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a b s t r a c t

In this paper, we present a constructive approach to extremum seeking (ES) by using a time-delay
approach to averaging. We consider gradient-based ES of static maps in the case of one and two
variables, and we study two ES methods: the classical one and a more recent bounded ES method. By
transforming the ES dynamics into a time-delay system where the delay is the period of averaging,
we derive the practical stability conditions for the resulting time-delay system. The time-delay system
stability guarantees the stability of the original ES plant. Under assumption of some known bounds
on the extremum point, the extremum value and the Hessian, the time-delay approach provides a
quantitative calculation on the lower bound of the frequency and on the upper bound of the resulting
ultimate bound. We also give a bound on the neighborhood of the extremum point starting from
which the solution is ultimately bounded. When the extremum value is unknown, we provide, for
the first time, the asymptotic ultimate bound in terms of the frequency in the case of bounded ES.
Moreover, our explicit bound on the seeking error of ES control systems allows to select appropriate
tuning parameters (such as dither frequency, magnitude, and control gain). Two numerical examples
illustrate the efficiency of our method. Particularly, our quantitative bounds are more efficient for the
classical ES than for the bounded one. However, the latter bounds correspond to a more general case
with unknown extremum value.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Extremum Seeking (ES) is a powerful real-time optimization
ethod without requesting a knowledge of system model. Al-

hough the first ES-based power transfer mechanism might date
ack to 1922 (Tan, Moase, Manzie, Nesic, & Mareels, 2010), it
ften requires the advanced tools to understand the behavior
f ES plants from the viewpoint of system theory. The publica-
ion (Krstic & Wang, 2000) in 2000 gave the first stability analysis
f extremum seeking in a rigorous way, which shed new light on
S by making use of averaging theory.
Since the turn of the 21st century, ES has greeted its golden

ge, both in terms of the development of theory (Ariyur & Krstic,
003; Guay & Dochain, 2014; Liu & Krstic, 2012; Scheinker &
rstic, 2017) and its application in industry (Cochran, Kanso,

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Martin
Guay under the direction of Editor Miroslav Krstic.
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E. Fridman).
ttps://doi.org/10.1016/j.automatica.2021.109965
005-1098/© 2021 Elsevier Ltd. All rights reserved.
Kelly, Xiong & Krstic, 2009; Cochran, Siranosian, Ghods & Krstic,
2009; Ye & Hu, 2016). A proof that expands the feasibility of
extremum seeking from local to global stability was given in Tan,
Nesic, and Mareels (2006). The article (Durr, Stankovic, Eben-
bauer, & Johansson, 2013) introduced an interpretation of ex-
tremum seeking by using Lie bracket approximation. A Newton-
based ES algorithm, which overcomes the shortcoming that the
convergence rate depends upon the unknown Hessian, was pro-
posed by Ghaffari, Krstic, and Nesic (2012). In Adetola and Guay
(2007), Guay and Dochain (2015), Guay and Zhang (2003), the
authors solved adaptive ES control problems for nonlinear sys-
tems with uncertain parameters. The Refs. Choi, Krstic, Ariyur,
and Lee (2002), Khong, Nesic, Tan, and Manzie (2013), Poveda
and A. (2017) applied ES to discrete-time, sampled-data and
hybrid systems, respectively. In Feiling, Koga, Krstic, and Oliveira
(2018), Oliveira, Feiling, Koga, and Krstic (2020), Oliveira, Krstic,
and Tsubakino (2016), the authors addressed ES control for PDE
dynamics and time-delay systems (Zhu & Fridman, 2020; Zhu
& Krstic, 2020). The publications (Frihauf, Krstic, & Basar, 2011;
Guay, Vandermeulen, Dougherty, & McLellan, 2018; Ye & Hu,
2017; Ye, Hu, & Xu, 2020) considered distributed ES for coupled
or non-coupled networks and games.

A majority of existing literature employ the averaging theory
to prove the stability of ES systems. It is well-known that ES
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ontrol systems are practically stable provided that the dither
requency is large enough whereas the dither magnitude is suf-
iciently small. The existing methods for asymptotic averaging
uarantee the stability of the system for small enough values of
he parameter provided the averaged system is stable (Ariyur &
rstic, 2003; Khalil, 2002). However, these methods do not sug-
est quantitative upper bounds on the parameter that preserves
he stability. Recently a new constructive approach to periodic
veraging was presented in Fridman and Zhang (2020) with effi-
ient bounds on the small parameter that preserves the stability
f the original system provided the averaged system is stable.
n Fridman and Zhang (2020) backward averaging of the original
ystem is suggested, and the resulting system is presented as a
ime-delay system. Then the corresponding Lyapunov functionals
ead to linear matrix inequalities (LMI) conditions for an upper
ound on the small parameter that preserves the stability.
In this paper, motivated by Fridman and Zhang (2020), we

ropose a constructive time-delay approach for stability analysis
f gradient-based ES algorithms in the case of static maps. We
onvert the ES dynamics into a model with time-delay. The delay
ength is equal to the minimal period of the dither signals. The
tability of the resulting time-delay system guarantees the stabil-
ty of the original ES plant. We construct a Lyapunov functional
o find sufficient practical stability conditions in the form of LMIs.
hrough the solution of LMIs, we find lower bounds on the dither
requency that guarantee the practical stability. Different from the
onventional averaging method (Ariyur & Krstic, 2003; Krstic &
ang, 2000; Scheinker & Krstic, 2014, 2017) which provides a
ualitative analysis, the time-delay based method gives a quan-
itative calculation of the ultimate bound of seeking error. The
xpression of the error bound in an accurate manner is intuitional
n the performance evaluation of ES algorithms and provides
seful details for the selection of user-assignable parameters (see
emark 1).
A conference version will be presented in Zhu and Fridman

2021), where the gradient-based ES and bounded ES in the scalar
ase are considered.
The paper’s rest organization is as follows: In Sections 2 and

, we apply the time-delay approach to the gradient-based clas-
ical ES and bounded ES (as introduced in Scheinker and Krstic
2014, 2017)) in the case of static maps, respectively. Each section
onsists of two subsections: single-variable static map and two-
ariable static map. Section 4 provides examples with simulation
esults, and Section 5 summarizes some conclusions.

Before ending Section 1, we introduce the following lemma
n Jensen’s inequality (see (1)) and its extended version (see (2)),
hich will be used in later sections:

emma 1 (Fridman, 2014a, 2014b; Solomon & Fridman, 2013). For
ny n×n matrix R > 0, scalars α ≤ β , functions κ(τ ) : [α, β] → R

and Φ(τ ) : [α, β] → Rn, such that the integrations concerned are
well defined, the following hold:∫ β

α
ΦT (τ )dτR

∫ β

α
Φ(τ )dτ ≤ (β − α)

∫ β

α
ΦT (τ )RΦ(τ )dτ , (1)

and∫ β

α
κ(τ )ΦT (τ )dτR

∫ β

α
κ(τ )Φ(τ )dτ

≤
∫ β

α
|κ(τ )| dτ

∫ β

α
|κ(τ )| ΦT (τ )RΦ(τ )dτ .

(2)

Proof. see Fridman (2014a, Page 87) and Solomon and Fridman
(2013, Page 3469).

2. A time-delay approach to classical ES

For conceptional clearness, we first apply a time-delay ap-

proach to gradient-based classical ES.

2

Fig. 1. Classical ES for a single-variable static map.

2.1. Scalar systems

Consider single-variable static maps of the quadratic form as
follows (Ariyur & Krstic, 2003; Scheinker & Krstic, 2017):

y(t) = f (θ (t)) = f ∗
+

f ′′
2 (θ (t) − θ∗)2 , (3)

where y(t) ∈ R is the measurable output, θ (t) ∈ R is the scalar
input, f ∗ and θ∗ are constants, f ′′ is the gradient which is a
non-zero constant. It is seen that the quadratic map (3) has a
maximum or minimum value y(t) = f ∗ at θ (t) = θ∗ such that{

∂ f
∂θ

⏐⏐
θ=θ∗ = 0,

∂2f
∂θ2

⏐⏐
θ=θ∗ = f ′′ < 0 or > 0.

Usually, the cost function (3) is unknown, but the sign of Hessian
f ′′ is known. In the present paper, in order to derive efficienet
LMI conditions, we assume the extremum point θ∗ to be sought is
uncertain from a known interval θ∗

∈

[
θ∗, θ

∗
]
with θ

∗
−θ∗

= σ0,

hereas the extremum value f ∗ and the Hessian f
′′

are known.
As clarified in Ariyur and Krstic (2003), smooth function f (θ (t))

n many cases can be approximated locally by the quadratic
ap (3). We define the real-time estimate θ̂ (t) of θ∗ with the
stimation error

θ̃ (t) = θ̂ (t) − θ∗. (4)

The purpose of ES is to render the error towards zero. As
illustrated in Fig. 1, the gradient-based classical ES algorithm is
selected as follows (Ariyur & Krstic, 2003):

θ (t) = θ̂ (t) + a sin(ωt),
˙̂
θ (t) = k · a sin(ωt) · y(t),

= ka sin(ωt)
[
f ∗

+
f ′′
2

(
θ̂ (t) + a sin(ωt) − θ∗

)2
]

,

(5)

where θ̂ (0) ∈

[
θ∗, θ

∗
]
, a and ω are the amplitude and fre-

uency of the dither signal, respectively, k is the adaptation gain
satisfying sgn(k) = −sgn(f ′′).

From (4)–(5), the estimation error is governed by

˙̃
θ (t) = ka sin(ωt)

[
f ∗

+
f ′′
2

(
θ̃ (t) + a sin(ωt)

)2]
,

=
ka2f ′′

2 [1 − cos(2ωt)] θ̃ (t) +
kaf ′′
2 sin(ωt)θ̃2(t)

+kaf ∗ sin(ωt) +
ka3f ′′

2 sin3(ωt).

(6)

To analyze the ES control system (6), the existing literature on
ES start (and finish) with the derivation of the averaged system
(by Lie brackets, etc.) (Ariyur & Krstic, 2003; Durr et al., 2013;
Krstic & Wang, 2000) and then apply the theorem on averag-
ing (Khalil, 2002). To be specific, defining ω =

2π , the backward

ε
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veraged system of (6) (which is consistent with Assumption A1
n Fridman and Zhang (2020)) is derived as follows:

˙̃
θav(t) =

ka2f ′′
2

1
ε

∫ 0
−ε

[
1 − cos

( 4π
ε

τ
)]

dτ θ̃av(t)

+
kaf ′′
2

1
ε

∫ 0
−ε

sin
( 2π

ε
τ
)
dτ θ̃2

av(t)

+kaf ∗ 1
ε

∫ 0
−ε

sin
( 2π

ε
τ
)
dτ +

ka3f ′′
2

1
ε

∫ 0
−ε

sin3 ( 2π
ε

τ
)
dτ ,

=
ka2f ′′

2 θ̃av(t),

(7)

where we utilize the averaging∫ 0
−ε

cos
( 4π

ε
τ
)
dτ = 0,

∫ 0
−ε

sin
( 2π

ε
τ
)
dτ = 0,∫ 0

−ε
sin3 ( 2π

ε
τ
)
dτ = 0.

(8)

As clarified in Khalil (2002, Chapter 10.4), the essential problem in
the averaging method is to determine in what sense the behavior
of the averaged system (7) approximates the behavior of the
original system (6), which may not be intuitively clear.

Inspired by Fridman and Zhang (2020), we apply the time-
delay method to averaging of (6). We integrate (6) in t ≥ ε from
− ε to t . Taking into account (8), we have

1
ε

∫ t
t−ε

˙̃
θ (τ )dτ =

ka2f ′′
2ε

∫ t
t−ε

θ̃ (τ )dτ

−
ka2f ′′
2ε

∫ t
t−ε

cos
( 4π

ε
τ
)
θ̃ (τ )dτ

+
kaf ′′
2ε

∫ t
t−ε

sin
( 2π

ε
τ
)
θ̃2(τ )dτ .

(9)

In the remainder of this paper when we write x ± y we mean
+ y − y, not the set {x + y, x − y}. To handle the first term on
he right-hand side of (9), we have

ka2f ′′
2ε

∫ t
t−ε

θ̃ (τ )dτ =
ka2f ′′
2ε

∫ t
t−ε

[
θ̃ (τ ) ± θ̃ (t)

]
dτ ,

=
ka2f ′′

2 θ̃ (t) −
ka2f ′′
2ε

∫ t
t−ε

[
θ̃ (t) − θ̃ (τ )

]
dτ ,

=
ka2f ′′

2 θ̃ (t) −
ka2f ′′
2ε

∫ t
t−ε

∫ t
τ

˙̃
θ (s)dsdτ .

(10)

where we employed the equality θ̃ (t) − θ̃ (τ ) =
∫ t

τ

˙̃
θ (s)ds. If ˙̃

θ (s)
is bounded, then the double-integral term −

1
ε

∫ t
t−ε

∫ t
τ

˙̃
θ (s)dsdτ is

of the order of O(ε). Thus, as long as ε is chosen small enough,
this double-integral term is close to zero. To address the second
term on the right-hand side of (9), we employ the fact that∫ t
t−ε

cos
( 4π

ε
τ
)
dτ · θ̃ (t) = 0 that leads to

−
ka2f ′′
2ε

∫ t
t−ε

cos
( 4π

ε
τ
)
θ̃ (τ )dτ

=
ka2f ′′
2ε

∫ t
t−ε

cos
( 4π

ε
τ
) [

θ̃ (t) − θ̃ (τ )
]
dτ ,

=
ka2f ′′
2ε

∫ t
t−ε

cos
( 4π

ε
τ
) ∫ t

τ

˙̃
θ (s)dsdτ .

(11)

For the third term on the right-hand side of (9) we have
kaf ′′
2ε

∫ t
t−ε

sin
( 2π

ε
τ
)
θ̃2(τ )dτ

= −
kaf ′′
2ε

∫ t
t−ε

sin
( 2π

ε
τ
) [

θ̃2(t) − θ̃2(τ )
]
dτ ,

= −
kaf ′′

ε

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
θ̃ (s) ˙̃θ (s)dsdτ ,

(12)

since
∫ t
t−ε

sin
( 2π

ε
τ
)
dτ · θ̃2(t) = 0. We have utilized the equality

θ̃2(t) − θ̃2(τ ) = 2
∫ t

τ
θ̃ (s) ˙̃θ (s)ds. Note that the above techniques

used in (10)–(12) will be frequently employed throughout the
article.

Denoting

G(t) =
1
ε

∫ t
t−ε

(τ − t + ε) ˙̃θ (τ )dτ ,

Y1(t) =
ka2
ε

∫ t
t−ε

∫ t
τ

[
1 − cos

( 4π
ε

τ
)] ˙̃

θ (s)dsdτ ,

ka ∫ t ∫ t ( 2π )
˜ ˙̃

(13)
Y2(t) =
ε t−ε τ

sin
ε

τ θ (s)θ (s)dsdτ ,

3

and employing the relation (Fridman & Zhang, 2020)

1
ε

∫ t
t−ε

˙̃
θ (τ )dτ =

d
dt

[
θ̃ (t) − G(t)

]
, (14)

we present the closed-loop system as
d
dt

[
θ̃ (t) − G(t)

]
=

ka2f ′′
2 θ̃ (t) −

f ′′
2 Y1(t) − f ′′Y2(t),

t ≥ ε.
(15)

where ˙̃
θ (t) is defined by the right-hand side of (6).

If we substitute to (15) the right-hand side of (6), we have
a differential equation with delays. That is to say, the system
(6) has been transformed into the time-delay system (15) for
t ≥ ε, which is a perturbation of the stable averaged system
(7). Note that, if ˙̃

θ (t) and θ̃ (t) are bounded, then the integral
terms G(t), Y1(t), Y2(t) are of the order of O(ε). The plant (15) is
a kind of neutral type system that depends on the past values
of θ̃ (s), ˙̃

θ (s), s ∈ [t − ε, t]. The solution θ̃ (t) of the system (6) is
also a solution of the time-delay system (15). Hence the stability
of the time-delay system guarantees the stability of the original
delay-free ES system.

Theorem 1. Assume that the Hessian f ′′ and the extremum value
f ∗ are known, the uncertain extremum point θ∗ belongs to the
known interval

[
θ∗, θ

∗
]
. Consider the closed-loop system consisting

f the scalar plant (3) and classical ES controller (5), with the initial
condition |θ̃ (0)| ≤ σ0. Given tuning parameters k, a and q, δ, ε∗ > 0
as well as σ > σ0, let scalars P > 1 and R, γ1, γ2 > 0 satisfy the
LMIs:

Φ1 =

[
P−1 −P

∗ P+e−2δε∗R

]
> 0,

Φ2 =

⎡⎢⎢⎢⎣
(ka2f ′′+2δ)P −

(ka2 f ′′+4δ)
2 P −

f ′′
2 P −f ′′P

∗ −
4
ε∗

e−2δε∗R+2δP f ′′
2 P f ′′P

∗ ∗ −
γ1
ε∗

0

∗ ∗ ∗ −
γ2
ε∗

⎤⎥⎥⎥⎦ < 0,

Φ3 =

(
1 +

1
q

)2
Pσ 2

0

+ε∗2
[(

1 +
1
q

)
(1 + q)P +

1+q
4 P +

1
3R

]
∆2

+
ε∗

2δ

(
γ1k2a4 +

γ2
4 k2a2σ 2

+ R
)
∆2 < σ 2,

Φ4 = σ0 + ε∗∆ < σ,

(16)

here

∆ = |ka| ∆̄, ∆̄ = |f ∗| +
|f ′′|
2 (σ + |a|)2 . (17)

Then ∀ε ∈ (0, ε∗
] the solution of the closed-loop system (6) satisfies

θ̃2(t) <
(
|θ̃ (0)| + ε∆

)2
< σ 2, t ∈ [0, ε],

θ̃2(t) <

(
1 +

1
q

)2
Pe−2δ(t−ε)θ̃2(0) + ε2e−2δ(t−ε)

×

[(
1 +

1
q

)
(1 + q)P +

1+q
4 P +

1
3R

]
∆2

+
(
1 − e−2δ(t−ε)

)
×

ε
2δ

(
γ1k2a4 +

γ2
4 k2a2σ 2

+ R
)
∆2 < σ 2, t ≥ ε.

(18)

Moreover, for all ε ∈ (0, ε∗
] and all initial conditions |θ̃ (0)| ≤ σ0

the ball

Θ =

{
θ̃ ∈ R : θ̃2 < ε

2δ

(
γ1k2a4 +

γ2
4 k2a2σ 2

+ R
)
∆2

}
(19)

s exponentially attractive with a decay rate δ. ■

Proof. The proof will follow the argument of the more general
case of the vector system in Theorem 2 (See Appendix A). ■
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The LMIs (16) are always feasible for small enough ε∗. When ε∗

is sufficiently small, the feasibility of Φ3 and Φ4 are self-evident.
Next we check the feasibility for Φ1 and Φ2. Firstly, applying the
Schur complement to Φ1 > 0, we have

P − 1 −
P2

P+e−2δε∗R
≈ P − 1 −

P2
P+R > 0, ε∗

→ 0. (20)

As long as the decision variables satisfy R > P
P−1 , the above

nequality is feasible. Secondly, applying the Schur complement
o Φ2 > 0, we get[

(ka2f ′′+2δ)P −
(ka2 f ′′+4δ)

2 P

∗ −
4
ε∗

e−2δε∗R+2δP

]

+
ε∗

γ1

[
−

f ′′
2 P

f ′′
2 P

] [
−

f ′′
2 P f ′′

2 P
]
+

ε∗

γ2

[
−f ′′P

f ′′P

]
[ −f ′′P f ′′P ]

≈

[
(ka2f ′′+2δ)P −

(ka2 f ′′+4δ)
2 P

∗ −
4
ε∗

e−2δε∗R+2δP

]
< 0, ε∗

→ 0.

(21)

e further apply the Schur complement to the above LMI such
hat

(ka2f ′′
+ 2δ)P +

ε∗

4e−2δε∗R−2ε∗δP
(ka2f ′′+4δ)2

4 P2

≈ (ka2f ′′
+ 2δ)P < 0, ε∗

→ 0.
(22)

or any ka2f ′′ < −2δ, the inequality is always feasible. The similar
rgument for the LMI feasibility is applicable in later sections.
Assume now that the Hessian f ′′ is not known but its sign is

nown together with its bounds

0 < f ′′
m ≤ |f ′′

| ≤ f ′′

M , (23)

Note that in LMIs (16) Φ2 is affine in f ′′. So, for feasibility of
2 < 0, it is sufficient to verify two LMIs in the vertices:

Φ2
⏐⏐
f ′′=sgn(f ′′)f ′′m

< 0, Φ2
⏐⏐
f ′′=sgn(f ′′)f ′′M

< 0. (24)

Assume further that the extremum value f ∗ is unknown, but
t is subject to

|f ∗
| ≤ f ∗

M , (25)

here f ∗

M is known. Then from (17) we can choose

∆̄ = f ∗

M +
f ′′M
2 (σ + |a|)2 (26)

hus, we have the following corollary.

orollary 1. Under the assumption that the sign of Hessian is known,
and the Hessian f ′′ and the extremum value f ∗ are subject to the
bounds (23) and (25) respectively, let the LMIs in (16) hold where

2 is replaced by two LMIs (24) and Φ3, Φ4 are renewed with the
bound (26). Then ∀ε ∈ (0, ε∗

] the solution of the closed-loop system
(6) satisfies (18) and the attractive ball is defined by (19) with ∆̄

defined by (26). ■

Remark 1. From (19), it is observed that the ultimate bound on
the estimation error is of the order of O(

√
ε) provided that a, k

re of the order of O(1) leading to δ of the order of O(1). This is
arger than O(ε) achieved in Ariyur and Krstic (2003). However,
he time-delay approach gives a precise bound on the estimation
rror (see Eq. (18)). The ultimate bound can be reduced by de-
reasing k and awhereas the decay rate is improved by increasing
and a, so that there exists a trade-off between the ultimate
ound and the convergence rate. A lower bound on ω, which
ndicates how large the frequency of the perturbation signal may
e selected, is found through the LMIs (16). Our quantitative
nalysis via time-delay method provides more details for tun-
ng parameters than the existing results that provide qualitative
veraging-based analysis.
4

Theoretically, given any initial state θ̃ (0), we can always find
for small enough ε to let (18) hold. Therefore, the result is

emiglobal (from examples it is seen that even if theoretically we
an start with any θ̃ (0), to have a practical (not too high) bound
n ω we have to choose a small enough θ̃ (0)). ■

Remark 2. The time-delay approach proposed in the paper is
applicable to the classical gradient ES of time-varying static map,
provided that the change rate of the cost function is not fast. As
a counterpart of (3), the time-varying static map is considered as
follows (Ariyur & Krstic, 2003):

y(t) = f (θ (t)) = f ∗(t) +
f ′′
2 (θ (t) − θ∗(t))2 , (27)

where f ∗(t) and θ∗(t) are the time-varying maxima or minima.
The gradient ES is identical with (5) and the estimation error is
defined as

θ̃ (t) = θ̂ (t) − θ∗(t). (28)

The dynamics of the estimation error is

˙̃
θ (t) =

ka2f ′′
2 [1 − cos(2ωt)] θ̃ (t) +

kaf ′′
2 sin(ωt)θ̃2(t)

+kaf ∗(t) sin(ωt) +
ka3f ′′

2 sin3(ωt) − θ̇∗(t).
(29)

Comparing (29) with (6), it is seen that the differences are in two
terms: kaf ∗(t) sin(ωt) and θ̇∗(t). Setting ω =

2π
ε

and in parallel
with (9)–(12), we apply the time-delay approach to (29), and
arrive at the closed-loop system

d
dt

[
θ̃ (t) − G(t)

]
=

ka2f ′′
2 θ̃ (t) −

f ′′
2 Y1(t) − f ′′Y2(t)

−
ka
ε

∫ t
t−ε

∫ t
τ
sin

( 2π
ε

τ
)
ḟ ∗(s)dsdτ −

1
ε

∫ t
t−ε

θ̇∗(τ )dτ ,

t ≥ ε.

(30)

where G(t), Y1(t), Y2(t) have been defined in (13) and are of order
of O(ε). Assume that ḟ ∗(s) is bounded. Then, in (30), the double
integral term on ḟ ∗(s) is of order of O(ε). Thus, as long as θ̇∗(τ ) =

(ε) is small enough, which means the optimal point θ∗(τ ) is
slowly time-varying, the time-delay system (30) is still practically
stable. ■

2.2. Vector systems

In this section we apply time-delay approach to gradient-
based classical ES for vector systems. To avoid notational com-
plexity, we address the case of two variables. The method can be
extended to any n > 2 variables by using the same arguments,
but derivations are much longer. Consider multi-variable static
maps given by,

y(t) = Q (θ (t)) = Q ∗
+

1
2

(
θ (t) − θ∗

)TH(
θ (t) − θ∗

)
, (31)

here y(t) ∈ R is the measurable output, θ (t) = [θ1(t), θ2(t)]T ∈

R2 is the vector input, Q ∗ is a constant, θ∗
=

[
θ∗

1 , θ∗

2

]T is a

constant vector, H =

[
h11 h12
∗ h22

]
is the Hessian matrix which is

either positive definite or negative definite. It is observed that the
quadratic map (31) has a maximum (when H < 0) or minimum
(when H > 0) value y(t) = Q ∗ if θ (t) = θ∗. Usually, Q ∗, H ,
θ∗ are unknown, whereas the sign of the Hessian H is available.
In the present paper, we assume the extremum point θ∗ to be
sought is uncertain from a known interval where each element

satisfies θ∗

i ∈

[
θ∗

i , θ
∗

i

]
, i = 1, 2 with

∑2
i=1

(
θ

∗

i − θ∗

i

)2
= σ 2

0 , the
extremum value Q ∗ and the Hessian H are known that allows to
derive efficient LMI conditions.
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Fig. 2. Classical ES for a multi-variable static map.

The gradient-based classical ES update law shown in Fig. 2 is

iven by

θ (t) = θ̂ (t) + S(t),
˙̂
θ (t) = KM(t)y(t) = KM(t)

[
Q ∗

+
1
2

(
θ̂ (t) + S(t) − θ∗

)T
×H

(
θ̂ (t) + S(t) − θ∗

) ]
,

(32)

here θ̂i(0) ∈

[
θ∗

i , θ
∗

i

]
, i = 1, 2, and

S(t) = [a1 sin(ω1t), a2 sin(ω2t)]T ,

M(t) =

[
2
a1

sin(ω1t), 2
a2

sin(ω2t)
]T

,
(33)

are the dither signals in which ω1 ̸= ω2 are non-zero and ω1
ω2

is

rational, K =

[
k1 0
0 k2

]
is the adaptation gain matrix whose sign

is opposite to that of H . The estimation error defined in (4) is

governed by

˙̃
θ (t) = KM(t)

[
Q ∗

+
1
2

(
θ̃ (t) + S(t)

)TH(
θ̃ (t) + S(t)

)]
,

= KM(t)
[
Q ∗

+
1
2 θ̃

T (t)H θ̃ (t) + ST (t)H θ̃ (t)

+
1
2S

T (t)HS(t)
]
,

(34)

f which each element is expanded as

˙̃
θi(t) = ki

(
hiiθ̃i(t) + hijθ̃j(t)

)
−ki cos(2ωit)

(
hiiθ̃i(t) + hijθ̃j(t)

)
+

2kiaj
ai

sin(ωit) sin(ωjt)
(
hijθ̃i(t) + hjjθ̃j(t)

)
+

2ki
ai

sin(ωit)Q ∗
+

ki
ai
sin(ωit)θ̃ T (t)H θ̃ (t)

+
ki
ai
sin(ωit)ST (t)HS(t), i, j = 1, 2, i ̸= j.

(35)

First of all, defining ω1 =
2π l1

ε
, ω2 =

2π l2
ε

, l1, l2 ∈ N, l1 ̸= l2,

e apply the conventional averaging method to (35) to get its
5

ackward averaged system below,

˙̃
θ av
i (t) = ki

(
hiiθ̃

av
i (t) + hijθ̃

av
j (t)

)
−ki 1ε

∫ 0
−ε

cos
(

4π li
ε

τ

)
dτ

(
hiiθ̃

av
i (t) + hijθ̃

av
j (t)

)
+

2kiaj
ai

1
ε

∫ 0
−ε

sin
(

2π li
ε

τ

)
sin

(
2π lj
ε

τ

)
dτ

×
(
hijθ̃

av
i (t) + hjjθ̃

av
j (t)

)
+

2ki
ai

1
ε

∫ 0
−ε

sin
(

2π li
ε

τ

)
dτQ ∗

+
ki
ai

1
ε

∫ 0
−ε

sin
(

2π li
ε

τ

)
dτ θ̃ T

av(t)H θ̃av(t)

+
ki
ai

1
ε

∫ 0
−ε

sin
(

2π li
ε

τ

)
ST (τ )HS(τ )dτ ,

= ki
(
hiiθ̃

av
i (t) + hijθ̃

av
j (t)

)
, i, j = 1, 2, i ̸= j,

(36)

here we utilize the averaging∫ 0
−ε

cos
(

4π li
ε

τ

)
dτ = 0,

∫ 0
−ε

sin
(

2π li
ε

τ

)
dτ = 0,∫ 0

−ε
sin

(
2π li
ε

τ

)
sin

(
2π lj
ε

τ

)
dτ = 0,∫ 0

−ε
sin

(
2π li
ε

τ

)
ST (τ )HS(τ )dτ

=
∫ 0

−ε

[
hiia2i sin

3
(

2π li
ε

τ

)
+ 2hijaiaj sin2

(
2π li
ε

τ

)
× sin

(
2π lj
ε

τ

)
+ hjja2j sin

(
2π li
ε

τ

)
sin2

(
2π lj
ε

τ

) ]
= 0.

(37)

rouping (36) into the vector, we get the averaged vector system

˙̃
θav(t) = KH θ̃av(t). (38)

Next, we apply the time-delay method to averaging of (35).
ntegrating (35) in t ≥ ε from t − ε to t , and taking into account
37), we get

1
ε

∫ t
t−ε

˙̃
θi(τ )dτ =

ki
ε

∫ t
t−ε

(
hiiθ̃i(τ ) + hijθ̃j(τ )

)
dτ

−
ki
ε

∫ t
t−ε

cos
(

4π li
ε

τ

) (
hiiθ̃i(τ ) + hijθ̃j(τ )

)
dτ

+
2kiaj
aiε

∫ t
t−ε

sin
(

2π li
ε

τ

)
sin

(
2π lj
ε

τ

)
×

(
hijθ̃i(τ ) + hjjθ̃j(τ )

)
dτ

+
ki
aiε

∫ t
t−ε

sin
(

2π li
ε

τ

)
θ̃ T (τ )H θ̃ (τ )dτ ,

(39)

Employing the similar technique to (10), the first term on the
right-hand side of (39) is handled as

ki
ε

∫ t
t−ε

(
hiiθ̃i(τ ) + hijθ̃j(τ )

)
dτ

=
ki
ε

∫ t
t−ε

[
hiiθ̃i(τ ) + hijθ̃j(τ ) ± hiiθ̃i(t) ± hijθ̃j(t)

]
×dτ ,

= ki
(
hiiθ̃i(t) + hijθ̃j(t)

)
−

ki
ε

∫ t
t−ε

×
[
hiiθ̃i(t) + hijθ̃j(t) − hiiθ̃i(τ ) − hijθ̃j(τ )

]
dτ ,

= ki
(
hiiθ̃i(t) + hijθ̃j(t)

)
−

ki
ε

∫ t
t−ε

∫ t
τ

(
hii

˙̃
θi(s) + hij

˙̃
θj(s)

)
dsdτ .

(40)

eferring to (11), the second term on the right-hand side of (39)
s given by

−
ki
ε

∫ t
t−ε

cos
(

4π li
ε

τ

) (
hiiθ̃i(τ ) + hijθ̃j(τ )

)
dτ

=
ki
ε

∫ t
t−ε

cos
(

4π li
ε

τ

)
×

[
hiiθ̃i(t) + hijθ̃j(t) − hiiθ̃i(τ ) − hijθ̃j(τ )

]
dτ ,

=
ki

∫ t cos
(

4π li τ

) ∫ t(h ˙̃
θ (s) + h ˙̃

θ (s)
)
dsdτ .

(41)
ε t−ε ε τ ii i ij j
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imilar to (11), the third term on the right-hand side of (39) is

ddressed as

2kiaj
aiε

∫ t
t−ε

sin
(

2π li
ε

τ

)
sin

(
2π lj
ε

τ

)
×

(
hijθ̃i(τ ) + hjjθ̃j(τ )

)
dτ

= −
2kiaj
aiε

∫ t
t−ε

sin
(

2π li
ε

τ

)
sin

(
2π lj
ε

τ

)
×

[
hijθ̃i(t) + hjjθ̃j(t) − hijθ̃i(τ ) − hjjθ̃j(τ )

]
dτ ,

= −
2kiaj
aiε

∫ t
t−ε

sin
(

2π li
ε

τ

)
sin

(
2π lj
ε

τ

)
×

∫ t
τ

(
hij

˙̃
θi(s) + hjj

˙̃
θj(s)

)
dsdτ .

(42)

In parallel with (12), the fourth term on the right-hand side of

(39) is given by

ki
aiε

∫ t
t−ε

sin
(

2π li
ε

τ

)
θ̃ T (τ )H θ̃ (τ )dτ

= −
ki
aiε

∫ t
t−ε

sin
(

2π li
ε

τ

) [
θ̃ T (t)H θ̃ (t) − θ̃ T (τ )H θ̃ (τ )

]
dτ ,

= −
2ki
aiε

∫ t
t−ε

sin
(

2π li
ε

τ

) ∫ t
τ

θ̃ T (s)H ˙̃
θ (s)dsdτ .

(43)

Substituting (40)–(43) into (39), employing the same relation

with (14), we get the closed-loop vector system

d
dt

[
θ̃ (t) − G(t)

]
= KH θ̃ (t) − Y1(t) − Y2(t), (44)

where ˙̃
θ (t) is defined by the right-hand side of (34) and

G(t) =
1
ε

∫ t
t−ε

(τ − t + ε) ˙̃θ (τ )dτ ,

Y1(t) =
1
ε

∫ t
t−ε

∫ t
τ
N1(τ )H

˙̃
θ (s)dsdτ ,

Y2(t) =
1
ε

∫ t
t−ε

∫ t
τ
N2(τ )θ̃ T (s)H ˙̃

θ (s)dsdτ ,

N1(τ ) =[
k1

[
1−cos

(
4π l1

ε τ

)]
2k1a2
a1

sin
(
2π l1

ε τ

)
sin

(
2π l2

ε τ

)
2k2a1
a2

sin
(
2π l1

ε τ

)
sin

(
2π l2

ε τ

)
k2

[
1−cos

(
4π l2

ε τ

)]
]

,

N2(τ ) =

[ 2k1
a1

sin
(
2π l1

ε τ

)
2k2
a2

sin
(
2π l2

ε τ

)
]

.

(45)

t is evident that the system (44) is a perturbation of the stable

veraged system (38).

heorem 2. Assume that the Hessian H and the extremum value

Q ∗ are known, each element of the uncertain extremum point θ∗

elongs to the known interval θ∗

i ∈

[
θ∗

i , θ
∗

i

]
, i = 1, 2. Consider the

losed-loop system consisting of the vector plant (31) and classical

S controller (32), with the initial condition |θ̃ (0)| ≤ σ0. Given

tuning parameters k1, k2, a1, a2 and q, δ, ε∗ > 0 as well as σ1, σ2

atisfying σ 2
+ σ 2 > σ 2, let matrices P > I, R > 0 and scalars
1 2 0

6

λP , λR, γ1, γ2 > 0 satisfy the LMIs:

Φ1 =

[ P−I −P

∗ P+e−2δε∗R

]
> 0,

Φ2 =

⎡⎢⎢⎢⎣
HT KT P+PKH+2δP −(HK+2δI)P −P −P

∗ −
4
ε∗

e−2δε∗R+2δP P P

∗ ∗ −
γ1
ε∗

I 0

∗ ∗ ∗ −
γ2
ε∗

I

⎤⎥⎥⎥⎦
< 0,

Φ3 =

(
1 +

1
q

)2
λPσ

2
0 + ε∗2

[ (
1 +

1
q

)
(1 + q)

×λP +
1+q
4 λP +

1
3λR

]
∆2

+
ε∗

2δ

[
λR

(
4k21
a21

+
4k22
a22

)
+ γ1∆

2
1 + γ2∆

2
2

]
∆̄2 < σ 2,

P − λP I < 0, R − λRI < 0,

Φ4 = σ0 + ε∗∆ < σ,

(46)

here

σ =

√
σ 2
1 + σ 2

2 , ∆ =

√(
4k21
a21

+
4k22
a22

)
∆̄,

∆̄ = |Q ∗| +
λ(H)
2

(
σ +

√
a21 + a22

)2

,

λ(H) = max{|λmin(H)|, |λmax(H)|},

∆1 =

√(
4k21 +

4k22a
2
1

a22

)(⏐⏐⏐ h11k1a1

⏐⏐⏐ +

⏐⏐⏐ h12k2a2

⏐⏐⏐)
+

√(
4k21a

2
2

a21
+ 4k22

)(⏐⏐⏐ h12k1a1

⏐⏐⏐ +

⏐⏐⏐ h22k2a2

⏐⏐⏐) ,

∆2 =

√(
4k21
a21

+
4k22
a22

)
×

[
(σ1|h11|+σ2|h12|)|k1|

|a1|
+

(σ1|h12|+σ2|h22|)|k2|

|a2|

]
.

(47)

hen ∀ε ∈ (0, ε∗
] the solution of the closed-loop system (34) satisfies

|θ̃ (t)|
2

<
(
|θ̃ (0)| + ε∆

)2
< σ 2, t ∈ [0, ε],

|θ̃ (t)|
2

<

(
1 +

1
q

)2
λPe−2δ(t−ε)

|θ̃ (0)|
2

+ε2e−2δ(t−ε)
[ (

1 +
1
q

)
(1 + q)λP

+
1+q
4 λP +

1
3λR

]
∆2

+
(
1 − e−2δ(t−ε)

)
ε
2δ

[
λR

(
4k21
a21

+
4k22
a22

)
+γ1∆

2
1 + γ2∆

2
2

]
∆̄2 < σ 2, t ≥ ε.

(48)

oreover, for all ε ∈ (0, ε∗
] and all initial conditions |θ̃ (0)| ≤ σ0

he ball

Θ =

{
θ̃ ∈ R2

: |θ̃ |
2

< ε
2δ

[
λR

(
4k21
a21

+
4k22
a22

)
+γ1∆

2
1 + γ2∆

2
2

]
∆̄2

} (49)

s exponentially attractive with a decay rate δ. The LMIs (46) are
always feasible for small enough ε∗. ■

Proof. See Appendix A. ■

Assume now that the extremum value Q ∗ is unknown, but it
is subject to

|Q ∗
| ≤ Q ∗ , (50)
M
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Fig. 3. Bounded ES for a static map.

where Q ∗

M is known. Then from (A.10) we have

∆̄ = Q ∗

M +
λ(H)
2

(
σ +

√
a21 + a22

)2

, (51)

hus Φ3, Φ4 in (46) are renewed with the bounds (51). Moreover,
∀ε ∈ (0, ε∗

] the solution of the closed-loop system (34) satisfies
(48) and the attractive ball is defined by (49) with ∆̄ defined by
(51). If the Hessian H is not known either, the LMIs in the vertices
will be more complicated and we do not go into details due to the
page limit.

3. A time-delay approach to bounded ES

In this section we apply time-delay approach to gradient-
based bounded ES proposed in Scheinker and Krstic (2012, 2014,
2017), Scheinker and Scheinker (2016, 2018).

3.1. Scalar systems

We start with scalar systems and then extend the method to
vector systems in next section. As shown in Fig. 3, we consider
the gradient-based bounded ES as follows:

θ̇ (t) =
√

αω cos (ωt + ky(t)) , (52)

here ω is the frequency of the dither signal whose magnitude
is proportional to α, k is the controller gain (after averaging), and
y(t) is a measurable output function defined by (3) such that

y(t) = f ∗
+

f ′′
2 (θ (t) − θ∗)2 = f ∗

+
f ′′
2 θ̃2(t), (53)

ith the estimation error given by

θ̃ (t) = θ (t) − θ∗. (54)

he sign of the adaptation gain k is selected to be identical with
hat of the Hessian f ′′. Taking the time derivative of (54) along
52)–(53), we have
˙̃
θ (t) =

√
αω cos (ωt + ky(t)) ,

=
√

αω cos(ωt) cos (ky(t)) −
√

αω sin(ωt) sin (ky(t)) .
(55)

he averaged system of (55) is derived as
˙̃
θav(t) = −

kf ′′α
2 θ̃av(t) (56)

he detailed derivation to obtain (56) is given by Scheinker and
rstic (2017, Chapter 2.3) and Scheinker and Scheinker (2016).
Defining ω =

2π
ε
, we apply the time-delay method to aver-

ging of (55). Integrating (55) in t ≥ ε from t − ε to t , we get

1
ε

∫ t
t−ε

˙̃
θ (τ )dτ =

1
ε

√
2πα

ε

∫ t
t−ε

cos
( 2π

ε
τ
)
cos (ky(τ )) dτ

−
1
√

2πα
∫ t sin

( 2π τ
)
sin (ky(τ )) dτ .

(57)
ε ε t−ε ε

7

Firstly, we deal with the first term on the right-hand side of (57)
below,

1
ε

√
2πα

ε

∫ t
t−ε

cos
( 2π

ε
τ
)
cos (ky(τ )) dτ

= −
1
ε

√
2πα

ε

∫ t
t−ε

cos
( 2π

ε
τ
) [

cos (ky(t))

− cos (ky(τ ))
]
dτ ,

=
kf ′′
ε

√
2πα

ε

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
sin (ky(s)) θ̃ (s) ˙̃θ (s)dsdτ ,

=
kf ′′
ε

√
2πα

ε

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
sin (ky(s)) θ̃ (s)

×

[ √
2πα

ε
cos

( 2π
ε
s
)
cos (ky(s))

−

√
2πα

ε
sin

( 2π
ε
s
)
sin (ky(s))

]
dsdτ ,

=
kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)
sin (2ky(s))

×θ̃ (s)dsdτ −
2kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)

× sin2 (ky(s)) θ̃ (s)dsdτ .

(58)

he first term on the right-hand side of (58) is calculated as
ollows:
kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)
sin (2ky(s)) θ̃ (s)dsdτ

=
kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)
dsdτ · sin (2ky(t))

×θ̃ (t) −
kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)

×

[
sin (2ky(t)) θ̃ (t) − sin (2ky(s)) θ̃ (s)

]
dsdτ ,

=
kf ′′α
2ε

∫ t
t−ε

cos
( 2π

ε
τ
) [

sin
( 2π

ε
t
)
− sin

( 2π
ε

τ
)]

dτ

× sin (2ky(t)) θ̃ (t) −
kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)

×
∫ t
s

[
sin (2ky(ξ )) + cos (2ky(ξ )) 2kf ′′θ̃2(ξ )

]
×

˙̃
θ (ξ )dξdsdτ ,

(59)

where
∫ t
t−ε

cos
( 2π

ε
τ
) [

sin
( 2π

ε
t
)
− sin

( 2π
ε

τ
)]

dτ = 0 via averag-
ing. The second term on the right-hand side of (58) is calculated
as follows:

−
2kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)
sin2 (ky(s)) θ̃ (s)dsdτ

= −
2kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)
dsdτ · sin2 (ky(t))

×θ̃ (t) +
2kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)

×

[
sin2 (ky(t)) θ̃ (t) − sin2 (ky(s)) θ̃ (s)

]
dsdτ ,

=
kf ′′α

ε

∫ t
t−ε

cos
( 2π

ε
τ
) [

cos
( 2π

ε
t
)
− cos

( 2π
ε

τ
)]

dτ

× sin2 (ky(t)) θ̃ (t) +
2kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
)

×
∫ t

τ
sin

( 2π
ε
s
) ∫ t

s

[
sin2 (ky(ξ ))

+ sin (2ky(ξ )) kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ ,

= −
kf ′′α

ε

∫ t
t−ε

[ 1
2 +

1
2 cos

( 4π
ε

τ
)]

dτ · sin2 (ky(t)) θ̃ (t)

+
2kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
) ∫ t

s

[
sin2 (ky(ξ ))

+ sin (2ky(ξ )) kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ ,

= −
kf ′′α
2 sin2 (ky(t)) θ̃ (t) +

2kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
)

×
∫ t

τ
sin

( 2π
ε
s
) ∫ t

s

[
sin2 (ky(ξ ))

+ sin (2ky(ξ )) kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ .

(60)
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econdly, we address the second term on the right-hand side of
57) below,

−
1
ε

√
2πα

ε

∫ t
t−ε

sin
( 2π

ε
τ
)
sin (ky(τ )) dτ

=
1
ε

√
2πα

ε

∫ t
t−ε

sin
( 2π

ε
τ
) [

sin (ky(t))

− sin (ky(τ ))
]
dτ ,

=
kf ′′
ε

√
2πα

ε

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
cos (ky(s)) θ̃ (s) ˙̃θ (s)dsdτ ,

=
kf ′′
ε

√
2πα

ε

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
cos (ky(s)) θ̃ (s)

×

[ √
2πα

ε
cos

( 2π
ε
s
)
cos (ky(s))

−

√
2πα

ε
sin

( 2π
ε
s
)
sin (ky(s))

]
dsdτ ,

= −
kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)
sin (2ky(s))

×θ̃ (s)dsdτ +
2kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)

× cos2 (ky(s)) θ̃ (s)dsdτ .

(61)

he first term on the right-hand side of (61) is calculated as
ollows:

−
kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)
sin (2ky(s)) θ̃ (s)dsdτ

= −
kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)
dsdτ · sin (2ky(t))

×θ̃ (t) +
kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)

×

[
sin (2ky(t)) θ̃ (t) − sin (2ky(s)) θ̃ (s)

]
dsdτ ,

=
kf ′′α
2ε

∫ t
t−ε

sin
( 2π

ε
τ
) [

cos
( 2π

ε
t
)
− cos

( 2π
ε

τ
)]

dτ

× sin (2ky(t)) θ̃ (t) +
kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
)

×
∫ t
s

[
sin (2ky(ξ )) + cos (2ky(ξ )) 2kf ′′θ̃2(ξ )

]
×

˙̃
θ (ξ )dξdsdτ .

(62)

here
∫ t
t−ε

sin
( 2π

ε
τ
) [

cos
( 2π

ε
t
)
− cos

( 2π
ε

τ
)]

dτ = 0 via averag-
ng. The second term on the right-hand side of (61) is calculated
s follows:
2kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)
cos2 (ky(s)) θ̃ (s)dsdτ

=
2kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)
dsdτ · cos2 (ky(t))

×θ̃ (t) −
2kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
)

×

[
cos2 (ky(t)) θ̃ (t) − cos2 (ky(s)) θ̃ (s)

]
dsdτ ,

=
kf ′′α

ε

∫ t
t−ε

sin
( 2π

ε
τ
) [

sin
( 2π

ε
t
)
− sin

( 2π
ε

τ
)]

dτ

× cos2 (ky(t)) θ̃ (t) −
2kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
)

×
∫ t

τ
cos

( 2π
ε
s
) ∫ t

s

[
cos2 (ky(ξ ))

− sin (2ky(ξ )) kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ ,

= −
kf ′′α

ε

∫ t
t−ε

[ 1
2 −

1
2 cos

( 4π
ε

τ
)]

dτ · cos2 (ky(t)) θ̃ (t)

−
2kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
) ∫ t

s

[
cos2 (ky(ξ ))

− sin (2ky(ξ )) kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ ,

= −
kf ′′α
2 cos2 (ky(t)) θ̃ (t) −

2kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
)

×
∫ t

τ
cos

( 2π
ε
s
) ∫ t

s

[
cos2 (ky(ξ ))

− sin (2ky(ξ )) kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ .

(63)
8

Substituting (59)–(60) into (58) and (62)–(63) into (61), and

further substituting (58) and (61) into (57), employing the iden-

tical relation with (14), we get the closed-loop system

d
dt

[
θ̃ (t) − G(t)

]
= −

kf ′′α
2 θ̃ (t)

−
kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
) ∫ t

s

[
sin (2ky(ξ ))

+ cos (2ky(ξ )) 2kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ

+
2kf ′′πα

ε2

∫ t
t−ε

cos
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
) ∫ t

s

[
sin2 (ky(ξ ))

+ sin (2ky(ξ )) kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ

+
kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
sin

( 2π
ε
s
) ∫ t

s

[
sin (2ky(ξ ))

+ cos (2ky(ξ )) 2kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ

−
2kf ′′πα

ε2

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
cos

( 2π
ε
s
) ∫ t

s

[
cos2 (ky(ξ ))

− sin (2ky(ξ )) kf ′′θ̃2(ξ )
]

˙̃
θ (ξ )dξdsdτ

= −
kf ′′α
2 θ̃ (t) − f ′′πY1(t) − 2f ′′2πY2(t).

(64)

where ˙̃
θ (t) is defined by the right-hand side of (55) and

Y1(t) =
αk
ε2

∫ t
t−ε

∫ t
τ

∫ t
s

[
sin

( 2π
ε
(τ + s) + 2ky(ξ )

)
+ sin

( 2π
ε
(τ − s)

) ] ˙̃
θ (ξ )dξdsdτ ,

Y2(t) =
αk2

ε2

∫ t
t−ε

∫ t
τ

∫ t
s cos

( 2π
ε
(τ + s) + 2ky(ξ )

)
×θ̃2(ξ ) ˙̃θ (ξ )dξdsdτ .

(65)

The system (64) is a perturbation of the stable averaged system

(56).

Theorem 3. Assume that the Hessian f ′′ is known, whereas the

extremum value f ∗ is unknown, the extremum point θ∗ is uncertain
but belongs to the known interval θ∗

∈

[
θ∗, θ

∗
]
. Consider the

closed-loop system consisting of the scalar plant (53) and bounded

ES controller (52), with the initial condition |θ̃ (0)| ≤ σ0. Given

uning parameters q, δ, ε∗, k, α > 0 and σ > σ0, let scalars P > 1

nd R, γ1, γ2 > 0 satisfy the LMIs:

Φ1 =

[
P−1 −P

∗ P+e−2δε∗R

]
> 0,

Φ2 =

⎡⎢⎢⎢⎢⎣
−(αkf ′′−2δ)P

(
αkf ′′
2 −2δ

)
P −f ′′πP −2f ′′2πP

∗ −
4
ε∗

e−2δε∗R+2δP f ′′πP 2f ′′2πP

∗ ∗ −
γ1√
ε∗

0

∗ ∗ ∗ −
γ2√
ε∗

⎤⎥⎥⎥⎥⎦
< 0,

Φ3 =

(
1 +

1
q

)2
Pσ 2

0 + 2παε∗

[ (
1 +

1
q

)
(1 + q)

×P +
1+q
4 P +

1
3R

]
+

[
πα
δ
R +

πα3k2
√

ε∗

δ

×
(

γ1
9 +

γ2
36k

2σ 4
) ]

< σ 2,
√

∗

(66)
Φ4 = σ0 + 2παε < σ.
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hen ∀ε ∈ (0, ε∗
] the solution of the closed-loop system (55) satisfies

θ̃2(t) ≤

(
|θ̃ (0)| +

√
2παε

)2
< σ 2, t ∈ [0, ε],

θ̃2(t) <

(
1 +

1
q

)2
Pe−2δ(t−ε)θ̃2(0) + 2παεe−2δ(t−ε)

×

[(
1 +

1
q

)
(1 + q)P +

1+q
4 P +

1
3R

]
+

(
1 − e−2δ(t−ε)

) [
πα
δ
R +

πα3k2
√

ε

δ

(
γ1
9 +

γ2
36k

2σ 4
)]

< σ 2, t ≥ ε.

(67)

oreover, for all ε ∈ (0, ε∗
] and all initial conditions |θ̃ (0)| ≤ σ0

he ball

Θ =

{
θ̃ ∈ R : θ̃2 < πα

δ
R +

πα3k2
√

ε

δ

(
γ1
9 +

γ2
36k

2σ 4
)}

(68)

s exponentially attractive with a decay rate δ. ■

roof. The proof will follow the argument of the more general
ase of the vector system in Theorem 4 (See Appendix B). ■

Referring to Corollary 1 for the classical ES, let f ′′ is subject to
he bound (23). Applying Schur complement to the last column
nd row of Φ2, we see that in this column we can replace f ′′ by
′′

M , while all the other elements of Φ2 are affine in f ′′. We arrive
t

orollary 2. Under the assumption that the sign of Hessian is known,
nd the Hessian f ′′ is subject to the bound (23), let the LMIs in (66)
old with Φ2 < 0 replaced by two LMIs (24). Then ∀ε ∈ (0, ε∗

]

the solution of the closed-loop system (55) satisfies (67) and the
attractive ball is defined by (68). ■

.2. Vector systems

In this section we apply time-delay approach to gradient-
ased bounded ES for vector systems. For notational simplicity,
e handle the two dimensional system. It is possible to con-
eptually extend the result to arbitrary n-dimension system, but
omputations are much longer. As revealed in Fig. 3, we consider
he two dimensional dynamics whose element is

θ̇i(t) =
√

αiωi cos (ωit + kiy(t)) , i = 1, 2 (69)

where y(t) is a measurable output function to be optimized which
is of the form of (31) such that

y(t) = Q ∗
+

1
2 (θ (t) − θ∗)T H (θ (t) − θ∗) ,

= Q ∗
+

1
2 θ̃

T (t)H θ̃ (t),
(70)

ith

θ̃ (t) = θ (t) − θ∗. (71)

ombining (69)–(70) with (71), we get

˙̃
θi(t) =

√
αiωi cos (ωit + kiy(t)) ,

=
√

αiωi cos (ωit) cos (kiy(t))
−

√
αiωi sin (ωit) sin (kiy(t)) , i = 1, 2

(72)

rom Scheinker and Krstic (2014, 2017), grouping (72) into the
ector, the averaged vector system is given by

˙̃
θav(t) = −

kα
2 H θ̃av(t). (73)

Setting k1 = k2 = k (the sign of k is the same with the sign
f H), α1 = α2 = α, ωi =

2π li
ε

, i = 1, 2, l1 ̸= l2, l1, l2 ∈ N, we
pply the time-delay method to averaging of (72). After a lengthy
9

calculation similar to the scalar case (57)–(64), we arrive at the
closed-loop system

d
dt

[
θ̃ (t) − G(t)

]
= −

αk
2 H θ̃ (t) − πY1(t) − 2πY2(t), (74)

here ˙̃
θ (t) is defined by the right-hand side of (72) and

Y1(t) =
αk
ε2

∫ t
t−ε

∫ t
τ

∫ t
s M(τ , s, ξ )H ˙̃

θ (ξ )dξdsdτ ,

Y2(t) =
αk2

ε2

∫ t
t−ε

∫ t
τ

∫ t
s N(τ , s, ξ )H θ̃ (ξ )θ̃ T (ξ )H ˙̃

θ (ξ )

×dξdsdτ .

(75)

n which

M(τ , s, ξ ) =

[
M11(τ ,s,ξ ) M12(τ ,s,ξ )

M21(τ ,s,ξ ) M22(τ ,s,ξ )

]
,

Mii(τ , s, ξ ) = li
[
sin

( 2π
ε
li(τ + s) + 2ky(ξ )

)
+ sin

( 2π
ε
li(τ − s)

) ]
,

Mij(τ , s, ξ ) =
√
lilj

[
sin

( 2π
ε
(liτ + ljs) + 2ky(ξ )

)
+ sin

( 2π
ε
(liτ − ljs)

) ]
,

N(τ , s, ξ ) =

[
N11(τ ,s,ξ ) N12(τ ,s,ξ )

N21(τ ,s,ξ ) N22(τ ,s,ξ )

]
,

Nii(τ , s, ξ ) = li cos
( 2π

ε
li(τ + s) + 2ky(ξ )

)
,

Nij(τ , s, ξ ) =
√
lilj cos

( 2π
ε
(liτ + ljs) + 2ky(ξ )

)
,

i, j = 1, 2, i ̸= j.

(76)

It is seen that the system (74) is a perturbation of the stable
averaged system (73).

Theorem 4. Assume that the Hessian H is known, whereas the
extremum value Q ∗ is unknown, the extremum point is uncertain
but each of its elements belongs to the known interval θ∗

i ∈[
θ∗

i , θ
∗

i

]
, i = 1, 2. Consider the closed-loop system consisting of

the vector plant (70) and bounded ES controller (69), with the initial
condition |θ̃ (0)| ≤ σ0. Given tuning parameters q, δ, ε∗, k, l1, l2, α >
and σ1, σ2 satisfying σ 2

1 +σ 2
2 > σ 2

0 , let matrices P > I, R > 0 and
calars λP , λR, γ1, γ2 > 0 satisfy the LMIs:

Φ1 =

[
P−I −P

∗ P+e−2δε∗R

]
> 0,

Φ2 =

⎡⎢⎢⎢⎢⎣
−P(αkH−2δI)

(
αk
2 H−2δI

)
P −πP −2πP

∗ −
4
ε∗

e−2δε∗R+2δP πP 2πP

∗ ∗ −
γ1√
ε∗

I 0

∗ ∗ ∗ −
γ2√
ε∗

I

⎤⎥⎥⎥⎥⎦ < 0,

Φ3 =

(
1 +

1
q

)2
λPσ

2
0 + 2παε∗(l1 + l2)

[ (
1 +

1
q

)
×(1 + q)λP +

1+q
4 λP +

1
3λR

]
+

[
πα
δ

λR(l1 + l2)

+
πα3k2

√
ε∗

δ

(
γ1
9 ∆2

1 +
γ2
36k

2∆2
2

) ]
< σ 2,

P − λP I < 0, R − λRI < 0,
Φ4 = σ0 +

√
2παε∗(l1 + l2) < σ,

(77)

here

σ =

√
σ 2
1 + σ 2

2 ,

∆1 =

√
(l21 + l1l2)(|h11|

√
l1 + |h12|

√
l2)

+

√
(l1l2 + l22)(|h12|

√
l1 + |h22|

√
l2),

∆2 =
[ √

(l21 + l1l2)(|h11|σ1 + |h12|σ2)

+

√
(l1l2 + l22)(|h12|σ1 + |h22|σ2)

][ √ √ ]
(78)
× (σ1|h11| + σ2|h12|) l1 + (σ1|h12| + σ2|h22|) l2 .
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hen ∀ε ∈ (0, ε∗
] the solution of the closed-loop system (72) satisfies

|θ̃ (t)|
2

≤
(
|θ̃ (0)| +

√
2παε(l1 + l2)

)2
< σ 2, t ∈ [0, ε],

|θ̃ (t)|
2

<

(
1 +

1
q

)2
λPe−2δ(t−ε)

|θ̃ (0)|
2

+2παε(l1 + l2)e−2δ(t−ε)
[ (

1 +
1
q

)
(1 + q)λP

+
1+q
4 λP +

1
3λR

]
+

(
1 − e−2δ(t−ε)

) [
πα
δ

λR(l1 + l2)

+
πα3k2

√
ε

δ

(
γ1
9 ∆2

1 +
γ2
36k

2∆2
2

) ]
< σ 2, t ≥ ε.

(79)

oreover, for all ε ∈ (0, ε∗
] and all initial conditions |θ̃ (0)| ≤ σ0

he ball

Θ =

{
θ̃ ∈ R2

: |θ̃ |
2

< πα
δ

λR(l1 + l2)

+
πα3k2

√
ε

δ

(
γ1
9 ∆2

1 +
γ2
36k

2∆2
2

) } (80)

s exponentially attractive with a decay rate δ. ■

roof. See Appendix B. ■

emark 3. Comparing the classical ES (5) and (32) with the
ounded ES (52) and (69), the difference is that the output func-
ion being optimized enters the classical ES control system in an
ffine way, whereas the output function in the update law of
ounded ES is confined to the argument of a cosine term. That
s to say, the dynamics of classical ES depends upon the output,
hereas the update rate of bounded ES is independent of the
utput function. Accordingly, the ultimate bound of the seeking
rror for the classical ES (19) and (49) is related to the bound of
he output, whereas the ultimate bound of the seeking error for
he bounded ES (68) and (80) has no such relation with the output
ound. Furthermore, the ultimate bound of classical ES in (19)
ainly depends upon ε, whereas the ultimate bound of bounded
S in (68) is based on two parameters α and ε. A possible choice
s α = O(ε), k = O(ε−

1
2 ), which leads to δ = O(ε

1
2 ) and the

ltimate bound is of the order of O(
√

ε). If the ultimate bound of
wo approaches are of the same order of O(

√
ε), the convergence

rate of the bounded ES is less than that of the classical ES (δ =

(1)). For the bounded ES, the detailed qualitative analysis of the
ltimate bound is not given in Scheinker and Krstic (2014). ■

. Examples

.1. Scalar systems

Given the scalar map J(θ (t)) = θ2(t) + f ∗, we consider the
classical ES

θ (t) = θ̂ (t) + a sin(ωt),
˙̂
θ (t) = ka sin(ωt)J(θ (t)),

(81)

with k = −1.3, a = 0.1, as well as bounded ES

θ̇ (t) =
√

αω cos(ωt + kJ(θ (t))), (82)

with α = 0.0001, k = 11. The LMI solution is shown in Table 1
(where ES refers to classical ES and BES refers to bounded ES).
For the map J(θ (t)) =

f ′′
2 θ2(t) + f ∗, referring to (23) and (25),

if f ′′ and f ∗ are unknown but satisfy 0 < f ′′
m < |f ′′

| < f ′′

M and
f ∗

| < f ∗

M , where f ′′
m = 1.9, f ′′

M = 2.1 and f ∗

M = 0.1 are known for
lassical ES or f ∗

M = ∞ for bounded ES, the LMI solutions for the
lassical and bounded ES are shown in Table 2.
10
able 1
calar systems.

ε ω =
2π
ε

σ0 σ Ultimate Bound

ES (f ∗
= 0) 0.22 28.55 1e−2 1 0.98

ES (f ∗
= 0) 0.021 299.05 1

√
2 0.68

BES (∀f ∗) 0.043 146.05 1e−2 1 0.99
BES (∀f ∗) 0.013 483.08 1 2 1.52

Table 2
Scalar systems with uncertainties.

ε ω =
2π
ε

σ0 σ Ultimate Bound

ES (f ∗

M = 0.1) 0.17 36.94 1e−2 1 0.98
ES (f ∗

M = 0.1) 0.017 369.41 1
√
2 0.67

BES (∀f ∗

M ) 0.024 261.67 1e−2 1 0.99
BES (∀f ∗

M ) 0.007 897.14 1 2 1.52

Table 3
Vector systems.

ε ω =
2π
ε

σ0 σ Ultimate Bound

ES (Q ∗
= 0) 3.33 1.89 1e−3

√
2 1.26

ES (Q ∗
= 0) 0.36 17.44

√
2 2 0.94

BES (∀Q ∗) 0.0004 15700 1e−3
√
2 1.41

BES (∀Q ∗) 0.0001 62800
√
2 2

√
2 2.05

Fig. 4. Classical ES for GPS-denied 2D vehicle control.

4.2. Vector systems: GPS-denied 2D vehicle control

In this section we consider an autonomous vehicle in an en-
vironment without GPS orientation (Scheinker & Krstic, 2014,
2017). The goal is to reach the location of the stationary min-
imum of a measurable function J (x(t), y(t)) = x2(t) + y2(t) +

∗. In Scheinker and Krstic (2014, 2017), the bounded ES is
onsidered. We employ the classical ES

x(t) = x̂(t) + a1 cos(ω1t), y(t) = ŷ(t) + a2 sin(ω2t)
˙̂x(t) =

2k1
a1

cos(ω1t)J(t), ˙̂y(t) =
2k2
a2

sin(ω2t)J(t),
(83)

with k1 = k2 = −0.001, a1 = a2 = 2, ω2 = 2ω1, as well as
bounded ES

ẋ(t) =
√

α1ω1 cos(ω1t + k1J(t)),
ẏ(t) =

√
α2ω2 sin(ω2t + k2J(t)),

(84)

ith α1 = α2 = 0.0001, k1 = k2 = 11, ω2 = 2ω1. The LMI
olution is shown in Table 3.
For the numerical simulations, under the initial condition

(0) = 1, y(0) = −1 and ε = 0.36, the results of two methods for
Q ∗

= 0 are shown in Figs. 4 and 5, respectively.
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Fig. 5. Bounded ES for GPS-denied 2D vehicle control.

5. Conclusion

This article offers a constructive method based on time-delay
pproach to averaging to prove the stability of ES control systems.
he resulting time-delay method allows to derive a precise com-
utation on the bound of the seeking error, through which users
re able to obtain detailed guidelines to choose tuning parameters
ike the frequency and amplitude of perturbation signals, as well
s the adaptation gains.
The time-delay approach perhaps opens a gate for extremum

eeking where the static maps have sampled-data and delayed
easurements. Other possible topics are ES for dynamic maps
nd time-varying systems via the time-delay approach to aver-
ging.
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ppendix A. Proof of Theorem 2

For the analysis of the plant (44), we choose

VP (t) =
[
θ̃ (t) − G(t)

]T
P

[
θ̃ (t) − G(t)

]
. (A.1)

Thus we have

V̇P (t) + 2δVP (t) = 2
[
θ̃ (t) − G(t)

]T
P

×
[
KH θ̃ (t) − Y1(t) − Y2(t)

]
+2δ

[
θ̃ (t) − G(t)

]T
P

[
θ̃ (t) − G(t)

]
,

= 2θ̃ T (t)P (KH + δI) θ̃ (t) + 2δGT (t)PG(t)

−2θ̃ T (t) (HK + 2δI) PG(t)

−2θ̃ T (t)PY1(t) − 2θ̃ T (t)PY2(t)
T T

(A.2)
+2G (t)PY1(t) + 2G (t)PY2(t). (

11
To compensate G(t) in (A.2), we utilize

VR(t) =
1
ε

∫ t
t−ε

e−2δ(t−τ )(τ − t + ε)2 ˙̃
θ T (τ )R ˙̃

θ (τ )dτ . (A.3)

hen we get

V̇R(t) + 2δVR(t) = ε
˙̃
θ T (t)R ˙̃

θ (t)

−
2
ε

∫ t
t−ε

e−2δ(t−τ )(τ − t + ε) ˙̃θ T (τ )R ˙̃
θ (τ )dτ ,

≤ ε
˙̃
θ T (t)R ˙̃

θ (t) −
2
ε
e−2δε

∫ t
t−ε

(τ − t + ε) ˙̃θ T (τ )R ˙̃
θ (τ )dτ ,

≤ ε
˙̃
θ T (t)R ˙̃

θ (t) −
4
ε
e−2δεGT (t)RG(t).

(A.4)

in which the extended Jensen’s inequality (2) is employed

2GT (t)RG(t)

=
2
ε2

∫ t
t−ε

(τ − t + ε) ˙̃θ T (τ )dτR
∫ t
t−ε

(τ − t + ε) ˙̃θ (τ )dτ ,

≤
2
ε2

∫ t
t−ε

(τ − t + ε)dτ ·
∫ t
t−ε

(τ − t + ε) ˙̃θ T (τ )R ˙̃
θ (τ )dτ ,

=
∫ t
t−ε

(τ − t + ε) ˙̃θ T (τ )R ˙̃
θ (τ )dτ .

(A.5)

Define the Lyapunov candidate as

V (t) = VP (t) + VR(t). (A.6)

With Jensen’s inequality (1), we have

V (t) =
[
θ̃ (t) − G(t)

]T
P

[
θ̃ (t) − G(t)

]
+

1
ε

∫ t
t−ε

e−2δ(t−τ )(τ − t + ε)2 ˙̃
θ T (τ )R ˙̃

θ (τ )dτ

≥ θ̃ T (t)P θ̃ (t) + GT (t)PG(t) − 2θ̃ T (t)PG(t)

+e−2δε 1
ε2

∫ t
t−ε

(τ − t + ε) ˙̃θ T (τ )dτR

×
∫ t
t−ε

(τ − t + ε) ˙̃θ (τ )dτ

=

[
θ̃ (t)

G(t)

]T [
P −P

∗ P+e−2δεR

] [
θ̃ (t)

G(t)

]
≥ |θ̃ (t)|

2
,

(A.7)

here the above inequality holds due to Φ1 > 0 in (46).
Taking into account (A.2) and (A.4), we get

V̇ (t) + 2δV (t) −
γ1
ε
Y 2
1 (t) −

γ1
ε
Y 2
2 (t)

≤ ξ T (t)Φ2ξ (t) + ε
˙̃
θ T (t)R ˙̃

θ (t),
(A.8)

where ξ (t) =
[
θ̃ (t),G(t), Y1(t), Y2(t)

]T
and Φ2 is defined in (46).

When the overall bound⏐⏐θ̃ (t)⏐⏐ =

√
θ̃2
1 (t) + θ̃2

2 (t) <

√
σ 2
1 + σ 2

2 = σ , ∀t ≥ 0 (A.9)

s supposed, Eqs. (31)–(34) suggest

|y(t)| =

⏐⏐⏐Q ∗
+

1
2

(
θ̃ (t) + S(t)

)T
H

(
θ̃ (t) + S(t)

) ⏐⏐⏐,
≤ |Q ∗| +

λ(H)
2

(
θ̃ (t) + S(t)

)2
,

< |Q ∗| +
λ(H)
2

(
σ +

√
a21 + a22

)2

= ∆̄, t ≥ 0⏐⏐⏐ ˙̃θ (t)⏐⏐⏐ =

⏐⏐⏐KM(t)y(t)
⏐⏐⏐ <

√
4k21
a21

+
4k22
a22

∆̄ = ∆,

(A.10)

here λ(H) = max{|λmin(H)|, |λmax(H)|} and⏐⏐θ̃ (t)⏐⏐ =

⏐⏐⏐θ̃ (0) +
∫ t
0

˙̃
θ (s)ds

⏐⏐⏐ <
⏐⏐θ̃ (0)⏐⏐ + ε∆, t ∈ [0, ε],

|θ̃ (ε)|
2

<

(
1 +

1
q

)
|θ̃ (0)|

2
+ (1 + q)ε2∆2.

(A.11)

he first inequality in (48) follows from (A.11) since Φ4 < σ in
46).
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From (A.1), we have

VP (t) =

[
θ̃ (t) −

1
ε

∫ t
t−ε

(τ − t + ε) ˙̃θ (τ )dτ
]T

P

×

[
θ̃ (t) −

1
ε

∫ t
t−ε

(τ − t + ε) ˙̃θ (τ )dτ
]
,

≤ λP

[
θ̃ (t) −

1
ε

∫ t
t−ε

(τ − t + ε) ˙̃θ (τ )dτ
]2

,

<

(
1 +

1
q

)
λP |θ̃ (t)|

2
+

(1+q)λP
ε2

×

[∫ t
t−ε

(τ − t + ε)dτ
]2

· ∆2,

=

(
1 +

1
q

)
λP |θ̃ (t)|

2
+

ε2(1+q)
4 λP∆

2.

(A.12)

From (A.3), we get

VR(t) =
1
ε

∫ t
t−ε

e−2δ(t−τ )(τ − t + ε)2 ˙̃
θ T (τ )R ˙̃

θ (τ )dτ ,

<
λR
ε

∫ t
t−ε

(τ − t + ε)2dτ · ∆2
=

ε2

3 λR∆
2.

(A.13)

From (45) we have

|Y1(t)| =

⏐⏐⏐ 1ε ∫ t
t−ε

∫ t
τ
N1(τ )H

˙̃
θ (s)dsdτ

⏐⏐⏐ ,
≤

1
ε

∫ t
t−ε

∫ t
τ

⏐⏐⏐N1(τ )H
˙̃
θ (s)

⏐⏐⏐ dsdτ ,

=
1
ε

∫ t
t−ε

∫ t
τ

⏐⏐⏐[ N1,11(τ ) N1,12(τ )

N1,21(τ ) N1,22(τ )

]
H ˙̃

θ (s)
⏐⏐⏐ dsdτ ,

=
1
ε

∫ t
t−ε

∫ t
τ

⏐⏐⏐([ N1,11(τ )

N1,21(τ )

]
[1, 0] +

[ N1,12(τ )

N1,22(τ )

]
[0, 1]

)
H ˙̃

θ (s)
⏐⏐⏐

×dsdτ ,

≤
1
ε

∫ t
t−ε

∫ t
τ

( √(
4k21 +

4k22a
2
1

a22

) ⏐⏐⏐h11
˙̃
θ1(s) + h12

˙̃
θ2(s)

⏐⏐⏐
+

√(
4k21a

2
2

a21
+ 4k22

) ⏐⏐⏐h12
˙̃
θ1(s) + h22

˙̃
θ2(s)

⏐⏐⏐ )
dsdτ ,

< ε∆1∆̄,

(A.14)

|Y2(t)| =

⏐⏐⏐ 1ε ∫ t
t−ε

∫ t
τ
N2(τ )θ̃ T (s)H ˙̃

θ (s)
⏐⏐⏐ dsdτ ,

≤
1
ε

∫ t
t−ε

∫ t
τ

⏐⏐⏐N2(τ )θ̃ T (s)H ˙̃
θ (s)

⏐⏐⏐ dsdτ ,

≤
1
ε

∫ t
t−ε

∫ t
τ

⏐⏐⏐[ N2,1(τ )

N2,2(τ )

]⏐⏐⏐ ⏐⏐⏐θ̃ T (s)H ˙̃
θ (s)

⏐⏐⏐ dsdτ ,

≤
1
ε

∫ t
t−ε

∫ t
τ

√(
4k21
a21

+
4k22
a22

)⏐⏐⏐ (θ̃1(s)h11 + θ̃2(s)h12
) ˙̃
θ1(s)

+
(
θ̃1(s)h12 + θ̃2(s)h22

) ˙̃
θ2(s)

⏐⏐⏐dsdτ < ε∆2∆̄.

(A.15)

Via (A.8), (A.14)–(A.15), and Φ2 < 0 in (46), we derive

V̇ (t) + 2δV (t) ≤ ε
˙̃
θ T (t)R ˙̃

θ (t) +
γ1
ε
Y 2
1 (t) +

γ2
ε
Y 2
2 (t),

< ε

[
λR

(
4k21
a21

+
4k22
a22

)
+ γ1∆

2
1 + γ2∆

2
2

]
∆̄2.

(A.16)

Applying the comparison principle to (A.16), we have

V (t) < V (ε)e−2δ(t−ε)
+

(
1 − e−2δ(t−ε)

)
ε
2δ

×

[
λR

(
4k21
a21

+
4k22
a22

)
+ γ1∆

2
1 + γ2∆

2
2

]
∆̄2, t ≥ ε

(A.17)

mploying V (t) ≥ |θ̃ (t)|
2
that follows from (A.7) and V (ε) <

1 +
1
q

)2
λP |θ̃ (0)|

2
+ε2

[(
1+

1
q

)
(1+q)λP +

1+q
4 λP +

1
3λR

]
∆2 that

ollows from (A.11)–(A.13), we arrive at the second inequality in
48) due to Φ < σ 2 in (46).
3
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Finally, we prove that the conditions (46) guarantee the overall
bound (A.9). Consider first t ∈ [0, ε]. Since |θ̃ (0)| ≤ σ0 < σ

and θ̃ (t) is continuous in time, (A.9) holds for small enough t >

0. We assume by contradiction that for some t ∈ (0, ε] the
formula (A.9) does not hold. Namely, there exists the smallest
time instance t∗ ∈ (0, ε] such that |θ̃ (t∗)| = σ and |θ̃ (t)| < σ

when t ∈ [0, t∗). Thus |θ̃ (t)| ≤ σ holds for all t ∈ [0, t∗] and
this leads to the first inequality of (A.11) in its non-strict version
such that |θ̃ (t)| ≤ |θ̃ (0)| + ε∆ ≤ σ0 + ε∗∆ for 0 ≤ t ≤ t∗ ≤

ε. Furthermore, the feasibility of Φ4 < σ in (46) ensures that
|θ̃ (t∗)| ≤ σ0 + ε∗∆ < σ . This contradicts to the definition of t∗

such that |θ̃ (t∗)| = σ . Hence |θ̃ (t)|
2

< σ 2 for t ∈ [0, ε]. Next,
we prove (A.9) for t ≥ ε. Note that since (A.11) is strict and
holds for t = ε, it holds also for some t > ε due to continuity
of θ̃ (t). We assume by contradiction that for some t > ε the
formula (A.11) does not hold. In other words, there exists the
smallest time instance t∗ ∈ (ε, ∞) such that |θ̃ (t∗)|

2
= σ 2 and

|θ̃ (t)|
2

< σ 2 when t ∈ [ε, t∗). Thus |θ̃ (t)|
2

≤ σ 2 holds for all
t ∈ [ε, t∗] and this leads to (A.17) in its non-strict version V (t) ≤

V (ε)e−2δ(t−ε)
+

(
1 − e−2δ(t−ε)

)
ε
2δ

(
γ1k2a4 +

γ2
4 k2a2σ 2

+ R
)
∆2, for

≥ ε. Moreover, the feasibility of Φ3 < σ 2 in (46) ensures
θ̃ (t)|

2
< σ 2 in the second equality of (48) for any t ∈ [ε, t∗].

his contradicts to the definition of t∗ such that |θ̃ (t∗)|
2

= σ 2.
Hence |θ̃ (t)|

2
≤ σ 2 for t ≥ ε. Then Theorem 2 is proved.

Appendix B. Proof of Theorem 4

The LKF are identical with (A.1), (A.3), (A.6). From (69), we get

⏐⏐⏐ ˙̃θ (t)⏐⏐⏐ =

[
2παl1

ε
cos2

(
2π l1

ε
t + ky(t)

)
+

2παl2
ε

cos2
(

2π l2
ε

t + ky(t)
) ]

1
2 ,

≤

√
2πα

ε
(l1 + l2), ∀t ≥ 0,⏐⏐θ̃ (t)⏐⏐ =

⏐⏐⏐θ̃ (0) +
∫ t
0

˙̃
θ (s)ds

⏐⏐⏐ ≤
⏐⏐θ̃ (0)⏐⏐ +

√
2παε(l1 + l2),

t ∈ [0, ε],

|θ̃ (ε)|
2

≤

(
1 +

1
q

)
|θ̃ (0)|

2
+ (1 + q)2παε(l1 + l2).

(B.1)

e assume the overall bound

|θ̃ (t)| =

√
θ̃2
1 (t) + θ̃2

2 (t) <

√
σ 2
1 + σ 2

2 = σ , ∀t ≥ 0. (B.2)

rom (75), we have

|Y1(t)| =

⏐⏐⏐ αk
ε2

∫ t
t−ε

∫ t
τ

∫ t
s M(τ , s, ξ )H ˙̃

θ (ξ )dξdsdτ
⏐⏐⏐ ,

≤
|αk|
ε2

∫ t
t−ε

∫ t
τ

∫ t
s

⏐⏐⏐M(τ , s, ξ )H ˙̃
θ (ξ )

⏐⏐⏐ dξdsdτ ,

=
|αk|
ε2

∫ t
t−ε

∫ t
τ

∫ t
s

⏐⏐⏐ ( [
M11(τ ,s,ξ )

M21(τ ,s,ξ )

]
[1, 0]

+

[
M12(τ ,s,ξ )

M22(τ ,s,ξ )

]
[0, 1]

)
H ˙̃

θ (ξ )
⏐⏐⏐dξdsdτ ,

≤
|αk|
3

[ √
(l21 + l1l2)(|h11|

√
l1 + |h12|

√
l2)

+

√
(l l + l2)(|h |

√
l + |h |

√
l )

] √
2παε

(B.3)
1 2 2 12 1 22 2
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|Y2(t)| =

⏐⏐⏐ αk2

ε2

∫ t
t−ε

∫ t
τ

∫ t
s N(τ , s, ξ )H θ̃ (ξ )

×θ̃ T (ξ )H ˙̃
θ (ξ )dξdsdτ

⏐⏐⏐,
≤

|α|k2

ε2

∫ t
t−ε

∫ t
τ

∫ t
s

⏐⏐⏐N(τ , s, ξ )H θ̃ (ξ )θ̃ T (ξ )H ˙̃
θ (ξ )

⏐⏐⏐ dξdsdτ ,

=
|α|k2

ε2

∫ t
t−ε

∫ t
τ

∫ t
s

⏐⏐⏐ ( [
N11(τ ,s,ξ )

N21(τ ,s,ξ )

]
[1, 0]

+

[
N12(τ ,s,ξ )

N22(τ ,s,ξ )

]
[0, 1]

)
H θ̃ (ξ )θ̃ T (ξ )H ˙̃

θ (ξ )
⏐⏐⏐dξdsdτ ,

<
|α|k2
6

[ √
(l21 + l1l2)(|h11|σ1 + |h12|σ2)

+

√
(l1l2 + l22)(|h12|σ1 + |h22|σ2)

]
×

[
(σ1|h11| + σ2|h12|)

√
l1

+ (σ1|h12| + σ2|h22|)
√
l2

] √
2παε.

(B.4)

he remaining argument is referred to the proof of Theorem 2.
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