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Abstract—This article is concerned with the stability of discrete-time
systems with fast-varying coefficients that may be uncertain. Recently,
a constructive time-delay approach to averaging was proposed for
continuous-time systems. In the present article, we develop, for the first
time, this approach to discrete-time case. We first transform the system
to a time-delay system with the delay being the period of averaging,
which can be regarded as a perturbation of the classical averaged
system. The stability of the original system can be guaranteed by the
resulting time-delay system. Then under assumption of the classical
averaged system being exponentially stable, we derive sufficient stability
conditions for the resulting time-delay system, and find a quantitative
upper bound on the small parameter that ensures the exponential
stability. Moreover, we extend our method to input-to-state stability (ISS)
analysis of the perturbed systems. Finally, we apply the approach to
the practical stability of discrete-time switched affine systems, where an
explicit ultimate bound in terms of the switching period is presented.
Two numerical examples are given to illustrate the efficiency of results.

Index Terms—Averaging, Time-delay systems, Discrete-time systems,
Switched affine systems, ISS.

I. INTRODUCTION

It is well known that time-varying systems arise in many control
systems including rotor-blade system, satellite attitude and hypersonic
vehicle flight control systems [2], [4], [17]. Compared to time-
invariant systems, the stability analysis for time-varying systems is
more challenging since the functions describing the dynamic involve
the time as an argument. The research on time-varying systems has
received much attention in the control community [9], [15], [18], [22].
One of the effective methods for the stability analysis of such systems
is the averaging method, which uses a simpler (averaged) system to
approximate the original system [12]. As an asymptotic method, the
averaging method has been successfully applied in several fields. For
instance, in [3] the averaging of discrete-time systems was used for
the adaptive identification. In [5], [13], the averaging method was
applied for the stability of extremum seeking systems and in [14] of
power electronic systems. However, the classical averaging method
cannot provide quantitative upper bounds on the small parameter that
ensures the stability.

Recently a new constructive time-delay approach to the continuous-
time averaging was presented in [7]. By transforming the original
system into a model with time-delays of the length of the small
parameter and using the Lyapunov-Krasovskii (L-K) approach, this
approach allows, for the first time, to derive efficient linear matrix
inequality (LMI)-based conditions for finding the upper bound of the
small parameter that ensures the stability. Later on, the time-delay
approach to averaging was successfully extended to L2-gain analysis
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[20] and applied for the quantitative stability analysis of continuous-
time ES algorithms (see [23]) and sampled-data ES algorithms (see
[24]).

In this article, we introduce the time-delay approach to averaging of
discrete-time systems. Although some arguments (not all) are similar
to the continuous-time averaging in [7], it is important to present
the discrete-time results where derivation of the time-delay model
is not straightforward, whereas appropriate Lyapunov functionals
have a novel triple sum terms. Note that results for discrete-time
systems are not as readily available as their continuous counterparts
[3], [21]. Moreover, the stability analysis of discrete-time switched
affine systems is much more involved than the continuous-time case,
since the desired equilibrium point cannot be reached, but only a
neighborhood of the equilibrium is available [8].

In this article, we first transform the original discrete-time system
to a time-delay system. The stability of the original system can be
guaranteed by the resulting time-delay system. The latter has the
form of the classical averaged system subject to a perturbation. Then
by constructing an appropriate Lyapunov functional, we derive the
explicit conditions in terms of LMIs to guarantee the exponential
stability of the resulting time-delay system (and thus of the original
system), and moreover, we also find a quantitative upper bound on
the small parameter that ensures the exponential stability. Finally,
we successfully extend our method to ISS analysis of the perturbed
systems and practical stability analysis of switched affine systems. As
already mentioned, the existing results on averaging for discrete-time
systems (see, for example, [3], [5]) are qualitative, i.e., the system is
stable for small ε if the averaged system is stable, and the only choice
of the parameter ε can be done till now by simulations. However,
our new time-delay approach to averaging established for discrete-
time systems gives the first efficient quantitative bounds on ε making
averaging-based control reliable. A conference version of the paper
confined to consideration of switched affine systems was submitted
to CDC 2022 [19].

Notation: The notation used in this article is fairly standard. For
two integers p and q with p ≤ q, the notation I [p, q] refers to the
set {p, p+ 1, . . . , q} . Z+ is the set of nonnegative integers. The
notation P > 0 for P ∈ Rn×n means that P is symmetric and
positive definite. The symmetric elements of the symmetric matrix are
denoted by ∗. The notations |·| and ∥·∥ refer to the usual Euclidean
vector norm and the induced matrix 2 norm, respectively. At last, for
any integers a and b with b ≥ a, we let |w|[a,b] , maxs∈I[a,b] |w(s)| .

We will employ the following extended Jensen’s inequality, which
is an extension of Lemma 2 in [16]. The proof is similar and thus
omitted here.

Lemma 1: Denote

G =
k2∑

i=k1

k2∑
j=i

A(i)x(j), Y =
k2∑

i=k1

k2∑
j=i

xT(j)AT(i)QA(i)x(j),

where x(i) : I[k1, k2] → Rn, k2 ≥ k1, are a series of vectors and
A(i) : I[k1, k2] → Rn×n are a series of matrices. Then for any
n× n matrix Q > 0 the following inequalities hold:

GTQG ≤ (k2 − k1 + 1) (k2 − k1 + 2)

2
Y. (1)
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II. A TIME-DELAY APPROACH TO STABILITY BY AVERAGING

Consider the following discrete-time system with uncertainty:

x(k + 1) = (In + ε [A(k) +△A(k)])x(k), k ∈ Z+, (2)

where x(k) ∈ Rn, A(k) : Z+ → Rn×n represents the nominal
matrix, ε > 0 is a small parameter, and the time-varying uncertain
matrix △A(k) ∈ Rn×n satisfies the following inequality

∥△A(k)∥ ≤ κ, k ∈ Z+. (3)

Here κ > 0 is a small enough constant. System (2) can be regarded as
the linearized version with uncertainty of difference equation (2.2.1)
in [3]. But different from the classical averaging theory in [3] that
provides a qualitative stability analysis, in the following we aim to
develop a new time-delay approach to periodic averaging, which
allows us to derive the explicit conditions and a quantitative upper
bound on ε that ensure the stability.

Remark 1: System (2) can be further regarded as the dis-
cretization of the linear continuous-time system with fast-varying
coefficients (see (2.1) with uncertainty in [7]): ẋ(t) = [Ā( t

ε
) +

△Ā( t
ε
)]x(t), t ≥ 0. Setting the fast time τ = t

ε
and denoting

x̄(τ) = x(t), we have ˙̄x(τ) = ε[Ā(τ) + △Ā(τ)]x̄(τ), τ ≥ 0,
whose Euler discretization with a small sampling period h is given
by x̄((k + 1)h) = x̄(kh) + εh[Ā(kh) +△Ā(kh)]x̄(kh). The latter
has the form of (2) by setting x(k) = x̄(kh), A(k) = hĀ(kh)
and △A(k) = h△Ā(kh). In addition, we point out that when
the continuous-time system is subject to time-varying parametric
uncertainties being unknown, the Euler discretization method is
intuitive and efficient.

Similar to the continuous case in [7], we first assume:
A1 There exists a positive integer T such that

1

T

k∑
i=k−T+1

A(i) = Aav, k ≥ T − 1, Aav is Hurwitz.

A2 All entries apq(k) of A(k) are uniformly bounded for k ∈ Z+

with the values from some finite intervals apq(k) ∈ [am
pq, a

M
pq ] for

k ≥ T − 1.
Under A1, the averaged system of (2) with △A(k) = 0 has the

form

xav(k + 1) = (In + εAav)xav(k), xav ∈ Rn, k ∈ Z+, (4)

which is exponentially stable for small enough ε.
Under A2, A(k) can be presented as a convex combination (see

e.g., Section 3.3.3 in [6]) of the constant matrices Ai with the entries
am
pq or aM

pq :

A(k) =
N∑
i=1

fi(k)Ai, k ≥ T − 1, fi(k) ≥ 0,
N∑
i=1

fi(k) = 1, (5)

where 1 ≤ N ≤ 2n
2

.
Inspired by [7], we apply the time-delay method to averaging of

system (2). Denote

x̄(j) = x(j + 1)− x(j), G(k) =
ε

T

k−1∑
i=k−T+1

k−1∑
j=i

A(j)x(j). (6)

Summing in k and dividing by T on both sides of (2), we have

1

T

k∑
i=k−T+1

x(i+ 1) =
1

T

k∑
i=k−T+1

x(i) +
ε

T

k∑
i=k−T+1

A(i)x(i)

+
ε

T

k∑
i=k−T+1

△A(i)x(i). (7)

Note from (2) and (6) that

1

T

k∑
i=k−T+1

x(i+ 1)

=x(k + 1)− 1

T

k∑
i=k−T+2

[x(k + 1)− x(i)]

=x(k + 1)− 1

T

k∑
i=k−T+2

k∑
j=i

x̄(j)

(2)
=x(k + 1)−G(k + 1)− ε

T

k∑
i=k−T+2

k∑
j=i

△A(j)x(j). (8)

Similarly,

1

T

k∑
i=k−T+1

x(i) = x(k)−G(k)− ε

T

k−1∑
i=k−T+1

k−1∑
j=i

△A(j)x(j). (9)

Combining (8) and (9) gives

1

T

k∑
i=k−T+1

[x(i+ 1)− x(i)]

= [x(k + 1)−G(k + 1)]− [x(k)−G(k)]

+
ε

T

k∑
i=k−T+1

△A(i)x(i)− ε△A(k)x(k). (10)

On the other hand, under A1 we have

ε

T

k∑
i=k−T+1

A(i)x(i)

=
ε

T

k∑
i=k−T+1

A(i) [x(i)− x(k) + x(k)]

=εAavx(k)−
ε

T

k−1∑
i=k−T+1

k−1∑
j=i

A(i)x̄(j). (11)

Finally, employing (10), (11) and setting

z(k) = x(k)−G(k), Y (k) =
1

T

k−1∑
i=k−T+1

k−1∑
j=i

A(i)x̄(j), (12)

system (7) can be transformed to

z(k + 1) = z(k) + ε [Aav +△A(k)]x(k)− εY (k) (13)

with k ≥ T−1. Here we follow the model in [20], where system (13)
has only a single Y (k)-term to be compensated in the L-K analysis,
which can significantly simplify the LMIs and improve the results in
the examples.

System (13) is a discrete-time version of the neutral type time-
delay system derived in [20], where z(k + 1) − z(k) depends on
x(k − i), i∈ I[0, T − 1]. Clearly, the solution x(k) of system (2) is
also a solution of system (13). Therefore, the stability of the original
non-delayed system (2) can be guaranteed by the stability of the time-
delay system (13). In view of the definition x(k) = z(k) + G(k),
we can reorganize (13) as

z(k + 1) = [In + ε (Aav +△A(k))] z(k)− εY (k)

+ ε (Aav +△A(k))G(k), k ≥ T − 1. (14)

Comparatively to the averaged system (4), system (14) with
△A(k) = 0 has the additional terms G(k) and Y (k) that are both
of the order of O(ε) provided x(k) (and thus z(k)) is of the order
of O(1). Thus, for small ε > 0 system (14) with △A(k) = 0 can be
regarded as a perturbation of system (4). In the following, we will
derive sufficient stability conditions for (13) (and thus (2)) and also
find a quantitative upper bound on the small parameter that ensures
the exponential stability. To this end, for some n×n matrices P > 0,
Q > 0, R > 0 and a scalar ρ ∈ (0, 1), we consider the following
L-K functional

V (k) = VP (k) + VQ(k) + VR(k), k ≥ T − 1, (15)

where

VP (k) = zT(k)Pz(k),
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VQ(k) = T̄ ε2
−1∑

i=−T+1

−1∑
j=i

k−1∑
s=k+j

ρk−s−1ϕ1(s),

VR(k) = T̄
−1∑

i=−T+1

−1∑
j=i

k−1∑
s=k+j

ρk−s−1ϕ2(i, j, s)

with T̄ = T−1
2T

and

ϕ1(s) = |A(s)x(s)|2Q , ϕ2(i, j, s) = |A(s+ i− j)x̄(s)|2R . (16)

The terms VQ(k) and VR(k) will compensate the G(k)-term and
Y (k)-term, respectively, in Lyapunov analysis. By using the extended
Jensen’s inequality (1) and noting the form of G(k) in (6) we have

VQ(k) ≥ ρT−2T̄ ε2
k−1∑

j=k−T+1

k−1∑
s=j

ϕ1(s) ≥ ρT−2GT(k)QG(k).

It follows that

V (k) ≥ VP (k) + VQ(k)

≥ [x(k)−G(k)]T P [x(k)−G(k)] + ρT−2GT(k)QG(k)

=
[
xT(k) GT(k)

] [ P −P
−P P + ρT−2Q

] [
x(k)
G(k)

]
≥ α |x(k)|2 (17)

with some α > 0.
Theorem 1: Let A1 and A2 be satisfied. Given matrices Aav,

Ai(i ∈ I[1, N ]) and constants κ > 0, θ > 0 and ε∗ > 0 subject to
θε∗ < 1, let one of the following conditions holds:

(i) there exist n× n matrices P > 0, Q > 0, R > 0, R̄ > 0 and
a scalar ζ > 0 that satisfy the following LMIs

Φi
1=

[
−R̄ AT

i R
∗ −R

]
< 0, i ∈ I[1, N ], (18)

Φi
2=

 Φ

T−1
2 AT

i Q T−1
2 AT

i R̄
02n×n 02n×n

0n×n
T−1

2 R̄

∗
∗

− 1
ε∗ Q 0n×n

∗ − 1
ε∗ R̄

 < 0, i ∈ I[1, N ], (19)

in which

Φ =


Φ11 −AT

avP − θP −P − ε∗AT
avP P + ε∗AT

avP

∗ Φ22 P −P
∗ ∗ Φ33 −ε∗P
∗ ∗ ∗ −ζIn + ε∗P

 ,

Φ11 = AT
avP + PAav + ε∗AT

avPAav + θP + ζκ2In,

Φ22 = θP − (1−θε∗)T−1

ε∗ Q,

Φ33 = ε∗P − (1−θε∗)T−1

ε∗ R;
(20)

(ii) there exist n× n matrices P > 0, Q > 0 and positive scalars
r, ζ that satisfy (19) with R = rIn, R̄ = rΠ1 and

Π1 =
2

T

T−1∑
i=0

AT(i)A(i). (21)

Then system (2) is exponentially stable with a decay rate
√
1− θε

for all ε ∈ (0, ε∗], namely, there exists a M > 0 such that for all
ε ∈ (0, ε∗], the solution of (2) initialized by x(0) ∈ Rn satisfies for
all k ∈ Z+ the following inequality:

|x(k)|2 ≤ M(1− θε)k |x(0)|2 . (22)

Moreover, if the above LMIs hold with θ = 0, then system (2) is
exponentially stable with a decay rate

√
1− θ0ε with θ0 being small

enough for all ε ∈ (0, ε∗].
Proof: We first verify the case under condition (i). Choose the L-

K functional V (k) as shown in (15). The time-shift of VP (k) along
system (13) can be evaluated as

VP (k + 1)− ρVP (k)

=2ε [x(k)−G(k)]T P [(Aav +∆A(k))x (k)− Y (k)]

+ ε2 [(Aav +∆A(k))x(k)− Y (k)]T P

× [(Aav +∆A(k))x(k)− Y (k)]

+ (1− ρ) [x(k)−G(k)]T P [x(k)−G (k)] , (23)

where G(k) and Y (k) are given by (6) and (12), respectively. For
the term VQ(k), we have

VQ(k + 1)− ρVQ(k)

=T̄ ε2
−1∑

i=−T+1

−1∑
j=i

[ k∑
s=k+j+1

ρk−sϕ1(s)−
k−1∑

s=k+j

ρk−sϕ1(s)
]

=
(T − 1)2 ε2

4
ϕ1(k)− T̄ ε2

k−1∑
i=k−T+1

k−1∑
j=i

ρk−jϕ1(j)

≤ (T − 1)2 ε2

4
ϕ1(k)− T̄ ρT−1ε2

k−1∑
i=k−T+1

k−1∑
j=i

ϕ1(j), (24)

where T̄ = T−1
2T

, ϕ1 satisfies (16) and the last inequality follows
from ρ ∈ (0, 1). Moreover, using the inequality (1) gives

GT(k)QG(k) ≤ T̄ ε2
k−1∑

i=k−T+1

k−1∑
j=i

ϕ1(j),

by which, inequality (24) can be continued as

VQ(k + 1)− ρVQ(k)

≤ (T − 1)2 ε2

4
|A(k)x(k)|2Q − ρT−1GT(k)QG(k). (25)

For the term VR(k), we have

VR(k + 1)− ρVR(k)

=T̄
−1∑

i=−T+1

−1∑
j=i

[
ϕ2(i, j, k)− ρ−jϕ2(i, j, k + j)

]
=T̄

k−1∑
i=k−T+1

k−1∑
j=i

ϕ2(i, j, k)− T̄
k−1∑

i=k−T+1

k−1∑
j=i

ρk−j |A(i)x̄(j)|2R

≤T̄
k−1∑

i=k−T+1

k−1∑
j=i

ϕ2(i, j, k)− T̄ ρT−1
k−1∑

i=k−T+1

k−1∑
j=i

|A(i)x̄(j)|2R ,

(26)

where T̄ = T−1
2T

, ϕ2 satisfies (16) and the last inequality follows from
ρ ∈ (0, 1). If Φi

1 < 0 (i ∈ I[1, N ]) in (18), then for all k ∈ Z+,[
−R̄

∑N
i=1 fi(k)A

T
i R

∗ −R

]
(5)
=

[
−R̄ AT(k)R
∗ −R

]
≤ 0. (27)

Applying the Schur complement to (27) we obtain AT(k)RA(k) ≤
R̄, k ∈ Z+, by which and the definition of ϕ2 in (16), we have

T̄
k−1∑

i=k−T+1

k−1∑
j=i

ϕ2(i, j, k) ≤
(T − 1)2

4
x̄T(k)R̄x̄(k). (28)

Moreover, with the extended Jensen’s inequality (1), we have

Y T(k)RY (k) ≤ T̄
k−1∑

i=k−T+1

k−1∑
j=i

|A(i)x̄(j)|2R . (29)

Hence, by using (28) and (29), inequality (26) can be continued as

VR(k + 1)− ρVR(k)

≤ (T − 1)2

4
x̄T(k)R̄x̄(k)− ρT−1Y T(k)RY (k). (30)

To compensate ∆A(k)x(k) in (23) we apply S-procedure: we add
to V (k + 1)− ρV (k) the left hand part of

ζε
[
κ2 |x(k)|2 − |∆A(k)x(k)|2

]
≥ 0 (31)
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with some ζ > 0. Moreover, the last term in (23) should be of the
order of O(ε), so we let ρ = 1−θε ∈ (0, 1) with some θ > 0. Then
by combining (23), (25), (30) and (31) we find

V (k + 1)− (1− θε)V (k)

≤2ε [x(k)−G(k)]T P [(Aav +∆A(k))x(k)− Y (k)]

+ ε∗ε [(Aav +∆A(k))x(k)− Y (k)]T P

× [(Aav +∆A(k))x(k)− Y (k)]

+ εθ [x(k)−G(k)]T P [x(k)−G (k)]

− (1− θε∗)T−1

ε∗
[
εGT(k)QG(k) + εY T(k)RY (k)

]
+ ζε

[
κ2 |x(k)|2 − |∆A(k)x(k)|2

]
+

(T − 1)2 ε∗

4

[
ε |A(k)x(k)|2Q +

1

ε
|x̄(k)|2R̄

]
=ηT(k)Φη(k) +

(T − 1)2 ε∗

4

[
ε
∣∣∣A(k)x(k)

∣∣∣2
Q
+

1

ε
|x̄(k)|2R̄

]
(32)

for all ε ∈ (0, ε∗] and k ≥ T − 1, where Φ is given by (20) and

ηT(k) =
√
ε
[
xT(k), GT(k), Y T(k), xT(k)∆AT(k)

]
. (33)

Note from (2) and x̄(j) in (6) that

x̄(k) = ε [A(k) +△A(k)]x(k), k ∈ Z+. (34)

Substituting (34) into (32) with A(k) satisfying (5) and applying
further Schur complements, we conclude that if Φ

T−1
2

∑N
i=1 fi(k)A

T
i Q T−1

2

∑N
i=1 fi(k)A

T
i R̄

02n×n 02n×n

0n×n
T−1

2 R̄

∗
∗

− 1
ε∗ Q 0n×n

∗ − 1
ε∗ R̄

 < 0,

(35)
then for all ε ∈ (0, ε∗] we have

V (k + 1)− (1− θε)V (k) ≤ 0, k ≥ T − 1, (36)

which with (17) yields, for all ε ∈ (0, ε∗],

α |x(k)|2 ≤ V (k) ≤ (1− θε)k−T+1 V (T − 1), k ≥ T − 1. (37)

LMI (35) follows from (19) since (35) is affine in
∑N

i=1 fi(k)A
T
i .

Under (3) and A2, we have

∥A(k) +△A(k)∥ ≤ ∥A(k)∥+ κ ≤ a, k ∈ Z+ (38)

for some a > 0. For k ∈ I[0, T − 1], x(k) satisfy (2). Hence, for all
ε ∈ (0, ε∗] and k ∈ I[0, T − 1] we obtain

|x(k)| ≤ (1 + aε∗)
k |x(0)| , |x̄(k)| ≤ aε∗ (1 + aε∗)

k |x(0)| .
(39)

Note that for all ε ∈ (0, ε∗], V (T − 1) defined by (15) can be upper
bounded by

V (T−1) ≤ c1
[
|x(T − 1)|2+ε∗2

T−2∑
k=0

|x(k)|2+
T−2∑
k=0

|x̄(k)|2
]

(40)

with ε-independent c1 > 0. Therefore, by employing (39), V (T − 1)
can be further upper bounded by

V (T − 1) ≤ c2 (1− θε)T−1 |x(0)|2 ∀ε ∈ (0, ε∗] (41)

with some ε-independent c2 > 0. Then (22) follows from (37) and
(41). Note that the feasibility of the LMIs (19) with θ = 0 implies
that the feasibility of (19) with the same decision variables and with
a small enough θ = θ0 > 0, and thus guarantees exponential stability
of system (2) with a decay rate approaching to 1.

Finally, we verify the case under condition (ii). Let R = rIn with
r > 0. By the definitions of ϕ2 in (16) and Π1 in (21) we have

T̄
k−1∑

i=k−T+1

k−1∑
j=i

ϕ2(i, j, k)

≤rT̄ x̄T(k)
[
(T − 1)

∑k
i=k−T+1A

T(i)A(i)
]
x̄(k)

=
(T − 1)2

4
x̄T(k)rΠ1x̄(k),

by which, inequality (26) can be continued as

VR(k + 1)− ρVR(k)

≤ (T − 1)2

4
x̄T(k)rΠ1x̄(k)− rρT−1Y T(k)Y (k). (42)

By using (42) instead of (30) in (32), we find that if LMIs (19) with
R = rIn and R̄ = rΠ1 hold for all ε ∈ (0, ε∗], we have (36). The
rest proof remains the same. The proof is finished.

Remark 2: LMIs (18) and (19) are always feasible for small
enough positive ε∗, θ and κ. Note that by the Schur complement,
LMIs (18) are reduced to AT

i RAi ≤ R̄ (i ∈ I[1, N ]) that always
hold for appropriate R̄. Now we check the feasibility of LMIs (19).
Since Aav is Hurwitz by A1, there exists a n × n matrix P > 0
such that for small enough θ > 0, the following inequality holds:
Θ0 , AT

avP + PAav + θP < 0. We choose ζ = 1/ε∗ and κ = ε∗.
Clearly, for small enough θ > 0 and ε∗ > 0, we have Φii < 0
(i ∈ I[1, 3]) in (20). Applying the Schur complement to Φi

2 < 0
(i ∈ I[1, N ]), we get

Φ+ ε∗
[

T−1
2 AT

i Q T−1
2 AT

i R̄
02n×n 02n×n

0n×n
T−1

2 R̄

] [
Q−1 0n×n

0n×n R̄−1

]
×

[
T−1

2 AT
i Q T−1

2 AT
i R̄

02n×n 02n×n

0n×n
T−1

2 R̄

]T

≈ Φ < 0, ε∗ → 0.

Applying further the Schur complement to Φ < 0, we have[
Θ0 + ε∗Θ1 −AT

avP − θP −P − ε∗AT
avP

∗ Φ22 P
∗ ∗ Φ33

]

+ε∗
[

P + ε∗AT
avP

−P
−ε∗P

]
Θ−1

2

[
P + ε∗AT

avP
−P

−ε∗P

]T

≈

[
Θ0 + ε∗Θ1 −AT

avP − θP −P − ε∗AT
avP

∗ Φ22 P
∗ ∗ Φ33

]
< 0, ε∗ → 0,

where Θ1 = AT
avPAav + In and Θ2 = In − ε∗2P. We further apply

the Schur complement to the above LMI such that[
Θ0 + ε∗Θ1 −AT

avP − θP
∗ Φ22

]
+ ε∗

[
−P − ε∗AT

avP
P

]
Θ−1

3

×
[

−P − ε∗AT
avP

P

]T
≈

[
Θ0 + ε∗Θ1 −AT

avP − θP
∗ Φ22

]
< 0, ε∗ → 0,

where Θ3 = (1− θε∗)T−1 R − ε∗2P. We finally apply the Schur
complement to the above LMI such that

Θ0 + ε∗Θ1 + ε∗
[
AT

avP + θP
]
Θ−1

4

[
AT

avP + θP
]T

< 0

with Θ4 = (1− θε∗)T−1 Q−ε∗θP, which always holds when ε∗ →
0 as Θ0 < 0. Finally we point out that, by the similar arguments, the
LMIs presented in the following Theorems 2-3 and Corollary 1 are
all feasible for small enough positive ε∗, θ and κ (as well as κ1, κ2

in Section IV) and large enough b0 and b in Section IV.
Example 1: Consider the suspended pendulum and assume that

the suspension point is subjected to vertical vibrations of small
amplitude and high frequency (see Example 10.10 in [12] and
Example 2.1 in [7]). The discrete-time version of linearized model
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at the upper equilibrium position (x1 = π, x2 = 0) with a sampling
period h can be described as:

x(k + 1) = x(k) + ε [A(k) + ∆A(k)]x(k), (43)

in which

A(k) = h
[

cos kh 1
α2 − cos2 kh −αβ − cos kh

]
,

∆A(k) = h
[

0 0
0 −α∆β(kh)

]
with α, β > 0. Here the uncertainty ∆β(kh) stems from the
uncertainties of friction coefficient and satisfies |∆β(kh)| ≤ β1 with
β1 ≥ 0. For simulation, we choose the sampling period h = π/20
and T = 2π/h = 40. Then

Aav =
π

20

[
0 1

α2 − 0.5 −αβ

]
,

Π1 =
π2

200

[
0.875 + α4 − α2 0.5αβ − α3β

∗ 1.5 + α2β2

]
and κ = παβ1/20. When 0 < α < 1/

√
2 and β > 0, Aav is

Hurwitz. Here we choose α = 0.2 and β = 1. Notice that cos kh ∈
[−1, 1] and cos2 kh ∈ [0, 1]. Therefore, A(k) can be presented as a
convex combination of the constant matrices Ai(i ∈ I[1, 4]) with

Ai =


π
20

[
−1 1

−0.46 ± 0.5 0.8

]
, i ∈ I[1, 2],

π
20

[
1 1

−0.46 ± 0.5 −1.2

]
, i ∈ I[3, 4].

By verifying the feasibility of LMIs (19) with R = rIn and R̄ =
rΠ1, we find the corresponding upper bounds ε∗ that guarantee the
exponential stability of (43) for all ε ∈ (0, ε∗] with θ = 0 or 0.01 :

β1 = 0, θ = 0, ε∗ = 0.71 · 10−2;
θ = 0.01, ε∗ = 0.47 · 10−2;

β1 = 0.1, θ = 0, ε∗ = 0.55 · 10−2;
θ = 0.01, ε∗ = 0.32 · 10−2.

Note that in Example 4.1 of [20], when α = 0 (corresponding to
θ = 0 here), the corresponding results show that

β1 = 0, ε∗ = 0.74 · 10−2; β1 = 0.1, ε∗ = 0.58 · 10−2.

By comparing the data, we find that the values obtained in Theorem
1 are close to those for continuous-time case obtained in [20]. In
addition, numerical simulations show that system (43) with ∆β = 0
is stable for a larger upper bound ε∗ = 0.47, which may illustrate
essential conservatism of the proposed method.

III. ISS ANALYSIS

In this section, we will extend the stability analysis of the above
section to ISS analysis of the perturbed systems. Consider the
following discrete-time perturbed system:

x(k+1) = x(k)+ε [A(k) +△A(k)]x(k)+εBw(k), k ∈ Z+ (44)

where x(k) ∈ Rn, A : Z+ → Rn×n, ε > 0 is a small parameter,
△A(k) ∈ Rn×n is the uncertain matrix satisfying (3), B ∈ Rn×nw

is a constant matrix, and w(k) ∈ Rnw is a disturbance. For tackling
the ISS analysis, we also assume that A1 and A2 hold. Let x̄(j) and
G(k) be defined in (6). Then we can present

1

T

k∑
i=k−T+1

[x(i+ 1)− x(i)]

= [x(k + 1)−G(k + 1)]− [x(k)−G(k)]

+
ε

T

k∑
i=k−T+1

Bw(i)− εBw(k)− ε△A(k)x(k). (45)

Summing in k and dividing by T on both sides of system (44), via
(11) and (45) we arrive at

z(k+1) = z(k)+ε [Aav +∆A(k)]x(k)−εY (k)+εBw(k) (46)

with k ≥ T − 1, where {z(k), Y (k)} are given by (12) with x(k)
satisfying (44). Note that if the time-delay system (46) is ISS, then the
original system (44) is also ISS. Next we present the ISS conditions
for system (46) (and thus (44)) in the following theorem.

Theorem 2: Let A1 and A2 be satisfied. Given matrices Aav,
Ai(i ∈ I[1, N ]), B and constants κ > 0, θ > 0 and ε∗ > 0 subject
to θε∗ < 1, let one of the following conditions holds:

(i) there exist n× n matrices P > 0, Q > 0, R > 0, R̄ > 0 and
positive scalars ζ, b that satisfy (18) and the following LMIs

Φi
2 =

 Φ̄

T−1
2 AT

i Q T−1
2 AT

i R̄
02n×n 02n×n

0n×n
T−1

2 R̄

0nw×n
T−1

2 BTR̄

∗
∗

− 1
ε∗ Q 0n×n

0n×n − 1
ε∗ R̄

 < 0, i ∈ I[1, N ], (47)

where

Φ̄ =
[

Φ Φ̄12

∗ ε∗BTPB − bInw

]
, (48)

Φ̄12 = [ In + ε∗Aav −In −ε∗In ε∗In ]T PB,

in which Φ is given by (20);
(ii) there exist n× n matrices P > 0, Q > 0 and positive scalars

r, ζ, b that satisfy (47) with R = rIn, R̄ = rΠ1 and Π1 satisfying
(21).
Then system (44) is ISS for all ε ∈ (0, ε∗], meaning that there exists
a M > 0 such that for all ε ∈ (0, ε∗], the solution of (44) initialized
by x(0) ∈ Rn satisfies for all k ∈ Z+ the following inequality:

|x (k)|2 ≤ M (1− θε)k |x (0)|2 +
[
M (1− θε)k +

b

αθ

]
|w|2[0,k]

(49)
with α satisfying (17). Moreover, given ∆ > 0 for supk≥0 |w(k)| ≤
∆, then for all ε ∈ (0, ε∗] and all x(0) ∈ Rn the ellipsoid

Θ =
{
x ∈ Rn : |x|2 ≤ b∆2

αθ

}
is exponentially attractive with a decay rate

√
1− θε.

Proof: Here we just verify the case under condition (i), the case
under condition (ii) can be achieved by the same arguments. Choose
the L-K functional V (k) as shown in (15) with ρ = 1− θε ∈ (0, 1).
Then following arguments of Theorem 1, differencing V (k) along
(46) we arrive at, for all ε ∈ (0, ε∗],

V (k + 1)− (1− θε)V (k)− εb |w(k)|2

≤η̄T(k)Φ̄η̄(k) +
(T − 1)2 ε∗

4

[
ε |A(k)x(k)|2Q +

1

ε
|x̄(k)|2R̄

]
, (50)

where η̄T(k) = [ηT(k),
√
εwT(k)] with η(k) given by (33), and Φ̄

is given by (48). Note from x̄(j) in (6) and (44) that

x̄(k) = ε [A(k) +△A(k)]x(k) + εBw(k), k ∈ Z+. (51)

Substituting (51) into (50) with A(k) satisfying (5) and applying
further Schur complements, we conclude that if LMIs (47) hold, then
for all ε ∈ (0, ε∗] we have

V (k + 1)− (1− θε)V (k)− εb |w(k)|2 ≤ 0, k ≥ T − 1.

By using Lemma 6.2 in [6] and noting (17), we further have, for all
ε ∈ (0, ε∗] and k ≥ T − 1,

α |x(k)|2 ≤ V (k) ≤ (1− θε)k−T+1 V (T − 1) +
b

θ
|w|2[0,k] . (52)

For k ∈ I[0, T − 1], x(k) satisfy (44) with (38). Then
|x(k)| ≤ (1 + aε) |x(k − 1)|+ ε ∥B∥ |w(k − 1)| ,
|x̄(k)| ≤ aε |x(k)|+ ε ∥B∥ |w(k)| ,

which yields, for all ε ∈ (0, ε∗] and k ∈ I[0, T − 1],

|x(k)| ≤ (1 + aε∗)k |x(0)|+ ∥B∥
a

[(1 + aε∗)k − 1] |w|[0,k] ,
|x̄(k)| ≤ aε∗ (1 + aε∗)k |x(0)|+ ε∗ ∥B∥ (1 + aε∗)k |w|[0,k] .

(53)
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Note that for all ε ∈ (0, ε∗], V (T − 1) satisfies (40). Then with
(53), V (T − 1) can be further upper bounded by

V (T − 1) ≤ c2 (1− θε)T−1 [ |x(0)|2 + |w|2[0,k]
]
∀ε ∈ (0, ε∗]

with some ε-independent c2 > 0. The latter inequality together with
(52) implies (49).

IV. STABILITY ANALYSIS OF SWITCHED AFFINE SYSTEM

In this section, we discuss the stability analysis of discrete-time
switched affine systems by periodic switching. As a special subclass
of switched systems, the switched affine systems are very common in
practical applications, mainly in the area of power electronics [10].
Due to the affine term, in general the equilibrium point is different
from those of any isolated subsystem, and therefore, a high switching
frequency is needed to assure that a desired equilibrium point is
reached. Compared with the continuous-time systems whose state
trajectories may converge to a single point using a continuous-time
switching function, the stability analysis of discrete-time switched
affine systems is much more involved, since the desired equilibrium
point cannot be reached, but only a neighborhood of the equilibrium
is available. Our goal is to apply the averaging method established
in Section II to assure the practical stability (i.e., ISS with a small
ultimate bound) of discrete-time switched affine systems.

Let us consider the following discrete-time switched affine system
with uncertainties:

x(k + 1) = x(k) + εÃσ(k)x(k) + εB̃σ(k), k ∈ Z+, (54)

where Ãσ(k) = Aσ(k) +∆Aσ(k)(k), B̃σ(k) = Bσ(k) +∆Bσ(k)(k),
x(k) ∈ Rn, ε > 0 is a small parameter, σ : Z+ → Υ ∈ I[1, N ] is a
switching control, Ai ∈ Rn×n, Bi ∈ Rn (I[1, N ]) are the nominal
matrices, and ∆Ai(k) ∈ Rn×n, ∆Bi(k) ∈ Rn (i ∈ I[1, N ]) are
the perturbations with respect to the nominal values satisfying

∥∆Ai(k)∥ ≤ κ1, |∆Bi(k)| ≤ κ2, i ∈ I[1, N ], k ∈ Z+. (55)

Here κ1, κ2 > 0 are some small enough constants.
As done in [1], [11], we let A(λ) =

∑N
i=1 λiAi and B(λ) =∑N

i=1 λiBi, λ ∈ Λ with

Λ = {λ = [λ1, λ2, . . . , λN ]T ∈ RN , λi ≥ 0,
∑N

i=1λi = 1}.

Moreover, we denote Λh ⊆ Λ composed by all λ ∈ Λ such that
A(λ) is Hurwitz.

Similar to [1], [11], in the absence of uncertainties the set of
equilibrium points for (54) is given by Se = {xe : xe =
−A−1(λ)B(λ), λ ∈ Λh}. Given an equilibrium point xe ̸= 0 ∈ Se

and denote the error e(k) = x(k)− xe. It follows that

e(k + 1) = e(k) + εAσ(k)e(k) + εB̄σ(k), k ∈ Z+,

with B̄σ(k) = Bσ(k) +Aσ(k)xe. Then∑N
i=1λiB̄σ(k) = B(λ) +A(λ)xe = 0.

Therefore, without loss of generality, we can assume that:
A3 There exists λ ∈ Λh such that A(λ) is Hurwitz and B(λ) = 0.
Differently from the state-dependent switching law e.g. in [8], [11],

we here introduce the time-dependent switching law σ(k) which
does not need to perform measurements and calculations. Under A3,
we can choose a positive integer T and design the time-dependent
periodic switching law σ(k) such that, for k ≥ T − 1,

1

T

k∑
i=k−T+1

Aσ(i) = A(λ),
1

T

k∑
i=k−T+1

Bσ(i) = B (λ) = 0. (56)

Let x̄(j) and G(k) be defined in (6) with x(j) satisfying (54) and
A(j)x(j) replaced by Aσ(j)x(j) + Bσ(j). Then summing in k and

dividing by T on both sides of system (54) and applying (56), we
can present

z(k + 1) =z(k) + ε
[
A(λ) + ∆Aσ(k)(k)

]
x(k)

− εY (k) + ε∆Bσ(k)(k), k ≥ T − 1, (57)

where {z(k), Y (k)} are defined in (12) with A(i) replaced by Aσ(i).
Note that if the time-delay system (57) is practically stable, then the
original system (54) under (56) is also practically stable. Next we
present the practical stability conditions in the following theorem.

Theorem 3: Let A3 be satisfied. Given matrices A(λ), Ai, Bi

(i ∈ I[1, N ]) and constants κi > 0 (i ∈ I[1, 2]), θ > 0 and ε∗ > 0
subject to θε∗ < 1, let one of the following conditions holds:

(i) there exist n× n matrices P > 0, Q > 0, R > 0, R̄ > 0 and
positive scalars ζ, b, b0 that satisfy (18) and the following LMIs

Φ0 =
[

P − I −P

∗ P + (1 − θε∗)T−2Q

]
> 0, (58)

Φi
2 =


Φ̃

T−1√
2

AT
i Q T−1√

2
AT

i R̄

02n×n 02n×n

0n×n
T−1√

2
R̄

0n×n
T−1√

2
R̄

∗
∗

− 1
ε∗ Q 0n×n

∗ − 1
ε∗ R̄

 < 0, i ∈ I[1, N ], (59)

Φi
3 =

[
b0

T−1√
2

BT
i

(
Q + R̄

)
∗ Q + R̄

]
> 0, i ∈ I[1, N ], (60)

where

Φ̃ =
[

Φ Φ̃12

∗ ε∗P − bIn

]
, (61)

Φ̃12 = [ In + ε∗A(λ) −In −ε∗In ε∗In ]T P,

in which Φ satisfies (20) with Aav and κ replaced by A(λ) and κ1;
(ii) there exist n× n matrices P > 0, Q > 0 and positive scalars

r, ζ, b, b0 that satisfy (58)-(60) with R = rIn, R̄ = rΠ2 and

Π2 =
2

T

T−1∑
i=0

AT
σ(i)Aσ(i). (62)

Then there exists a M > 0 such that for all ε ∈ (0, ε∗], the solution
of (54) under (56) initialized by x(0) ∈ Rn satisfies for all k ∈ Z+

the following inequality:

|x(k)|2 ≤ M (1− θε)k |x(0)|2 +
[
M (1− θε)k +

bκ2
2 + b0ε

θ

]
.

(63)
Moreover, for all ε ∈ (0, ε∗] and all x(0) ∈ Rn the ellipsoid

Θ =
{
x ∈ Rn : |x|2 ≤ bκ2

2 + b0ε

θ

}
(64)

is exponentially attractive with a decay rate
√
1− θε.

Proof: Similar to Theorem 2, here we just verify the case under
condition (i), since the case under condition (ii) can be achieved
accordingly. Choose the L-K functional V (k) as shown in (15) with

ϕ1(s) = |Aσ(s)x(s) +Bσ(s)|2Q, ϕ2(i, j, s) = |Aσ(s+i−j)x̄(s)|2R.

Let ρ = 1−θε. Then following arguments of Theorems 1-2 we have

V (k + 1)− (1− θε)V (k)− εb
∣∣∆Bσ(k)(k)

∣∣2 − ε2b0

≤η̃T(k)Φ̃η̃(k)− ε2b0 +
(T − 1)2 ε2

4
|Aσ(k)x(k) +Bσ(k)|2Q

+
(T − 1)2

4
x̄T(k)R̄x̄(k) (65)

for all ε ∈ (0, ε∗], where η̃T(k) = [ηT(k),
√
ε∆BT

σ(k)(k)], η(k) is
given by (33) with ∆A(k) replaced by ∆Aσ(k)(k), and Φ̃ is given
by (61). Note from x̄(j) in (6) and (54) that

x̄(k) = ε
[
Aσ(k) +∆Aσ(k)(k)

]
x(k) + ε

[
Bσ(k) +∆Bσ(k)(k)

]
.

(66)
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Substituting (66) into (65) and applying Young’s inequality give

V (k + 1)− (1− θε)V (k)− εb
∣∣∆Bσ(k)(k)

∣∣2 − ε2b0

≤η̃T(k)Φ̃η̃(k) +
(T − 1)2 ε∗ε

2

∣∣Aσ(k)x(k)
∣∣2
Q

+
(T − 1)2 ε∗ε

2

∣∣[Aσ(k) +∆Aσ(k)(k)
]
x(k) + ∆Bσ(k)(k)

∣∣2
R̄

+ ε2
[ (T − 1)2

2

∣∣Bσ(k)

∣∣2
Q+R̄

− b0
]
. (67)

Note that the term ε2b0 compensates Bσ(k). On the one hand, if
LMIs (59) hold, then for all ε ∈ (0, ε∗] and k ≥ T − 1 we have

η̃T(k)Φ̃η̃(k) +
(T − 1)2 ε∗ε

2

∣∣Aσ(k)x(k)
∣∣2
Q

+
(T − 1)2 ε∗ε

2

∣∣[Aσ(k) +∆Aσ(k)(k)
]
x(k) + ∆Bσ(k)

∣∣2
R̄
≤ 0.

On the other hand, if LMIs (60) hold, then for all ε ∈ (0, ε∗] and
k ≥ T − 1 we have

ε2
[ (T − 1)2

2

∣∣Bσ(k)

∣∣2
Q+R̄

− b0
]
≤ 0, k ≥ T − 1.

In conclusion, under (59)-(60), we can obtain from (67) that, for all
ε ∈ (0, ε∗],

V (k + 1)− (1− θε)V (k)− εb
∣∣∆Bσ(k)(k)

∣∣2 − ε2b0 ≤ 0,

which yields, for all ε ∈ (0, ε∗] and k ≥ T − 1,

V (k) ≤ (1− θε)k−T+1 V (T − 1) +
bκ2

2 + b0ε

θ
. (68)

Here we have used (55) and Lemma 6.2 in [6]. Note that the
inequality Φ0 > 0 in (58) implies that V (k) ≥ |x(k)|2, which with
(68) gives, for all ε ∈ (0, ε∗] and k ≥ T − 1,

|x(k)|2 ≤ V (k) ≤ (1− θε)k−T+1 V (T − 1) +
bκ2

2 + b0ε

θ
. (69)

Now we give a brief explanation for Φ0 > 0 in (58). Consider (58)
with −I changed by −αI and (18) and (59)-(60). If these LMIs
hold with some α > 0 (see (17)), then by scaling, they hold with
{−αI, b0, b} replaced by {−I, b0/α, b/α}, which leads to the same
bound on |x(k)| .

For k ∈ I[0, T − 1], x(k) satisfy (54). Under (55) we have
maxi∈I[1,N ]{∥Ãi∥} ≤ d1 and maxi∈I[1,N ]{|B̃i|} ≤ d2 for some
constants d1, d2 > 0. Then

|x(k)| ≤ (1 + d1ε) |x(k − 1)|+ d2ε, |x̄(k)| ≤ d1ε |x(k)|+ d2ε,

which yields, for all ε ∈ (0, ε∗] and k ∈ I[0, T − 1],

|x(k)| ≤ (1 + d1ε∗)
k
(
|x(0)|+ d2

d1

)
− d2

d1
,

|x̄(k)| ≤ (1 + d1ε∗)
k (d1ε∗ |x(0)|+ d2ε∗) .

(70)

Note that for all ε ∈ (0, ε∗], V (T −1) satisfies (40). Then with (70),
V (T − 1) can be further upper bounded by

V (T − 1) ≤ c2 (1− θε)T−1 (|x(0)|2 + 1
)

∀ε ∈ (0, ε∗]

with some ε-independent c2 > 0. The latter inequality together with
(69) implies (63).

When the uncertainties are absent in (54), namely,

x(k + 1) = x(k) + εAσ(k)x(k) + εBσ(k), k ∈ Z+, (71)

then under (56), system (57) becomes

z(k + 1) = z(k) + εA(λ)x(k)− εY (k), k ≥ T − 1,

where {z(k), Y (k)} are defined in (12) with A(i) replaced by Aσ(i).
By using Theorem 3, we have the following corollary.

Corollary 1: Let A3 be satisfied. Given matrices A(λ), Ai, Bi

(i ∈ I[1, N ]) and constants θ > 0 and ε∗ > 0 subject to θε∗ < 1,
let one of the following conditions holds:

(i) there exist n× n matrices P > 0, Q > 0, R > 0, R̄ > 0 and
scalar b0 > 0 that satisfy (18), (58), (60) and the following LMIs:

Φi
2 =

[
Φ̃

T−1√
2

AT
i

(
Q + R̄

)
02n×n

∗ − 1
ε∗

(
Q + R̄

)
]
< 0, (72)

in which

Φ̃ =

[
Φ11 −AT(λ)P − θP −P − ε∗AT(λ)P
∗ Φ22 P
∗ ∗ Φ33

]
,

where Φii(i ∈ I[1, 3]) satisfy (20) with κ = 0 and Aav replaced by
A(λ);

(ii) there exist n × n matrices P > 0, Q > 0 and scalars r > 0
and b0 > 0 that satisfy (58), (60) and (72) with R = rIn, R̄ = rΠ2

and Π2 satisfying (62).
Then there exists a M > 0 such that for all ε ∈ (0, ε∗], the solution
of (71) under (56) initialized by x(0) ∈ Rn satisfies for all k ∈ Z+

the following inequality:

|x(k)|2 ≤ M (1− θε)k |x(0)|2 +
[
M (1− θε)k +

b0ε

θ

]
.

Moreover, for all ε ∈ (0, ε∗] and all x(0) ∈ Rn the ellipsoid

Θ =
{
x ∈ Rn : |x|2 ≤ b0ε

θ

}
(73)

is exponentially attractive with a decay rate
√
1− θε.

Remark 3: Although the stability analysis of switched affine
system can be regarded as a special ISS analysis in form, due to
the special structure and properties of switched affine system, we
can obtain the ultimate bound of |x| as a function of ε (see (64)
and (73)), which implies that x(k) is exponentially converging to the
equilibrium point when ε → 0 without uncertainties. This is different
from that in Theorem 2.

Finally, we give an example from power electronics to show the
efficiency of results in Theorem 3 and Corollary 1.

Example 2: Consider the DC-DC converter from [10], [11], the
continuous-time model with a fast switching control has the form

˙̄x(t) = Āσ(t)x̄(t) + B̄σ(t) (74)

with σ(t) satisfying

σ(t) =
{

1, t ∈ [nε, (n + β) ε),
2, t ∈ [(n + β) ε, (n + 1) ε),

and
Ā1 =

[
0 1

L
− 1

C − 1
RC

]
, Ā2 =

[
0 0
0 − 1

RC

]
,

B̄1 = [0, 0]T, B̄2 = [E/L, 0]T with E = 6 V, R = 50 Ω, L = 20
mH and C = 220 µF. Choosing the sampling period h̄ > 0, then
system (74) can be discretized as

x̄((k + 1)h̄) = x̄(kh̄) + h̄Āσ(kh̄)x̄(kh̄) + h̄B̄σ(kh̄) (75)

with σ(kh̄) satisfying

σ(kh̄) =
{

1, kh̄ ∈ [nε, (n + β) ε),
2, kh̄ ∈ [(n + β) ε, (n + 1) ε).

Now we choose the time scale change h = h̄/ε (the trajectories are
invariant with respect to time scaling) and let x(k) = x̄(kh̄). Then
system (75) can be expressed as

x(k + 1) = x(k) + εhĀσ(k)x(k) + εhB̄σ(k),

with
σ(k) =

{
1, k ∈ [nh , n+β

h ),

2, k ∈ [n+β
h , n+1

h ).
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Fig. 1. Evolution of error system states with an initial condition e(0) = [2; 2]
and a fixed ε = 0.5 · 10−4 and ∆R = sin(k).

Let e(k) = x(k) − xe with xe = −A−1(λ)B(λ) = [0.24, 6]T for
λ = [λ1;λ2] = [0.5; 0.5]. The dynamic of the error e(k) can be
presented as (71) with Ai = hĀi, Bi = hB̄i + hĀixe (i ∈ I[1, 2]).
For simulation, we choose β = λ1 = 0.5, h = 0.5 and T = 2, which
satisfies (56). By verifying the feasibility of LMIs in (i) of Corollary
1, we find the corresponding upper bounds ε∗ that guarantee the
system’s practical stabilization for all ε ∈ (0, ε∗] with θ = 0 or 25 :

θ = 0, ε∗ = 0.334 · 10−3; θ = 25, ε∗ = 0.149 · 10−3.

If we choose θ = 25 and ε = 0.5 · 10−4 (corresponding to Tmax =
0.25 · 10−4 in [10], [11]), we find the conditions in (i) of Corollary
1 guarantee that for k → ∞, |e(k)| < 0.862, which is smaller than
the values |e(t)| < 1.9 for t → ∞ in [11] and |e(tk)| < 1.25 for
k → ∞ in [10] by using sampled-data controllers.

To illustrate Theorem 3 for uncertain systems, we assume that the
resistor is subject to unknown time-varying uncertainties ∆R ∈ [−1
Ω,+ 1 Ω]. Similar to the above treatment, the error dynamic model
can be expressed as (54) with Ai = hĀi, Bi = hB̄i + hĀixe,
∆Bi = ∆Aixe (i ∈ I[1, 2]) and

∆Ai = h
[

0 0
0 1

RC − 1
(R+∆R)C

]
.

For simulation, we choose β = λ1 = 0.5, h = 0.5 and T = 2, which
satisfies (56). Moreover, we have κ1 = 0.9276 and κ2 = 5.5659.
By verifying the feasibility of LMIs in (i) of Theorem 3, we find the
corresponding upper bounds ε∗ that guarantee the system’s practical
stabilization for all ε ∈ (0, ε∗] with θ = 0 or 15 :

θ = 0, ε∗ = 0.27 · 10−3; θ = 15, ε∗ = 0.159 · 10−3.

If we choose θ = 15 and ε = 0.5 · 10−4, we find the conditions
in (i) of Theorem 3 guarantee that for k → ∞, |e(k)| < 3.86. The
error system evolution with an initial condition e(0) = [2; 2] and a
fixed ε = 0.5 · 10−4 and ∆R = sin(k) is shown in Fig.1, from
which we can see that the system state does not converge to the
equilibrium point but only to a bounded region due to discreteness
and to parametric uncertainties. Numerical simulations show that the
system’s practical stability can be achieved for bigger ε = 1.6 ·10−3,
which may illustrate some conservatism of the proposed method.

V. CONCLUSION

This article developed the time-delay approach to averaging for
the stability of discrete-time systems. Explicit conditions in terms of
LMIs were established to guarantee the stability of the original system
by constructing an appropriate Lyapunov functional. The upper bound
on the small parameter that ensures the exponential stability can
be obtain from the LMIs. Moreover, the established method was
extended to ISS analysis of the perturbed systems and practical
stability of discrete-time switched affine systems. We finally mention
that the proposed method can be further improved and extended in the

future to discrete-time time-delay systems [7] and extremum seeking
control for discrete-time systems [5].
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