
Automatica 149 (2023) 110809

R
S

l
2
i
(
a
2
d
b
t

i
n
g
a
e
n

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Global stabilization of a 1D semilinear heat equation viamodal
decomposition and direct Lyapunov approach✩

ami Katz ∗, Emilia Fridman
chool of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel

a r t i c l e i n f o

Article history:
Received 6 August 2021
Received in revised form 4 June 2022
Accepted 19 November 2022
Available online xxxx

Keywords:
Distributed parameter systems
Nonlinear systems
Parabolic PDEs
Global stabilization
Lyapunov method

a b s t r a c t

In this paper we consider state-feedback global stabilization of a semilinear 1D heat equation with a
nonlinearity exhibiting a linear growth bound. We study both non-local and boundary control via a
modal decomposition approach. For both cases, we suggest a direct Lyapunov method applied to the
full-order closed-loop system. The nonlinear terms are compensated by using Parseval’s inequality,
leading to efficient and constructive linear matrix inequality (LMI) conditions for obtaining the
controller dimension and gain. For non-local control we provide sufficient conditions that guarantee
global stabilization for any linear growth bound via either linear or nonlinear controller, provided
the number of actuators is large enough. We prove that the nonlinear controller achieves at least the
same performance as the linear one. For the case of boundary control, we employ a multi-dimensional
dynamic extension, whereas in the numerical example we manage with a larger linear growth bound.
The introduced direct Lyapunov approach gives tools for a variety of robust control problems for
semilinear parabolic PDEs.
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1. Introduction

Semilinear parabolic PDEs with a nonlinearity exhibiting a
inear growth bound arise in many physical models (Christofides,
001). Global state-feedback stabilization of such PDEs was stud-
ed by using modal decomposition in Christofides (2001), Hagen
2006), Hagen and Mezic (2003), Karafyllis (2021) and Karafyllis
nd Krstic (2019) and spatial decomposition (Fridman & Bar Am,
013; Fridman & Blighovsky, 2012). The advantage of modal
ecomposition over spatial decomposition is in its efficiency for
oundary control or for non-local control, where the shape func-
ions need not cover the whole spatial domain.

The challenge of modal decomposition for nonlinear PDEs lies
n coupling of the solution modes, which is introduced by the
onlinearity. Such coupling may cause a spillover behavior (Ha-
en & Mezic, 2003). In Hagen (2006) and Hagen and Mezic (2003)
n LQR-based controller was designed for a 1D semilinear heat
quation. For boundary control, a novel multi-dimensional dy-
amic extension was introduced recently in Karafyllis (2021). This
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extension allows a multi-dimensional integral controller dynam-
ics with more design freedom than the existing scalar dynamic
extensions (Coron & Trélat, 2004; Curtain & Zwart, 1995; Ha-
gen, 2006). The control design in Karafyllis (2021) is based on
simple control Lyapunov functions for both linear and nonlinear
controllers. Sufficient conditions for stabilization are derived by
using a small gain theorem, as in Karafyllis and Krstic (2019). The
proposed method was demonstrated to work if the linear growth
bound is not too large. Note that local stabilization of nonlinear
PDEs was studied e.g. in Al Jamal and Morris (2018), Bekiaris-
Liberis and Vazquez (2019), Coron and Trélat (2004) and Vazquez
and Krstic (2008).

Recently, a finite-dimensional observer-based controller for
the 1D linear heat equation via a modal decomposition was
studied in Katz and Fridman (2020), where spillover was intro-
duced into the closed-loop dynamics by the finite-dimensional
observer, which leads to coupling between the finite-dimensional
part of the system with the infinite dimensional tail. A direct
Lyapunov approach was suggested to derive efficient LMIs for
finding the controller and observer dimensions. An advantage of
such a direct Lyapunov approach lies in the ability of its easy
extension to delayed or sampled-data control (Katz & Fridman,
2021a), input-to-state and L2-gain stabilization (Katz & Fridman,
021b) and H1-stabilization (Katz & Fridman, 2021c). However,
direct Lyapunov approach for global stabilization of semilinear
arabolic PDEs via modal decomposition seems to be missing in
he literature.
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In this paper we consider state-feedback global stabilization of
a 1D heat equation with a nonlinearity exhibiting a linear growth
bound. We study both non-local and boundary control via modal
decomposition. For both cases, we introduce a direct Lyapunov
method to the full-order closed-loop system. The nonlinear terms
are compensated by using Parseval’s inequality, leading to effi-
cient and constructive LMIs for finding the controller dimension
and gain. For non-local actuation, we consider first an arbitrary
finite number of actuators and a linear controller. In this case
we cannot guarantee the feasibility of the LMIs for any linear
growth bound. We further consider the case where the controller
dimension is equal to the number of the control inputs. Here,
for either linear or nonlinear controller, we present sufficient
conditions that guarantee a global stabilization for any linear
growth bound, provided the number of actuators is large enough
(similarly to the spatial decomposition approach). We prove that
the nonlinear controller achieves at least the same performance
as the linear one. A numerical example shows that a nonlinear
controller slightly improves the results under the linear one, but
on account of the controller complexity and the knowledge of
nonlinearity.

For boundary control, we employ a dynamic extension as
initiated in Karafyllis (2021) with an m-dimensional dynamic ex-
tension, leading to a m+N dimensional linear PI controller. Here,
as in Karafyllis (2021), we are unable to guarantee feasibility of
the resulting LMIs for any linear growth bound (see Remark 3.2).
Nevertheless, a numerical example from Karafyllis (2021) illus-
trates the efficiency of our method, where we manage with a
much larger linear growth bound by using a linear controller with
a larger N .

Notations and preliminaries: L2(0, 1) is the Hilbert space of
Lebesgue measurable and square integrable functions f : [0, 1] →

R with the inner product ⟨f , g⟩ :=
∫ 1
0 f (x)g(x)dx and induced

norm ∥f ∥2
:= ⟨f , f ⟩. H1(0, 1) is the space of functions f : [0, 1] →

R with one square integrable weak derivative, with the norm
∥f ∥2

H1 :=
∑1

j=0

f (j)2. The Euclidean norm on Rn is denoted by
|·|. For P ∈ Rn×n, P > 0 means that P is symmetric and positive
definite. The sub-diagonal elements of a symmetric matrix will
be denoted by ∗. For U ∈ Rn×n and x ∈ Rn let |x|2U = xTUx. N is
the set of natural numbers.

Recall that the Sturm–Liouville eigenvalue problem

φ′′
+ λφ = 0, x ∈ [0, 1], φ(0) = φ(1) = 0, (1.1)

induces a sequence of eigenvalues with corresponding eigenfunc-
tions

λn = n2π2, φn(x) =
√
2 sin

(√
λnx

)
, n ∈ N. (1.2)

he eigenfunctions form a complete orthonormal system in L2(0,

). Given N ∈ N and h ∈ L2(0, 1) satisfying h L2
=

∑
∞

n=1 hnφn we
enote

∥h∥2
N =

∞∑
n=N+1

h2
n. (1.3)

. Stabilization of a semilinear heat equation — non-local ac-
uation

In this section we consider non-local actuation with either an
rbitrary numberm ∈ N of actuators orm = N actuators, whereas
is the controller dimension.
2

.1. Non-local stabilization with m ∈ N actuators

Consider stabilization of the following nonlinear 1D heat equa-
ion:

t (x, t) = zxx(x, t) + f (z(x, t))z(x, t) + b(x)u(t),
z(0, t) = 0, z(1, t) = 0

(2.1)

where t ≥ 0, x ∈ (0, 1), z(x, t) ∈ R,

b(x) = [b1(x), . . . , bm(x)] ∈ R1×m, bi ∈ L2(0, 1),
u(t) = col {u1(t), . . . , um(t)} .

(2.2)

Here, u(t) is the control input to be designed. Throughout the
paper we assume that f : R → R is a locally Lipschitz function
satisfying

∥f ∥L∞ ≤ σ (2.3)

for some σ > 0. Through out the paper, except for Section 2.C,
we will assume that f is unknown.

Remark 2.1. As a special case of (2.1), one can consider the
following semilinear heat equation

zt (x, t) = zxx(x, t) + g(z(x, t)) + b(x)u(t),
z(0, t) = 0, z(1, t) = 0,

(2.4)

where g : R → R is a differentiable function with g(0) = 0 and
locally Lipschitz derivative satisfying

g ′

L∞ ≤ σ for some σ > 0.

By the fundamental theorem of calculus, we have

g(z(x, t)) =
∫ 1
0

d
ds [g(sz(x, t))] ds = f (z(x, t))z(x, t),

f (z(x, t)) ∆
=

∫ 1
0 g ′(sz(x, t))ds

with a locally Lipschitz f subject to (2.3). One can also easily
consider (2.1) with an additional linear reaction term, as done
in Section 3 (for comparison purposes with (Karafyllis, 2021),
where a similar case was studied) and with variable diffusion and
reaction coefficients as in Karafyllis (2021) and Katz and Fridman
(2020). The functions {bi}mi=1 can be any L2(0, 1) functions, includ-
ing point-like, functions with local support, spatially distributed,
etc.

We present the solution to (2.1) as

z(x, t) =

∞∑
n=1

zn(t)φn(x), zn(t) = ⟨z(·, t), φn⟩ (2.5)

with {φn}n∈N defined in (1.2). Differentiating under the integral
sign, integrating by parts and using (1.1) we have

żn(t) =
∫ 1
0 zt (x, t)φn(x)dx

(2.1)
=

∫ 1
0 zxx(x, t)φn(x)dx

+
∫ 1
0 f (z(x, t))z(x, t)φn(x)dx +

∫ 1
0 b(x)u(t)φn(x)dx

= −λnzn(t) + Bnu(t) + fn(t), zn(0) = ⟨z(·, 0), φn⟩ ,

(2.6)

here

n = [⟨b1, φn⟩ , . . . , ⟨bm, φn⟩] ,

n(t) = ⟨f (z(·, t))z(·, t), φn⟩ .
(2.7)

Let δ > 0 be a desired decay rate. Since limn→∞ λn = ∞, there
xists some N ∈ N such that

− λn + σ + δ < 0, n > N. (2.8)

We introduce the notation

0 = diag {−λn}
N
n=1 , B0 = col {B1, . . . , BN} ∈ RN×m. (2.9)
Assumption 1. Assume that (A0, B0) is controllable.
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We propose a controller of the form

u(t) = −K0zN (t), zN (t) = col {zi(t), }Ni=1 , (2.10)

where the controller gain K0 ∈ Rm×N will be obtained further
from LMIs (see (2.24)–(2.26)).

For well-posedness of the closed-loop system (2.1), (2.10), we
define the operator

A : D (A) ⊆ L2(0, 1) → L2(0, 1), Ah = −h′′,

D (A) = H2(0, 1) ∩ H1
0 (0, 1).

The operator −A is a sectorial operator, generating an analytic
semigroup (Pazy, 1983). Furthermore, A is positive and has a
nique square root A

1
2 with D

(
A

1
2

)
= H1

0 (0, 1) (Tucsnak &
eiss, 2009). Consider the Hilbert space H = H1

0 (0, 1)×RN with
norm ∥·∥

2
H = ∥·∥

2
H1 + |·|

2. Let z(·, 0) ∈ D
(
A

1
2

)
. Defining

ξ (t) = col
{
z(·, t), zN (t)

}
the closed loop system can be presented as

ξ̇ (t) +

[
A 0
0 −(A0 − B0K0)

]
ξ (t) =

[
F1(ξ )
F2(ξ )

]
,

F1(ξ ) = f (ξ1)ξ1 − b(x)K0ξ2,

F2(ξ ) = col {⟨f (ξ1)ξ1, φ1⟩ , . . . , ⟨f (ξ1)ξ1, φN⟩} .

Recall that f is a locally Lipschitz function. Let (ν1, ν2)T and
η1, η2)T in a ball B ⊆ H. By the Sobolev inequality

∥f (ν1)ν1 − f (η1)η1∥ ≤ ∥f (ν1) (ν1 − η1)∥

+ ∥(f (ν1) − f (η1)) η1∥
(2.3), Sobolev

≤ σ ∥ν1 − η1∥

+ c · ∥η1∥ ∥ν1 − η1∥H1 ≤ c1 · ∥ν − η∥H

(2.11)

for some constants c, c1 > 0 (note that (2.11) is a local estimate
under the assumption ν, η ∈ B). Furthermore, we have

∥f (ν1)ν1∥ ≤ σ ∥ν∥H . (2.12)

From (2.11), (2.12) and Theorems 6.3.1 and 6.3.3 in Pazy (1983),
the closed-loop system has a unique classical solution

ξ ∈ C([0,∞), L2(0, 1)) ∩ C1((0,∞), L2(0, 1))

such that ξ (t) ∈ D (A)× RN for t > 0.
Let

f N (t) = col {f1(t), . . . , fN (t)} . (2.13)

Then, using (2.6), (2.9), (2.10) and (2.13), the closed-loop system
for t ≥ 0 can be presented as

żN (t) = (A0 − B0K0)zN (t) + f N (t),
żn(t) = −λnzn(t) − BnK0zN (t) + fn(t), n > N.

(2.14)

For L2-stability analysis of the closed-loop system (2.14), we
consider the Lyapunov function

V (t) =
⏐⏐zN (t)⏐⏐2P +

∞∑
n=N+1

z2n (t), (2.15)

where 0 < P ∈ RN×N . Differentiation of V (t) along the solution
of (2.14) gives

V̇ (t) + 2δV (t) =
(
zN (t)

)T [P(A0 − B0K0)

+(A0 − B0K0)TP + 2δP
]
zN (t) + 2

(
zN (t)

)T
Pf N (t)

+ 2
∞∑

n=N+1

(−λn + δ) z2n (t) + 2
∞∑

n=N+1

zn(t)fn(t)

− 2
∞∑

zn(t)BnK0zN (t).

(2.16)
n=N+1

3

By using the Young inequality, we have

2
∞∑

n=N+1

zn(t)fn(t) = 2
∞∑

n=N+1

(√
σ zn(t)

) (
1

√
σ
fn(t)

)

≤ σ

∞∑
n=N+1

z2n (t) −
1
σ

⏐⏐f N (t)⏐⏐2 +
1
σ

∞∑
n=1

f 2n (t).

(2.17)

Then, from Parseval’s equality, we obtain

1
σ

∞∑
n=1

f 2n (t)
(2.7)
=

1
σ

∫ 1

0
f 2(z(x, t))z2(x, t)dx

(2.3)
≤ σ

∫ 1

0
z2(x, t)dx = σ

⏐⏐zN (t)⏐⏐2 + σ

∞∑
n=N+1

z2n (t).

(2.18)

Combining (2.17) and (2.18), we have

2
∞∑

n=N+1

zn(t)fn(t) ≤ 2σ
∞∑

n=N+1

z2n (t)

+σ
⏐⏐zN (t)⏐⏐2 −

1
σ

⏐⏐f N (t)⏐⏐2 . (2.19)

Similarly, by the Young inequality

−2
∞∑

n=N+1

zn(t)BnK0zN (t)

α

∞∑
n=N+1

z2n (t) +
1
α

∞∑
n=N+1

⏐⏐BnK0zN (t)
⏐⏐2 , (2.20)

here α > 0. Considering the last term on the right-hand side,
e have

1
α

∞∑
n=N+1

⏐⏐BnK0zN (t)
⏐⏐2

=
1
α

(
K0zN (t)

)T [
∞∑

n=N+1

BT
nBn

]
K0zN (t)

=
1
α

∥b∥2
N

⏐⏐K0zN (t)
⏐⏐2 , ∥b∥2

N =

[
m∑
i=1

∥bi∥2
N

]
,

(2.21)

where we use (1.3) and
∞∑

=N+1

m∑
i=1

b2n,i
(2.7)
=

m∑
i=1

∥bi∥2
N .

et η(t) = col
{
zN (t), f N (t)

}
. From (2.16)–(2.21), we have for

t ≥ 0

V̇ (t) + 2δV (t) ≤ ηT (t)Φ(1)η(t) + 2
∞∑

n=N+1

Υ (1)
n z2n (t) ≤ 0, (2.22)

provided Υ (1)
n = −λn + δ + σ +

α
2 < 0, n > N and

Φ (1)
=

[
φ(1) + σ I +

1
α ∥b∥2N KT

0 K0 P

∗ −σ−1I

]
< 0,

(1)
= P(A0 − B0K0) + (A0 − B0K0)TP + 2δP .

(2.23)

rom monotonicity of λn, n ∈ N we have Υ (1)
n < 0, n > N iff

(1)
N+1 = −λN+1 + δ + σ +

α
2 < 0. (2.24)

To obtain equivalent LMIs for the design of the gain K0, we multi-
plyΦ(1) from the left and right by diag

{
P−1, I

}
. Then, introducing

the notations
−1 −1 T T (2.25)
P = Q , Y = P K0 = QK0
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nd applying Schur complement, it can be seen that (2.23) holds
ff

(2)
=

⎡⎣φ(2) Q Y

∗ −σ−1I 0

∗ ∗ −
α

∥b∥2N

⎤⎦ < 0,

(2)
= A0Q + QAT

0 − YBT
0 − B0Y T

+ 2δQ + σ I.

(2.26)

In particular, (2.24) and (2.26) are LMIs in Q , Y and α. If (2.24) and
(2.26) are feasible, the controller gain is obtained by K0 = Y TQ−1.
Finally, we show that (2.23) and (2.24) are always feasible for
small enough σ > 0. First, by (2.8) we can fix α > 0 such that
(2.24) holds. Then, by Assumption 1 we choose K0 ∈ Rm×N such
that A0 − B0K0 + δI is Hurwitz. Let P ∈ RN×N satisfy

P(A0 − B0K0 + δI) + (A0 − B0K0 + δI)TP = −χ I (2.27)

where χ > 0 satisfies −χ I+ 1
α

∥b∥2
N K T

0 K0 < 0. Substituting (2.27)
into (2.23) and applying Schur complement, we find that (2.23)
holds iff

− χ I +
1
α

∥b∥2
N K T

0 K0 + σ
(
I + P2) < 0. (2.28)

The latter clearly holds for small enough σ > 0. Summarizing, we
arrive at:

Theorem 2.1. Consider the heat equation (2.1) with a locally
Lipschitz f : R → R satisfying (2.3) with some σ > 0, b(x) given
in (2.2) and the control law (2.10). Assume z(·, 0) ∈ H1

0 (0, 1). Let
δ > 0 be a desired decay rate. Let N ∈ N satisfy (2.8). Let there exist
scalar α > 0 and matrices 0 < Q ∈ RN×N , Y ∈ RN×m such that

he LMIs (2.24) and (2.26) hold. Let K0 = Y TQ−1. Then the solution
(x, t) to the closed-loop system (2.1), (2.10) satisfies

∥z(·, t)∥ ≤ Me−δt ∥z(·, 0)∥ (2.29)

or some M > 0, meaning that the closed-loop system is exponen-
ially stable with a decay rate δ > 0. The LMIs (2.24) and (2.26) are
lways feasible for small enough σ > 0.

roof. Feasibility of the LMIs (2.24) and (2.26) implies V̇ (t) +

δV (t) ≤ 0. By the comparison principle

(t) ≤ e−2δtV (0).

y (2.15) and Parseval’s equality, we have

min(P) ∥z(·, t)∥2
≤ V (t) ≤ σmax(P) ∥z(·, t)∥2 (2.30)

Hence, (2.29) follows.

Remark 2.2. Differently from (2.15), one can also consider the
Lyapunov function

V1(t) =
⏐⏐zN (t)⏐⏐2P +

∞∑
n=N+1

λnz2n (t)

which is equivalent to the H1(0, 1) norm (see Lemma 1 in Katz
and Fridman 2021c). Analysis similar to (2.16)–(2.29) will then
result in LMI conditions for H1-stability of the closed-loop system.
For brevity, we present our results only for L2-stability of the
losed-loop system.

emark 2.3. An immediate corollary of Theorem 2.1 is that if
he LMIs (2.24) and (2.26) hold, then increasing the dimension of
he controller (2.10) does not deteriorate the performance of the
esulting closed-loop system. Indeed, let K0 = Y TQ−1

∈ Rm×N

be obtained from the LMIs. Considering (2.10) with K0 and N
replaced by K̄0 =

[
K0 0m×1

]
∈ Rm×(N+1) and N + 1, we obtain

u(t) = −K0zN (t). In particular, the resulting closed-loop system
for t ≥ 0 can be presented as (2.14). The same Lyapunov function
(2.15) leads to the LMIs of Theorem 2.1. The latter are feasible by

assumption. 2

4

2.2. Non-local stabilization with m = N actuators — linear state-
feedback

Here, we show that for (2.1) with f : R → R satisfying (2.3)
with an arbitrarily large σ > 0, we can still obtain feasibility of
(2.23) and (2.24), under additional assumptions and provided that
N is large enough.

Recall A0 and B0, given in (2.9). We make the following as-
sumptions:

Assumption 2. Assume that B0 is invertible and satisfies[
B−1
0

]T
B−1
0 ≤ β1Nγ1 I (2.31)

for some γ1, β1 > 0, independent of N .

Assumption 3. Assume that ∥b∥2
N , given in (2.21), satisfies

∥b∥2
N ≤ β2Nγ2 (2.32)

for some β2, γ2 > 0, independent of N .

Below, we show that feasibility of (2.23) and (2.24) is guaran-
teed for large enough N , provided γ1 + γ2 < 2.

Remark 2.4. Note that Assumptions 2 and 3 are satisfied for the
particular case bi = φi, 1 ≤ i ≤ N , with φi given in (1.2). In
this case B0 = IN and ∥b∥2

N = 0 for any N ∈ N. In the case
of linear systems, these {bi}∞i=1 were considered in the seminal
paper (Curtain, 1982, Section D).

Remark 2.5. Subject to smoothness properties of the shape
functions {bi}∞i=1, Assumption 3 can be verified using Fourier
analysis. For example, if {bi}∞i=1 are functions of bounded vari-
ation with supi∈N Var(bi) ≤ M , where M > 0, then it is well
known (Grafakos, 2008) that |⟨bi, φn⟩| ≤

M
2πn for any i, n ∈ N.

herefore,

b∥2
N ≤

M2

4π2

N∑
i=1

∞∑
n=N+1

1
n2 ≤

M2

4π2

N∑
i=1

1
N

≤
M2

4π2 .

Assumption 2 is related to the generalized Petrov–Galerkin finite-
elements method (Reddy, 2010), where B0 can be thought of
as the stiffness matrix, corresponding to trial functions {bi}∞i=1
and basis functions {φn}

∞

n=1. Explicit characterization of functions
{bi}∞i=1 which satisfy Assumption 2 is outside of the scope of this
paper and is left for future research.

We show next that under Assumptions 2 and 3 with γ1+γ2 <

2 for any σ > 0 there always exists a value of N and appropriate
K0 ∈ RN×N such that (2.10) stabilizes (2.1)

Proposition 1. Let Assumptions 2 and 3 hold with γ1 + γ2 < 2.
Then for any σ > 0 and δ > 0 there exists N ∈ N such that (2.10)
with K0 = −kB−1

0 and k ∈ R, subject to

− λ1 − k + δ + σ < 0, (2.33)

xponentially stabilizes (2.1) with a decay rate δ > 0.

roof. Choosing P = I in (2.23), applying Schur complement
nd taking into account Assumptions 2 and 3, we have that (2.23)
olds iff

(A0 − [k − δ − σ ] I)+
k2β1β2Nγ1+γ2

α
I < 0. (2.34)

easibility of (2.24) and (2.34) implies (2.29). Note that (2.34)
olds provided

k2β1β2Nγ1+γ2 (2.35)
(−λ1 − k + δ + σ)+
α

< 0.
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ecall that we assume γ1 + γ2 < 2. Choosing α = Nγ1+γ2+ϵ such
that 0 < ϵ < 2 − γ1 − γ2, (2.24) and (2.35) hold iff

−λ1 − k + δ + σ +
k2β1β2
2Nϵ < 0,

− λN+1 + δ + σ +
Nγ1+γ2+ϵ

2 < 0.
(2.36)

Since λN+1 = π2(N+1)2, we see that (2.36) hold for large enough
N . The minimal value of N which satisfies (2.36) can be estimated,
iven δ, σ , k, β1, γ1, β2 and γ2.

2.3. Non-local stabilization with m = N actuators — nonlinear
state-feedback

Here, we consider the nonlinear state-feedback

u(t) = −B−1
0

(
k1zN (t) + f N (t)

)
, (2.37)

where f N (t) is given in (2.13) and k1 ∈ R satisfies

− λ1 − k1 + δ < 0. (2.38)

Note that the gain k1 for the nonlinear state-feedback is smaller
than k for the linear state-feedback (see (2.33)).

Remark 2.6. In order to use the controller (2.37), f in (2.1)
ust be known explicitly. Otherwise, one can only use the linear
tate-feedback K0 = −kB−1

0 in Section B.

Using (2.37), the closed-loop system for t ≥ 0 can be pre-
sented as

żN (t) = (A0 − k1I)zN (t),

żn(t) = −λnzn(t) − k1BnB−1
0 zN (t)

−BnB−1
0 f N (t) + fn(t), n > N0.

(2.39)

For L2-stability analysis of the closed-loop system (2.39), we
consider the Lyapunov function (2.15) with P = ρI for 0 < ρ ∈

R. In comparison with the linear state-feedback case, the finite-
dimensional part of the closed-loop system (2.39) is decoupled
from the tail modes {zn(t)}∞n=N+1. The choice P = ρI in the
Lyapunov functional will allow us to reduce the number of LMIs
which guarantee exponential stability of the closed-loop system.

Differentiation of V (t) along the solution of (2.39) and argu-
ments similar to (2.16)–(2.21) give

V̇ (t) + 2δV (t) ≤ 2ρ
(
zN (t)

)T [A0 − k1I + δI

+
σ

2α2ρ
I +

k21
2ρα ∥b∥2

N

(
B−1
0

)T
B−1
0

]
zN (t)

+
(
f N (t)

)T [
1
α1

∥b∥2
N

(
B−1
0

)T
B−1
0 −

1
α2σ

I
]
f N (t)

+ 2
∞∑

n=N+1

(
−λn + δ +

α2+α−1
2

2 σ +
α
2 +

α1
2

)
z2n (t)

(2.40)

where we used

−2
∞∑

n=N+1

zn(t)BnB−1
0 f N (t)

α1

∞∑
n=N+1

z2n (t) +
1
α1

∥b∥2
N

⏐⏐B−1
0 f N (t)

⏐⏐2 (2.41)

and, from arguments similar to (2.17)–(2.19),

2
∞∑

n=N+1

zn(t)fn(t) ≤
(
α2 + α−1

2

)
σ

∞∑
n=N+1

z2n (t)

σ
⏐⏐ N

⏐⏐2 1
⏐⏐ N

⏐⏐2 (2.42)
+
α2

z (t) −
α2σ

f (t) .

5

Recall Assumptions 2 and 3. Taking into account (2.38) and using
α =

1
√
ρ
, ρ → ∞, V̇ (t) + 2δV (t) ≤ 0 holds provided

α2β1β2Nγ1+γ2
α1

−
1
σ
< 0, −λN+1 + δ +

α2+α−1
2

2 σ +
α1
2 < 0. (2.43)

heorem 2.2. Consider the heat equation (2.1) with a locally
ipschitz f : R → R satisfying (2.3) with some σ > 0, b(x) given
n (2.2) with m = N and the nonlinear control law (2.37) subject to
2.38) with a desired decay rate δ > 0. Assume z(·, 0) ∈ H1

0 (0, 1).
et Assumptions 2 and 3 hold with γ1 + γ2 < 4. Given N ∈ N, let
here exist 0 < α1, α2 ∈ R such that (2.43) hold. Then the solution
(x, t) to (2.1) under the control law (2.37) satisfies (2.29) for some
> 0. Moreover, for any σ > 0, (2.43) are always feasible for an

ppropriate N.

roof. Taking into account γ1 + γ2 < 4, let α2 = N−0.5(γ1+γ2+ϵ)

nd α1 = N0.5(γ1+γ2+ϵ), where 0 < ϵ < 4 − γ1 − γ2. Substituting
nto (2.43) gives β1β2

Nϵ −
1
σ
< 0, −λN+1 + δ+

Nξ+N−ξ

2 σ +
Nξ
2 < 0,

where ξ =
γ1+γ2+ϵ

2 < 2. Since λN+1 = π2(N+1)2, the latter holds
for large enough N , which can be explicitly estimated.

We want to compare (2.24), (2.35) (resulting from linear state-
feedback) and (2.43) (resulting from nonlinear state-feedback) in
terms of N required for feasibility of LMIs. We show next that
nonlinear state-feedback leads to a value of N that is not larger
than for the case of linear state-feedback, subject to the technical
assumption σ ≥ 2λ1. This assumption is mild since in Sections B
and C we are interested in feasibility for arbitrarily large values
of σ . This result is consistent with (Karafyllis, 2021), where it
was shown that a nonlinear controller performs better than a
linear one. Theoretical analysis which characterizes scenarios in
which the nonlinear controller performs better than the linear
one is desirable. However, it is beyond the scope of this paper
and remains a direction for future research.

Proposition 2. Let σ = (µ+ 1) λ1, µ ≥ 1. Assume that k ∈ R
satisfies (2.24) and (2.33), (2.35) hold for some N and α = α∗. Then
(2.43) hold with N, α2 = 1 and α1 = α∗.

Proof. It suffices to show that β1β2Nγ1+γ2
α∗

< 1
σ
. From (2.33) we

have λ1 + k − δ − σ = ε ⇒ k = µλ1 + δ + ϵ for some ε > 0.
rom (2.35) we obtain
β1β2Nγ1+γ2

α∗
< 2ϵ

k2
=

2ϵ
(µλ1+δ+ε)2

≤
1
σ

⇐⇒ 0 ≤ ε2 + 2ϵ (δ − λ1)+ (µλ1 + δ)2.
(2.44)

he term on the right-hand side is a quadratic polynomial with
iscriminant −4 (µ+ 1) λ1 (2δ + [µ− 1] λ1) ≤ 0.

. Stabilization of a semilinear heat equation — boundary ac-
uation

Inspired by Karafyllis (2021), where a trigonometric change
f variables was suggested, we consider two cases of variables
hange for dynamic extension: trigonometric and polynomial.

.1. Trigonometric change of variable

Here we consider the following nonlinear 1D heat equation

zt (x, t) = zxx(x, t) + az(x, t) + f (z(x, t))z(x, t),
z(0, t) = 0, z(1, t) =

∑m
i=1 ui(t)

(3.1)

where a ∈ R is the reaction coefficient and m ∈ N. Inspired
by Karafyllis (2021), let

ψi(x) = (−1)i+1 sin(
√
µix), µi = π2

(
i −

1
)2

, i ∈ N. (3.2)

2
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(

Λ

F

2

t can be easily verified that {ψi}
∞

i=1 satisfy
′′

i (x) + µiψi(x) = 0,

i(0) = ψ ′

i (1) = 0, ψi(1) = 1, ∥ψi∥ =
1

√
2
.

(3.3)

n particular, {ψi}
∞

i=1 is an orthogonal family, being a sequence of
igenfunctions of a Sturm–Liouville problem. Furthermore, note
hat µi ̸= λn for n, i ∈ N. We consider the following dynamic
xtension

(x, t) = z(x, t) − ψT (x)u(t),
ψ(x) = col {ψi(x)}mi=1 , u(t) = col {ui(t)}mi=1 .

(3.4)

ubstituting (3.4) into (3.1) we obtain

t (x, t) = wxx(x, t) − ψT (x) (− (Ξ + aI) u(t) + u̇(t))
+f

(
w(x, t) + ψT (x)u(t)

) [
w(x, t) + ψT (x)u(t)

]
,

w(0, t) = w(1, t) = 0, Ξ = diag {−µ1, . . . ,−µm} .

(3.5)

We will henceforth treat u(t) as an additional state variable,
subject to the dynamics

u̇(t) = (Ξ + aI) u(t) + v(t), u(0) = 0 (3.6)

where v(t) ∈ Rm×1 is the new control input. From (3.5) and (3.6)
we obtain the following ODE-PDE system, which is equivalent to
(3.1):

u̇(t) = (Ξ + aI) u(t) + v(t),
wt (x, t) = wxx(x, t) + aw(x, t) − ψT (x)v(t)

+f
(
w(x, t) + ψT (x)u(t)

) [
w(x, t) + ψT (x)u(t)

]
,

u(0) = 0, w(0, t) = w(1, t) = 0.

(3.7)

We present the solution to (3.7) as

w(x, t) =

∞∑
n=1

wn(t)φn(x) (3.8)

with {φn}n∈N defined in (1.2). Differentiating under the integral
sign, integrating by parts and using (1.1) we have

ẇn(t) = (−λn + a)wn(t) − Bnv(t) + f (1)n (t) + f (2)n (t),
wn(0) = ⟨w(·, 0), φn⟩

(3.9)

where
Bn = [⟨ψ1, φn⟩ , . . . , ⟨ψm, φn⟩] ,

f (1)n (t) =
∫ 1
0 f

(
w(x, t) + ψT (x)u(t)

)
w(x, t)φn(x)dx,

f (2)n (t) =
∫ 1
0 f

(
w(x, t) + ψT (x)u(t)

)
ψT (x)u(t)φn(x)dx.

(3.10)

By Parseval’s equality and orthogonality of {ψi}
∞

i=1

∞∑
n=1

[
f (2)n (t)

]2
=

∫ 1
0

⏐⏐f (
w(x, t) + ψT (x)u(t)

)
ψT (x)u(t)

⏐⏐2 dx
≤ σ 2

ψT (x)u(t)
2

= σ 2
m∑
i=1

u2
i (t) ∥ψi∥

2 (3.3)
=

σ2

2 |u(t)|2 .

(3.11)

Let δ > 0 be a desired decay rate and N ∈ N such that

− λn + a +
3
2
σ + δ < 0, n > N. (3.12)

Recall A0 and B0, given in (2.9), and let

X(t) = col {u(t), w1(t), . . . , wN (t)} ,

FN,(j)(t) = col
{
0m×1, f

(j)
1 (t), . . . , f (j)N (t)

}
, j ∈ {1, 2} ,

¯ ¯

(3.13)
A = diag {Ξ , A0} + aI, B = col {Im×m,−B0} . −

6

By Lemma 2.1 in Karafyllis (2021), the pair
(
Ā, B̄

)
is controllable.

Let the controller gain K̄ ∈ Rm×(m+N) be obtained from LMIs (see
(3.26) and (3.28)). We propose a controller of the form

v(t) = −K̄X(t) (3.14)

leading to the following closed-loop system for t ≥ 0:

Ẋ(t) = (Ā − B̄K̄ )X(t) + FN,(1)(t) + FN,(2)(t),

ẇn(t) = (−λn + a)wn(t) + BnK̄X(t)

+f (1)n (t) + f (2)n (t), n > N.

(3.15)

ell-posedness of the closed-loop system (3.15) has been shown
n Karafyllis (2021) (see Theorem 2.2 and Theorem 3.1 therein).
n particular, given z(·, 0) ∈ D (A), (3.1) has a unique solution z ∈

C([0,∞)×[0, 1])∩C1((0,∞)×[0, 1]) such that z(·, t) ∈ C2(0, 1)
for all t > 0 and satisfies the boundary conditions in (3.1).

For L2-stability analysis of the closed-loop system (3.15), we
consider the Lyapunov function

V (t) = |X(t)|2P +

∞∑
n=N+1

w2
n(t) (3.16)

where 0 < P ∈ R(N+m)×(N+m). Differentiation of V (t) along the
solution to (3.15) gives

V̇ (t) + 2δV (t) = XT (t)
[
P(Ā − B̄K̄ ) + (Ā − B̄K̄ )TP

+2δP] X(t) + 2XT (t)PFN,(1)(t)

+ 2XT (t)PFN,(2)(t) + 2
∞∑

n=N+1

(−λn + a + δ)w2
n(t)

+ 2
∞∑

n=N+1

wn(t)f (1)n (t) + 2
∞∑

n=N+1

wn(t)f (2)n (t)

+ 2
∞∑

n=N+1

wn(t)BnK̄X(t).

(3.17)

By using the Young inequality, we have

2
∞∑

n=N+1

wn(t)f (1)n (t) ≤ σ

∞∑
n=N+1

w2
n(t)

−
1
σ

⏐⏐FN,(1)(t)
⏐⏐2 +

1
σ

∞∑
n=1

(
f (1)n

)2
(t).

(3.18)

hen, from Parseval’s equality, we obtain

∞

n=1

(
f (1)n

)2
(t) =

∫ 1
0 f 2(w(x, t) + ψT (x)u(t))w2(x, t)dx

2.3)
≤ σ 2

∫ 1
0 w

2(x, t)dx = σ 2 |X(t)|2Λ1
+ σ 2

∞∑
n=N+1

w2
n(t),

1 = diag {0m×m, IN×N} .

(3.19)

rom (3.18) (3.19) we obtain

∞∑
n=N+1

wn(t)f (1)n (t) ≤ 2σ
∞∑

n=N+1

w2
n(t)

1
⏐⏐ N,(1)

⏐⏐2 2

(3.20)
σ
F (t) + σ |X(t)|Λ1
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imilarly, we have
∞∑

n=N+1

wn(t)f
(2)
n (t) ≤ σ

∞∑
n=N+1

w2
n(t) −

1
σ

⏐⏐FN,(2)(t)
⏐⏐2

1
σ

∞∑
n=1

[
f (2)n (t)

]2 (3.11)
≤ σ

∞∑
n=N+1

w2
n(t) −

1
σ

⏐⏐FN,(2)(t)
⏐⏐2

+
σ
2 X

T (t)Λ2X(t), Λ2 = diag {Im×m, 0N×N} .

(3.21)

inally, by arguments similar to (2.20) and (2.21), we have
∞∑

=N+1

wn(t)BnK̄X(t) ≤ α

∞∑
n=N+1

w2
n(t)

+
1
α

∥ψ∥
2
N

⏐⏐K̄X(t)⏐⏐2 (3.22)

here α > 0 and ∥ψ∥
2
N =

∑m
i=1 ∥ψi∥

2
N .

emark 3.1. The term ∥ψ∥
2
N can be upper bounded. Indeed,

integrating by parts twice, it can be easily verified that

⟨ψi, φn⟩ = −
1
µi

⟨
ψ ′′

i , φn
⟩
=

1
µi
φ′
n(1) +

λn
µi

⟨ψi, φn⟩ .

Since µi ̸= λn for n, i ∈ N, we find that

⟨ψi, φn⟩ =
(−1)n

√
2λn

µi−λn
. (3.23)

In particular, we have

∥ψi∥
2
N = 2

∑
∞

n=N+1
λn

(λn−µi)2

which can be upper bounded by using the integral test for series
convergence.

Let η(t) = col
{
X(t), FN,(1)(t), FN,(2)(t)

}
. From (3.17)–(3.22) we

obtain

V̇ (t) + 2δV (t) ≤ ηT (t)Φ (3)η(t) + 2
∞∑

n=N+1

Υ (2)
n w2

n(t) ≤ 0, (3.24)

provided Υ (2)
n = −λn + a + δ +

3
2σ +

α
2 < 0, n > N and

Φ(3)
=

⎡⎣φ(3) +
1
α ∥ψ∥2N K̄T K̄ P P

∗ −σ−1I 0

∗ ∗ −σ−1I

⎤⎦ < 0,

(3)
= P(Ā − B̄K̄ ) + (Ā − B̄K̄ )TP + 2δP + σΛ3,

Λ3 = Λ1 +
1
2Λ2

(3.25)

hold. From monotonicity of λn, n ∈ N we have Υ (2)
n < 0, n > N

iff

Υ
(2)
N+1 = −λN+1 + a + δ +

3
2σ +

α
2 < 0. (3.26)

o obtain equivalent LMIs for the design of the gain K̄ , we mul-
iply Φ (3) from the left and right by diag

{
P−1, I, I

}
. Using the

otations
−1

= Q , Ȳ = P−1K̄ T
= Q K̄ T , (3.27)

oting that Λ3, given in (3.25), is positive definite and applying
chur complement, we find that (3.25) holds iff

(4)
=

⎡⎣φ(4) Q Ȳ

∗ −σ−1Λ−1
3 0

∗ ∗ −α ∥ψ∥
−2
N

⎤⎦ < 0,

(4)
= ĀQ + Q ĀT

− B̄Ȳ T
− Ȳ B̄T

+ 2δQ + 2σ I.

(3.28)

n particular, (3.26) and (3.28) are LMIs in Q , Ȳ and α. If (3.26)
nd (3.28) are feasible, the controller gain is obtained by K̄ =
¯ TQ−1. Finally, we claim that (3.25) and (3.26) are feasible, for
mall enough σ > 0. By (3.12), choose α > 0 such that (3.26)
7

olds. From controllability of (Ā, B̄) we can choose K̄ ∈ Rm×(m+N)

uch that Ā − B̄K̄ + δI is Hurwitz. Let P ∈ R(N+m)×(N+m) be such
hat (2.27) holds with A0, B0, K0 replaced by Ā, B̄, K̄ , respectively,
here χ > 0 satisfies −χ I +

1
α

∥ψ∥
2
N K̄ T K̄ < 0. Substituting into

(3.25) and applying Schur complement, (3.25) holds iff

− χ I +
1
α

∥ψ∥
2
N K̄ T K̄ + σ [Λ3 + 2P] < 0. (3.29)

he latter holds for small enough σ > 0. Summarizing:

heorem 3.1. Consider (3.7) with a locally Lipschitz f satisfying
2.3) with some σ > 0 and the control law (3.14). Assume z(·, 0) ∈

(A). Let δ > 0 be a desired decay rate. Let N ∈ N satisfy (3.12).
et a scalar α > 0, matrix 0 < Q ∈ R(N+m)×(N+m) and vector
¯ ∈ R(N+m)×1 be such that the LMIs (3.26) and (3.28) hold. Then
(t), w(x, t) to (3.7) under the control law (3.14) with K̄ = Ȳ TQ−1

satisfy

u2(t) + ∥w(·, t)∥2
≤ Me−2δt ∥w(·, 0)∥2 (3.30)

ith some M > 0. The LMIs (3.26) and (3.28) are always feasible
provided σ > 0 is small enough.

Remark 3.2. For boundary control we do not consider sta-
bilization with m = N and arbitrarily large σ > 0 for two
reasons. First, in case of a linear controller, the chosen functions
{ψi}

∞

i=1 lead to B0 (see (2.9), (3.10) and (3.13)) with entries (3.23).
This matrix is a Hilbert-type matrix whose singular values decay
exponentially fast. Therefore, (2.31) is not expected to hold for
large N ∈ N. Finding a change of variables (see (3.4)) that does not
lead to a badly conditioned B0, which satisfies (2.31), remains an
open problem. Second, the use of a nonlinear boundary controller
similar to (2.37) (with u(t) replaced by v(t)) will introduce non-
inear terms into (3.6), which may destabilize it. Note that even
f a nonlinear controller gives some improvement compared to a
inear one in the case of non-local actuation, it needs knowledge
f f (z) and is more difficult for robustness analysis in the presence
f delays (Fridman, 2014).

.2. Polynomial change of variables

One can replace the change of variables (3.4) with the follow-
ng standard dynamic extension

(x, t) = z(x, t) −

m∑
j=1

xjuj(t). (3.31)

or simplicity we briefly describe the case m = 1. The ODE-PDE
ystem, resulting from (3.31) is given by

˙(t) = v(t)

t (x, t) = wxx(x, t) + aw(x, t) − xv(t) + axu(t)
+f (w(x, t) + xu(t)) [w(x, t) + xu(t)]

u(0) = 0, w(0, t) = w(1, t) = 0.

(3.32)

Presenting the solution to (3.32) as (3.8), we obtain

ẇn(t) = (−λn + a)wn(t) + bn (au(t) − v(t))+ f (1)n (t)

+f (2)n (t), wn(0) = ⟨w(·, 0), φn⟩ , bn =
(−1)n+1√

2
√
λn

.
(3.33)

Let δ > 0 be a desired decay rate and N ∈ N such that (3.12)
holds. We introduce the notations

Ã0 = diag {01×1, A0} + aI, B0 = [b1, . . . , bN ]
T ,

B̃0 = col {1,−B0} , K̄a = K̄ + [a, 01×N ],
(3.34)

where A0 is given in (2.9). We suggest a controller of the form
(3.14), with X(t) given in (3.13). Then, the closed-loop system for
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≥ 0 is given by

˙ (t) = (Ã0 − B̃K̄a)X(t) + FN,(1)(t) + FN,(2)(t),

ẇn(t) = (−λn + a)wn(t) + bnK̄aX(t)

+f (1)n (t) + f (2)n (t), n > N.

(3.35)

with FN,(1)(t) and FN,(2)(t) given in (3.13). For L2-stability analysis
of the closed-loop system (3.15), we consider the Lyapunov func-
tion (3.16). Then, by arguments similar to (3.17)–(3.22), it can be
verified that

V̇ (t) + 2δV (t) ≤ ηT (t)Φ (5)η(t) + 2
∞∑

n=N+1

Υ (2)
n w2

n(t) ≤ 0, (3.36)

with η(t) and Υ (2)
n , n > N given before (3.24). The estimate (3.36)

holds provided (3.26) and

Φ(5)
=

⎡⎣φ(5) +
2

απ2N
K̄T
a K̄a P P

∗ −σ−1I 0

∗ ∗ −σ−1I

⎤⎦ < 0,

φ(5)
= P(Ã0 − B̃0K̄a) + (Ã0 − B̃0K̄a)TP + 2δP

+σ diag
{ 1
3 , IN

}
.

(3.37)

hold. Note that equivalent LMIs for the design of the gain K̄ can be
btained by arguments similar to (3.27)–(3.28). Moreover, (3.26)
nd (3.37) are always feasible provided σ > 0 is small enough.
The change of variables (3.31) can be used with m ≥ 2. In

his case, it can be easily verified that (3.11) is replaced by the
ollowing estimate

∞

n=1

[
f (2)n (t)

]2
≤ σ 2


m∑
j=1

xjuj(t)


2

= σ 2uT (t)Hu(T ) ≤ σ 2 ∥H∥ |u(t)|2 , H =

(
1

i+j+1

)m

i,j=1
.

(3.38)

The matrix H is the well-known Hilbert matrix, which is positive-
definite and highly ill-conditioned. Moreover, H approximates the
‘‘one-way infinite’’ Hilbert matrix (thought of as an operator on
ℓ2(N)). It is known (Choi, 1983) that the norm of the latter is π .
herefore, we expect ∥H∥ ≈ π . Hence, for large m, (3.38) likely
eads to a more conservative upper bound than (3.11).

. Numerical examples

We start with the case of non-local actuation (2.1) with either
= 1 or m = 2. Let δ = 10−4. The LMIs of Theorem 2.1

were verified, using Matlab, for different values of σ > 0 (which
correspond to unstable open-loop systems). For m = 1 we
hoose b1 = 1[0.3,0.9] (an indicator function). Note that differently
from the spatial decomposition approach (see e.g. Fridman and
Blighovsky 2012), the shape function b1 does not cover the entire
interval [0, 1]. For m = 2, we choose bi = 1

[
i−1
2 , i2 ]

, i ∈ {1, 2}.
For m = N = 1, the LMIs were verified to be feasible for

σ = 10. The resulting gain K0 of controller (2.10) is given by
K0 = 8.7469. The maximal value of σ for which the feasibility is
preserved with m = N = 1 is σ = 34, with the gain K0 = 165.27.
For m = N = 2, the LMIs were verified to be feasible for
σ = 40. The maximal value of for which feasibility is preserved
with m = N = 2 is σ = 72. The resulting gains K0 are given by

σ = 40 :

[
120.3 109.05

120.3 −109.95

]
, σ = 72 :

[
1587.8 259.02

1587.8 −259.04

]
. (4.1)

In the case of nonlinear control, the maximal values of σ which
preserve the feasibility were σ = 35.2 for m = N = 1 and
σ = 73.3 for m = N = 2. Thus, in this example, a nonlinear
 w

8

Fig. 1. Assumption 2 with b(N)
i = 1

[
i−1
N , i

N ]
, 1 ≤ i ≤ N .

Table 1
Boundary actuation, m = 2.
σmax 0.303 1.03 1.305 1.43 1.502 1.545 1.575

N 2 4 6 8 10 12 14

control allows for slightly larger values of σ . Note that for the
case m = N = 2, where the shape functions cover the interval
[0, 1], the obtained results are similar to the ones obtained by
the spatial decomposition approach.

Next, we verify numerically the validity of Assumptions 2 and
3 with the shape functions b(N)

i = 1
[
i−1
N , i

N ]
, 1 ≤ i ≤ N . For these

functions, Assumption 3 holds trivially, since
∑N

i=1

b(N)
i

2

N
=

−
∑N

i,n=1

⏐⏐⏐⟨b(N)
i , φn

⟩⏐⏐⏐2 ≤ 1, meaning that β2 = 1 and γ2 = 0.

ssumption 2 can be equivalently written as 1
β1
I ≤ Nγ1BT

0B0 ⇐⇒

1
β1

≤ Nγ1σ 2
min(B0). We verify the right-hand side for 1 ≤ N ≤ 300.

he results are given in Fig. 1.
The numerical results indicate that Assumption 2 holds with

1 = 2 and γ1 ≈ 1.06. In particular, γ1 + γ2 < 2, meaning that
he assumptions of Proposition 1 and Theorem 2.2 are satisfied.

Consider now the case of boundary actuation (3.1) with a =

π2 and m = 2 (Example 3.3 from Karafyllis, 2021). Let δ = 10−4.
he LMIs of Theorem 3.1 were verified for different values of
to obtain the maximal value of σ > 0 which preserves the

easibility. The results are given in Table 1.
For N = 2 we recover the upper bound in Karafyllis (2021).

owever, the latter was obtained using a nonlinear controller,
hereas we use a simpler linear one (which does not require
he nonlinearity to be known explicitly). Note that in Karafyl-
is (2021), the author assumes m = N and proposes a con-
roller which is based on inverting the matrix (⟨ψi, φn⟩)

N
i,n=1.

s explained in Remark 3.2, the latter matrix is extremely ill-
onditioned when N is large, which will likely lead to conserva-
ive bounds on σ . Our approach allows to obtain larger values of
max by increasing N while holding m fixed. This is because m
nd N are independent in our approach. As seen from Table 1 we
chieve a value of σ which is five times larger than in Karafyllis
2021).

For m = 1 we also compare the dynamic extensions (3.4)
nd (3.31) for a = 0 and a = 3π2 to obtain the maximal value
f σ which preserves feasibility of the LMIs. For a = 0, (3.4)
esults in σmax = 6.03, whereas (3.31) results in a slightly larger
max = 6.33. However, for a larger a = 3π2, (3.4) results in
max = 0.42, whereas (3.31) results in a smaller σmax = 0.31.
hus, the dynamic extension (3.4) allows larger σ than (3.31)
hen a is not small.
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Fig. 2. b(N)
1 = 1[0.3,0.9], m = N = 1.

Fig. 3. bi = 1
[
i−1
2 , i

2 ]
, i ∈ {1, 2} , m = N = 2.

For simulations of the closed-loop system, consider (2.1) with
f (z) = σ sin(z) and initial condition z(x, 0) = 10x(1 − x). Let
σ = 10 and m = N = 1. Let the shape function be b1 = 1[0.3,0.9],
the controller (2.10) gain be K0 = 8.7469 as obtained from LMIs
of Theorem 2.1. The PDE (2.1) and ODEs of zN (t) (see (2.14)) were
simulated using the FTCS (Forward Time Centered Space) finite-
difference scheme. The simulation results are given in Fig. 2 and
confirm our theoretical analysis.

Stability of the closed-loop system with the same gain was
preserved in simulations up to σ = 16.7, that may mirror a slight
conservatism of our LMIs. Next, consider σ = 40 and M = N = 2.
Let the shape functions be given by bi = 1

[
i−1
2 , i2 ]

, i ∈ {1, 2}. We
use the controller (2.10) with gain (4.1) as obtained from LMIs
of Theorem 2.1. Simulations of the PDE (2.1) and ODEs of zN (t)
are given in Fig. 3. Stability with the same gain is preserved in
simulations up to σ = 110.

Simulations of the closed-loop system under boundary actu-
ation (as presented in Section 3) also confirm the theoretical
results and are omitted due to space constraints.

5. Conclusion

A direct Lyapunov approach was suggested to global stabiliza-
tion of 1D parabolic PDEs with a nonlinearity exhibiting a linear
9

growth bound. The presented method can be extended in the
future to various robust control problems for semilinear parabolic
PDEs.
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