ q∗, n ≥ 1, (1.3)

ith corresponding normalized eigenfunctions φn(x) (n ≥ 1)
hich form a complete orthonormal system in L2(0, 1). Particu-

arly, if p(x) ≡ 1 and q(x) ≡ 0, λn and φn are explicitly given by

λn = (n −
1
2 )

2π2, φn(x) =
√
2 sin(

√
λnx), n ≥ 1. (1.4)

iven N ∈ N and h ∈ L2(0, 1) satisfying h L2
=

∑
∞

n=1 hnφn, we
denote ∥h∥2

N =
∑

∞

n=N+1 h
2
n. The following lemma will be used:

Lemma 1.1 (Katz & Fridman, 2020, Lemma 2.1). Let h ∈ L2(0, 1)

be given by h L2
=

∑
∞

n=1 hnφn. Then h ∈ H1(0, 1) with h(0) = 0 iff∑
∞

n=1 λnh
2
n < ∞. Moreover, for h ∈ D(A1), we have

π2

p∗π2+4q∗

∞∑
n=1

λnh2
n ≤ ∥h′

∥
2
L2 ≤

1
p∗

∞∑
n=1

λnh2
n.

2. Observer-based control

Consider the following stochastic 1D heat equation with non-
linear multiplicative noise under Neumann actuation:

dz(x, t) = [
∂
∂x (p(x)

∂
∂x z(x, t)) + (qc − q(x))z(x, t)]dt

+ σ1(x, t, z(x, t))dW1(t), t ≥ 0, x ∈ [0, 1],
z(0, t) = 0, zx(1, t) = u(t),
z(x, 0) = z0(x),

(2.1)

where z0 ∈ L2(Ω; L2(0, 1)), qc ∈ R is a constant reaction
coefficient, u(t) is a control input to be designed, W1(t) is the
1D standard Brownian motion defined on (Ω,F,P), the nonlinear
oise function σ1 : [0, 1] × R+

× R → R is assumed to satisfy

1(x, t, 0) = 0, |σ1(x, t, z1) − σ1(x, t, z2)| ≤ σ̄1|z1 − z2|, (2.2)

or all x ∈ [0, 1], t ∈ R+, and z1, z2 ∈ R, where σ̄1 > 0 is an upper
bound on the noise intensity.

Remark 2.1. Differently from the Kalman filtering techniques
developed in PDE setting (see, e.g., Falb (1967)) where the noise is
independent of state (additive noise), in system (2.1) we studied
the multiplicative noise which may appear due to the system
parameters that undergo random perturbations of white noise
process (Da Prato & Zabczyk, 2014; Mao, 2007). Specifically, one
can think of system (2.1) as a stochastic version of the reaction–
diffusion equations in Karafyllis (2021) and Katz and Fridman
(2020), where the reaction term (qc − q(x))z(x, t) therein under-
goes random perturbations and is replaced by (qc − q(x))z(x, t)+
σ1(x, t, z(x, t))ς1(t) (see, e.g. Haussmann (1978)). Here ς1(t) is a
white noise process which is formally defined as the derivative
of the Brownian motion ς1(t) =

dW1(t)
dt (see Klebaner (2005,

.124)). In (2.1), we consider the white noise which is uniform
n the spatial variable. Such white noise appears in many appli-
ations including filtering equations (see Da Prato and Zabczyk
2014, Sec. 13.8)) and Musiela’s equation of the bond market (see
a Prato and Zabczyk (2014, Sec. 13.3)). We suggest nonlinear
oise perturbation function σ1(x, t, z) to describe the distribution

of noise with respect to space, time, and state. Similarly, we will
consider the multiplicative measurement noise (see (2.3)).
3

In this paper we are interested in the strong solution to the
closed-loop system (see Section 2.1.2) and the mean-square L2
stability of (2.1) (see Definition 2.1). Note that the multiplicative
noise always tends to destroy mean-square stability (see, e.g.,
Damm (2004, Remark 1.5.9), Munteanu (2018) andWu and Zhang
(2020)). Thus, we aim to study the mean-square exponential
stabilization and find (as large as we can) noise intensity bound
σ̄1 for the mean-square stabilizability.

We consider the following noisy boundary measurement out-
put (see e.g., (Dragan, Morozan, & Stoica, 2006; Gershon, Shaked,
& Yaesh, 2005)):

dy(t) = z(1, t)dt + σ2(t, z(1, t))dW2(t), t ≥ 0, (2.3)

where nonlinear noise function σ2 : R+
× R → R satisfies

σ2(t, 0) = 0, |σ2(t, z1) − σ2(t, z2)| ≤ σ̄2|z1 − z2|, (2.4)

for all t ∈ R+ and z1, z2 ∈ R, and certain positive constant σ̄2,
W2(t) is a 1D standard Brownian motion defined on (Ω,F,P).
Note that W1(t) and W2(t) are mutually independent.

The unboundedness of the control and observation operators
leads to substantial technical difficulties for the well-posedness
and the stability analysis of the closed-loop system. Most of the
existing works are focused on the semigroup approach to the
boundary control problem of stochastic PDEs, which can only
guarantee the well-posedness for mild solutions (see, e.g., Dun-
can et al. (1994) and Munteanu (2018, 2019)). However, since
the stochastic convolution is no longer a martingale, we cannot
apply Itô’s formula to mild solutions directly, which limits the
Lyapunov stability analysis. In this section, we employ dynamic
extension which is based on a change of variables to lift the
control input from the boundary to the right hand side of the
equivalent stochastic PDE system. This allows us to analyze the
well-posedness of strong solutions to the closed-loop system and
to employ Itô’s formula directly. In this paper, we consider two
types of dynamic extension: trigonometric (inspired by Karafyllis
(2021)) and polynomial (inspired by Katz and Fridman (2021)).

2.1. Trigonometric dynamic extension

2.1.1. Controller design
Inspired by Karafyllis (2021), let µ > 0 with µ ̸= λn for n ∈ N

be a given constant and consider a function ψ ∈ C2([0, 1]) that
satisfies
(p(x)ψ ′(x))′ − q(x)ψ(x) = −µψ(x),
ψ(0) = 0, ψ ′(1) = 1. (2.5)

Since µ ̸= λn, it follows that the boundary-value problem (2.5)
has a unique solution. In particular, if p(x) ≡ 1 and q(x) ≡ 0, we
can choose µ = π2 and ψ(x) = −

1
π
sin(πx).

We consider the trigonometric change of variables

(x, t) = z(x, t) − ψ(x)u(t) (2.6)

to obtain the following system

dw(x, t) = [
∂
∂x (p(x)

∂
∂xw(x, t)) + (qc − q(x))w(x, t)]dt

+ [(p(x)ψ ′(x))′ − q(x)ψ(x) + qcψ(x)]u(t)dt
− ψ(x)du(t) + σ1(x, t, w(x, t) + ψ(x)u(t))dW1(t)

2.5)
= [

∂
∂x (p(x)

∂
∂xw(x, t)) + (qc − q(x))w(x, t)]dt

− ψ(x)[(µ− qc)u(t)dt + du(t)]
+ σ1(x, t, w(x, t) + ψ(x)u(t))dW1(t).

(2.7)

We will henceforth treat u(t) as an additional state variable,
subject to the dynamics

du(t) = [(q − µ)u(t) + v(t)]dt, t ≥ 0, u(0) = 0, (2.8)
c
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hereas v(t) ∈ R is the new control input. Note that (2.8) implies
(·, 0) = z0(·) ∈ L2(Ω, L2(0, 1)). From (2.7) and (2.8), we obtain
he equivalent system:

u(t) = [(qc − µ)u(t) + v(t)]dt, t ≥ 0, (2.9a)

w(x, t) = [
∂
∂x (p(x)

∂
∂xw(x, t))

+ (qc − q(x))w(x, t) − ψ(x)v(t) ]dt
+ σ1(x, t, w(x, t) + ψ(x)u(t))dW1(t),

(2.9b)

w(0, t) = wx(1, t) = 0, u(0) = 0, (2.9c)

with noisy boundary measurement

dy(t) = [w(1, t) + ψ(1)u(t)]dt
+ σ2(t, w(1, t) + ψ(1)u(t))dW2(t), t ≥ 0. (2.10)

In Section 2.1.2, we prove that for any initial condition z0 ∈

L2(Ω; L2(0, 1)) and z0 ∈ D(A1) almost surely, (2.9b) with bound-
ary conditions (2.9c) possesses a unique strong solution satisfying

w ∈ L2(Ω; C([0, T ]; L2(0, 1))) ∩ L2(Ω × [0, T ];H1(0, 1)) (2.11)

for any T > 0. Therefore, we can present the solution to (2.9b)–
(2.9c) as

w(x, t) L2
=

∞∑
n=1

wn(t)φn(x), wn(t) = ⟨w(·, t), φn⟩, (2.12)

with φn, n ∈ N eigenfunctions of (1.1). The convergence of series
(2.12) in L2 in mean-square follows from (2.11). Note that the
Fourier expansion for solutions of stochastic PDEs has been used
in the past (see e.g. Christofides et al. (2008) and Hu et al. (2008)
for stochastic PDEs with additive noise and Chow (2007, P.89),
Duan and Wei (2014, P.86) for stochastic PDEs with multiplicative
noise).

Differentiating wn in (2.12) and using (2.9b), we obtain

dwn(t) =

[ ∫ 1
0 [

∂
∂x (p(x)

∂
∂xw(x, t)) − q(x)w(x, t)]φn(x)dx

+ qcwn(t) − bnv(t)
]
dt + σ1,n(t)dW1(t), t ≥ 0,

wn(0) = ⟨w(·, 0), φn⟩,

(2.13)

where
bn = ⟨ψ, φn⟩,

σ1,n(t) = ⟨σ1(·, t,
∑

∞

j=1wj(t)φj + ψ(·)u(t)), φn⟩.

Integrating by parts and using (1.1) and the boundary condi-
tions (2.9c), we have∫ 1
0 [

∂
∂x (p(x)

∂
∂xw(x, t)) − q(x)w(x, t)]φn(x)dx

= −
∫ 1
0 w(x, t)(A1φn)(x)dx = −λnwn(t),

(2.14)

where the last equality is obtained from (A1φn)(x) = λnφn(x).
Then it follows from (2.13) and (2.14) that

dwn(t) = [(−λn + qc)wn(t) − bnv(t)]dt
+ σ1,n(t)dW1(t), t ≥ 0,

wn(0) = ⟨w(·, 0), φn⟩.

(2.15)

Let δ > 0 be a desired decay rate and let N0 ∈ N satisfy

−λn + qc + δ +
σ̄2
1
2 < 0, n > N0, (2.16)

here N0 is the number of modes used for the controller design.
ompared with Katz and Fridman (2020, 2021) and Lhachemi and
rieur (2022) for the deterministic PDEs, the additional term σ̄ 2

1 /2
n (2.16) is induced by the stochastic perturbations. Let N ∈ N,
N ≥ N , where N will be the dimension of the observer.
0

4

Remark 2.2. In (2.16), N0 represents the number of ‘‘relatively
unstable’’ modes that need to be stabilized. To explain this point,
we present the open-loop system (2.1) (i.e., u(t) ≡ 0) as the
ollowing stochastic evolution equation:

z(t) = [−A1z(t) + qcz(t)]dt + σ1(·, t, z(t))dW1(t),
z(0) = z0 ∈ L2(Ω; L2(0, 1)),

(2.17)

where t ≥ 0, A1 is defined in (1.1). Since the nonlinear function
σ1 satisfies the global Lipschitz condition (2.2), we can conclude
from Chow (2007, Theorem 6.7.4) that (2.17) has a unique strong
solution z ∈ L2(Ω; C[0, T ]; L2(0, 1)) ∩ L2(Ω × [0, T ];H1(0, 1)).
ssume (2.16) holds for some N0. Considering V (z) = ∥z∥2

L2
,

∈ L2(0, 1) and calculating the generator L (see Chow (2007,
. 228)) along (2.17), we have for t ≥ 0,

V (z(t)) + 2δV (z(t)) = ⟨−A1z(t) + qcz(t),DzV (z(t))⟩L2
+

1
2 ⟨DzzV (z(t))σ1(·, t, z(t)), σ1(·, t, z(t))⟩L2 + 2δ∥z(t)∥2

L2

= 2⟨−A1z(t), z(t)⟩ + (2qc + 2δ)∥z(t)∥2
L2

+ ∥σ1(·, t, z(t))∥2
L2

(2.2)
≤ 2⟨−A1z(t), z(t)⟩ + (2qc + 2δ + σ̄ 2

1 )∥z(t)∥
2
L2
,

(2.18)

where Dz,Dzz are the Fréchet derivatives of V (z). By Parseval’s
equality (see Muscat (2014, Proposition 10.29)), we have

⟨−A1z(t), z(t)⟩ =
∑

∞

n=1⟨−A1z(t), φn⟩⟨z(t), φn⟩

= −

∞∑
n=1

λnz2n (t).
(2.19)

Substitution of (2.19) into (2.18) gives

LV (z(t)) + 2δV (z(t))

≤ 2
∞∑
n=1

(−λn + qc + δ +
σ̄ 2
1

2
)z2n (t)

(2.16)
≤ 2

N0∑
n=1

(−λn + qc + δ +
σ̄ 2
1

2
)z2n (t), t ≥ 0.

(2.20)

o guarantee the mean-square L2 exponential stability with de-
ay rate δ (see Chow (2007, Theorem 7.4.2)), it is sufficient to
ontrol the first N0 modes in order to guarantee that along the
losed-loop system, LV (t) + 2δV (t) ≤ 0 for all t ≥ 0.

Following Katz and Fridman (2020) and Selivanov and Fridman
2019), we construct a N-dimensional observer of the form

ŵ(x, t) =

N∑
n=1

ŵn(t)φn(x), N > N0, (2.21)

here ŵn(t) (1 ≤ n ≤ N) satisfy

ŵn(t) = [(−λn + qc)ŵn(t) − bnv(t)]dt

+ ln{[
N∑
j=1

φj(1)ŵj(t) + ψ(1)u(t)]dt − dy(t)}

ˆ n(0) = 0, 1 ≤ n ≤ N,

(2.22)

ith y(t) satisfying (2.10) and scalar observer gains {ln}Nn=1.
Introduce the notations

0 = diag{−λn + qc}
N0
n=1, Ã0 = diag{qc − µ, A0},

0 = [b1, . . . , bN0 ]
T, B̃0 = col{1,−B0},

n = φn(1), n ∈ N, C0 = [c1, . . . , cN0 ].

(2.23)

rom Orlov (2017) we have cn = O(1), n → ∞. By Katz and
ridman (2020, Remark 3.3), we have cn ̸= 0, ∀n ∈ N. Therefore,
he pair (A , C ) is observable by the Hautus lemma. Choose
0 0
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B
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≤

w
c
p

σ

1, . . . , lN0 such that L0 = [l1, . . . , lN0 ]
T satisfies the following

yapunov inequality:

o(A0 + L0C0) + (A0 + L0C0)TPo < −2δPo, (2.24)

here 0 < Po ∈ RN0×N0 . Furthermore, we choose ln = 0, n > N0.
By Karafyllis (2021, Lemma 2.1), the pair (Ã0, B̃0) is control-

able. Let KT ∈ R1×(N0+1) satisfy

c(Ã0 + B̃0KT) + (Ã0 + B̃0KT)TPc < −2δPc, (2.25)

where 0 < Pc ∈ R(N0+1)×(N0+1).

Remark 2.3. Since in many applications one cannot a priori
know the noise intensity bound, here we design the observer
and controller gains obtained from (2.24) and (2.25) that are
independent of the noise intensity bound. To enlarge σ̄1, we
can use state-feedback controller design in Section 3, where the
resulting gain is related to the state noise intensity and satisfies
(2.25).

We further propose a (N0 + 1)-dimensional controller of the
form

v(t) = KTŵ
N0 (t), ŵN0 (t) = [u(t), ŵ1(t), . . . , ŵN0 (t)]

T, (2.26)

which is based on the N-dimensional observer (2.21).

2.1.2. Well-posedness of the closed-loop system
For the well-posedness we employ the following notations

ŵN (t) = [u(t), ŵ1(t), . . . , ŵN (t)]T, 11 = [1, 01×N ],

B1 = [bN0+1, . . . , bN ]
T, B̃ = col{1,−B0,−B1]

T,

A1 = diag{−λn + qc}Nn=N0+1, A = diag{Ã0, A1},

C̃ = [01×1, c1, . . . , cN ], K1 = [KT, 01×(N−N0)],

L̃ = col{01×1, L0, 0(N−N0)×1}.

(2.27)

Consider ξ (t) = col{ŵN (t), w(·, t)} and W(t) = [W2(t),W1(t)]T.
Then system (2.9) and (2.22) subject to the control input (2.26)
can be presented as

dξ (t) = [Aξ (t) + f (ξ (t))]dt + g(ξ (t))dW(t) (2.28)

with A = diag{A2,−A1} where A1 is given by (1.1) and

A2 = A + B̃K1 + L̃C̃,
f (ξ (t)) =

[
−L̃

∫ 1
0 wx(x, t)dx, qcw(·, t) − ψ(·)K1ŵ

N (t)
]T
,

g(ξ (t)) =
[g2(ξ (t)) 0

0 g1(ξ (t))

]
,

g1(ξ (t)) = σ1(·, t, w(·, t) + ψ(·)11ŵ
N (t)),

g2(ξ (t)) = −L̃σ2(t,
∫ 1
0 wx(x, t)dx + ψ(1)11ŵ

N (t)).

Let H = RN+1
× L2(0, 1) be a Hilbert space with norm ∥ · ∥

2
H =

| · |
2

+ ∥ · ∥
2
L2
. Take V = RN+1

× H1(0, 1) with norm ∥ · ∥
2
V =

| · |
2

+ ∥ · ∥
2
H1 , and V ′

= RN+1
× H−1(0, 1). The duality scalar

product between V ′ and V is denoted by ⟨·, ·⟩V ′,V = ⟨·, ·⟩H. Then
A : V → V ′ is a closed linear operator with domain D(A) dense
in H. For any ξi = col{ŵN

i , wi} ∈ V , i = 1, 2, integrating by parts
and using the boundary conditions (2.9c), we have

|⟨Aξ1, ξ2⟩V ′,V | = |
∫ 1
0 (−A1w1)w2dx + (ŵN

1 )
TA2ŵ

N
2 |

= |
∫ 1
0 [

d
dx (p(x)

d
dxw1) − q(x)w1]w2dx

+ (ŵN
1 )

T(A + B̃K1 + L̃C̃)ŵN
2 |

≤ p∗
|
∫ 1
0 w

′

1w
′

2dx| + q∗
|
∫ 1
0 w1w2dx| + µ∗

|ŵN
1 ∥ ŵN

2 |

≤ p∗
∥w′

1∥L2∥w
′

2∥L2 + q∗
∥w1∥L2∥w2∥L2 + µ∗

|ŵN
1 ∥ ŵN

2 |

≤ (p∗
+ q∗

+ µ∗)∥ξ1∥V∥ξ2∥V ,

(2.29)

where the penultimate inequality is obtained by the Cauchy–
Schwarz inequality, µ∗

= ∥A + B̃K + L̃C̃∥. Similarly, for any
1

5

ξ = col{ŵN , w} ∈ V , we have

⟨Aξ, ξ⟩V ′,V = (ŵN )T(A + B̃K1 + L̃C̃)ŵN

+
∫ 1
0 [

d
dx (p(x)

d
dxw) − q(x)w]wdx

−p∗

∫ 1
0 (w

′)2dx + µ∗
|ŵN

|
2

≤ −p∗∥w∥
2
H1 + p∗∥w∥

2
L2

+ µ∗
|ŵN

|
2

≤ −p∗∥ξ∥
2
V + (p∗ + µ∗)∥ξ∥2

H.

(2.30)

For wi(·, t) ∈ D(A1) almost surely, the application of Jensen’s
inequality implies

[
∫ 1
0 (

∂w1(x,t)
∂x −

∂w2(x,t)
∂x )dx]2 ≤ ∥w1(·, t) − w2(·, t)∥2

H1 . (2.31)

Besides, the Wirtinger’s inequality implies

∥w1(·, t) − w2(·, t)∥2
L2

≤
4
π2 ∥w1(·, t) − w2(·, t)∥2

H1 . (2.32)

Therefore, for any ξi = col{ŵN
i , wi} ∈ V , i = 1, 2, from (2.2), (2.4),

(2.31) and (2.32), we can obtain

⟨f (ξ1), ξ1⟩H + tr{gT(ξ1)g(ξ1)} ≤ κ1(1 + ∥ξ1∥
2
V ),

f (ξ2) − f (ξ1)∥2
H + tr{[g(ξ2) − g(ξ1)]T[g(ξ2) − g(ξ1)]}

κ2∥ξ2 − ξ1∥
2
V ,

(2.33)

or some κ1, κ2 > 0, where tr{gT(ξ1)g(ξ1)} = |g2(ξ1)|2+∥g1(ξ1)∥2
L2
.

or any ξ (t) = col{ŵN (t), w(·, t)} ∈ V , by (2.2), (2.4) and (2.30),
e have for some κ3 > 0

Aξ (t), ξ (t)⟩V ′,V + ⟨f (ξ (t)), ξ (t)⟩H +
1
2 tr{g

T(ξ (t))g(ξ (t))}∫ 1
0 [

∂
∂x (p(x)

∂
∂xw(x, t)) − q(x)w(x, t)]w(x, t)dx

+ (ŵN (t))TA2ŵ
N (t) −

∫ 1
0 wx(x, t)dxL̃TŵN (t)

+
∫ 1
0 [qcw(x, t) + a(x)11ŵ

N (t) − b(x)K1ŵ
N (t)]w(x, t)dx

+
1
2 [∥g1(ξ (t))∥

2
L2

+ |g2(ξ (t))|2]

−p∗∥w(·, t)∥2
H1 −

∫ 1
0 wx(x, t)dxL̃TŵN (t)

+
|L0|

2σ̄2
2

2 |
∫ 1
0 wx(x, t)dx + ψ(1)11ŵ

N (t)|
2

+ κ3(∥w(·, t)∥2
L2

+ |ŵN (t)|2).

(2.34)

y Young’s inequality with some ε1, ε2 > 0, and (2.31), we obtain

−
∫ 1
0 wx(x, t)dxL̃TŵN (t)

ε1
2 ∥w(·, t)∥2

H1 +
1

2ε1
|L0|2|ŵN (t)|2,

|
∫ 1
0 wx(x, t)dx + ψ(1)11ŵ

N (t)|
2

(1 + ε2)∥w(·, t)∥2
H1 + (1 +

1
ε2
)|ψ(1)11ŵ

N (t)|2.

(2.35)

Substitution of (2.35) into (2.34) gives

⟨Aξ (t), ξ (t)⟩V ′,V + ⟨f (ξ (t)), ξ (t)⟩H +
1
2 tr{g

T(ξ (t))g(ξ (t))}

−[p∗ −
ε1
2 −

|L0|
2σ̄2

2
2 (1 + ε2)]∥w(·, t)∥2

H1

+ κ4(∥w(·, t)∥2
L2

+ |ŵN (t)|2)

−κ∗
∥ξ (t)∥2

V + κ5∥ξ (t)∥2
H,

(2.36)

here κ∗
= p∗ −

ε1
2 −

|L0|
2σ̄2

2
2 (1+ ε2) and κ4, κ5 are some positive

onstants. Choosing ε1, ε2 sufficiently small, we obtain κ∗ > 0
rovided

¯2|L0| <
√
2p∗, (2.37)

where p∗ is the lower bound of p(x).

Remark 2.4. Note that the closed-loop system (2.28) contains
a gradient-dependent noise with its intensity upper bounded by
σ̄ |L | (see g component of g). It is well known that for stochastic
2 0 2
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arabolic equations, gradient-dependent noise intensity should
ot exceed a certain threshold set by the diffusion coefficient
see Chow (2007, P. 89)). In order to guarantee the coercivity
ondition (2.36) with κ∗ > 0 for well-posedness, we therefore
ssume (2.37). Even though condition (2.37) may limit the ob-
erver gain design, violation of (2.37) (which leads to violation
f the coercivity condition (2.36) with κ∗ > 0) may lead to an
ll-posed closed-loop system.

By arguments similar to (2.34)–(2.36), we obtain for any ξi ∈

V , i = 1, 2,

2⟨A(ξ1 − ξ2), ξ1 − ξ2⟩V ′,V + 2⟨f (ξ1) − f (ξ2), ξ1 − ξ2⟩H

tr{[g(ξ1) − g(ξ2)]T[g(ξ1) − g(ξ2)]} ≤ κ6∥ξ1 − ξ2∥
2
H

(2.38)

ith some constant κ6 > 0. Then by Chow (2007, Theorem 6.7.5),
or any initial value ξ0 ∈ L2(Ω;H) and ξ0 ∈ D(A) almost surely,
2.29), (2.30), (2.33), (2.36) and (2.38) guarantee that (2.28) has a
nique strong solution satisfying

∈ L2(Ω; C([0, T ];H)) ∩ L2([0, T ] ×Ω;V)

or any T > 0, and

(t) = ξ (0) +
∫ t
0 [Aξ (s) + f (ξ (s))]ds +

∫ t
0 g(ξ (s))dW(s),

lmost surely, where the stochastic integral
∫ t
0 g(ξ (s))dW(s) is in

he sense of Itô type and a martingale. From the definition of a
trong solution in Liu (2005) (see Definition 1.3.3 therein), we
now that the strong solution ξ (t) ∈ D(A) almost surely and is
dapted to Ft , t ≥ 0.

.1.3. Mean-square L2 stability analysis
First, we introduce the following mean-square L2 stability

efinition for the closed-loop system (2.9) subject to control law
2.22), (2.26).

efinition 2.1. The closed-loop system (2.9) with control law
2.22), (2.26) is said to be mean-square L2 exponentially sta-
le with a decay rate δ > 0 if there exists M0 > 1 such
hat for any given initial value w(·, 0) ∈ L2(Ω; L2(0, 1)) and
w(·, 0) ∈ D(A1) almost surely, the corresponding strong solution
u(t), w(·, t) satisfies the following inequality for t ≥ 0:

E[u2(t) + ∥w(·, t)∥2
L2

] ≤ M0e−2δtE∥w(·, 0)∥2
L2
. (2.39)

If (2.39) holds for the solutions to the closed-loop system (2.9)
subject to control law (2.22), (2.26), then due to (2.6), the solution
z(·, t) to the original system (2.1) with input u(t) determined by
(2.9a) satisfies

E∥z(·, t)∥2
L2

≤ M̃0e−2δtE∥z0∥2
L2
, t ≥ 0,

or some M̃0 ≥ 1.
Let

n(t) = wn(t) − ŵn(t), 1 ≤ n ≤ N (2.40)

e the estimation error. The last term on the right-hand side of
2.22) can be presented as
N∑
j=1

cjŵj(t) + ψ(1)u(t)]dt − dy(t)

(2.10)
= [−

N∑
j=1

cjej(t) − ζ (t)]dt − σ2(t, ζ̂ (t))dW2(t),

ζ (t) = w(1, t) −

N∑
j=1

cjwj(t),

ζ̂ (t) = ζ (t) +

N∑
cj(ej(t) + ŵj(t)) + ψ(1)u(t).

(2.41)
j=1 s

6

Then from (2.15) and (2.22), the error system has the form

den(t) = [(−λn + qc)en(t) + ln(
N∑
j=1

cjej(t) + ζ (t))]dt

+ σ1,n(t)dW1(t) + lnσ2(t, ζ̂ (t))dW2(t), 1 ≤ n ≤ N.

(2.42)

Denote

eN0 (t) = [e1(t), . . . , eN0 (t)]
T, C1 = [cN0+1, . . . , cN ],

eN−N0 (t) = [eN0+1(t), . . . , eN (t)]T, L̃0 = col{01×1, L0},
ŵN−N0 (t) = [ŵN0+1(t), . . . , ŵN (t)]T,
X(t) = col{ŵN0 (t), eN0 (t), ŵN−N0 (t), eN−N0 (t)},

L0 = col{−L̃0, L0, 02(N−N0)×1}, KT = [KT, 01×(2N−N0)],

F =

⎡⎣Ã0 + B̃0KT −L̃0C0 0 −L̃0C1
0 A0 + L0C0 0 L0C1

−B1KT 0 A1 0

0 0 0 A1

⎤⎦ ,
σN0 (t) = [σ1,1(t), . . . , σ1,N0 (t)]

T, 1 = [1, 01×2N ],

σN−N0 (t) = [σ1,N0+1(t), . . . , σ1,N (t)]T,
Σ(t) = col{0(N0+1)×1, σ

N0 (t), 0(N−N0)×1, σ
N−N0 (t)},

C1 = [ψ(1), C0, C0, C1, C1] ∈ R1×(2N+1).

(2.43)

By (2.22), (2.26), (2.41), (2.42) and (2.43), we obtain the closed-
loop system

dX(t) = [FX(t) + L0ζ (t)]dt +Σ(t)dW1(t)

+ L0σ2(t, ζ (t) + C1X(t))dW2(t), (2.44a)

dwn(t) = [(−λn + qc)wn(t) − bnKTX(t)]dt

+ σ1,n(t)dW1(t), n > N. (2.44b)

For mean-square L2 exponential stability of the closed-loop sys-
tem (2.44), we consider the Lyapunov function

V (t) = |X(t)|2P + ρ

∞∑
n=N+1

w2
n(t), (2.45)

where 0 < P ∈ R(2N+1)×(2N+1), ρ > 0 is a scalar. Since u(0) = 0
and ŵn(t) = 0, 1 ≤ n ≤ N , we have

V (0) ≤ λmax(P)|X(0)|2 + ρ

∞∑
n=N+1

w2
n(0)

≤ max{λmax(P), ρ}∥w(·, 0)∥2
L2
.

(2.46)

Noting that ŵ2
n + e2n = (wn − en)2 + e2n ≥ 0.5w2

n , we infer that

V (t) ≥ λmin(P)[u2(t) +

N∑
n=1

(ŵ2
n(t) + e2n(t))]

+ ρ

∞∑
n=N+1

w2
n(t)

≥ min{
λmin(P)

2 , ρ}[u2(t) + ∥w(·, t)∥2
L2

], t ≥ 0.

(2.47)

emark 2.5. In Katz and Fridman (2020, 2021), the boundary or
oint measurements were considered for the deterministic PDEs
ith cn = O(1), n → ∞, where H1 stability was required to
ompensate ζ (t) defined in (2.41). In this paper, we consider the
yapunov function (2.45) with ρ large enough to compensate
(t) by using (2.60) in the Lyapunov analysis and study the
2 exponential stability, which is justified by the regularity of
olutions.
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(
b

n

≤

B

L

+

By Parseval’s equality we present (2.45) as
V (t) = V1(t) − V2(t) + V3(w(·, t)),
V1(t) = |X(t)|2P , V2(t) = ρ|IX(t)|2,
V3(w(·, t)) = ρ∥w(·, t)∥2

L2
,

I =

[ 0N0×1 IN0
IN0

0 0

0(N−N0)×1 0 0 IN−N0
IN−N0

]
.

(2.48)

Remark 2.6. Differently from Katz and Fridman (2020, 2021)
for the deterministic PDEs where the series in (2.45) was differ-
entiated term by term, here the Lyapunov function is presented
as (2.48) in order to make it suitable for application of the Itô’s
formula. Additionally, we use the nonlinear term in −LV2(t) (see
2.49)) to compensate the nonlinear term in LV1(t) (see (2.50))
y ρ > 0 large enough.
Calculating the generators LV1(t) and LV2(t) along stochastic

ODE (2.44a) (see Klebaner (2005, P. 149)) we have

LV1(t) + 2δV1(t) = XT(t)[PF + F TP + 2δP]X(t)
+ 2XT(t)PL0ζ (t) +ΣT(t)PΣ(t)
+ σ 2

2 (t, ζ (t) + C1X(t))LT
0PL0

(2.4)
≤ XT(t)[PF + F TP + 2δP + σ̄ 2

2 C
T
1L

T
0PL0C1]X(t)

+ 2XT(t)[PL0 + σ̄ 2
2 C

T
1L

T
0PL0]ζ (t)

+ΣT(t)PΣ(t) + σ̄ 2
2L

T
0PL0ζ

2(t)

(2.49)

and
LV2(t) + 2δV2(t) = ρXT(t)(ITIF + F TITI + 2δITI)X(t)

+ 2ρXT(t)ITIL0ζ (t) + ρΣT(t)ITIΣ(t)
+ σ 2

2 (t, ζ (t) + C1X(t))LT
0I

TIL0

= ρ

N∑
n=1

(−2λn + 2qc + 2δ)w2
n(t) + ρ|Σ(t)|2

− ρ

N∑
n=1

2wn(t)bnKTX(t).

(2.50)

RecallingA1 defined in (1.1), we can rewrite (2.7) subject to (2.26)
as
dw(t) = [−A1w(t) + qcw(t) − ψ(·)KTX(t)]dt

+ σ1(·, t, w(t) + ψ(·)1X(t))dW1(t),
(2.51)

where w(t) = w(·, t). Note that w(t) is a strong solution to (2.51)
satisfying (2.11) for any T > 0 (see Section 2.1.2). For function
V3(w(t)) defined in (2.48), by arguments similar to (2.18)–(2.20),
we have the following expression for generator L of (2.51) (see
Chow (2007, P. 228)):
LV3(w(t)) = 2ρ⟨−A1w(t), w(t)⟩

+ 2ρqc∥w2(t)∥2
L2

− 2ρ⟨ψ(·)v(t), w(·, t)⟩

+ ρ∥σ1(·, t, w(·, t) + ψ(·)u(t))∥2
L2

≤ 2ρ
∞∑
n=1

(−λn + qc)w2
n(t) − 2ρ⟨ψ(·)v(t), w(·, t)⟩

+ 2ρσ̄ 2
1 ∥w(t) + ψ(·)u(t)∥2

L2
.

(2.52)

By Parseval’s equality (see Muscat (2014, Proposition 10.29)), we
have

⟨ψ(·)v(t), w(·, t)⟩ =

∞∑
n=1

⟨ψ(·), φn⟩⟨w(·, t), φn⟩v(t)

(2.26)
=

∞∑
n=1

wn(t)bnKTX(t),

∥w(t) + ψ(·)u(t)∥2
L2

= XT(t)[BTB + ∥b∥2
N1

T1]X(t)

+

∞∑
2wn(t)bn1X(t) +

∞∑
w2

n(t),

(2.53)
n=N+1 n=N+1

7

where

B =

[B0 IN0
IN0

0 0

B1 0 0 IN−N0
IN−N0

]
.

By (2.52)–(2.53) we arrive at

LV3(w(t)) + 2δV3(w(t))

≤

∞∑
n=1

ρ(−2λn + 2qc + 2δ)w2
n(t)

−ρ

∞∑
n=1

2wn(t)bnKTX(t) + ρσ̄ 2
1 X

T(t)BTBX(t)

+ρσ̄ 2
1

∞∑
n=N+1

[w2
n(t) + 2wn(t)bn1X(t) + b2n|1X(t)|

2
].

(2.54)

Combination of (2.48), (2.49), (2.50) and (2.54) yields

LV (t) + 2δV (t) ≤ XT(t)Ξ1X(t) +ΣT(t)(P − ρI)Σ(t)
+2XT(t)[PL0 + σ̄ 2

2 C
T
1L

T
0PL0]ζ (t) + σ̄ 2

2L
T
0PL0ζ

2(t)

+

∞∑
n=N+1

2ρ(−λn + qc + δ +
1
2
σ̄ 2
1 )w

2
n(t)

−ρ

∞∑
n=1

2wn(t)bnKTX(t) + ρσ̄ 2
1

∞∑
n=N+1

2wn(t)bn1X(t),

(2.55)

where

Ξ1 := PF + F TP + 2δP + ρσ̄ 2
1B

TB
+ σ̄ 2

2 C
T
1L

T
0PL0C1 + ρσ̄ 2

1 ∥b∥2
N1

T1.
(2.56)

Let α1, α2 > 0. Applying Young’s inequality we have

−

∞∑
n=N+1

2wn(t)bnKTX(t)

≤

∞∑
n=N+1

α1λ
0.75
n w2

n(t) +

∞∑
n=N+1

b2n
α1λ0.75n

|KTX(t)|2

≤

∞∑
n=N+1

α1λ
0.75
n w2

n(t) +
∥b∥2

N

α1λ
0.75
N+1

|KTX(t)|2,

∞∑
=N+1

2bnwn(t)1X(t)

∞∑
n=N+1

α2w
2
n(t) +

1
α2

∥b∥2
N |1X(t)|2.

(2.57)

y substituting (2.57) into (2.55), we obtain

V (t) + 2δV (t) ≤ XT(t)(Ξ1 +Ξ2)X(t)
2XT(t)[PL0 + σ̄ 2

2 C
T
1L

T
0PL0]ζ (t) + σ̄ 2

2L
T
0PL0ζ

2(t)

+

∞∑
n=N+1

2ρΥnw
2
n(t) +ΣT(t)(P − ρI)Σ(t),

(2.58)

where

Υn := −λn + qc + δ +
1
2 σ̄

2
1 +

α1
2 λ

0.75
n +

α2
2 σ̄

2
1 ,

Ξ2 :=
ρ∥b∥2N

0.75 K
TKT +

ρσ̄2
1 ∥b∥2N 1T1.

(2.59)

α1λN+1

T α2
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∥
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(
(

−

As for ζ (t) given in (2.42), by Young’s inequality and
Lemma 1.1 we get

ζ 2(t) = (w(1, t) −

N∑
n=1

wn(t)φn(1))2

= (
∫ 1
0 [wξ (ξ, t) −

N∑
n=1

wn(t)φ′

n(ξ )]dξ )
2

≤ ∥wx(·, t) −

N∑
n=1

wn(t)φ′

n(·)∥
2
L2

≤
1
p∗

∞∑
n=N+1

λnw
2
n(t).

(2.60)

Then with notation

θn =
−2Υn
λn

= 2 −
α1
λ0.25n

−
2qc+2δ+σ̄2

1 (1+α2)
λn

, n ≥ 1,

rom the monotonicity of λn and (2.60), we arrive at
∞∑

n=N+1

2ρΥnw
2
n(t) ≤ −ρθN+1

∞∑
n=N+1

λnw
2
n(t)

≤ −ρθN+1p∗ζ
2(t)

(2.61)

provided

ΥN+1 = −λN+1 + qc + δ +
1
2 σ̄

2
1 +

α1
2 λ

0.75
N+1 +

α2
2 σ̄

2
1 < 0. (2.62)

et η(t) = col{X(t), ζ (t)}. From (2.55) and (2.61) we obtain

V (t) + 2δV (t) ≤ ηT(t)ΞNonLη(t)
ΣT(t)(P − ρI)Σ(t) ≤ 0 (2.63)

f (2.62) and

NonL :=

[
Ξ1 +Ξ2 PL0 + σ̄22 CT

1L
T
0PL0

∗ −ρθN+1p∗ + σ̄22 LT0PL0

]
< 0,

< ρI,
(2.64)

old with Ξ1 in (2.56) and Ξ2 in (2.59). Summarizing, we arrive
t:

heorem 2.1. Consider (2.9) with nonlinear noise function
1(x, t, z) satisfying (2.2), control law (2.26), noisy boundary mea-
urement (2.10) with σ2(t, z) satisfying (2.4), (2.37), and initial
alue w(·, 0) ∈ L2(Ω, L2(0, 1)), w(·, 0) ∈ D(A1) almost surely. Let
> 0 be a desired decay rate, N0 ∈ N satisfy (2.16) and N ∈ N

atisfy N ≥ N0. Assume that L0 and KT are obtained from (2.24)
nd (2.25), respectively. Let α1, α2 > 0 be subject to (2.62). If there
xist a matrix 0 < P ∈ R(2N+1)×(2N+1) and a scalar ρ > 0 such
hat (2.64) hold, then the solution u(t), w(x, t) to (2.9) subject to
he control law (2.22), (2.26) is mean-square L2 exponentially stable
nd the corresponding observer ŵ(x, t) given by (2.21) satisfies for
≥ 0

∥w(·, t) − ŵ(·, t)∥2
L2 ≤ M0e−2δtE∥w(·, 0)∥2

L2 , (2.65)

ith some constant M0 > 1. Moreover, inequalities (2.62) and (2.64)
re always feasible for small enough σ̄1, σ̄2 and large enough N.

roof. First, by employing Itô’s formula for e2δtVi(t), i = 1, 2
long stochastic ODE (2.44a) (see Klebaner (2005, Theorem 4.18)),
e have

2δtVi(t) = Vi(0) +
∫ t
0 e2δs[LVi(s) + 2δVi(s)]ds

+
∫ t
0 e2δs2XT(s)PiσN0 (s)dW1(s), i = 1, 2,

1 = P, P2 = ρITI.

(2.66)

ince w(t) is a strong solution to (2.51) satisfying (2.11) and X(t)

s a solution to stochastic ODE (2.44a), we have col{w(t), X(t)},

8

t ∈ [0, T ], ∀T > 0 is a predictable process, and thus, an adapted
process (see Da Prato and Zabczyk (2014, P. 72)). Then qcw −

ψ(·)KTX ∈ L2([0, T ]; L2(0, 1)) is an integrable adapted process
and

M(t) :=
∫ t
0 σ1(·, s, w(s) + ψ(·)1X(s))dW1(s)

is a continuous L2-martingale (i.e., M(0) = 0, E|M(t)|2 < ∞ and
E(M(t)|Fs) = M(s) for all t ≥ s ≥ 0, see Chow (2007, P. 163)) in
L2(0, 1). By employing Itô’s formula for e2δtV3(w(t)) along (2.51)
(see Chow (2007, Theorem 7.2.1)), we have

e2δtV3(w(t)) = V3(w(0))

+
∫ t
0 e2δs[LV3(w(s)) + 2δV3(w(s))]ds

+
∫ t
0 e2δsDwV3(w(s))σ1(·, s, w(·, s) + ψ(·)1X(t))dW1(s).

(2.67)

Taking expectation on both sides of (2.66) and (2.67) and using
the definition V (t) = V1(t) − V2(t) + V3(w(t)) (see (2.48)), we
arrive at

e2δtEV (t) = EV (0) + E
∫ t
0 e2δs[LV (s) + 2δV (s)]ds

(2.63)
≤ EV (0), t ≥ 0,

(2.68)

which implies EV (t) ≤ e−2δtEV (0), t ≥ 0. Then (2.39) follows
from (2.46) and (2.47).

We show next the feasibility of (2.62) and (2.64) for large
enough N and small enough σ̄1, σ̄2. First, for given α1, α2 > 0 and
small enough σ̄1, (2.62) holds clearly for large enough N . Note
that |B1KT| ≤ |B1 ∥ KT| ≤ ∥b∥2

L2
|KT|, |L0C1| ≤ |L0 ∥ C1| ≤ |L0| ·

O(
√
N). By arguments of Theorem 3.3 in Katz and Fridman (2020),

we obtain that P ∈ R(2N+1)×(2N+1) which solves the Lyapunov
equation

P(F + δI) + (F + δI)TP = −
1
N I (2.69)

satisfies ∥P∥ = O(1), uniformly in N .
Next, we estimate ∥b∥2

N . Since φn(x) = λ−1
n

[q(x)φn(x) − {p(x)φ′
n(x)}

′
], n > 1, by the definition of bn given

in (2.15), we have

|bn| = λ−1
n

∫ 1
0 ψ(x)[q(x)φn(x) − {p(x)φ′

n(x)}
′
]dx

= λ−1
n [

∫ 1
0 ψ(x)q(x)φn(x)dx +

∫ 1
0 p(x)φ′

n(x)ψ
′(x)dx],

(2.70)

here the last equality is obtained from integration by parts and
(0) = φ′

n(1) = 0. Since p, ψ ∈ C2([0, 1]), q ∈ C1([0, 1]),
and ∥φn∥[0,1] = O(1), ∥φ′

n∥[0,1] = O(λ0.5n ) (see Orlov (2017) and
Petrovsky (1959, Sec. 23.2)), we obtain from (2.70) that there
exists a positive constant Mψ which is independent of n such that
|bn| ≤

Mψ
√
λn
, n > 1. Using (1.3) and integral convergence test, we

ave the following estimate

b∥2
N ≤

∞∑
n=N+1

M2
ψ

λn
≤

2M2
ψ

p∗π2N
, N ≥ 1. (2.71)

ubstituting α1 = 0.5, α2 = 1, ρ = N1.2, σ̄1 = σ̄2 = N−1.2, and
2.69) into (2.64) and applying Schur complement, we find that
2.64) hold iff

1
N I +

1
N1.2BTB +

CT
1L

T
0PL0C1
N2.4

+
2N1.2

∥b∥2N
λ0.75N+1

KT
TKT +

2∥b∥2N
N1.2 1T1

+
(PL0+N−2.4CT

1L
T
0PL0)(LT

0P+N−2.4LT
0PL0C1)

N1.2θN+1p∗−N−2.4LT
0PL0

< 0,

P < N1.2I.

(2.72)

Since ∥b∥2
N satisfies (2.71), λN+1 satisfies (1.3), |C1| = O(

√
N),

∥P∥ = O(1), |L | = O(1), N → ∞, (2.72) hold for large enough N .
0



P. Wang, R. Katz and E. Fridman Automatica 148 (2023) 110793

2

σ

σ

w
P
(

σ

z

(
M

w
a

a
A

C
p
(

P

.1.4. Linear noise
Here we consider the case of linear noise:

1(x, t, z) = σ̄1z, ∀(x, t, z) ∈ [0, 1] × R+
× R,

2(t, z) = σ̄2z, ∀(t, z) ∈ R+
× R, (2.73)

here σ̄1, σ̄2 are positive constants. In this case, the constraint
< ρI is not needed (see (2.75)). We have closed-loop system

2.44) with

1,n(t) = σ̄1[wn(t) + bn1X(t)], Σ(t) = σ̄1GX(t),

G =

⎡⎢⎣
0(N0+1)×1 0 0 0 0

B0 IN0
IN0

0 0

0(N−N0)×1 0 0 0 0

B1 0 0 IN−N0
IN−N0

⎤⎥⎦. (2.74)

By constructing the Lyapunov function (2.48) and following ar-
guments similar to (2.49)–(2.63) and (2.66)–(2.68), we find that
if (2.62) and

ΞLin :=

[
Ξ∗
1 +Ξ2 PL0 + σ̄22 CT

1L
T
0PL0

∗ −ρθN+1p∗ + σ̄22 LT0PL0

]
< 0,

Ξ∗

1 = PF + F TP + 2δP + σ̄ 2
1 G

TPG
+ σ̄ 2

2 C
T
1L

T
0PL0C1, Ξ2 is defined in (2.59).

(2.75)

hold, the mean-square L2 exponential stability of the closed-loop
system can be guaranteed. Moreover, (2.62) and (2.75) are always
feasible for small enough σ̄1, σ̄2 and large enough N . Differently
from the state-feedback case in Section 3.1.2, for the output-
feedback case with linear noise we prove the feasibility of LMIs
for small noise intensity σ̄1.

2.2. Polynomial dynamic extension

Following Katz and Fridman (2021), we employ the following
change of variables

w(x, t) = z(x, t) − xu(t). (2.76)

We treat u(t) as an additional state variable satisfying

u̇(t) = v(t), u(0) = 0, (2.77)

where v is the new control input. Given v(t), u(t) can be cal-
culated by integrating (2.77). Note that (2.77) implies w(·, 0) =

0(·). Then based on (2.1), (2.3), (2.76), and (2.77), we arrive at
the following equivalent systems

du(t) = v(t)dt, t ≥ 0, u(0) = 0, (2.78a)

dw(x, t) = [
∂
∂x (p(x)

∂
∂xw(x, t)) + a(x)u(t)

+ (qc − q(x))w(x, t) − b(x)v(t)]dt
+ σ1(x, t, w(x, t) + b(x)u(t))dW1(t),

a(x) = p′(x) + x(qc − q(x)), b(x) = x,

(2.78b)

w(0, t) = 0, wx(1, t) = 0, (2.78c)

with the noisy boundary measurement output

dy(t) = [w(1, t) + u(t)]dt
+ σ2(t, w(1, t) + u(t))dW2(t), t ≥ 0, (2.79)

where σ2 satisfies (2.4), (2.37). Similar to the well-posedness
analysis in Section 2.1.2, we can prove also that for (2.78b)
with boundary conditions (2.78c) and initial value w(·, 0) ∈

L2(Ω, L2(0, 1)) and w(·, 0) ∈ D(A1) almost surely, there exists a
unique strong solutionw satisfying (2.11). Presenting the solution
to (2.78b)–(2.78c) as (2.12), we have wn(t), n ≥ 1 satisfy

dwn(t) = [(−λn + qc)wn(t) + anu(t) − bnv(t)]dt
+ σ1,n(t)dW1(t), t ≥ 0,

wn(0) = ⟨w(·, 0), φn⟩,

σ1,n(t) = ⟨σ1(·, t,
∞∑
j=1

wj(t)φj + b(·)u(t)), φn⟩,
(2.80)
an = ⟨a, φn⟩, bn = ⟨b, φn⟩.

9

Recall that p ∈ C2([0, 1]) and q ∈ C1([0, 1]). Hence, the following
estimates on |an| and |bn| hold (see Wang et al. (2022)):

|an| ≤
M1√
λn
, 0 < |bn| ≤

M2√
λn
, n > 1, (2.81)

where M1 and M2 are some positive constants which are inde-
pendent of n.

Remark 2.7. In the particular case p(x) ≡ 1 and q(x) ≡ 0, an
and bn can be explicitly obtained by an = (−1)n+1

√
2qc
λn

, bn =

−1)n+1
√
2
λn

with λn satisfying (1.4), meaning that (2.81) hold with

1 =
√
2qc and M2 =

√
2.

Let δ > 0 be a desired decay rate and N0 ∈ N be such that
(2.16) holds. Let N ∈ N, N ≥ N0, where N , N0 are the dimensions
of observer and controller, respectively.

Construct a N-dimensional observer of the form (2.21) with
ŵn(t) satisfying

dŵn(t) = [(−λn + qc)ŵn(t) + anu(t) − bnv(t)]dt

+ ln{[
N∑
j=1

cjŵj(t) + u(t)]dt − dy(t)}, t ≥ 0,

ŵn(0) = 0, 1 ≤ n ≤ N,

(2.82)

here y(t) is given by (2.79), {cn}Nn=1 are defined in (2.23), {ln}Nn=1
re scalar observer gains.
Recall A0, B0, C0 given in (2.23), and let

0 = [a1, . . . , aN0 ]
T, B̄0 = col{1,−B0},

¯0 =
[ 0 0
a0 A0

]
∈ R(N0+1)×(N0+1).

(2.83)

hoose l1, . . . , lN0 such that L0 = [l1, . . . , lN0 ]
T satisfies the Lya-

unov inequality (2.24). Let ln = 0, n > N0. Since bn ̸= 0 (see
2.81)), the pair (Ā0, B̄0) is controllable. Let KP ∈ R1×(N0+1) satisfy

c(Ā0 + B̄0KP) + (Ā0 + B̄0KP)TPc ≤ −2δPc, (2.84)

where 0 < Pc ∈ R(N0+1)×(N0+1). We propose a (N0+1)-dimensional
controller of the form

v(t) = KPŵ
N0 (t), (2.85)

where ŵN0 (t) is defined in (2.26).
Consider the error system (2.40), (2.42). With notations (2.83),

we further denote
a1 = [aN0+1, . . . , aN ]

T, KP = [KP, 01×(2N−N0)],

F̄ =

⎡⎣ Ā0 + B̄0KP −L̃0C0 0 −L̃0C1
0 A0 + L0C0 0 L0C1

a110 − B1KP 0 A1 0

0 0 0 A1

⎤⎦,
C2 = [1, C0, C0, C1, C1] ∈ R1×(2N+1).

(2.86)

By (2.42) with ζ (t) given in (2.41), (2.82), (2.85) and the notations
in (2.27), (2.43), (2.86), we have the closed-loop system

dX(t) = [F̄X(t) + L0ζ (t)]dt +Σ(t)dW1(t)
+ L0σ2(t, ζ (t) + C2X(t))dW2(t), t ≥ 0,

dwn(t) = [(−λn + qc)wn(t) + an1X(t)
− bnKPX(t)]dt + σ1,n(t)dW1(t), n > N.

(2.87)

For stability analysis of the closed-loop system (2.87), we con-
sider the Lyapunov function (2.48). Using arguments similar to
(2.49)–(2.55), and applying Young’s inequality

ρ

∞∑
n=N+1

2wn(t)an1X(t)

≤ α3

∞∑
ρλ0.75n w2

n(t) +
ρ∥a∥2

N

α λ0.75
|1X(t)|2,

(2.88)
n=N+1 3 N+1
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here α3 > 0, we obtain

V (t) + 2δV (t) ≤ XT(t)(Ξ̂1 + Ξ̂2)X(t)
+2XT(t)[PL0 + σ̄ 2

2 C
T
2L

T
0PL0]ζ (t) + σ̄ 2

2L
T
0PL0ζ

2(t)

+

∞∑
n=N+1

2ρΥ̂nw
2
n(t) +ΣT(t)(P − ρI)Σ(t).

(2.89)

Here

Υ̂n := −λn +
α1+α3

2 λ0.75n + qc + δ +
1+α2

2 σ̄ 2
1 ,

ˆ 1 := PF̄ + F̄ TP + 2δP + ρσ̄ 2
1B

TB + σ̄ 2
2 C

T
2L

T
0PL0C2,

Ξ̂2 :=
ρ

λ0.75N+1
( ∥a∥2N
α3

1T1 +
∥b∥2N
α1

KT
PKP)

+
(1+α2)ρσ̄2

1 ∥b∥2N
α2

1T1.

(2.90)

Then with notation

θ̂n = 2 −
α1+α3
λ0.25n

−
2qc+2δ+σ̄2

1 (1+α2)
λn

, n ≥ 1,

y using (2.60) we have
∞∑

n=N+1

2ρΥ̂nw
2
n(t) ≤ −ρθ̂N+1p∗ζ

2(t) (2.91)

provided

Υ̂N+1 = −λN+1 + qc + δ +
1
2 σ̄

2
1

+
α1+α3

2 λ0.75N+1 +
α2
2 σ̄

2
1 < 0.

(2.92)

From (2.89) and (2.91) we arrive at

LV (t) + 2δV (t)
≤ ηT(t)Ξ̂NonLη(t) +ΣT(t)(P − ρI)Σ(t) ≤ 0

(2.93)

if (2.92) and

Ξ̂NonL :=

[
Ξ̂1 + Ξ̂2 PL0 + σ̄22 CT

2L
T
0PL0

∗ −ρθ̂N+1p∗ + σ̄22 LT0PL0

]
< 0,

P < ρI,
(2.94)

hold, where η(t) is given before (2.63) and Ξ̂1, Ξ̂2 are defined in
(2.90). By arguments similar to (2.66)–(2.68), feasibility of (2.92)
and (2.94) implies, by (2.93) that the solution u(t), w(x, t) to
(2.78) subject to the control law (2.82), (2.85) is mean-square L2
exponentially stable and the corresponding observer ŵ(x, t) given
by (2.21) satisfies (2.65).

For the feasibility of inequalities (2.92) and (2.94) for large
enough N and small enough σ̄1, σ̄2, we need explicit upper bound
estimates for ∥a∥2

N and ∥b∥2
N . From (1.3), (2.81) and the integral

convergence test, we arrive at

∥a∥2
N =

∞∑
n=N+1

a2n ≤
2M2

1

p∗π2N
,

∥b∥2
N =

∞∑
n=N+1

b2n ≤
2M2

2

p∗π2N
, N ≥ 1.

(2.95)

Then by arguments similar to the proof of Theorem 2.1, the
inequalities (2.92) and (2.94) are always feasible provided N is
large enough and σ̄1, σ̄2 are small enough. Summarizing, we have:

Theorem 2.2. Consider (2.78) with nonlinear noise function
σ1(x, t, z) satisfying (2.2), control law (2.85), noisy boundary mea-
surement (2.79) with σ2(t, z) satisfying (2.4), (2.37), and w(·, 0) ∈

L2(Ω, L2(0, 1)), w(·, 0) ∈ D(A1) almost surely. Let δ > 0 be
a desired decay rate, N0 ∈ N satisfy (2.16) and N ∈ N satisfy
N ≥ N0. Assume that L0 and KP are obtained from (2.24) and (2.84),
respectively. Let α1, α2, α3 > 0 be subject to (2.92). If there exist a
matrix 0 < P ∈ R(2N+1)×(2N+1) and a scalar ρ > 0 such that (2.94)
10
hold, then the solution u(t), w(x, t) to (2.78) subject to the control
law (2.82), (2.85) is mean-square L2 exponentially stable and the
corresponding observer ŵ(x, t) given by (2.21) satisfies (2.65) with
some constant M0 > 1. Moreover, the inequalities (2.92) and (2.94)
are always feasible for small enough σ̄1, σ̄2 and large enough N.

Remark 2.8. For the case of linear noise where σ1 and σ2 are
of the form (2.73), we have the closed-loop system (2.87) with
σ1,n(t) and Σ(t) given by (2.74). By constructing the Lyapunov
function (2.48) and following arguments similar to (2.49)–(2.63)
and (2.66)–(2.68), we find that if (2.92) and

Ξ̂Lin :=

[
Ξ̂∗
1 + Ξ̂2 PL0 + σ̄22 CT

2L
T
0PL0

∗ −ρp∗ θ̂N+1 + σ̄22 LT0PL0

]
< 0,

Ξ̂∗

1 = PF̄ + F̄ TP + 2δP + σ̄ 2
1 G

TPG
+ σ̄ 2

2 C
T
2L

T
0PL0C2, Ξ̂2 is given in (2.90),

(2.96)

old, the mean-square L2 exponential stability of the closed-loop
ystem can be guaranteed. Moreover, (2.92) and (2.96) are always
easible for small enough σ̄1, σ̄2 and large enough N .

. State-feedback control

In this section, we consider (2.1) subject to (2.2) and the noisy
easurement of the full state. We consider the state-feedback
ontrol for two reasons: (i). Constructive state-feedback design
as not been done yet; (ii). Our state-feedback LMI design is used
or finding the controller gains in the output-feedback case.

We consider the state-feedback control together with the two
inds of dynamic extensions studied in Sections 2.1 and 2.2,
espectively. Let δ > 0 be a desired decay rate and let N0 ∈ N
atisfy (2.16). The state-feedback controller will be constructed
y using the first N0 modes and the additional state variable u(t)
see (2.8), (2.15) for the trigonometric extension and (2.77), (2.80)
or the polynomial one).

.1. Trigonometric dynamic extension

We first consider the modal decomposition method with
rigonometric dynamic extension, which is based on the change
f variables (2.6) subject to (2.5) and leads to (2.7) with dynamic
xtension (2.8) and wn subject to (2.15).

.1.1. Nonlinear noise
For system (2.9), we consider the state-feedback controller of

he form
(t) = K̃Ty(t), y(t) = X̄(t) + σ̄2X̄(t)ς2(t),

¯ (t) = col{u(t), w1(t), . . . , wN0 (t)},
n(t) = ⟨w(·, t), φn⟩,

(3.1)

here K̃T ∈ R1×(N0+1) is the controller gain which will be obtained
rom LMIs below, y(t) is the noisy measurement, σ̄2X̄(t)ς2(t) is
he multiplicative random perturbation to X̄(t) with σ̄2 > 0
epresenting an upper bound on the noise intensity and ς2(t) =
dW2(t)

dt being a white noise process.
For well-posedness of the closed-loop system (2.9) subject

to the control input (3.1), we consider the state ξ (t) = col
{u(t), w(·, t)} and W(t) = col{W1(t),W2(t)} to obtain the follow-
ing stochastic evolution equation

dξ (t) = [Aξ (t) + f (ξ (t))]dt + g(ξ (t))dW(t), (3.2)

with A = diag{A2,−A1} where A1 is given by (1.1), A2 = qc −µ,
and

f (ξ (t)) =
[ 0
qcw(·, t)

]
+

[ 1
−ψ(·)

]
K̃T

[
u(t)

col{⟨w(·, t), φn⟩}
N0
n=1

]
,

g(ξ (t)) = [g1(ξ (t)), g2(ξ (t))],
1(ξ (t)) =

[ 0
σ (·, t, w(·, t) + ψ(·)u(t))

]
,

(ξ (t)) = σ̄
[ 1 ]

K̃
[

u(t)
N0

]
.
2 2 −ψ(·) T col{⟨w(·, t), φn⟩}n=1
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efine spaces H, V and V ′ as in Section 2.1.2 with N + 1 therein
eplaced by 1. Then A : V → V ′ is a closed linear operator with
omain D(A) dense in H. For ξ1, ξ2 ∈ V , integrating by parts and
sing the boundary conditions w(0, t) = wx(1, t) = 0, we can
heck that there exist constants α > 0, β > 0 and γ such that

⟨Aξ1, ξ2⟩V ′,V | ≤ α∥ξ1∥V∥ξ2∥V ,

Aξ1, ξ1⟩V ′,V ≤ −β∥ξ1∥
2
V + γ ∥ξ1∥

2
H.

or any ξ1, ξ2 ∈ H, from (2.2) we can check that there exist
ositive constants κ1, κ2 such that (2.33) is satisfied. Then by
how (2007, Theorem 6.7.4), for any initial value ξ0 ∈ L2(Ω;H)
nd ξ0 ∈ D(A) almost surely, (3.2) has a unique strong solution
∈ L2(Ω; C([0, T ];H))∩ L2([0, T ] ×Ω;V) such that ξ (t) ∈ D(A),
≤ t ≤ T , almost surely and is adapted to Ft , t ≥ 0. Thus, we

an present the solution as (2.13) with wn satisfying (2.15).
With notations Ã0, B̃0 defined in (2.23) and ΣN0 =

0, σ1,1(t), . . . , σ1,N0 (t)]
T, from (2.8), (2.15), and (3.1) we have the

ollowing closed-loop system:

X̄(t) = [Ã0 + B̃0K̃T]X̄(t)dt +ΣN0 (t)dW1(t)
+ σ̄2B̃0K̃TX̄(t)dW2(t), t ≥ 0,

wn(t) = [(−λn + qc)wn(t) − bnK̃TX̄(t)]dt
+ σ1,n(t)dW1(t) − σ̄2bnK̃TX̄(t)dW2(t), n > N0.

(3.3)

or the mean-square L2 exponential stability of the closed-loop
ystem (3.3), we consider the Lyapunov function

(t) = |X̄(t)|
2
P + ρ

∞∑
n=N0+1

w2
n(t)

|X̄(t)|
2
P − ρ|I0X̄(t)|

2
+ ρ∥w(·, t)∥2

L2
,

0 = [0N0×1, IN0 ].

(3.4)

sing arguments similar to (2.49)–(2.55), we have

V (t) + 2δV (t) ≤ X̄T(t)ΘNonLX̄(t)

ΣT(t)(P − ρI)Σ(t) +

∞∑
n=N0+1

2ρΥnw
2
n(t) ≤ 0 (3.5)

provided

ΥN0+1 = −λN0+1 + qc + δ +
1
2 σ̄

2
1

+
α1
2 λ

0.75
N0+1 +

α2
2 σ̄

2
1 < 0

(3.6)

nd

NonL := Θ1 +Θ2 < 0, P < ρI (3.7)

old, where

1 = P(Ã0 + B̃0K̃T) + (Ã0 + B̃0K̃T)TP
+ 2δP + ρσ̄ 2

1B
T
0B0,

Θ2 =
ρ∥b∥2N0
α1λ

0.75
N0+1

K̃ T
T K̃T + ρσ̄ 2

1 (1 +
1
α2

)∥b∥2
N0
1T
010

+ σ̄ 2
2 K̃

T
T B̃

T
0PB̃0K̃T + ρσ̄ 2

2 ∥b∥2
N0
K̃ T
T K̃T,

B0 = [B0, IN0 ], 10 = [1, 01×N0 ].

(3.8)

Then by arguments similar to (2.66)–(2.68), feasibility of (3.6) and
(3.7) implies, by (3.5) the mean-square L2 exponential stability of
the closed-loop system (3.3).

To obtain equivalent LMIs for the design of the gain K̃T, we
ultiply ΘNonL from the left and right by P−1. Then, introducing

he notations

= P−1, Y = P−1K̃ T
T = Q K̃ T

T , ρ̄ = ρ−1 (3.9)

nd applying Schur complement, we find that (3.7) hold iff

¯ I < Q (3.10)
11
and[
χT1

Y σ̄1QBT0 σ̄1Q1
T
0 σ̄2Y B̃

T
0 σ̄2Y

∗ −χT2

]
< 0,

χT1
= Ã0Q + Q ÃT

0 + B̃0Y T
+ Y B̃T

0 + 2δQ ,

χT2
= diag

{
ρ̄α1λ

0.75
N0+1

∥b∥2N0
, ρ̄I, α2ρ̄

(1+α2)∥b∥2N0
,Q , ρ̄

∥b∥2N0

}
,

(3.11)

hold. If (3.10) and (3.11) are feasible, the controller gain is ob-
tained by K̃T = Y TQ−1.

We show next that inequalities (3.6) and (3.7) are always
easible for small enough σ̄1, σ̄2 > 0 and large enough N0. Fix N̄0
such that (2.16) holds with N0 replaced by N̄0. Then fix α1, α2 > 0
and let N0 ≥ N̄0 such that (3.6) holds. We can rewrite Ã0 and B̃0
as

Ã0 = diag{Ã0u, Ã0s}, B̃0 = col{B̃0u, B̃0s},

uch that Ã0s ∈ R(N0+1−N̄0)×(N0+1−N̄0) is Hurwitz. Let K̃T be of the
form

K̃T = [K̂T, 01×(N0+1−N̄0)] ∈ R1×(N0+1). (3.12)

We have ∥K̃ T
T K̃T∥ = O(1), N0 → ∞. Then

Ã0 + B̃0K̃T =

[
Ã0u + B̃0uK̂T 0

B̃0sK̂T Ã0s

]
.

Since the pair (Ã0, B̃0) is controllable and {bn}∞n=1 ∈ ℓ2(N), we
can obtain from Katz and Fridman (2020, Theorem 3.1) that the
solution 0 < P ∈ R(N0+1)×(N0+1) to

P(Ã0 + B̃0K̃T + δI) + (Ã0 + B̃0K̃T + δI)TP = −I

satisfies ∥P∥ = O(1) uniformly in N0. Choose ρ = Nγ0 and
σ̄1 = σ̄2 = N−γ

0 , 0 < γ < 1. Substituting P , ρ and σ̄1 back into
(3.7) we arrive at

−I + N−γ

0 BT
0B0 +

Nγ0 ∥b∥2N0
K̃T
T K̃T

λ0.75N0+1α1
+ N−γ

0 ∥b∥2
N0
K̃ T
T K̃T

N−γ

0 (1 +
1
α2

)∥b∥2
N0
1T
010 + N−2γ K̃ T

T B̃
T
0PB̃0K̃T < 0,

P < Nγ0 I,

where λN0+1 satisfies (1.3) and ∥b∥2
N0

satisfies (2.71). Taking N0 →

∞ we get the feasibility. Summarizing, we have:

Proposition 3.1. Consider (2.9) with nonlinear noise function
σ1(x, t, z) satisfying (2.2), state-feedback controller (3.1), and
w(·, 0) ∈ L2(Ω, L2(0, 1)), w(·, 0) ∈ D(A1) almost surely. Let δ > 0
be a desired decay rate and N0 ∈ N satisfy (2.16). Let α1, α2 > 0
subject to (3.6) and there exist matrices 0 < Q ∈ R(N0+1)×(N0+1),

∈ R(N0+1)×1, and a scalar ρ̄ > 0 such that LMIs (3.10) and (3.11)
hold. Then the solution u(t), w(x, t) to (2.9) subject to nonlinear
noise function σ1(x, t, z) satisfying (2.2) and the control law (3.1)
with controller gain K̃T = Y TQ−1 is mean-square L2 exponentially
stable. Moreover, (3.6) and (3.7) are always feasible for small enough
σ̄1, σ̄2 and 1/N0.

3.1.2. Linear noise
For the case of linear noise with σ1 in the form (2.73), we have

the closed-loop system (3.3) with

ΣN0 (t) = σ̄1G0X̄(t), G0 =

[
01×1 01×N0
B0 IN0

]
,

σ1,n(t) = σ̄1[wn(t) + bn10X̄(t)],
(3.13)

where 10 is defined in (3.8). Consider the Lyapunov function (3.4).
Similar to the estimate (3.5), we have LV (t)+2δV (t) ≤ 0 provided
(3.6) and

P(Ã0 + B̃0K̃T) + (Ã0 + B̃0K̃T)TP + 2δP
2 T (3.14)
+σ̄1 G0PG0 +Θ2 < 0,
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old, where Θ2 is defined in (3.8). Since we do not need the
ondition P ≤ ρI , we take ρ as the tuning parameter and α1,
2 as the variables. By introducing notations

= P−1, Y = P−1K̃ T
T = Q K̃ T

T , (3.15)

nd applying Schur complement, we find that (3.14) holds iff

χ∗

T1
Y σ̄1QG

T
0 σ̄1Q1

T
0 σ̄1Q1

T
0 σ̄2Y B̃

T
0 σ̄2Y

∗ −χ∗

T2

]
< 0,

∗

T1
= Ã0Q + Q ÃT

0 + B̃0Y T
+ Y B̃T

0 + 2δQ ,

∗

T2
= diag

{
α1λ

0.75
N0+1

ρ∥b∥2N0
,Q , 1

ρ∥b∥2N0
,

α2
ρ∥b∥2N0

,Q , 1
ρ∥b∥2N0

}
.

(3.16)

If (3.6) and (3.16) are feasible, the control gain is obtained by
K̃T = Y TQ−1.

The triple (Ã+ δI, σ̄1G0, B̃0) is called stabilizable if there exists
˜T ∈ R1×(N0+1) and a (N0 +1)× (N0 +1) matrix P > 0 that satisfy
he generalized Lyapunov equation (see Damm (2004, Definition
.7.1))

(Ã0 + B̃0K̃T + δI) + (Ã0 + B̃0K̃T + δI)TP
σ̄ 2
1 G

T
0PG0 = −I.

(3.17)

ote that the controllability of (Ã0, B̃0) does not imply stabiliz-
bility of (Ã0 + δI, σ̄1G0, B̃0) for any σ̄1 (see Damm (2004, P. 24)).
ittle is known about the conditions that guarantee the existence
f P > 0 that satisfies (3.17) (Zhang & Chen, 2012). However,
f the triple (Ã0 + δI, σ̄1G0, B̃0) is stabilizable for a certain noise
ntensity σ̄1, then we claim that inequalities (3.6) and (3.14) are
easible for small enough measurement noise σ̄2. Fix α1 and α2
uch that (3.6) holds. Substituting (3.17) into (3.14), we find that
3.14) holds iff

I +
ρ∥b∥2N0

K̃T
T K̃T

α1λ
0.75
N0+1

+ ρ(1 +
1
α2

)σ̄ 2
1 ∥b∥2

N0
1T
010

σ̄ 2
2 K̃

T
T [B̃T

0PB̃0 + ρ∥b∥2
N0
I]K̃T < 0.

(3.18)

The latter clearly holds for small enough ρ and σ̄2. In addition,
increasing the dimension of the controller (3.1) does not deterio-
rate the performance of the resulting closed-loop system. Indeed,
let K̃T be obtained from the LMIs, Considering (3.1) with K̃T and
0 replaced by [K̃T, 0] and N0 + 1, we have the controller v(t)

unchanged, which implies that the resulting closed-loop system
for t ≥ 0 is still presented as (3.3). The same Lyapunov function
(3.4) leads to LMIs (3.6) and (3.16). Summarizing, we arrive at:

Proposition 3.2. Consider (2.9) with linear noise perturbation
(2.73), state-feedback controller (3.1), and w(·, 0) ∈ L2(Ω, L2(0, 1)),
w(·, 0) ∈ D(A1) almost surely. Let δ > 0 be a desired decay rate and
N0 ∈ N satisfy (2.16). Let ρ > 0 be given and there exist matrices
0 < Q ∈ R(N0+1)×(N0+1), Y ∈ R(N0+1)×1, and scalars α1, α2 > 0
such that LMIs (3.6) and (3.16) hold. Then the solution u(t), w(x, t)
to (2.9) with linear noise (2.73) subject to the control law (3.1) with
controller gain K̃T = Y TQ−1 is mean-square L2 exponentially stable.
Moreover, for given σ̄1 such that the triple (Ã0 + δI, σ̄1G0, B̃0) is
stabilizable, the LMIs (3.6) and (3.16) are always feasible for small
enough σ̄2 and ρ. In addition, if (3.6) and (3.16) hold, the increasing
dimension of the controller does not deteriorate the performance of
the resulting closed-loop system.

3.2. Polynomial dynamic extension

We proceed with the state-feedback control for system (2.78)
using polynomial dynamic extension defined by change of vari-
ables (2.76) with dynamic extension (2.77), and leading to the
ODEs for w given by (2.80).
n

12
3.2.1. Nonlinear noise
For system (2.77), (2.80), we consider the state-feedback con-

troller of the form (3.1) with K̃T replaced by K̃P. With the notations
Ā0, B̄0 given in (2.83) and ΣN0 = [0, σ1(t), . . . , σN0 (t)]

T, we have
the following closed-loop system:

dX̄(t) = [Ā0 + B̄0K̃P]X̄(t)dt +ΣN0 (t)dW1(t)
+ σ̄2B̄0K̃P X̄(t)dW2(t), t ≥ 0,

dwn(t) = [(−λn + qc)wn(t) + an10X̄(t)
− bnK̃PX̄(t) ]dt + σ1,n(t)dW1(t)
− σ̄2bnK̃P X̄(t)dW2(t), n > N0,

(3.19)

or the mean-square L2 exponential stability of (3.19), consider
he Lyapunov function (3.4). By arguments similar to (2.49)–
2.55), we have

V (t) + 2δV (t) ≤ X̄T(t)Θ̂NonLX̄(t)

ΣT(t)(P − ρI)Σ(t) +

∞∑
n=N0+1

2ρΥ̂nw
2
n(t) ≤ 0 (3.20)

rovided

ˆN0+1 = −λN0+1 + qc + δ +
1
2 σ̄

2
1

+
α1+α3

2 λ0.75N0+1 +
α2
2 σ̄

2
1 < 0

(3.21)

nd
ˆ NonL := Θ̂1 + Θ̂2 < 0, P < ρI,
ˆ 1 = P(Ā0 + B̄0K̃P) + (Ā0 + B̄0K̃P)TP

+ 2δP + ρσ̄ 2
1B

T
0B0

ˆ 2 = ρσ̄ 2
1 (1 +

1
α2

)∥b∥2
N0
1T
010

+
ρ

λ0.75N0+1
(
∥a∥2N0
α3

1T
010 +

∥b∥2N0
α1

K̃ T
P K̃P)

+ σ̄ 2
2 K̃

T
P B̄

T
0PB̄0K̃P + ρσ̄ 2

2 ∥b∥2
N0
K̃ T
P K̃P,

(3.22)

here B0 and 10 are defined in (3.8). Feasibility of (3.20) guar-
ntees the mean-square L2 exponential stability of the solution
(t), w(x, t) to (2.78) subject to the state-feedback controller (3.1)
ith K̃T replaced by K̃P. By introducing the notations (3.9) with

˜T replaced by K̃P and applying Schur complement, we find that
3.22) hold iff

¯ I < Q ,
χP1

Q1T0 Y σ̄1QBT0 σ̄1Q1
T
0 σ̄2Y B̄

T
0 σ̄2Y

∗ −χP2

]
< 0,

χP1
= Ā0Q + Q ĀT

0 + B̄0Y T
+ Y B̄T

0 + 2δQ ,

P2
= diag

{ ρ̄α3λ0.75N0+1
∥a∥2N0

,

ρ̄α1λ
0.75
N0+1

∥b∥2N0

, ρ̄I,
α2 ρ̄

(1+α2)∥b∥
2
N0

,Q , ρ̄

∥b∥2N0

}
.

(3.23)

Moreover, the inequalities (3.21) and (3.22) are always feasible
for small enough σ̄1, σ̄2 > 0 and 1/N0.

3.2.2. Linear noise
For the case of linear noise perturbation with σ1 in the form

(2.73), we have the closed-loop system (3.19) with ΣN0 (t) and
1,n(t) given in (3.13). By arguments similar to (3.20), we have
hat if (3.21) and

(Ā0 + B̄0K̃P) + (Ā0 + B̄0K̃P)TP + 2δP
σ̄ 2
1 G

T
0PG0 + Θ̂2 < 0,

(3.24)

old, where Θ̂2 is defined in (3.22), the mean-square L2 expo-
ential stability of the closed-loop system can be guaranteed. By
ntroducing notations (3.15) with K̃ replaced by K̃ and applying
T P
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Table 1
Nonlinear noise: σ̄ 1

max for state-feedback control with σ̄2 ∈ {0.1, 0.2} and
N0 ∈ {2, 4, 6, 8, 10, 12}: P-DE vs. T-DE.
N0 2 4 6 8 10 12

σ̄2 = 0.1: T-DE 2.793 3.439 3.579 3.623 3.640 3.647
σ̄2 = 0.1: P-DE 2.438 3.065 3.231 3.287 3.309 3.318
σ̄2 = 0.2: T-DE 2.146 2.452 2.483 2.490 2.492 2.493
σ̄2 = 0.2: P-DE 1.714 1.949 1.976 1.982 1.984 1.985

Table 2
Linear noise: σ̄ 1

max for state-feedback control with N0 ∈ {1, 2, 3, 4, 5, 6}.
δ N0

1 2 3 4 5 6

0.1 5.67 10.54 15.15 19.68 24.18 28.66
1 5.51 10.45 15.09 19.63 24.14 28.63
10 3.52 9.55 14.48 19.17 23.77 28.31

Schur complement, we find that (3.24) holds iff[
χ∗

P1
Y σ̄1QG

T
0 σ̄1Q1

T
0 σ̄1Q1

T
0 Q1T0 σ̄2Y B̄

T
0 σ̄2Y

∗ −χ∗

P2

]
< 0,

∗

P1
= Ā0Q + Q ĀT

0 + B̄0Y T
+ Y B̄T

0 + 2δQ ,

∗

P2
= diag

{ α1λ0.75N0+1
ρ∥b∥2N0

,Q , 1
ρ∥b∥2N0

,
α2

ρ∥b∥2N0

,

α3λ
0.75
N0+1

ρ∥a∥2N0

,Q , 1
ρ∥b∥2N0

}
.

(3.25)

If (3.21) and (3.25) are feasible, the control gain is obtained by
K̃P = Y TQ−1. For given σ̄1 > 0 such that the triple (Ā0 +

δI, σ̄1G0, B̄0) is stabilizable, the feasibility of (3.21) and (3.24) for
small enough σ̄2 and ρ follows directly from the analysis above
Proposition 3.2.

4. Numerical example

In this section, to illustrate the effectiveness of the proposed
design method, we consider a 1D rod of length 1 whose one end is
maintained at 0◦ and another end is controlled by the heat flow.
Assume that there is an exothermic reaction taking place inside
the rod. Then the temperature (denoted by z(x, t)) in the rod is
modeled as (2.1) with p(x) ≡ 1, q(x) ≡ 0 (see, e.g., Haussmann
(1978) and Wu and Zhang (2020)), where qc depends on the rate
of reaction and the stochastic term σ1(t, x, z(x, t))dW1(t) is due to
the random parameter variation of the reaction term qcz(x, t). We
consider qc = 6, which results in an unstable open-loop system
in the sense of mean-square stability for any noise intensity.

We start with the boundary state-feedback control studied in
Section 3. First, we measure the temperature at the controlled
end with the measurement noise intensity bound σ̄2 = 0.1 and
0.2, respectively. Take α1 = α3 = 1, α2 = 5 and δ = 0.001.
The LMIs (3.10), (3.11) (via trigonometric dynamic extension (T-
DE)) and (3.23) (via polynomial dynamic extension (P-DE)) were
verified, respectively, for different values of N0 to obtain σ̄ 1

max (the
maximal value of σ̄1) which preserves the feasibility. The results
are given in Table 1. From Table 1, we can see that the method
via T-DE always allows larger σ̄ 1

max than the method via P-DE.
For linear state-dependent noise with deterministic measure-

ment (i.e., σ̄2 = 0), we choose ρ = 0.1 and decay rate δ ∈

{0.1, 1, 10}. The LMIs (3.6), (3.16) (via T-DE) and (3.21), (3.25)
(via P-DE) were verified, respectively, for different values of N0 to
obtain σ̄ 1

max which preserves the feasibility. The obtained values
for T-DE and P-DE are the same and given in Table 2. Compared
with Liang and Wu (2022), the merits of our method are that (i)
we can manage with any decay rate; (ii) our controller depends
on the first N0 ‘‘relatively unstable’’ modes; (iii) our method is
robust with respect to delays.

For simulations of closed-loop system (2.9) subject to state-

feedback control (3.1) and closed-loop system (2.78) subject to
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Table 3
σ̄ 1
max for observer-based control with N0 = 2 and N ∈ {4, 6, 8, 10, 12}: T-DE vs.

P-DE.
N Controller gains (4.2) Controller gains (4.1)

T-DE P-DE T-DE P-DE

4 0.734 0.586 0.921 0.825
6 0.823 0.655 0.966 0.881
8 0.839 0.675 0.979 0.904
10 0.846 0.686 0.986 0.918
12 0.850 0.693 0.990 0.927

state-feedback control (3.1) with K̃T replaced by K̃P, choose initial
ondition w(x, 0) = x − 0.5x2, σ1(x, t, z) = σ̄1 sin z and σ̄2 = 0.1.
Clearly, (2.2) is satisfied. Take N0 = 2. From Table 1 we have
σ̄ 1
max = 2.793 for T-DE and σ̄ 1

max = 2.438 for P-DE, respectively.
he controller gains K̃T (obtained from (3.11)) and K̃P (obtained
rom (3.23)) are given by

˜T = [40.7622,−413.1891, 40.0737],
˜P = [−271.9261,−405.8638, 38.3947].

(4.1)

y using the FTCS (Forward Time Centered Space)
inite-difference scheme and Euler–Maruyama method (see
igham (2001)) with time step 0.001 and space step 0.05, the
volutions of E[u2(t) + ∥w(·, t)∥2

L2
] and a surface plot of the

olution Ew(x, t) are given in Fig. 1 for the T-DE and in Fig. 2 for
he P-DE (here and in the following simulations, E means taking
verage over 500 sample trajectories). The simulation results
onfirm our theoretical results. In simulations, stability of the
losed-loop system with the same given gains is preserved up
o σ̄ 1

max = 40 (for T-DE) and σ̄ 1
max = 37 (for P-DE), respectively,

hich may illustrate some conservatism of our method.
We next consider the boundary observer-based control. Con-

ider δ = 10, which results in N0 ≥ 1 by (2.16). Take N0 = 2. The
bserver gain L0 and controller gains are found from (2.24) and
iven by

0 = [−11.3738,−5.2525]T,
T = [81.370,−641.700, 5.522],
P = [−249.394,−383.730, 20.592].

(4.2)

We choose the controller gains obtained in the state-feedback
case (4.1), i.e., KT = K̃T, KP = K̃P. Take α1 = α3 = 0.7,
2 = 6. For the deterministic measurement (i.e., σ̄2 = 0) the LMIs
2.64) and (2.94) were verified, respectively, with δ = 10−3 and
ains (4.1), (4.2) for different values of N to obtain σ̄ 1

max which
reserves the feasibility. The results are given in Table 3. For
he noisy measurement with σ̄2 = 0.1, with the observer gain
4.2), we find that (2.37) holds. Then the LMIs (2.64) and (2.94)
ere verified, respectively, for different values of N to obtain σ̄ 1

max
hich preserves the feasibility. The results are given in Table 3.
rom Table 3, we can see that the method via T-DE always allows
arger σ̄ 1

max than the method via P-DE and the state-feedback
ontroller designs allow larger noise than the controller design
2.25) that used in Katz and Fridman (2020, 2021).

For simulations of the closed-loop system with N0 = 2, N = 4
nd σ1(t, x, z) = σ̄1 sin z, σ2(t, z) = σ̄2z, we have that (2.2)

and (2.4) are satisfied. Taking σ̄2 = 0.1, from Table 3 we have
the upper bounds of σ̄1 are 0.921 for the T-DE and 0.825 for
the P-DE, respectively. We fix the initial condition w(x, 0) =

x − 0.5x2. The evolutions of E[u2(t) + ∥w(·, t)∥2
L2

] and a surface
plot of the solution Ew(x, t) are given in Fig. 3 for the T-DE
and in Fig. 4 for the P-DE. The numerical simulations validate
the theoretical results. In simulations, stability of the closed-loop
system is preserved up to σ̄ 1

max = 28 for the T-DE and σ̄ 1
max = 27

for the P-DE, respectively, that may illustrate the conservatism of

our LMI-based conditions.
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Fig. 1. State-feedback control via T-DE: E[u2(t) + ∥w(·, t)∥2
L2

] vs. t and Ew(x, t) vs. (x, t).

Fig. 2. State-feedback control via P-DE: E[u2(t) + ∥w(·, t)∥2
L2

] vs. t and Ew(x, t) vs. (x, t).

Fig. 3. Observer-based control via T-DE: E[u2(t) + ∥w(·, t)∥2
L2

] vs. t and Ew(x, t) vs. (x, t).

Fig. 4. Observer-based control P-DE: E[u2(t) + ∥w(·, t)∥2
L2

] vs. t and Ew(x, t) vs. (x, t).
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. Conclusions

This paper presented the first LMI-based method for finite-
imensional observer-based and state-feedback boundary con-
rol for stochastic parabolic PDEs via the modal decomposition
ethod. Our Lyapunov stability analysis results in constructive
MI conditions for finding the dimension of observers. The LMIs
re accompanied by rigorous feasibility guarantees. The pre-
ented method can be extended in the future to various control
roblems for stochastic PDEs.
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