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a b s t r a c t

Recently, finite-dimensional observer-based controllers were introduced for 1D parabolic PDEs via the
modal decomposition method. In the present paper we suggest a sampled-data implementation of a
finite-dimensional boundary controller for 1D parabolic PDEs under discrete-time point measurement.
We consider the heat equation under boundary actuation and point (either in-domain or boundary)
measurement. In order to manage with point measurement, we employ dynamic extension and
prove H1-stability. Due to dynamic extension, which leads to proportional–integral controller, we
suggest a sampled-data implementation of the controller via a generalized hold device. We take
into account the quantization effect that leads to a disturbed closed-loop system and input-to-state
stability (ISS) analysis. We use Wirtinger-based piecewise continuous in time Lyapunov functionals
which compensate sampling in the finite-dimensional state and lead to the simplest efficient stability
conditions for ODEs. To compensate sampling in the infinite-dimensional tail, we introduce a novel
form of Halanay’s inequality for ISS, which is appropriate for functions with jump discontinuities that
do not grow in the jumps. Numerical examples demonstrate the efficiency of our method.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Finite-dimensional observer-based control for PDEs is attrac-
ive for applications and theoretically challenging. Such
ontrollers for parabolic systems were designed by the modal
ecomposition approach in Balas (1988), Christofides (2001), Cur-
ain (1982) and Harkort and Deutscher (2011). The latter results
ere mostly restricted to bounded control and observation oper-
tors, whereas efficient bounds on the observer and controller
imensions were missing. In the recent paper (Katz & Frid-
an, 2020a), the first constructive LMI-based method for finite-
imensional observer-based controller for the 1D heat equation
as suggested, where the controller dimension and the resulting
xponential decay rate were found from simple LMI conditions.
obustness of finite-dimensional controllers with respect to input
nd output delays was studied in Katz and Fridman (2021b).
he results of Katz and Fridman (2020a) and Katz and Fridman
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form by Associate Editor Nikolaos Bekiaris-Liberis under the direction of Editor
Miroslav Krstic.
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(2021b) are confined to cases where at least one of the observa-
tion or control operators is bounded. Sampled-data and delayed
boundary control of the 1D heat equation under boundary mea-
surement was studied in Katz, Fridman and Selivanov (2021) by
using an infinite-dimensional PDE observer. Finite-dimensional
boundary control of a linear 1D Kuramoto–Sivashinsky equation
(KSE) under point measurement was studied in Katz and Frid-
man (2021a) and Katz and Fridman (2020b), where a dynamic
extension was employed.

Sampled-data finite-dimensional controllers for parabolic
PDEs, implemented by zero-order hold devices, were suggested in
Bar Am and Fridman (2014), Fridman and Blighovsky (2012) and
Kang and Fridman (2018) for distributed static output-feedback
control, in Karafyllis and Krstic (2017) and Karafyllis and Krstic
(2018) for boundary state-feedback and in Katz and Fridman
(2021b) and Katz, Fridman et al. (2021) for observer-based con-
trol. Event-triggered sampled-data control of PDEs has been stud-
ied in Espitia (2020), Espitia, Karafyllis, and Krstic (2021) and
Selivanov and Fridman (2016a). Recently, input-to-state stability
(ISS) of PDEs has regained much interest. ISS for the 1D heat
equation with boundary disturbance was studied in Karafyl-
lis and Krstic (2016). State-feedback with ISS analysis of di-
agonal boundary control systems was considered in Lhachemi,
Shorten, and Prieur (2020). Non-coercive Lyapunov function-
als for ISS of infinite-dimensional systems were studied in Ja-
cob, Mironchenko, Partington, and Wirth (2019). A survey of ISS
results can be found in Mironchenko and Prieur (2020).
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For sampled-data and delayed control of parabolic PDEs, com-
binations of Lyapunov functionals with Halanay’s inequality ap-
pear to be an efficient tool. This combination was introduced for
stabilization via the spatial decomposition method under point
measurements in Fridman and Blighovsky (2012) and via modal
decomposition in Katz and Fridman (2021b). This tool is also use-
ful for ODEs with delays: for sampled-data control of nonlinear
time-delays systems (Pepe & Fridman, 2017), decentralized de-
layed control of coupled ODE systems with delayed coupling (Zhu
& Fridman, 2020) and distributed observers with time-varying
delays (Silm et al., 2021).

Wirtinger-based Lyapunov functionals that are piecewise con-
tinuous in time lead to the simplest efficient LMI conditions
for sampled-data control of ODEs (Liu & Fridman, 2012; Seli-
vanov & Fridman, 2016b). For combination of such functionals
with Halanay’s inequality, an extension of Halanay’s inequality
to piecewise continuous in time functions is needed. Note that
existing Halanay’s inequalities for ISS are confined to continuous
functions (Hien, Phat, & Trinh, 2015; Wen, Yu, & Wang, 2008).
Moreover, the corresponding ISS bound has an additive constant.
Therefore, using this bound between the sampling intervals in
the case of piecewise continuous functions leads to an additive
accumulation of this constant in the ISS bound as t → ∞.
ecently, a relaxed ISS Halanay’s inequality for C1 functions was
uggested in Mazenc, Malisoff, and Krstic (2021) with an ISS
ound in terms of some constants, whereas the values of these
onstants were given only implicitly.
In the present paper we suggest a sampled-data implementa-

ion of finite-dimensional boundary controllers for 1D parabolic
DEs under discrete-time point measurement. We consider the
eat equation under boundary actuation and point (either in-
omain or boundary) measurement. In order to manage with
oint measurement, we employ dynamic extension and prove
1-stability. We derive a reduced-order closed-loop system. Our
nalysis leads to reduced-order LMIs that offer both computa-
ional and theoretical advantages (essentially simpler proofs of
MIs feasibility for large enough observer dimension N and of the
act that LMI feasibility for N implies feasibility for N + 1). Such
educed-order conditions were initiated in our recent paper (Katz,
asre & Fridman, 2021) for the case of bounded measurements.
ue to dynamic extension, we suggest a sampled-data imple-
entation of the controller via a generalized hold device (see
.g. Mirkin (2016) for ODEs and references therein). We also take
nto account a quantization effect that leads to a disturbed closed-
oop system and ISS analysis. Note that quantized control of PDEs
as studied in Bekiaris-Liberis (2020) and Selivanov and Fridman
2016a).

An essential tool for our sampled-data ISS analysis is a novel
SS Halanay’s inequality with explicit constants in the bounds,
hich is appropriate for functions with jump discontinuities that
o not grow in the jumps. For sampled-data finite-dimensional
ontrol of the heat equation, we use Wirtinger-based Lyapunov
unctionals which compensate sampling in the finite-dimensional
tate, and combine them with the novel ISS Halanay’s inequal-
ty that compensates for measurement sampling in the infinite-
imensional tail. Our Lyapunov-based ISS analysis results in an
xplicit estimate of the ultimate bound, in terms of the quan-
ization error. Numerical examples show the efficiency of our
ethod.
The article is organized as follows. Section 2 presents new

SS Halanay’s inequalities, whose proofs are given in Appendix.
s the first basic step for stabilization under unbounded control
nd observation operator, Section 3 considers finite-dimensional
esign in the continuous-time case under Dirichlet actuation and
oint measurement. Results on quantized sampled-data control

nder point measurement are presented in Sections 4 (Dirichlet i

2

ctuation) and 5 (Neumann actuation). Numerical examples are
iven in Section 6 and Conclusions in Section 7. Some preliminary
esults on finite-dimensional design in the continuous-time case
nder Dirichlet actuation and point measurement were presented
n Katz and Fridman (2021c), where the stability analysis was
rovided by using the full-order system leading to the full-order
MIs.
Notations and preliminaries: L2(0, 1) is the Hilbert space of

ebesgue measurable and square integrable functions f : [0, 1] →

R with the inner product ⟨f , g⟩ :=
∫ 1
0 f (x)g(x)dx and induced

norm ∥f ∥2
:= ⟨f , f ⟩. Hk(0, 1) is the Sobolev space of functions

f : [0, 1] → R having k square integrable weak derivatives,
with the norm ∥f ∥2

Hk :=
∑k

j=0

f (j)2. The Euclidean norm on
Rn is denoted by |·|. We write f ∈ H1

0 (0, 1) if f ∈ H1(0, 1) and
f (0) = f (1) = 0. For P ∈ Rn×n, P > 0 means that P is symmetric
and positive definite. The sub-diagonal elements of a symmetric
matrix will be denoted by ∗. For 0 < U ∈ Rn×n and x ∈ Rn we
denote |x|2U = xTUx. Z+ denotes the nonnegative integers.

In this paper we use Wirtinger-based Lyapunov functionals
that were introduced for sampled-data control of ODEs in Liu
and Fridman (2012). These functionals were extended to ISS
analysis in Selivanov and Fridman (2016b). The positivity of such
functionals follows from the following extension of Wirtinger’s
inequality:

Lemma 1.1 (Selivanov & Fridman, 2016b). Let δ0 ∈ R and X :

[a, b] → Rn be an absolutely continuous function with Ẋ ∈ L2(a, b)
such that X(a) = 0 or X(b) = 0. Then for any 0 < W ∈ Rn×n, the
following inequality holds:∫ b

a e2δ0ξXT (ξ )WX(ξ )dξ

≤ e2|δ0|(b−a) 4(b − a)2

π2

∫ b

a
e2δ0ξ ẊT (ξ )WẊ(ξ )dξ .

(1.1)

Consider the Sturm–Liouville eigenvalue problem

φ′′
+ λφ = 0, x ∈ (0, 1) (1.2)

ith boundary conditions

φ′(0) = φ(1) = 0. (1.3)

This problem induces a sequence of eigenvalues with correspond-
ing eigenfunctions. The normalized eigenfunctions form a com-
plete orthonormal system in L2(0, 1). The eigenvalues and corre-
sponding eigenfunctions are given by

φn(x) =
√
2 cos

(√
λnx

)
, λn = (n − 0.5)2 π2, n ≥ 1. (1.4)

The following lemma will be used:

Lemma 1.2 (Katz & Fridman, 2020a). Let h L2
=

∑
∞

n=1 hnφn, where
hn = ⟨h, φn⟩. Then h ∈ H1(0, 1) satisfies h(1) = 0 iff

∑
∞

n=1 λnh2
n <

. Moreover,h′
2

=

∞∑
n=1

λnh2
n. (1.5)

In this paper, all functions of interest will belong to {h ∈

H1(0, 1)|h(1) = 0
}
. By Wirtinger’s inequality, the standard H1-

orm of h is equivalent to
h′

. Therefore, in this work we use
h∥H1 =

h′
.

. ISS Halanay’s inequalities for piecewise continuous func-
ions

In this section we introduce novel forms of Halanay’s inequal-

ties for ISS. Our formulations allow the function to have jump
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iscontinuities, provided it does not grow in the jumps. The
esulting inequalities are applied in the next sections to sampled-
ata boundary control of the heat equation in the presence of
uantization, where two sequences of sampling instances will
e introduced: {sk}∞k=0 will be the measurement sampling in-
tances, whereas

{
tj
}∞

j=0 will be the controller hold times. Since
he sequences are assumed to be independent, [sk, sk+1), k ∈

+ may contain elements from
{
tj
}∞

j=0. Our Lyapunov functional
(t) (see (4.20) and Fig. 1), which compensates sampling in the

finite-dimensional part of the closed-loop system (4.17), may be
discontinuous at t = sk and t = tj, k, j ∈ Z+, whereas Halanay’s
nequality will be used to compensate sk, k ∈ Z+ in the infinite-
imensional tail. Thus, the presented Lyapunov functional may
xhibit jump discontinuities at sk, k ∈ Z+ and inside the intervals
sk, sk+1), where we want to apply Halanay’s inequality.

Note that in the presence of only one sequence of sampling
nstances sk, k ∈ Z+, where the Lyapunov functional has jump
iscontinuities and does not grow, our Halanay’s inequalities
re still novel and useful for many sampled-data control prob-
ems for ODEs and PDEs that combine Lyapunov functionals with
alanay’s inequality.
For proofs of all claims appearing in this section see the

Appendix.

emma 2.1. Let V : [a, b) → [0, ∞) be a bounded function, where
− a ≤ h for some h > 0. Assume that V (t) is continuous on

[ti, ti+1), i = 0, . . . ,N − 1, where

=: t0 < t1 < · · · < tN−1 < tN := b, (2.1)

nd

lim
t↗ti

V (t) ≥ V (ti), i = 1, 2, . . . ,N − 1. (2.2)

Assume further that for some d ≥ 0 and δ0 > δ1 > 0

D+V (t) ≤ −2δ0V (t) + 2δ1 supa≤θ≤t V (θ ) + d, t ∈ [a, b) (2.3)

here D+V (t) is the right upper Dini derivative, defined by

+V (t) = lim sup
s→0+

V (t + s) − V (t)
s

. (2.4)

hen

V (t) ≤ e−2δτ (t−a)V (a) + d
∫ t
a e−2δ(t−s)ds, t ∈ [a, b) (2.5)

where δ = δ0 − δ1 and δτ > 0 is the unique solution of the equation
δτ = δ0 − δ1e2δτ h.

Note that by (2.2), the one-sided limits exist at {ti}N−1
i=1 . Thus, at

ti, 1 ≤ i ≤ N − 1, V (t) may have at most a jump discontinuity.
Moreover, if (2.2) holds with equality for some ti, 1 ≤ i ≤

N − 1, then V (t) is continuous at ti, meaning that our theorem
is also valid for V (t) continuous on [a, b). Finally, note also that
supa≤θ≤t V (θ ) is well-defined, since the assumptions imply that
V (t) is bounded on [a, c] for every a < c < b. An example of such
a function V (t) is given in Fig. 1, where we separate the points ti
where V (t) is continuous (t1, t3 and t5) and points where V (t) has
a jump discontinuity (t2 and t4, which we also denote by ξ1 and
ξ2, respectively.)

Corollary 2.1. Let V : [a, b) → [0, ∞) be a bounded function,
where b − a ≤ h for some h > 0. Assume that V (t) is absolutely
continuous on [ti, ti+1), i = 0, . . . ,N − 1, where ti are subject to
(2.1), and satisfy (2.2). Assume that for some constants d ≥ 0 and
δ0 > δ1 > 0 the following inequality holds:

V̇ (t) ≤ −2δ0V (t) + 2δ1 supa≤θ≤t V (θ ) + d
almost for all t ∈ [a, b). (2.6)

hen V (t) satisfies (2.5), where δ = δ0−δ1 and δτ > 0 is the unique
solution δ = δ − δ e2δτ h.
τ 0 1

3

Fig. 1. Example of V (t) in Lemma 2.1.

Using Lemma 2.1 and Corollary 2.1 we have the following:

Proposition 2.1 (Piecewise Continuous V for Sampled-data Sys-
tems).

Let s0 < s1 < · · · < sk < · · · satisfy limk→∞ sk = ∞ and
k+1 − sk ≤ h, k ∈ Z+. Let V : [s0, +∞) → [0, ∞) be a bounded
unction such that

limt↗sk V (t) ≥ V (sk) , k ∈ Z+ (2.7)

or any k ∈ Z+, let

k =: t (k)0 < t (k)1 < · · · < t (k)Nk−1 < t (k)Nk
:= sk+1. (2.8)

Assume that V (t) is absolutely continuous on [t (k)j , t (k)j+1) for all 0 ≤

j ≤ Nk − 1 and satisfies

limt↗t(k)j
V (t) ≥ V

(
t (k)j

)
, 1 ≤ j ≤ Nk − 1. (2.9)

Assume further that for any k = 0, 1, . . .

V̇ (t) ≤ −2δ0V (t) + 2δ1 supsk≤θ≤t V (θ ) + d
almost for all t ∈ [sk, sk+1).

(2.10)

Then

V (t) ≤ e−2δτ (t−s0)V (s0) + d
∫ t

s0

e−2δτ (t−s)ds, t ≥ s0. (2.11)

where δτ > 0 is a unique solution of δτ = δ0 − δ1e2δτ h.

We end this section with a novel Halanay’s ISS inequality for
continuous functions.

Lemma 2.2 (Continuous V for Time-delay Systems). Let V : [t0 −

h, +∞) → [0, ∞) be bounded on [t0 − h, t0] and continuous on
[t0, ∞). Assume that for some constants d ≥ 0 and δ0 > δ1 > 0 the
following inequality holds for t ≥ t0:

D+V (t) ≤ −2δ0V (t) + 2δ1 sup−h≤θ≤0 V (t + θ ) + d. (2.12)

Then
V (t) ≤ e−2δτ (t−t0) sup−h≤θ≤0 V (t0 + θ )

+ d
∫ t
t0
e−2δ(t−s)ds, t ≥ t0,

(2.13)

where δ = δ0 − δ1 and δτ > 0 is a unique solution of δτ =

δ0 − δ1e2δτ h.

Remark 2.1. Halanay’s ISS inequalities were derived for differen-
tiable functions in Wen et al. (2008) and for continuous functions
in Hien et al. (2015). In the latter work, the authors obtain the
estimate

V (t) ≤ e2δhe−2δτ (t−t0)sup−h≤θ≤0V (t0 + θ ) +
d
δ
. (2.14)

Note that Lemma 2.2 improves this estimate by removing the
factor e2δh > 1 as well as replacing d with an integral. In
δ
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emma 2.1 we improve on Hien et al. (2015) by allowing jump
iscontinuities of V (t) in the subintervals and by replacing d

δ
with

n integral for which summation over the subintervals leads to a
inite ISS bound in Proposition 2.1.

orollary 2.2 (Absolutely Continuous V for Time-delay Systems)..
Let V : [t0 − h, ∞) → [0, ∞) be continuous on [t0 − h, ∞) and
bsolutely continuous on [t0, ∞). Assume that for some constants
≥ 0 and δ0 > δ1 > 0 the following inequality holds:

V̇ (t) ≤ −2δ0V (t) + 2δ1 sup−h≤θ≤0 V (t + θ ) + d
almost for all t ≥ t0.

(2.15)

hen V (t) satisfies (2.13), where δ = δ0 − δ1 and δτ > 0 is the
nique solution of δτ = δ0 − δ1e2δτ h.

emark 2.2. Recently, instead of Halanay’s inequality, a small-
ain analysis was used in Ahmed-Ali, Karafyllis, and Giri (2021)
or ODE-hyperbolic PDE systems, instead of Halanay’s inequality.
omparison between the small-gain approach and Halanay’s in-
quality in the control problem presented in Sections 4 and 5 is
nteresting and may be a topic for future research.

. Continuous-time control of a heat equation

In this section we consider continuous-time stabilization of
he linear 1D heat equation

zt (x, t) = zxx(x, t) + az(x, t), t ≥ 0 (3.1)

here x ∈ [0, 1], z(x, t) ∈ R and a ∈ R is the reaction coefficient.
e consider Dirichlet actuation given by

x(0, t) = 0, z(1, t) = u(t) (3.2)

here u(t) is a control input to be designed, and point measure-
ent given by

(t) = z(x∗, t), x∗ ∈ [0, 1). (3.3)

ote that x∗ = 0 corresponds to boundary measurement.

emark 3.1. For simplicity, in the present paper we consider
reaction–diffusion PDE with constant diffusion and reaction

oefficients. As in Katz and Fridman (2020a), our results can be
asily extended to the more general reaction–diffusion PDE

t = ∂x (p(x)zx(x, t)) + q(x)z(x, t), x ∈ [0, 1], t ≥ 0,

here p(x) and q(x) are sufficiently smooth on (0, 1).

Following Curtain and Zwart (1995), Karafyllis (2021), Katz
nd Fridman (2021b) and Prieur and Trélat (2018), we introduce
he change of variables

(x, t) = z(x, t) − u(t) (3.4)

o obtain the following equivalent ODE–PDE system

u̇(t) = v(t),
wt (x, t) = wxx(x, t) + aw(x, t) + au(t) − v(t), t ≥ 0

(3.5)

ith boundary conditions

wx(0, t) = 0, w(1, t) = 0 (3.6)

nd measurement

(t) = w(x∗, t) + u(t). (3.7)

enceforth we treat u(t) as an additional state variable and v(t) as
he control input. Given v(t), u(t) can be computed by integrating
˙(t) = v(t), where we choose u(0) = 0. This choice implies
(·, 0) = w(·, 0). Dynamic extension allows to obtain (3.5) with
4

the state [u(t), w(·, t)]T and control input v(t), where now the
control operator is bounded and the observation operator (3.7) is
still unbounded. This approach, where u(t) is obtained from v(t)
by direct integration poses no problems due to the fact that the
corresponding state u(t) is included in the stability analysis.

We present the solution to (3.5) as

w(x, t) =
∑

∞

n=1 wn(t)φn(x), wn(t) = ⟨w(·, t), φn⟩ , (3.8)

with {φn}
∞

n=1 defined in (1.4). By differentiating under the integral
sign, integrating by parts and using (1.2) and (1.3) we obtain

ẇn(t) = (−λn + a)wn(t) + abnu(t) − bnv(t), t ≥ 0

bn = (−1)n+1
√

2
λn

, wn(0) = ⟨w(·, 0), φn⟩ , n ≥ 1.
(3.9)

n particular, note that

bn ̸= 0, n ≥ 1. (3.10)

emark 3.2. Without dynamic extension, modal decomposition
f (3.1) with boundary conditions (3.2) results in ODEs similar

o (3.9) without v(t) and |bn| ≈ λ
1
2
n . The growth of {bn}∞n=1

poses a problem in compensating cross terms which arise in
the Lyapunov stability analysis (see (3.36)). The use of dynamic
extension leads to {bn}∞n=1 ∈ l2(N).

Let δ > 0 be a desired decay rate and let N0 ∈ N satisfy

− λn + a < −δ, n > N0. (3.11)

Let N ∈ N, N0 ≤ N . N0 will define the dimension of the controller
and N will define the dimension of the observer.

We construct a finite-dimensional observer of the form

ˆ (x, t) :=

N∑
n=1

ŵn(t)φn(x), (3.12)

here ŵn(t) satisfy the ODEs for t ≥ 0:
˙̂wn(t) = (−λn + a)ŵn(t) + abnu(t) − bnv(t)

−ln
[
ŵ(x∗, t) + u(t) − y(t)

]
, n ≥ 1,

ŵn(0) = 0, 1 ≤ n ≤ N.

(3.13)

ith y(t) in (3.7) and scalar observer gains {ln}Nn=1. Let

A0 = diag
{
−λ1 + a, . . . ,−λN0 + a

}
,

B0 =
[
b1, . . . , bN0

]T
, L0 =

[
l1, . . . , lN0

]T
, cn = φn(x∗),

C0 =
[
c1, . . . , cN0

]
, B̃0 =

[
1, −b1, . . . ,−bN0

]T
,

Ã0 =

[
0 0
aB0 A0

]
∈ R(N0+1)×(N0+1).

(3.14)

Assumption 1. The point x∗ ∈ [0, 1) satisfies

cn = φn(x∗) ̸= 0, 1 ≤ n ≤ N0. (3.15)

Note that this assumption is satisfied in the case x∗ = 0 of
boundary measurement. Under Assumption 1, the pair (A0, C0) is
observable by the Hautus lemma. Let L0 =

[
l1, . . . , lN0

]T
∈ RN0

satisfy the Lyapunov inequality

Po(A0 − L0C0) + (A0 − L0C0)TPo < −2δPo, (3.16)

with 0 < Po ∈ RN0×N0 . We choose ln = 0, n > N0.
Since bn ̸= 0, n ≥ 1 the Hautus lemma implies that (Ã0, B̃0)

is controllable. Let K0 ∈ R1×(N0+1) satisfy

˜ ˜ ˜ ˜ T (3.17)
Pc(A0 − B0K0) + (A0 − B0K0) Pc < −2δPc,
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ith 0 < Pc ∈ R(N0+1)×(N0+1). We propose a (N0 + 1)-dimensional
ontroller of the form

v(t) = −K0ŵ
N0 (t),

ŵN0 (t) =
[
u(t), ŵ1(t), . . . , ŵN0 (t)

]T (3.18)

which is based on the N-dimensional observer (3.12).

3.1. Well-posedness of (3.5)

For well-posedness of the closed-loop system (3.5) and (3.13)
ubject to the control input (3.18) we consider

A1 : D(A1) ⊆ L2(0, 1) → L2(0, 1), A1w = −wxx,

D(A1) =
{
w ∈ H2(0, 1)|w′(0) = w(1) = 0

}
.

(3.19)

ince A1 is positive, it has a unique positive square root with
omain(

A
1
2
1

)
(1.5)
=

{
w ∈ H1(0, 1); w(1) = 0

}
. (3.20)

et H = L2(0, 1) × RN+1 be a Hilbert space with the norm
·∥H =

√
∥·∥ + |·|. Defining the state ξ (t) as

ξ (t) = col
{
w(·, t), ŵN (t)

}
,

ŵN (t) = col
{
u(t), ŵ1(t), . . . , ŵN (t)

}
by arguments of Katz and Fridman (2020a), it can be shown that
the closed-loop system (3.5) and (3.13) with control input (3.18)

and initial condition w(·, 0) ∈ D
(
A

1
2
1

)
has a unique classical

solution

ξ ∈ C ([0, ∞);H) ∩ C1 ((0, ∞);H) (3.21)

such that

ξ (t) ∈ D (A1) × RN+1, t > 0. (3.22)

3.2. H1-Stability of (3.5)

Let en(t) be the estimation error defined by

en(t) = wn(t) − ŵn(t), 1 ≤ n ≤ N. (3.23)

By using (3.7), (3.8) and (3.12), the last term on the right-hand
side of (3.13) can be written as

ŵ(x∗, t) + u(t) − y(t) = −
∑N

n=1 cnen(t) − ζ (t), (3.24)

where

ζ (t) = w(x∗, t) −
∑N

n=1 wn(t)φn(x∗)
(1.3),(3.6)

= −
∫ 1
x∗

[
wx(x, t) −

∑N
n=1 wn(t)φ′

n(x)
]
dx.

(3.25)

Then the error equations have the form

ėn(t) = (−λn + a)en(t)

−ln
(∑N

n=1 cnen(t) + ζ (t)
)

, t ≥ 0.
(3.26)

Note that ζ (t) satisfies the following estimate:

ζ 2(t)
(3.25)
≤

wx(·, t) −
∑N

n=1 wn(t)φ′
n(·)

2

(1.5) ∑
∞ 2

(3.27)

= n=N+1 λnwn(t).

5

Next, following Katz, Basre et al. (2021), we formulate the
reduced-order closed-loop system. Let

eN0 (t) =
[
e1(t), . . . , eN0 (t)

]
, B1 =

[
bN0+1, . . . , bN

]T
,

eN−N0 (t) =
[
eN0+1(t), . . . , eN (t)

]T
, C1 =

[
cN0+1, . . . , cN

]
,

ŵN−N0 (t) =
[
ŵN0+1(t), . . . , ŵN (t)

]T
, L̃0 = col {01×1, L0} ,

X0(t) = col
{
ŵN0 (t), eN0 (t)

}
, L = col

{
L̃0, −L0

}
,

Ka = K0 + [a, 0], K̃a = [Ka, 0] ∈ R1×(2N0+1),

F0 =

[
Ã0 − B̃0K0 L̃0C0

0 A0 − L0C0

]
.

(3.28)

From (3.9), (3.13), (3.18) and (3.28) we observe that eN−N0 (t)
satisfies

ėN−N0 (t) = A1eN−N0 (t),
A1 = diag{−λN0+1 + a, . . . ,−λN + a} (3.29)

and is exponentially decaying, whereas the reduced-order closed-
loop system

Ẋ0(t) = F0X0(t) + LC1eN−N0 (t) + Lζ (t),

ẇn(t) = (−λn + a)wn(t) + bnK̃aX0(t), n > N.
(3.30)

with ζ (t) satisfying (3.27) does not depend on ŵN−N0 (t). More-
over, ŵN−N0 (t) satisfies

˙̂wN−N0 (t) = A1ŵ
N−N0 (t) + B1K̃aX0(t). (3.31)

and is exponentially decaying with a decay rate δ, provided X0(t)
is exponentially decaying with a slightly larger decay rate δ + ϵ.
The latter is guaranteed since the LMI (3.41) is satisfied with strict
inequality, and thus with δ substituted by δ + ϵ. In this case,
X0(t) can be thought of as an exponentially decaying disturbance
in (3.31) and using the variation of constants formula, the result
follows. Hence, for stability of (3.1) under the control law (3.18)
it is enough to show stability of the reduced-order system (3.30).
Note that (3.30) can be considered as a singularly perturbed
system with slow state X0(t) and fast infinite state wn(t), n >

N . For H1-stability analysis of the closed-loop system (3.30) we
define the Lyapunov function

V (t) = V0(t) + pe
⏐⏐eN−N0 (t)

⏐⏐2 ,

V0(t) = |X0(t)|2P0 +
∑

∞

n=N+1 λnw
2
n(t),

(3.32)

where 0 < pe and 0 < P0 ∈ R(2N0+1)×(2N0+1). V0(t) is chosen
to compensate ζ (t) using (3.27). Differentiating V0(t) along the
solution to (3.30) gives

V̇0 + 2δV0 = XT
0 (t)

[
P0F0 + F T

0 P0 + 2δP0
]
X0(t)

+ 2XT
0 (t)P0Lζ (t) + 2XT

0 (t)P0LC1eN−N0 (t)
+ 2

∑
∞

n=N+1 (−λn + a + δ) λnw
2
n(t)

+ 2
∑

∞

n=N+1 λnwn(t)bnK̃aX0(t), t ≥ 0.

(3.33)

Differentiating pe
⏐⏐eN−N0 (t)

⏐⏐2 along (3.30) we have

d
dt pe

⏐⏐eN−N0 (t)
⏐⏐2 + 2δpe

⏐⏐eN−N0 (t)
⏐⏐2

= 2pe
(
eN−N0 (t)

)T
(A1 + δI) eN−N0 (t)

(3.34)

Using the estimate∑
∞

λ−1
≤ π−2

∫
∞ dx

=
1 , (3.35)
n=N+1 n N (x−0.5)2 (N−0.5)π2
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he Young inequality and |bn| =

√
2
λn

we have

2
∑

∞

n=N+1 λnwn(t)bnK̃aX0(t)

≤ 2
∑

∞

n=N+1 [λn |wn(t)|]
[
√
2λ

−
1
2

n

⏐⏐⏐K̃aX0(t)
⏐⏐⏐]

(3.35)
≤

1
α0

∑
∞

n=N+1 λ2
nw

2
n(t) +

2α0
(N−0.5)π2

⏐⏐⏐K̃aX0(t)
⏐⏐⏐2

(3.36)

where α0 > 0. From monotonicity of λn we have

2
∑

∞

n=N+1

(
−λ2

n + (a + δ)λn
)
w2

n(t)

+ 2
∑

∞

n=N+1 λnwn(t)bnK̃aX0(t)
(3.36)
≤ 2

∑
∞

n=N+1

(
−λ2

n +
1

2α0
λ2
n + (a + δ)λn

)
w2

n(t)

+
2α0

(N−0.5)π2

⏐⏐⏐K̃aX0(t)
⏐⏐⏐2 ≤

2α0
(N−0.5)π2

⏐⏐⏐K̃aX0(t)
⏐⏐⏐2

− 2
(
λN+1 − a − δ −

1
2α0

λN+1

)∑
∞

n=N+1 λnw
2
n(t)

(3.27)
≤

2α0
(N−0.5)π2

⏐⏐⏐K̃aX0(t)
⏐⏐⏐2

−2
(
λN+1− a−δ −

1
2α0

λN+1

)
ζ 2(t).

(3.37)

provided λN+1 − a− δ −
1

2α0
λN+1 > 0. Let η(t) = col {X0(t), ζ (t),

eN−N0 (t)
}
. From (3.33), (3.34) and (3.37) we obtain

V̇ + 2δV ≤ ηT (t)Ψ (1)η(t) ≤ 0, t ≥ 0 (3.38)

if

Ψ (1)
=

[
Φ(1) col {P0LC1, 0}
∗ 2pe(A1 + δI)

]
< 0, (3.39)

where

Φ(1)
=

[
φ P0L
∗ −2

(
λN+1 − a − δ −

1
2α0

λN+1

)]
,

φ = P0F0 + F T
0 P0 + 2δP0 +

2α0
(N−0.5)π2 K̃ T

a K̃a.

(3.40)

By Schur complement Φ(1) < 0 holds iff⎡⎣φ P0L 0
∗ −2(λN+1 − a − δ) 1
∗ ∗ −α0λ

−1
N+1

⎤⎦ < 0. (3.41)

Note that the LMI (3.41) has N-dependent coefficients whereas
its dimension depends only on N0. Therefore the LMI (3.41) is of
reduced-order. Summarizing, we arrive at:

Proposition 3.1. Consider (3.5) with boundary conditions (3.6),
boundary measurement (3.7), control law (3.18) and w(·, 0) ∈

D(A
1
2
1 ). Let δ > 0 be a desired decay rate, N0 ∈ N satisfy (3.11)

and N ∈ N satisfy N0 ≤ N. Let L0 and K0 be obtained using (3.16)
and (3.17), respectively. Let there exist 0 < P0 ∈ R(2N0+1)×(2N0+1)

and a scalar α0 > 0 which satisfy the reduced-order LMI (3.41) with
φ given in (3.40). Then the solutions w(x, t) and u(t) to (3.5) under
the control law (3.18), (3.13) and the corresponding observer ŵ(x, t)
defined by (3.12) satisfy

∥w(·, t)∥H1 +
ŵ(·, t)


H1 + |u(t)|

≤ Me−δt ∥w(·, 0)∥H1
(3.42)

for some constant M > 0. Moreover, (3.41) is always feasible for
large enough N and feasibility for N implies feasibility for N + 1.

Proof. Taking into account (3.11) and applying Schur comple-
ment to Ψ (1) given in (3.39), we find that Ψ (1) < 0 iff

Φ(1)
+

1
col {P0LC1, 0} (A1 + δI) [CT

1 L
TP0, 0] < 0.
2pe
6

By taking pe → ∞ we find that (3.41) implies Ψ (1) < 0. Taking
P0F0 + F T

0 P0 + 2δP0 = −I , α0 = 1 and N → ∞, we have that
(3.41) is feasible for large enough N . Finally, by (3.40) feasibility
for N implies feasibility for N + 1.

The comparison principle, Ψ (1) < 0 and (3.38) imply

V (t) < e−2δtV (0), t > 0, V (0) > 0. (3.43)

Since u(0) = 0, for some M0 > 0 we have

V (0)
(1.5)
≤ M0 ∥w(·, 0)∥2

H1 . (3.44)

From monotonicity of {λn}
∞

n=1 and (3.32) we have

V (t) ≥ λmin(P0) |X0(t)|2 + pe
⏐⏐eN−N0 (t)

⏐⏐2
+

∑
∞

n=N+1 λnw
2
n(t) ≥ M1

[⏐⏐eN−N0 (t)
⏐⏐2 +

⏐⏐eN0 (t)
⏐⏐2

+
⏐⏐ŵN0 (t)

⏐⏐2 +
∑

∞

n=N+1 λnw
2
n(t)

] (3.45)

for some constant M1 > 0. Since ŵN−N0 is exponentially decay-
ing with decay rate less than δ provided X0(t) is exponentially
decaying with a slightly larger decay rate, (3.42) follows from
Lemma 1.2, (3.44), (3.45) and the presentation

w(·, t) − ŵ(·, t) =

N∑
n=1

en(t)φn(·) +

∞∑
n=N+1

wn(t)φn(·). □

orollary 3.1. Under the conditions of Proposition 3.1, the follow-
ng holds for z(x, t), satisfying (3.4):

∥z(·, t)∥H1 +
z(·, t) − ŵ(·, t)


H1 ≤ Me−δt ∥z(·, 0)∥H1 (3.46)

or some constant M > 0.

roof. From (3.4) we have

∥z(·, t)∥H1 ≤ ∥w(·, t)∥H1 + |u(t)| ,z(·, t) − ŵ(·, t)

H1 ≤

w(·, t) − ŵ(·, t)

H1

+ |u(t)| .
(3.47)

From u(0) = 0, (3.42) and (3.47), we obtain (3.46). □

Remark 3.3. Differently from our preliminary result (Katz & Frid-
man, 2021c), where Young’s inequality in (3.36) was employed
with fractional powers of λn, here the fractional powers are not
eeded. This is due to the reduced-order LMI formulation, which
reatly simplifies the proof of feasibility guarantees.

. Sampled-data control: Dirichlet actuation

Consider now sampled-data control of the 1D linear heat
quation (3.1) under Dirichlet actuation (3.2). We introduce two
equences of sampling instances. For the first sequence, let 0 =

0 < · · · < sk < . . . , limk→∞ sk = ∞ be the measurement
ampling instances. The sampling is variable and subject to sk+1−

k ≤ τM,y for all k ∈ Z+ and some constants τM,y > 0. We consider
uantized discrete-time in-domain point measurement

(t) = q [z(x∗, sk)] , x∗ ∈ [0, 1), t ∈ [sk, sk+1). (4.1)

ere, q : R → R is a quantizer which satisfies

|q[r] − r| ≤ ∆, for all r ∈ R (4.2)

here ∆ > 0 is the quantization error bound (Ishii & Francis,
003).

emark 4.1. In this paper we do not consider constraints
n the range of quantizer as defined in Liberzon (2003): there
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Fig. 2. Sampled-data control of a heat equation.

xists Mq > 0 such that (4.2) is applied only in the case |r| ≤

q. Our method can be used in the future to a quantizer with
ounded range. Note that since we achieve H1-ultimate bounded-
ess, |z(x∗, sk)| can be upper-bounded in terms of ∥z(·, sk)∥H1 by
sing the Sobolev inequality. However, constraints on the range
f quantizer are not in the scope of the current paper.

For the second sequence, let 0 = t0 < · · · < tj < . . . ,
imj→∞ tj = ∞ be the controller hold times. We assume that the
ampling is variable and satisfies tj+1 − tj ≤ τM,u for all j ∈ Z+

nd some constant τM,u > 0.
The control signal u(t) is generated by a generalized hold device

nd is of the form

˙(t) = q
[
v(tj)

]
, t ∈ [tj, tj+1) (4.3)

here the values
{
v(tj)

}∞

j=1 are to be determined. Furthermore,
e choose u(0) = 0. By a generalized hold we mean the

ollowing: given v(tj), the control signal is computed as (see Fig. 2)

(t) = u(tj) + q
[
v(tj)

]
(t − tj), t ∈ [tj, tj+1), j = 0, 1, . . . (4.4)

he considered sampled-data control may correspond to a net-
orked control system with two independent networks (with
egligible network-induced delays): from sensor to controller
ith transmission instances sk and from controller to actuator
ith transmission instances tj. In this case, tj are the updating
imes of the generalized hold device on the actuator side.

Introducing (3.4) we obtain the ODE–PDE system

u̇(t) = q
[
v(tj)

]
, t ∈ [tj, tj+1),

wt (x, t) = wxx(x, t) + aw(x, t) + au(t) − q
[
v(tj)

]
,

(4.5)

ith boundary conditions (3.6) and measurement

(t) = q [w(x∗, sk) + u(sk)] , t ∈ [sk, sk+1) (4.6)

ote that y(t) is a piecewise constant function. Recall that we
reat u(t) as an additional state variable and the values

{
v(tj)

}∞

j=1
s the control inputs to be determined. We choose u(0) = 0 which
esults in w(·, 0) = z(·, 0).

We present the solution to (4.5) as (3.8) with {φn}
∞

n=1 defined
n (1.4). By differentiating under the integral sign, integrating by
arts and using (1.2) and (1.3) we obtain

ẇn(t) = (−λn + a)wn(t) + abnu(t)
− bnq

[
v(tj)

]
, t ∈ [tj, tj+1)

(4.7)

ith {bn}∞n=1 given in (3.9). In particular, (3.10) holds.
Using the time-delay approach to sampled-data control (Frid-

man, 2014), we introduce the following representations of the
measurement and input delays

τy(t) = t − sk, t ∈ [sk, sk+1), τy(t) ≤ τM,y,

τu(t) = t − tj, t ∈ [tj, tj+1), τu(t) ≤ τM,u.
(4.8)

enceforth the dependence of τy(t), τu(t) on t will be suppressed
to shorten notations. Note that τu will be used starting from
4.18).
 e

7

Given δ > 0, let N0 ∈ N satisfy (3.11) and N ∈ N, N0 ≤ N .
0 will define the dimension of the controller, whereas N will
efine the dimension of the observer. Define a finite-dimensional
bserver of the form (3.12) where

˙̂wn(t) = (−λn + a)ŵn(t) + abnu(t) − bnq
[
v(tj)

]
−ln

[
ŵ(x∗, t − τy) + u(t − τy) − y(t)

]
, t ∈ [tj, tj+1),

ŵn(0) = 0, 1 ≤ n ≤ N

(4.9)

ith y(t) = and scalar observer gains {ln}Nn=1.
Under Assumption 1, let the observer and controller gains, L0

nd K0, satisfy (3.16) and (3.17), respectively. We choose ln = 0
or n > N0. We propose a (N0 + 1)-dimensional controller of the
orm

u̇(t) = q
[
v(tj)

]
, t ∈ [tj, tj+1),

v(tj) = −K0ŵ
N0 (tj)

(4.10)

ith ŵN0 (t) =
[
u(t), ŵ1(t), . . . , ŵN0 (t)

]T . The proposed controller
s found by solving (4.9) on [tj−1, tj) and choosing by continuity
ˆ
N0 (tj) = limt↗tj ŵ

N0 (t).
Well-posedness of the closed-loop system (4.5) and (4.9) with

ontrol input (4.10) follows from arguments of Katz and Frid-
an (2021b), together with the step method (i.e. proving well-
osedness step-by-step between consecutive sampling instances).
hus, the closed-loop system (4.5) and (4.9) with control input

4.10) and w(·, 0) ∈ D
(
A

1
2
1

)
has a unique classical solution

ξ ∈ C ([0, ∞);H) ∩ C1 ((0, ∞) \ J ;H) ,

J =
{
tj
}∞

j=1 ∪ {sk}∞k=1
(4.11)

atisfying (3.22).
Recall the estimation error en(t) defined in (3.23). By using

3.8), (3.12) and arguments similar to (3.24) the last term on the
ight-hand side of (4.9) can be written as

ŵ(x∗, t − τy) + u(t − τy) − y(t)

= −
∑N

n=1 cnen(t − τy) − ζ (t − τy) − σy(t)
(4.12)

here ζ (t), given in (3.25), satisfies (3.27) and

σy(t) = q
[
w(x∗, t − τy) + u(t − τy)

]
−w(x∗, t − τy) − u(t − τy),

σ 2
y (t)

(4.2)
≤ ∆2.

(4.13)

hen, the error equations have the form

ėn(t) = (−λn + a)en(t) − ln
(∑N

n=1 cnen(t − τy)

+ζ (t − τy) + σy(t)
)
, t ≥ 0.

(4.14)

e formulate further the reduced-order closed-loop system. Re-
all the notations (3.28) and let

Υy(t) = X0(t − τy) − X0(t), K̃0 =
[
K0, 0

]
∈ R1×2N0+1,

Υu(t) = X0(tj) − X0(t), t ∈ [tj, tj+1),

C = [0, C0] ∈ R1×(2N0+1), B = col
{
B̃0, 0

}
∈ R2N0+1.

(4.15)

sing the notations (3.28) and (4.7), (4.9), (4.14), (4.15) we obtain
hat eN−N0 (t) satisfies (3.29), which implies

N−N0 (t − τ ) = e−A1τyeN−N0 (t). (4.16)
y
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f
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w

ote that eN−N0 (t) is exponentially decaying. We also have the
ollowing reduced-order closed-loop system:

Ẋ0(t) = F0X0(t) + LCΥy(t) − BK̃0Υu(t) + Bσu(t)
+LC1e−A1τyeN−N0 (t) + Lζ (t − τy) + Lσy(t),

ẇn(t) = (−λn + a)wn(t) + bn
[
K̃aX0(t) + K̃0Υu(t)

]
− bnσu(t), n > N, t ≥ 0

(4.17)

where

σu(t) = q
[
−K0ŵ

N0 (tj)
]
+ K0ŵ

N0 (tj), t ∈ [tj, tj+1),

σ 2
u (t)

(4.2)
≤ ∆2.

(4.18)

Finally, from (4.9) ŵN−N0 (t) satisfies the following ODEs:

˙̂wN−N0 (t) = A1ŵ
N−N0 (t) + B1K̃0X0(t − τu)

− B1σu(t) + aB1u(t), t ≥ 0.
(4.19)

For H1-ISS of the closed-loop system (4.17) we fix δ0 > δ,
ρ > 0 and define the Lyapunov functional

V̄ (t) = V (t) + Vy(t) + Vu(t), t ≥ 0 (4.20)

where

V (t) = V0(t) + pe
⏐⏐eN−N0 (t)

⏐⏐2 ,

V0(t) = |X0(t)|2P0 + ρ
∑

∞

n=N+1 λnw
2
n(t),

Vy(t) = τ 2
M,ye

2δ0τM,y
∫ t
t−τy

e−2δ0(t−s)
⏐⏐Ẋ0(s)

⏐⏐2
W1

ds

−
π2

4

∫ t
t−τy

e−2δ0(t−s)
⏐⏐Υy(s)

⏐⏐2
W1

ds, W1 > 0,

Vu(t) = τ 2
M,ue

2δ0τM,u
∫ t
t−τu

e−2δ0(t−s)
⏐⏐⏐K̃0Ẋ0(s)

⏐⏐⏐2
W2

ds

−
π2

4

∫ t
t−τu

e−2δ0(t−s)
⏐⏐⏐K̃0Υu(s)

⏐⏐⏐2
W2

ds, W2 > 0.
(4.21)

y Wirtinger’s inequality (1.1), Vy(t), Vu(t) ≥ 0. Moreover, Vy(sk)
= 0 and Vu(tj) = 0, k, j ∈ Z+, meaning that V̄ (t) does not grow in
the jumps. Consider [sk, sk+1), k ∈ Z+. Since the controller update
instances satisfy limj→∞ tj = ∞, there exist at most finitely many
controller update instances t (k)j , 1 ≤ j ≤ Nk − 1 for which (2.8)
and (2.9) hold. Furthermore, V̄ (t) defined by (4.20) and (4.21) is
continuously differentiable on [t (k)j , t (k)j+1), 0 ≤ j ≤ Nk−1. Our goal
is to apply Proposition 2.1 to obtain (2.11). Differentiating V0(t)
on [t (k)j , t (k)j+1), 0 ≤ j ≤ Nk − 1 along (4.17) and using arguments
similar to (3.36), we have

V̇0 + 2δ0V0 ≤ XT
0 (t)

[
P0F0 + F T

0 P0 + 2δ0P0

+
2α0ρ

(N−0.5)π2 K̃ T
a K̃a

]
X0(t) + 2XT

0 (t)P0LCΥy(t)

− 2XT
0 (t)P0BK̃0Υu(t) + 2XT

0 (t)P0Bσu(t)
+ 2XT

0 (t)P0LC1e−A1τyeN−N0 (t) + 2XT
0 (t)P0Lσy(t)

+ 2XT
0 (t)P0Lζ (t − τy) +

2α1ρ

(N−0.5)π2

⏐⏐⏐K̃0Υu(t)
⏐⏐⏐2

+
2α2ρ

(N−0.5)π2 σ 2
u (t)

+ 2ρ
∑

∞

n=N+1

[
−λn + a + δ0 + λn

∑2
i=0

1
2αi

]
λnw

2
n(t).

(4.22)

Differentiation of pe
⏐⏐eN−N0 (t)

⏐⏐2 along the solution to (4.17) results
in (3.34) with δ replaced by δ . Differentiating V (t) and V (t)
0 y u

8

along the solution to (4.17) we obtain

V̇y + 2δ0Vy = τ 2
M,ye

2δ0τM,y
⏐⏐Ẋ0(t)

⏐⏐2
W1

−
π2

4

⏐⏐Υy(t)
⏐⏐2
W1

,

V̇u + 2δ0Vu = τ 2
M,ue

2δ0τM,u

⏐⏐⏐K̃0Ẋ0(t)
⏐⏐⏐2
W2

−
π2

4

⏐⏐⏐K̃0Υu(t)
⏐⏐⏐2
W2

.

(4.23)

Taking into account (3.27), (4.15) and (4.16) we will compen-
sate ζ (t − τy) by employing Halanay’s inequality formulated in
Proposition 2.1 and the following upper bound:

−2δ1 supsk≤θ≤t V̄ (θ )
(4.8)
≤ −2δ1V (t − τy) = −2δ1

⏐⏐Υy(t)
⏐⏐2
P0

−2δ1 |X0(t)|2P0 − 2δ1ρζ 2(t − τy) − 2δ1XT
0 (t)P0Υy(t)

−2δ1Υ T
y (t)P0X0(t) − 2δ1pe

⏐⏐eN−N0 (t)
⏐⏐2
e−2A1τy

(4.24)

where δ0 − δ1 = δ. Let γ > 0. By (4.13) and (4.18) we have

− 2γ∆2
≤ −γ σ 2

u (t) − γ σ 2
y (t). (4.25)

Denote

η(t) = col
{
X0(t), ζ (t − τy), Υy(t), K̃0Υu(t), σy(t),

σu(t), eN−N0 (t)
}
.

From (4.22), (4.23), (4.24) and (4.25) we have
˙̄V (t) + 2δ0V̄ (t) − 2δ1 supsk≤θ≤t V̄ (θ ) − 2γ∆2

≤ ηT (t)Ψ (2)η(t) + 2ρ
∑

∞

n=N+1 µnλnw
2
n(t) ≤ 0

(4.26)

provided

µn = −λn +

[
2∑

i=0

1
2αi

]
λn + a + δ0 < 0, n > N (4.27)

and

Ψ (2)
=

[
Φ (2) Γ1 Γ2 Γ3

∗ diag
{
Θ1, Θ2, 2pe

(
A1 + δ0I − δ1e−2A1τy

)} ]
+RT

(
εyW1 + εuK̃ T

0 W2K̃0

)
R < 0

(4.28)

here

Φ(2)
=

[
φ P0L
∗ −2δ1ρ

]
, Γ1 =

[
P0 (LC − 2δ1I) −P0B

0 0

]
,

φ = P0F0 + F T
0 P0 + 2δP0 +

2α0ρ

(N−0.5)π2 K̃ T
a K̃a,

Γ2 =

[
P0L P0B
0 0

]
, Γ3 =

[
P0LC1e−A1τy

0

]
,

Θ1 =

[
−

π2

4 W1 − 2δ1P0 0
0 −

π2

4 W2 +
2α1ρ

(N−0.5)π2

]
,

Θ2 =

[
−γ 0
0 −γ +

2α2ρ

(N−0.5)π2

]
, εy = τ 2

M,ye
2δ0τM,y ,

εu = τ 2
M,ue

2δ0τM,u , R = [R1,LC1e−A1τy ],

R1 = [F0,L,LC, −B,L,B].

(4.29)

Note that δ = δ0 − δ1 and (3.11) imply A1 + δ0I − δ1e−2A1τy < 0.
Therefore, by applying Schur complement in (4.28) and taking
pe → ∞ we find that (4.28) holds iff the reduced-order LMI[

Φ (2) Γ1 Γ2
∗ diag {Θ1, Θ2}

]
+RT

(
ε W + ε K̃ TW K̃

)
R < 0.

(4.30)

1 y 1 u 0 2 0 1
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s feasible with εy = τ 2
M,ye

2δ0τM,y and εu = τ 2
M,ue

2δ0τM,u . Mono-
onicity of {λn}

∞

n=1 and Schur complement imply that µn < 0 for
all n > N iff[

−λN+1 + a + δ0 1 1 1
∗ −2 diag {α0, α1, α2} λ−1

N+1

]
< 0. (4.31)

trict LMIs (4.30) and (4.31) imply that the conditions of Proposi-
ion 2.1 are satisfied with a slightly larger δ̄0 > δ0. Therefore, we
btain

V̄ (t) ≤ e−2(δτ +ε)t V̄ (0) +
γ∆2

δτ
t ≥ 0 (4.32)

with small ε > 0, where δτ + ε > 0 is a unique solution of
δτ + ε = δ̄0 − δ1e2(δτ +ε)h. Moreover, taking into account that
N−N0 (t) is exponentially decaying and that (4.19) is ISS with
espect to X0(t − τu), σu(t) and u(t), we obtain ISS with a decay
ate δτ of the full-order closed-loop system (3.29), (4.17) and
4.19).

Define

(x, t) = w(x, t) − ŵ(x, t). (4.33)

e also derive an attracting ball in H1(0, 1) for the full-order
losed-loop system. We have

V̄ (t) ≥ V0(t) ≥ λmin(P0) |X0(t)|2 + ρ
∑

∞

n=N+1 λnw
2
n(t)

≥ M2

(∑N0
n=1 λnŵ

2
n(t) +

∑N0
n=1 λne2n(t)

+u2(t) +
∑

∞

n=N+1 λnw
2
n(t)

)
, M2 = min

(
ρ,

λmin(P0)
λN0

)
.

(4.34)

Therefore, from (4.32) and (4.34) we have

lim supt→∞

(∑N0
n=1 λnŵ

2
n(t) +

∑N0
n=1 λne2n(t)

+
∑

∞

n=N+1 λnw
2
n(t) + u2(t)

)
≤

γ∆2

M2δτ
,

lim supt→∞ |X0(t)|2 ≤
γ∆2

λmin(P0)δτ
.

(4.35)

To obtain an ISS bound on ŵN−N0 , recall (4.19). Let D = diag{√
λN0+1, . . . ,

√
λN

}
. Since ŵn = 0, n = 1, 2, . . . , by variation

f constants we have⏐⏐DŵN−N0 (t)
⏐⏐ ≤ |DB1|

∫ t
0

⏐⏐eA1(t−s)
⏐⏐ |g(s)| ds

(3.11)
≤ |DB1|

∫ t
0 e−(λN0+1−a)(t−s)

|g(s)| ds,
g(s) = K̃0X0(s − τu(s)) − σu(s) + au(s).

(4.36)

Using bn = (−1)n+1
√

2
λn

we have |DB1| =
√
2(N − N0). Thus,

from (4.18), (4.35) and (4.36) we obtain

lim supt→∞

(∑N
n=N0+1 λnŵ

2
n(t)

)
≤ M3∆

2,

M3 =
2(N−N0)

(λN0+1−a)2

[(⏐⏐⏐K̃0

⏐⏐⏐ + a
)√

γ

λmin(P0)δτ
+ 1

]2
.

(4.37)

Finally, note that (3.29) implies

lim supt→∞

∑N
n=N0+1 λne2n(t) = 0. (4.38)

From (1.5), (4.33), (4.35), (4.37) and (4.38) we have

lim supt→∞

(ŵx(·, t)
2

+ ∥ex(·, t)∥2

+ u2(t)
)

≤

[
γ

M2δτ
+ M3

]
∆2,

lim supt→∞ ∥wx(·, t)∥2
≤ 2

[
γ

M2δτ
+ M3

]
∆2

(4.39)

where the latter was obtained using the triangle inequality.
Therefore, solutions of the full-order closed-loop system are ex-
ponentially converging with decay rate δτ to the ball

B∆(r) =
{
h ∈ H1(0, 1) | ∥h∥H1 ≤ r∆

}
,

r =

√
3
[

γ

M δ
+ M3

]
.

(4.40)

2 τ

9

Summarizing, we have:

Theorem 4.1. Consider (4.5) with boundary conditions (3.6), point

measurement (4.6), control law (4.10) and w(·, 0) ∈ D(A
1
2
1 ). Let

> 0 be the quantization error bound. Given δ > 0, let N0 ∈ N
atisfy (3.11) and N ∈ N satisfy N0 ≤ N. Let L0 and K0 be obtained
sing (3.16) and (3.17), respectively. Given ρ, γ , τM,y, τM,u > 0,
1 > 0 and δ0 = δ1+δ, let there exist 0 < P0,W1 ∈ R(2N0+1)×(2N0+1)

nd scalars 0 < α0, α1, α2,W2 which satisfy (4.30) and (4.31)
ith notations (4.29). Then, the full-order closed-loop system (3.29),
4.17) and (4.19) is ISS, meaning that the following inequality is
atisfied:

∥w(·, t)∥2
H1 +

ŵ(·, t)
2
H1 + u2(t)

≤ M0e−2δτ t ∥w(·, 0)∥2
H1 + r2∆2

(4.41)

ith some M0 > 0, r defined in (4.40) (with M2 and M3 given in
4.34) and (4.37), respectively). Here δτ > 0 the unique solution
f δτ = δ0 − δ1e2δτ τM,y . The solutions of the full-order closed-loop
ystem are exponentially converging with a decay rate δτ to the
ttractive ball (4.40). The LMIs (4.30) and (4.31) are always feasible
or large enough N and small enough τM,y, τM,u and their feasibility
or N implies feasibility for N + 1.

roof. First, we show that feasibility of (4.30) and (4.31) for N
mplies feasibility for N + 1. Fix ρ, γ , τM,y, τM,u > 0, δ1 > 0,
0 = δ1 + δ, P0 > 0, W1 > 0, αi > 0, i = 0, 1, 2 and W2 > 0 such
hat (4.30) and (4.31) are feasible for some N . By monotonicity
f λn, n = 1, 2 . . . we have that (4.27) implies µN+2 < 0 and
easibility of (4.31) with N replaced by N + 1. Furthermore, since

2αiρ
(N−0.5)π2 , i ∈ {0, 1, 2} appearing in φ, Θ1 and Θ2, respectively
(see (4.29)), decrease to zero as N → ∞, (4.30) holds with N
replaced by N + 1.

Second, we show that (4.30) and (4.31) are feasible for large
enough N and small enough τM,y, τM,u. Fix ρ = 1 and αi =

2, i ∈ {0, 1, 2}. From (3.16) and (3.17), there exists some P0 > 0,
independent of N , such that P0F0 + F T

0 P0 + 2δP0 = −I . Then, for
and large enough N and δ1 we have

Φ (2)
=

[
−I +

4
(N−0.5)π2 K̃ T

a K̃a P0L
∗ −2δ1

]
< 0 (4.42)

ith Φ(2) given in (4.29). Moreover, the eigenvalues of Φ (2) de-
rease as N → ∞. Fix δ1 and δ0 = δ1 + δ.
Consider (4.30) and let W1 = N · I2N0+1, W2 = N and γ = N

with large enough N . By Schur complement we have[
Φ(2) Γ1 Γ2
∗ diag {Θ1, Θ2}

]
< 0 (4.43)

iff Φ(2)
−

∑2
i=1 ΓiΘ

−1
i Γ T

i < 0. The latter holds for large enough
N by (4.42) and our choice of W1, W2, γ , ρ and αi, i ∈ {0, 1, 2}.
Choosing τM,y = τM,u =

1
N and using (4.43) we find that (4.30)

olds for large enough N . Finally, recall that for αi = 2, i ∈

0, 1, 2}, (4.31) holds iff

µN+1 = −λN+1

[
1
4 −

a+δ0
λN+1

]
< 0 (4.44)

Since δ1 and δ0 are fixed, (4.44) holds for large enough N , by
onotonicity of {λn}

∞

n=1. □

emark 4.2. Note that the estimate (4.40) on r > 0, where r∆
is the radius of the ball of attraction, is only an apriori qualitative
bound. In order to obtain a smaller bound on r > 0, it is desirable
to minimize the quantity γ

λmin(P0)
given in (4.35) and (4.37). In the

examples below, this is done by manually tuning the parameter
γ . There exist more advanced methods of incorporating the mini-
mization of γ into the LMIs (see, e.g, Fridman and Dambrine
λmin(P0)
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2009)). We leave the development of such methods for future
esearch.

emark 4.3. The Halanay-based tools developed in this paper
an be used for sampled-data ISS analysis of

zt (x, t) = zxx(x, t) + az(x, t) + d0(x, t), t ≥ 0

under disturbed Dirichlet actuation

zx(0, t) = 0, z(1, t) = u(t) + d(t),

disturbed sampled-data measurement

y(t) = z(x∗, sk) + σk, x∗ ∈ [0, 1), t ∈ [sk, sk+1) (4.45)

and the generalized hold implementation

u̇(t) = v(tj), t ∈ [tj, tj+1). (4.46)

Here σ = {σk}
∞

k=0 satisfies ∥σ∥ℓ∞ ≤ ∆, d ∈ C2([0, ∞))
subject to max

(
|d(t)| ,

⏐⏐ḋ(t)⏐⏐) ≤ ∆ for all t ≥ 0 and d0 ∈

L2((0, ∞); L2(0, 1)) ∩ H1
loc((0, ∞); L2(0, 1)), with some ∆ > 0.

In this case, the dynamic extension (3.4) leads to the following
ODE–PDE system:

u̇(t) = v(tj), t ∈ [tj, tj+1),
wt (x, t) = wxx(x, t) + aw(x, t) + au(t) − v(tj) + f (x, t),

f (x, t) = d0(x, t) + ad(t) − ḋ(t).

The smoothness assumptions on d0 and d are needed for well-
posedness. In the continuous-time case, L2-gain and ISS anal-
ysis of parabolic PDEs under finite-dimensional observer-based
control was initiated in Katz and Fridman (2021a).

5. Sampled-data control: Neumann actuation

In this section we consider sampled-data control of (3.1) under
Neumann actuation

zx(0, t) = u(t), z(1, t) = 0 (5.1)

and quantized point measurement (4.1) with q : R → R satisfy-
ing (4.2). The sequences of sampling instances {sk}∞k=0 and

{
tj
}∞

j=0
are the same as in Section 4. The control input u(t) is generated by
a generalized hold device of the form (4.3). The derivation of the
closed-loop system and practical stability analysis in this section
are similar to Section 4. Therefore, we present them succinctly,
while emphasizing the main differences.

Introducing the change of variables

w(x, t) = z(x, t) − r(x)u(t), r(x) = x − 1

we obtain the following equivalent ODE–PDE system

u̇(t) = q
[
v(tj)

]
, t ∈ [tj, tj+1),

wt (x, t) = wxx(x, t) + aw(x, t) + r(x)
(
au(t) − q

[
v(tj)

])
.

(5.2)

with boundary conditions (3.6) and measurement

y(t) = q [w(x∗, sk) + r(x∗)u(sk)] , t ∈ [sk, sk+1). (5.3)

Recall that we treat u(t) as an additional state variable and the
values

{
v(tj)

}∞

j=1 as the control input to be determined. We choose
u(0) = 0 which results in w(·, 0) = z(·, 0).

We present the solution to (5.2) as (3.8) with {φn}
∞

n=1 defined
in (1.4). By differentiating under the integral sign, integrating by
parts and using (1.2) and (1.3) we obtain (4.7) where now

|bn| =

⏐⏐⏐⏐∫ 1

0
r(x)φn(x)dx

⏐⏐⏐⏐ =

√
2

λn
, n = 1, 2, . . . (5.4)

atisfy (3.10).
10
Given δ > 0, let N0 ∈ N satisfy (3.11) and N ∈ N, N0 ≤ N .
efine a finite-dimensional observer of the form (3.12) where

ˆ n(t) satisfy (4.9) with innovation term replaced by

ˆ (x∗, t − τy) + r(x∗)u(t − τy) − y(t). (5.5)

nder Assumption 1 let the observer and controller gains, L0 and
0, satisfy (3.16) and (3.17), respectively. We choose ln = 0 for
> N0. We propose a (N0+1)-dimensional controller of the form

4.10) with ŵN0 (t) given in (3.18).
Recall the estimation error en(t) defined in (3.23). By us-

ng (3.8), (3.12) and arguments similar to (3.24) the innovation
erm (5.5) can be written as (4.12) with ζ (t) and σy(t) satisfying
3.27) and (4.13), respectively. Then, the error equations have
he form (4.14). Using (3.28) and (4.15) we obtain the reduced-
rder closed-loop system (4.17). Furthermore, note that eN−N0(t)

atisfies (3.29), which implies (4.16), whereas ŵN−N0 (t) satisfies
4.19). Here, σu(t) is given by (4.18).

For H1-ISS of the closed-loop system (4.17) let ρ > 0, δ0 >
and define the Lyapunov function (4.20), with V (t) given in

3.32) and Vy(t) and Vu(t) given in (4.21). Consider [sk, sk+1), k =

, 1, . . . , where sk, sk+1 are consecutive measurement sampling
nstances. There exist at most finitely many controller update
nstances t (k)j , 0 ≤ j ≤ nk for which (2.9) holds. Moreover,
¯ (t) defined by (4.20) and (4.21) is continuously differentiable on
t (k)j , t (k)j+1), 0 ≤ j ≤ nk − 1. Therefore, we apply Proposition 2.1
o obtain (2.11).

Differentiating V0(t) on [t (k)j , t (k)j+1), 0 ≤ j ≤ nk − 1 along (4.17)
e have (4.22) with the last term replaced by

2ρ
∑

∞

n=N+1

[
−λn + a + δ0 +

∑2
i=0

1
2αi

]
λnw

2
n(t).

The latter is obtained due to (3.35), (5.4) and the following
application of the Young inequality:

2ρ
∑

∞

n=N+1 λnwn(t)bn
[
K̃aX0(t) + K̃0Υu(t) − σu(t)

]
≤

(
ρ

α0
+

ρ

α1
+

ρ

α2

)∑
∞

n=N+1 λnw
2
n(t) +

2α2ρ

π2(N−0.5)
σ 2
u (t)

+
2α0ρ

π2(N−0.5)

⏐⏐⏐K̃aX0(t)
⏐⏐⏐2 +

2α1ρ

π2(N−0.5)

⏐⏐⏐K̃0Υu(t)
⏐⏐⏐2 .

(5.6)

ifferentiation of pe
⏐⏐eN−N0 (t)

⏐⏐2 along the solution to (4.17) results
in (3.34) with δ replaced by δ0. Differentiating Vy(t) and Vu(t)
along (4.17) we obtain (4.23), whereas ζ (t − τy) is compensated
y (4.24) with δ1 = δ0 −δ. Let γ > 0 be a scalar. Using (4.13) and

(4.18) we have (4.25).
Let

η(t) = col{ X0(t), ζ (t − τy), Υy(t), K̃0Υu(t), σy(t),
σu(t), eN−N0 (t)}.

rom (4.23), (4.24), (4.25) and (5.6) we obtain
˙̄V (t) + 2δ0V̄ (t) − 2δ1 supsk≤θ≤t V̄ (θ ) − 2γ∆2

≤ ηT (t)Ψ (2)η(t) + 2ρ
∑

∞

n=N+1 νnλnw
2
n(t) ≤ 0

(5.7)

f Ψ (2) < 0 and νn = −λn + a + δ0 +

[∑2
i=0

1
2αi

]
< 0 for n > N ,

here Ψ (2) is given in (4.28) and (4.29).
Since (3.11) implies A1+δ0I−δ1e−2A1τy < 0, by applying Schur

complement to Ψ (2) and taking pe → ∞ we find that Ψ (2) < 0 iff
(4.30) holds with R1 given in (4.29). Monotonicity of {λn}

∞

n=1 and
Schur complement imply that νn < 0 for all n > N iff[

−λN+1 + a + δ0 1 1 1
∗ −2 diag {α0, α1, α2}

]
< 0. (5.8)

The rest of the ISS analysis of the full-order closed-loop sys-
tem and the estimation of the attracting ball follows arguments
identical to (4.32)–(4.40). Summarizing, we have:
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able 1
MIs of Theorem 4.1 - (N, δ0) for different τM,y and τM,u .

τMy /τM,u 0.01 0.03 0.05 0.07

0.01 (2,0.3) (2,0.3) (2,0.3) (2,0.3)
0.03 (2,0.3) (2,0.3) (2,0.3) (2,0.3)
0.05 (2,0.3) (2,0.3) (2,0.3) (2,0.3)
0.07 (2,0.3) (3,0.4) (3,0.4) (3,0.4)

Theorem 5.1. Consider (5.2) with boundary conditions (3.6), point

easurement (5.3), control law (4.10) and w(·, 0) ∈ D(A
1
2
1 ). Let

> 0 be the quantization error bound. Given δ > 0, let N0 ∈ N
atisfy (3.11) and N ∈ N satisfy N0 ≤ N. Let L0 and K0 be obtained
sing (3.16) and (3.17), respectively. Given ρ, γ , δ1, τM,y, τM,u > 0

and δ0 = δ1 + δ, let there exist 0 < P0,W1 ∈ R(2N0+1)×(2N0+1)

and scalars 0 < ρ, α0, α1, α2,W2 which satisfy (4.28) and (5.8).
Then, the full-order closed-loop system (3.29), (4.17) and (4.19) is
ISS, meaning that inequality (4.41) is satisfied with some M0 > 0,
r defined in (4.40) (with M2 and M3 given in (4.34) and (4.37),
respectively) and δτ > 0 the unique solution of δτ = δ0 − δ1e2δτ τM,y .
Furthermore, the solutions of the full-order closed-loop system are
exponentially converging with a decay rate δτ to the attractive ball
given in (4.40). The LMIs (4.28) and (5.8) are always feasible for
arge enough N and small enough τM,y, τM,u and their feasibility for
implies feasibility for N + 1.

. Examples

In all numerical examples we choose a = 3 which results in
n unstable open-loop system. The observer and controller gains,
0 and K0 are obtained using (3.16) and (3.17), respectively. All
MIs were verified using the standard Matlab LMI toolbox.
Consider (3.1) under Dirichlet actuation (3.2). Let δ = 10−4,

eading to N0 = 1. For in-domain measurement x∗ = π−1 the
btained gains are

0 = 0.5097, K0 = [7.8678, 4.2599]. (6.1)

iven different values of N ∈ {2, 3, 4} we verify the LMIs of
heorem 4.1 to guarantee ISS while increasing τM,y and τM,u. We
ind the values of N , δ0 and δ1 = δ0 − δ for which the LMIs are
easible. The results are presented in Table 1.

Next, we find r > 0 (as small as possible) defined in (4.40),
where r∆ is the radius of the ball of attraction. We fix x∗ = 0
(boundary measurement) or x∗ = π−1 (in-domain measurement)
and δ = 0.12, which results in N0 = 1. The observer and
controller gains corresponding to x∗ = π−1 are given by (6.1),
whereas for x∗ = 0 we have

L0 = 0.5887, K0 = [9.9965, 5.4284].

For N = 2 and τM,y = τM,u = 0.01, we check the LMIs of
heorem 4.1 while tuning γ > 0 with the above gains to obtain
n estimate of r that is as small as possible. The obtained results
re
x∗ = 0 : δ0 = 2.15, δτ ≈ 0.114, γ = 0.83, r = 148.9,

x∗ = π−1
: δ0 = 2.47, δτ ≈ 0.114, γ = 0.84, r = 169.5.

Consider now (3.1) under Neumann actuation (5.1). Let δ =

0−4, leading to N0 = 1. For in-domain measurement x∗ = π−1

he obtained gains are

0 = 0.5097, K0 = [4.5, −4.046]. (6.2)

iven N ∈ {2, 3, 4} we verify the LMIs of Theorem 5.1 to guaran-
ee ISS while increasing τM,y and τM,u. The results are presented
n Table 2.

Next, we find r > 0 (as small as possible) defined in (4.40),
here r∆ is the radius of the ball of attraction. We fix x = 0
∗

11
able 2
MIs of Theorem 5.1 - (N, δ0) for different τM,y and τM,u .

τMy /τM,u 0.03 0.05 0.07 0.09

0.01 (2,0.1) (2,0.1) (2,0.2) (2,0.2)
0.05 (2,0.2) (2,0.1) (2,0.1) (2,0.2)
0.09 (3,0.3) (3,0.2) (3,0.1) (3,0.1)
0.11 (3,0.2) (4,0.2) (4,0.3) (4,0.2)

(boundary measurement) or x∗ = π−1 (in-domain measurement)
and δ = 0.15, which results in N0 = 1. The observer and
controller gains corresponding to x∗ = π−1 are given by (6.2),
whereas for x∗ = 0 we have

L0 = 1.0837, K0 = [12.6755, −12.7348]. (6.3)

For N = 2 and τM,y = τM,u = 0.01, we check the LMIs of
Theorem 5.1 with the above gain while tuning γ > 0 to obtain
an estimate of r that is as small as possible. The obtained results
are

x∗ = 0 : δ0 = 2.86, δτ ≈ 0.142, γ = 0.1246, r = 96.9,

x∗ = π−1
: δ0 = 2.78, δτ ≈ 0.141, γ = 0.1354, r = 94.3.

(6.4)

For simulations of the closed-loop system, we consider Neumann
actuation with initial condition

z0(x) = 3(x − x2)2, x ∈ [0, 1].

Let x∗ = 0 (boundary measurement) and τM,y = 0.05 and
τM,u = 0.09. The variable sampling instances were generated by
sk+1 = sk + 0.5(1 + Uk)τM,y, where Uk ∼ Unif (0, 1) was chosen
at random. Similarly, the variable controller hold times were
generated by tj+1 = tj+0.5(1+Uj)τM,u, where Uj ∼ Unif (0, 1). We
consider δ = 0.0001, which results in N0 = 1. The corresponding
observer and controller gains are given by (6.2). We further fix
N = 2 and consider two uniform quantizers: either with the
quantization error ∆ = 0.01 or with ∆ = 0.05. In simulations
of (3.6) and (5.2) we use Lemma 1.2 to estimate |u(t)|+∥w∥H1 ≈

|u(t)| +
∑40

n=1 λnw
2
n(t). The values of wn(t), 1 ≤ n ≤ 2 were

found from simulation of the observer ODEs (4.9) and error ODEs
(4.14) and applying wn(t) = en(t) + ŵn(t), n ≥ 1. The values
of wn(t), 3 ≤ n ≤ 40 were obtained from simulation of the
ODEs (4.7). The value of ζ (t), given in (3.25), was approximated
by ζ (t) ≈

∑40
n=3 wn(t)φn(x∗). The results are presented in Fig. 3

and confirm the theoretical analysis. The maximum values of
τM,y and τM,u for which ISS still holds in simulations were 4–
5 times larger than predicted from LMIs. Plots of the boundary
control u(t) in (5.1), the values of q[v(tj)], j ≥ 0 (see (4.10))
and the quantized measurement (5.3) are presented in Fig. 4.
Finally, for the controller hold times

{
tj
}∞

j=1, we plot the values of
limt→t−j

Vu(t) (see Fig. 5). Note that by (4.8) and (4.21), we have
Vu(tj) = 0, j ≥ 1. Thus, limt→t−j

Vu(t) is the size of the jump of
Vu(t) at tj, j ≥ 1. A similar plot can be obtained for the jumps of
Vy(t) at the instances sk.

7. Conclusions

This paper presented quantized sampled-data finite-
dimensional control of a reaction–diffusion PDE under boundary
actuation and point (either in-domain or boundary) discrete-time
measurement. The design was based on the modal decomposition
approach via dynamic extension, which required a generalized
hold device for sampled-data implementation. For ISS analysis,
we used Wirtinger-based piecewise continuous in time Lyapunov
functionals and combined them with appropriate Halanay’s in-
equalities to compensate sampling in the infinite-dimensional
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Fig. 3. Closed-loop system simulations.

Fig. 4. Input u(t), values of q[v(tj)] and quantized output.

Fig. 5. Values of limt→t−j
Vu(t), whereas Vu(tj) = 0.

ail. As an additional result, we have derived novel ISS Halanay’s
nequalities for piecewise continuous functions which do not
row in the jumps.
Novel Halanay’s inequalities may be used in the future for

arious sampled-data control problems for ODEs and PDEs. The
resented design method can be extended to other PDEs and
o the case of input and output delays. Additional topics for
uture research may be quantization with saturation, as well as
mproved methods for finding the radius of the ball of attraction.
12
ppendix

roof of Lemma 2.1.
We prove Lemma 2.1 for the case where V (t) has at least one

oint of jump discontinuity in [a, b). The proof for a continuous
V (t) is easier and follows similar arguments.

Denote {ξi}
M
i=1 ⊆ {ti}N−1

i=1 to be the points where V (t) has a
jump discontinuity (see Fig. 1). Thus, we have:

lim
t↗ξi

V (t) > V (ξi), i = 1, 2, . . . ,M. (A.1)

A unique solution to δτ = δ0 − δ1e2δτ h exists by arguments of
Lemma 4.2 in Fridman (2014). Let

y(t) = e−2δτ (t−a)V (a) + d
∫ t

a
e−2δ(t−s)ds, t ∈ [a, b). (A.2)

be the right-hand side of (2.5). Differentiating y(t) we have

ẏ(t) + 2δ0y(t) − d = 2δ1e2δτ he−2δτ (t−a)V (a)

+2δ1d
∫ t
a e−2δ(t−s)ds,

(A.3)

whereas V (a) + d
∫ t
a e−2δ(t−s)ds ≥ supa≤θ≤t y(θ ). Thus

ẏ(t) ≥ −2δ0y(t) + 2δ1 supa≤θ≤t y(θ ) + d, t ∈ [a, b),
y(a) = V (a). (A.4)

Let ϵ1 > ϵ2 > · · · > 0 be a sequence of positive scalars such that
limn→∞ ϵn = 0 and define

yn(t) = y(t) +
ϵn

2δ
.

Then yn(t) satisfies the following for t ∈ [a, b):

ẏn(t) ≥ −2δ0yn(t) + 2δ1 supa≤θ≤t yn(θ ) + d + ϵn,

yn(a) > V (a). (A.5)

t is sufficient to show that V (t) ≤ yn(t) = y(t) +
ϵn
2δ for all

n = 1, 2, . . . and all t ∈ [a, b) and then take n → ∞. Assume
by contradiction that

∃n ≥ 1 : Jn = {t ∈ [a, b)|V (t) > yn(t)} ̸= ∅

and denote t∗ = infJn. By (A.5) and right continuity of yn(t) and
V (t) on [a, b) we have that t∗ ∈ (a, b). Moreover, by definition
of Jn, V (t) ≤ yn(t), t ∈ [a, t∗) and there exists a sequence
τk, k = 1, 2, . . . such that τk ↘ t∗ and

V (τk) > yn(τk), k = 1, 2, . . .

which imply V (t∗) ≥ yn(t∗), by right continuity.
Next, we show that t∗ is a point of continuity for V (t), by

showing that t∗ ̸= ξi, i = 1, . . . ,M . Assume by contradiction that
there exists some i = 1, . . . ,M such that t∗ = ξi. From continuity
of yn(t) on [a, b), V (t∗) ≥ yn(t∗) and (2.2) there exists some t̄ < t∗
sufficiently close to t∗ such that V (t̄) > yn(t̄). Therefore, t̄ ∈ Jn
and t̄ < t∗ = infJn, which is a contradiction. Now V (t∗) ≥ yn(t∗)
and t∗ is a point of continuity of both V (t) and yn(t). Thus, it must
be that V (t∗) = yn(t∗) (otherwise, by continuity, we again have
t̄ < t∗ such that V (t̄) > yn(t̄)). We conclude from the previous
properties that

supa≤θ≤t∗ V (θ ) ≤ supa≤θ≤t∗ yn(θ ), (A.6)

nd
V (τk)−V (t∗)

τk−t∗
>

yn(τk)−yn(t∗)
τk−t∗

, k = 1, 2, . . . (A.7)

Then

D+V (t∗)
(2.3)
≤ −2δ0V (t∗) + 2δ1 supa≤θ≤t∗ V (θ ) + d

(A.6) (A.5)
(A.8)
≤ −2δ0yn(t∗) + 2δ1 supa≤θ≤t∗ yn(θ ) + d < ẏn(t∗).
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n the other hand, since τk ↘ t∗, by taking k → ∞ in (A.7) we
ave

+V (t∗)
(2.4)
≥ lim

k→∞

yn(τk) − yn(t∗)
τk − t∗

= ẏn(t∗). (A.9)

From (A.8) and (A.9) we obtain a contradiction.

Proof of Corollary 2.1.
Let V(t) = supa≤θ≤t V (θ ). Using right continuity of V (t) on

[a, b), it can be easily verified that V(t) is right continuous on
[a, b). We show that V (t) satisfies (2.3). Fix t ≥ t0 = a. By the
assumptions on V (t) there exists some ϵ > 0 such that V (t) is
absolutely continuous on [t, t + ϵ). Let 0 < s < ϵ. From (2.6) we
ave
V (t+s)−V (t)

s = s−1
∫ t+s
t V̇ (τ )dτ

(2.6)
≤ −2δ0s−1

∫ t+s
t V (τ )dτ + 2δ1s−1

∫ t+s
t V(τ )dτ + d

≤ −2δ0V (t) + 2δ1V(t) − 2δ0s−1
∫ t+s
t [V (τ ) − V (t)] dτ

+2δ1s−1
∫ t+s
t [V(τ ) − V(t)] dτ + d.

(A.10)

ince V (t) and V(t) are right continuous on [a, b), we have⏐⏐⏐s−1
∫ t+s
t [V (τ ) − V (t)] dτ

⏐⏐⏐
≤ supt≤τ≤t+s |V (τ ) − V (t)|

s→0+

−→ 0,⏐⏐⏐s−1
∫ t+s
t [V(τ ) − V(t)] dτ

⏐⏐⏐
≤ supt≤τ≤t+s |V(τ ) − V(t)|

s→0+

−→ 0.

(A.11)

y taking lim sups→0+ in (A.10) and using (A.11) we have

D+V (t)
(2.4)
≤ −2δ0V (t) + 2δ1V(t) + d, t ∈ [a, b).

roof of Proposition 2.1.
We prove step-by-step on [sk, sk+1), k ∈ Z+. For k = 0,

orollary 2.1 and δτ < δ0 − δ1 imply

(t) ≤ e−2δτ (t−s0)V (s0) + d
∫ t

s0

e−2δτ (t−s)ds, t ∈ [s0, s1). (A.12)

ext, consider k = 1. From Corollary 2.1 and (2.9) with j = 0 (i.e.
(1)
0 = s1) we have

V (t) ≤ e−2δτ (t−s1)V (s1) + d
∫ t
s1
e−2δτ (t−s)ds

(2.9)
≤ e−2δτ (t−s1)V (s−1 ) + d

∫ t
s1
e−2δτ (t−s)ds

(A.12)
≤ e−2δτ (t−s0)V (s0) + d

∫ t
s0
e−2δτ (t−s)ds, t ∈ [s1, s2).

(A.13)

Continuing step-by-step for k = 2, 3, . . . we are done.

A.1. Proof of Lemma 2.2

Let 1[t0,∞)(t) be the indicator function of [t0, ∞) and

y(t) = κe−2δτ (t−t0) + d · 1[t0,∞)(t)
∫ t
t0
e−2δ(t−s)ds,

κ = sup−h≤θ≤0 V (t0 + θ ), t ≥ t0 − h.
(A.14)

Note that y(t) ≥ V (t), t ∈ [t0 − h, t0] and

ẏ(t) ≥ −2δ0y(t) + 2δ1 sup−h≤θ≤0 y(t + θ ) + d, t ≥ t0 (A.15)

where ẏ(t0) is the right derivative at t0. Let ϵn ↘ 0. By arguments
of Lemma 2.1 we can obtain the comparison V (t) ≤ yn(t) =

(t) +
ϵn
2δ2

for all n = 1, 2, . . . . The latter inequality finishes the
roof.
13
A.2. Proof of Corollary 2.2

Let V(t) = sup−h≤θ≤0 V (t + θ ), t ∈ [t0, ∞). By continuity of
V on [t0 − h, ∞), it can be easily verified that V is continuous on
t0, ∞). Fixing t ≥ t0, s > 0 and using absolute continuity of V (t)
n [t0, ∞) we see that (A.10) holds. Furthermore, (A.11) holds
y continuity of V (t) and V(t) on [t0, ∞). Taking lim sups→0+

n (A.10) we obtain (2.12) for t ≥ t0, which implies (2.13) by
emma 2.2.
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